thread.cc revision 21ecab6effd08ed781d55fbb53b0e71c526c25fa
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_DALVIK
18
19#include "thread.h"
20
21#include <cutils/trace.h>
22#include <pthread.h>
23#include <signal.h>
24#include <sys/resource.h>
25#include <sys/time.h>
26
27#include <algorithm>
28#include <bitset>
29#include <cerrno>
30#include <iostream>
31#include <list>
32
33#include "arch/context.h"
34#include "base/mutex.h"
35#include "class_linker-inl.h"
36#include "class_linker.h"
37#include "debugger.h"
38#include "dex_file-inl.h"
39#include "entrypoints/entrypoint_utils.h"
40#include "entrypoints/quick/quick_alloc_entrypoints.h"
41#include "gc_map.h"
42#include "gc/accounting/card_table-inl.h"
43#include "gc/allocator/rosalloc.h"
44#include "gc/heap.h"
45#include "gc/space/space.h"
46#include "handle_scope-inl.h"
47#include "handle_scope.h"
48#include "indirect_reference_table-inl.h"
49#include "jni_internal.h"
50#include "mirror/art_field-inl.h"
51#include "mirror/art_method-inl.h"
52#include "mirror/class_loader.h"
53#include "mirror/class-inl.h"
54#include "mirror/object_array-inl.h"
55#include "mirror/stack_trace_element.h"
56#include "monitor.h"
57#include "object_lock.h"
58#include "quick_exception_handler.h"
59#include "quick/quick_method_frame_info.h"
60#include "reflection.h"
61#include "runtime.h"
62#include "scoped_thread_state_change.h"
63#include "ScopedLocalRef.h"
64#include "ScopedUtfChars.h"
65#include "stack.h"
66#include "thread_list.h"
67#include "thread-inl.h"
68#include "utils.h"
69#include "verifier/dex_gc_map.h"
70#include "verify_object-inl.h"
71#include "vmap_table.h"
72#include "well_known_classes.h"
73
74namespace art {
75
76bool Thread::is_started_ = false;
77pthread_key_t Thread::pthread_key_self_;
78ConditionVariable* Thread::resume_cond_ = nullptr;
79const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
80
81static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
82
83void Thread::InitCardTable() {
84  tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
85}
86
87static void UnimplementedEntryPoint() {
88  UNIMPLEMENTED(FATAL);
89}
90
91void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
92                     PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
93
94void Thread::InitTlsEntryPoints() {
95  // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
96  uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints);
97  uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) +
98                                                sizeof(tlsPtr_.quick_entrypoints));
99  for (uintptr_t* it = begin; it != end; ++it) {
100    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
101  }
102  InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints,
103                  &tlsPtr_.portable_entrypoints, &tlsPtr_.quick_entrypoints);
104}
105
106void Thread::ResetQuickAllocEntryPointsForThread() {
107  ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
108}
109
110void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
111  tlsPtr_.deoptimization_shadow_frame = sf;
112}
113
114void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
115  tls64_.deoptimization_return_value.SetJ(ret_val.GetJ());
116}
117
118ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
119  ShadowFrame* sf = tlsPtr_.deoptimization_shadow_frame;
120  tlsPtr_.deoptimization_shadow_frame = nullptr;
121  ret_val->SetJ(tls64_.deoptimization_return_value.GetJ());
122  return sf;
123}
124
125void Thread::SetShadowFrameUnderConstruction(ShadowFrame* sf) {
126  sf->SetLink(tlsPtr_.shadow_frame_under_construction);
127  tlsPtr_.shadow_frame_under_construction = sf;
128}
129
130void Thread::ClearShadowFrameUnderConstruction() {
131  CHECK_NE(static_cast<ShadowFrame*>(nullptr), tlsPtr_.shadow_frame_under_construction);
132  tlsPtr_.shadow_frame_under_construction = tlsPtr_.shadow_frame_under_construction->GetLink();
133}
134
135void Thread::InitTid() {
136  tls32_.tid = ::art::GetTid();
137}
138
139void Thread::InitAfterFork() {
140  // One thread (us) survived the fork, but we have a new tid so we need to
141  // update the value stashed in this Thread*.
142  InitTid();
143}
144
145void* Thread::CreateCallback(void* arg) {
146  Thread* self = reinterpret_cast<Thread*>(arg);
147  Runtime* runtime = Runtime::Current();
148  if (runtime == nullptr) {
149    LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
150    return nullptr;
151  }
152  {
153    // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
154    //       after self->Init().
155    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
156    // Check that if we got here we cannot be shutting down (as shutdown should never have started
157    // while threads are being born).
158    CHECK(!runtime->IsShuttingDownLocked());
159    self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
160    Runtime::Current()->EndThreadBirth();
161  }
162  {
163    ScopedObjectAccess soa(self);
164
165    // Copy peer into self, deleting global reference when done.
166    CHECK(self->tlsPtr_.jpeer != nullptr);
167    self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
168    self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
169    self->tlsPtr_.jpeer = nullptr;
170    self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str());
171    Dbg::PostThreadStart(self);
172
173    // Invoke the 'run' method of our java.lang.Thread.
174    mirror::Object* receiver = self->tlsPtr_.opeer;
175    jmethodID mid = WellKnownClasses::java_lang_Thread_run;
176    InvokeVirtualOrInterfaceWithJValues(soa, receiver, mid, nullptr);
177  }
178  // Detach and delete self.
179  Runtime::Current()->GetThreadList()->Unregister(self);
180
181  return nullptr;
182}
183
184Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
185                                  mirror::Object* thread_peer) {
186  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
187  Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
188  // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
189  // to stop it from going away.
190  if (kIsDebugBuild) {
191    MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
192    if (result != nullptr && !result->IsSuspended()) {
193      Locks::thread_list_lock_->AssertHeld(soa.Self());
194    }
195  }
196  return result;
197}
198
199Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
200                                  jobject java_thread) {
201  return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
202}
203
204static size_t FixStackSize(size_t stack_size) {
205  // A stack size of zero means "use the default".
206  if (stack_size == 0) {
207    stack_size = Runtime::Current()->GetDefaultStackSize();
208  }
209
210  // Dalvik used the bionic pthread default stack size for native threads,
211  // so include that here to support apps that expect large native stacks.
212  stack_size += 1 * MB;
213
214  // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
215  if (stack_size < PTHREAD_STACK_MIN) {
216    stack_size = PTHREAD_STACK_MIN;
217  }
218
219  if (Runtime::Current()->ExplicitStackOverflowChecks()) {
220    // It's likely that callers are trying to ensure they have at least a certain amount of
221    // stack space, so we should add our reserved space on top of what they requested, rather
222    // than implicitly take it away from them.
223    stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
224  } else {
225    // If we are going to use implicit stack checks, allocate space for the protected
226    // region at the bottom of the stack.
227    stack_size += Thread::kStackOverflowImplicitCheckSize +
228        GetStackOverflowReservedBytes(kRuntimeISA);
229  }
230
231  // Some systems require the stack size to be a multiple of the system page size, so round up.
232  stack_size = RoundUp(stack_size, kPageSize);
233
234  return stack_size;
235}
236
237// Global variable to prevent the compiler optimizing away the page reads for the stack.
238byte dont_optimize_this;
239
240// Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
241// overflow is detected.  It is located right below the stack_begin_.
242//
243// There is a little complexity here that deserves a special mention.  On some
244// architectures, the stack created using a VM_GROWSDOWN flag
245// to prevent memory being allocated when it's not needed.  This flag makes the
246// kernel only allocate memory for the stack by growing down in memory.  Because we
247// want to put an mprotected region far away from that at the stack top, we need
248// to make sure the pages for the stack are mapped in before we call mprotect.  We do
249// this by reading every page from the stack bottom (highest address) to the stack top.
250// We then madvise this away.
251void Thread::InstallImplicitProtection() {
252  byte* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
253  byte* stack_himem = tlsPtr_.stack_end;
254  byte* stack_top = reinterpret_cast<byte*>(reinterpret_cast<uintptr_t>(&stack_himem) &
255      ~(kPageSize - 1));    // Page containing current top of stack.
256
257  // First remove the protection on the protected region as will want to read and
258  // write it.  This may fail (on the first attempt when the stack is not mapped)
259  // but we ignore that.
260  UnprotectStack();
261
262  // Map in the stack.  This must be done by reading from the
263  // current stack pointer downwards as the stack may be mapped using VM_GROWSDOWN
264  // in the kernel.  Any access more than a page below the current SP might cause
265  // a segv.
266
267  // Read every page from the high address to the low.
268  for (byte* p = stack_top; p >= pregion; p -= kPageSize) {
269    dont_optimize_this = *p;
270  }
271
272  VLOG(threads) << "installing stack protected region at " << std::hex <<
273      static_cast<void*>(pregion) << " to " <<
274      static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
275
276  // Protect the bottom of the stack to prevent read/write to it.
277  ProtectStack();
278
279  // Tell the kernel that we won't be needing these pages any more.
280  // NB. madvise will probably write zeroes into the memory (on linux it does).
281  uint32_t unwanted_size = stack_top - pregion - kPageSize;
282  madvise(pregion, unwanted_size, MADV_DONTNEED);
283}
284
285void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
286  CHECK(java_peer != nullptr);
287  Thread* self = static_cast<JNIEnvExt*>(env)->self;
288  Runtime* runtime = Runtime::Current();
289
290  // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
291  bool thread_start_during_shutdown = false;
292  {
293    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
294    if (runtime->IsShuttingDownLocked()) {
295      thread_start_during_shutdown = true;
296    } else {
297      runtime->StartThreadBirth();
298    }
299  }
300  if (thread_start_during_shutdown) {
301    ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
302    env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
303    return;
304  }
305
306  Thread* child_thread = new Thread(is_daemon);
307  // Use global JNI ref to hold peer live while child thread starts.
308  child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
309  stack_size = FixStackSize(stack_size);
310
311  // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
312  // assign it.
313  env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
314                    reinterpret_cast<jlong>(child_thread));
315
316  pthread_t new_pthread;
317  pthread_attr_t attr;
318  CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
319  CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
320  CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
321  int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
322  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
323
324  if (pthread_create_result != 0) {
325    // pthread_create(3) failed, so clean up.
326    {
327      MutexLock mu(self, *Locks::runtime_shutdown_lock_);
328      runtime->EndThreadBirth();
329    }
330    // Manually delete the global reference since Thread::Init will not have been run.
331    env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
332    child_thread->tlsPtr_.jpeer = nullptr;
333    delete child_thread;
334    child_thread = nullptr;
335    // TODO: remove from thread group?
336    env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
337    {
338      std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
339                                   PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
340      ScopedObjectAccess soa(env);
341      soa.Self()->ThrowOutOfMemoryError(msg.c_str());
342    }
343  }
344}
345
346void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
347  // This function does all the initialization that must be run by the native thread it applies to.
348  // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
349  // we can handshake with the corresponding native thread when it's ready.) Check this native
350  // thread hasn't been through here already...
351  CHECK(Thread::Current() == nullptr);
352  SetUpAlternateSignalStack();
353  InitCpu();
354  InitTlsEntryPoints();
355  RemoveSuspendTrigger();
356  InitCardTable();
357  InitTid();
358  // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
359  // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
360  tlsPtr_.pthread_self = pthread_self();
361  CHECK(is_started_);
362  CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
363  DCHECK_EQ(Thread::Current(), this);
364
365  tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
366  InitStackHwm();
367
368  tlsPtr_.jni_env = new JNIEnvExt(this, java_vm);
369  thread_list->Register(this);
370}
371
372Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
373                       bool create_peer) {
374  Thread* self;
375  Runtime* runtime = Runtime::Current();
376  if (runtime == nullptr) {
377    LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
378    return nullptr;
379  }
380  {
381    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
382    if (runtime->IsShuttingDownLocked()) {
383      LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
384      return nullptr;
385    } else {
386      Runtime::Current()->StartThreadBirth();
387      self = new Thread(as_daemon);
388      self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
389      Runtime::Current()->EndThreadBirth();
390    }
391  }
392
393  CHECK_NE(self->GetState(), kRunnable);
394  self->SetState(kNative);
395
396  // If we're the main thread, ClassLinker won't be created until after we're attached,
397  // so that thread needs a two-stage attach. Regular threads don't need this hack.
398  // In the compiler, all threads need this hack, because no-one's going to be getting
399  // a native peer!
400  if (create_peer) {
401    self->CreatePeer(thread_name, as_daemon, thread_group);
402  } else {
403    // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
404    if (thread_name != nullptr) {
405      self->tlsPtr_.name->assign(thread_name);
406      ::art::SetThreadName(thread_name);
407    } else if (self->GetJniEnv()->check_jni) {
408      LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
409    }
410  }
411
412  return self;
413}
414
415void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
416  Runtime* runtime = Runtime::Current();
417  CHECK(runtime->IsStarted());
418  JNIEnv* env = tlsPtr_.jni_env;
419
420  if (thread_group == nullptr) {
421    thread_group = runtime->GetMainThreadGroup();
422  }
423  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
424  jint thread_priority = GetNativePriority();
425  jboolean thread_is_daemon = as_daemon;
426
427  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
428  if (peer.get() == nullptr) {
429    CHECK(IsExceptionPending());
430    return;
431  }
432  {
433    ScopedObjectAccess soa(this);
434    tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
435  }
436  env->CallNonvirtualVoidMethod(peer.get(),
437                                WellKnownClasses::java_lang_Thread,
438                                WellKnownClasses::java_lang_Thread_init,
439                                thread_group, thread_name.get(), thread_priority, thread_is_daemon);
440  AssertNoPendingException();
441
442  Thread* self = this;
443  DCHECK_EQ(self, Thread::Current());
444  env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
445                    reinterpret_cast<jlong>(self));
446
447  ScopedObjectAccess soa(self);
448  StackHandleScope<1> hs(self);
449  Handle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa)));
450  if (peer_thread_name.Get() == nullptr) {
451    // The Thread constructor should have set the Thread.name to a
452    // non-null value. However, because we can run without code
453    // available (in the compiler, in tests), we manually assign the
454    // fields the constructor should have set.
455    if (runtime->IsActiveTransaction()) {
456      InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
457    } else {
458      InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
459    }
460    peer_thread_name.Assign(GetThreadName(soa));
461  }
462  // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
463  if (peer_thread_name.Get() != nullptr) {
464    SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
465  }
466}
467
468template<bool kTransactionActive>
469void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
470                      jobject thread_name, jint thread_priority) {
471  soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
472      SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
473  soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
474      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
475  soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
476      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
477  soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
478      SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
479}
480
481void Thread::SetThreadName(const char* name) {
482  tlsPtr_.name->assign(name);
483  ::art::SetThreadName(name);
484  Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
485}
486
487void Thread::InitStackHwm() {
488  void* read_stack_base;
489  size_t read_stack_size;
490  GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size);
491
492  // TODO: include this in the thread dumps; potentially useful in SIGQUIT output?
493  VLOG(threads) << StringPrintf("Native stack is at %p (%s)", read_stack_base,
494                                PrettySize(read_stack_size).c_str());
495
496  tlsPtr_.stack_begin = reinterpret_cast<byte*>(read_stack_base);
497  tlsPtr_.stack_size = read_stack_size;
498
499  // The minimum stack size we can cope with is the overflow reserved bytes (typically
500  // 8K) + the protected region size (4K) + another page (4K).  Typically this will
501  // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
502  // between 8K and 12K.
503  uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
504    + 4 * KB;
505  if (read_stack_size <= min_stack) {
506    LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << read_stack_size
507        << " bytes)";
508  }
509
510  // TODO: move this into the Linux GetThreadStack implementation.
511#if !defined(__APPLE__)
512  // If we're the main thread, check whether we were run with an unlimited stack. In that case,
513  // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
514  // will be broken because we'll die long before we get close to 2GB.
515  bool is_main_thread = (::art::GetTid() == getpid());
516  if (is_main_thread) {
517    rlimit stack_limit;
518    if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
519      PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
520    }
521    if (stack_limit.rlim_cur == RLIM_INFINITY) {
522      // Find the default stack size for new threads...
523      pthread_attr_t default_attributes;
524      size_t default_stack_size;
525      CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
526      CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
527                         "default stack size query");
528      CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
529
530      // ...and use that as our limit.
531      size_t old_stack_size = read_stack_size;
532      tlsPtr_.stack_size = default_stack_size;
533      tlsPtr_.stack_begin += (old_stack_size - default_stack_size);
534      VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
535                    << " to " << PrettySize(default_stack_size)
536                    << " with base " << reinterpret_cast<void*>(tlsPtr_.stack_begin);
537    }
538  }
539#endif
540
541  // Set stack_end_ to the bottom of the stack saving space of stack overflows
542  bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
543  ResetDefaultStackEnd();
544
545  // Install the protected region if we are doing implicit overflow checks.
546  if (implicit_stack_check) {
547    size_t guardsize;
548    pthread_attr_t attributes;
549    CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), "guard size query");
550    CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, &guardsize), "guard size query");
551    CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), "guard size query");
552    // The thread might have protected region at the bottom.  We need
553    // to install our own region so we need to move the limits
554    // of the stack to make room for it.
555    tlsPtr_.stack_begin += guardsize + kStackOverflowProtectedSize;
556    tlsPtr_.stack_end += guardsize + kStackOverflowProtectedSize;
557    tlsPtr_.stack_size -= guardsize;
558
559    InstallImplicitProtection();
560  }
561
562  // Sanity check.
563  int stack_variable;
564  CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end));
565}
566
567void Thread::ShortDump(std::ostream& os) const {
568  os << "Thread[";
569  if (GetThreadId() != 0) {
570    // If we're in kStarting, we won't have a thin lock id or tid yet.
571    os << GetThreadId()
572             << ",tid=" << GetTid() << ',';
573  }
574  os << GetState()
575           << ",Thread*=" << this
576           << ",peer=" << tlsPtr_.opeer
577           << ",\"" << *tlsPtr_.name << "\""
578           << "]";
579}
580
581void Thread::Dump(std::ostream& os) const {
582  DumpState(os);
583  DumpStack(os);
584}
585
586mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const {
587  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
588  return (tlsPtr_.opeer != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
589}
590
591void Thread::GetThreadName(std::string& name) const {
592  name.assign(*tlsPtr_.name);
593}
594
595uint64_t Thread::GetCpuMicroTime() const {
596#if defined(HAVE_POSIX_CLOCKS)
597  clockid_t cpu_clock_id;
598  pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
599  timespec now;
600  clock_gettime(cpu_clock_id, &now);
601  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
602#else
603  UNIMPLEMENTED(WARNING);
604  return -1;
605#endif
606}
607
608// Attempt to rectify locks so that we dump thread list with required locks before exiting.
609static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
610  LOG(ERROR) << *thread << " suspend count already zero.";
611  Locks::thread_suspend_count_lock_->Unlock(self);
612  if (!Locks::mutator_lock_->IsSharedHeld(self)) {
613    Locks::mutator_lock_->SharedTryLock(self);
614    if (!Locks::mutator_lock_->IsSharedHeld(self)) {
615      LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
616    }
617  }
618  if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
619    Locks::thread_list_lock_->TryLock(self);
620    if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
621      LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
622    }
623  }
624  std::ostringstream ss;
625  Runtime::Current()->GetThreadList()->DumpLocked(ss);
626  LOG(FATAL) << ss.str();
627}
628
629void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
630  if (kIsDebugBuild) {
631    DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
632          << delta << " " << tls32_.debug_suspend_count << " " << this;
633    DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
634    Locks::thread_suspend_count_lock_->AssertHeld(self);
635    if (this != self && !IsSuspended()) {
636      Locks::thread_list_lock_->AssertHeld(self);
637    }
638  }
639  if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
640    UnsafeLogFatalForSuspendCount(self, this);
641    return;
642  }
643
644  tls32_.suspend_count += delta;
645  if (for_debugger) {
646    tls32_.debug_suspend_count += delta;
647  }
648
649  if (tls32_.suspend_count == 0) {
650    AtomicClearFlag(kSuspendRequest);
651  } else {
652    AtomicSetFlag(kSuspendRequest);
653    TriggerSuspend();
654  }
655}
656
657void Thread::RunCheckpointFunction() {
658  Closure *checkpoints[kMaxCheckpoints];
659
660  // Grab the suspend_count lock and copy the current set of
661  // checkpoints.  Then clear the list and the flag.  The RequestCheckpoint
662  // function will also grab this lock so we prevent a race between setting
663  // the kCheckpointRequest flag and clearing it.
664  {
665    MutexLock mu(this, *Locks::thread_suspend_count_lock_);
666    for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
667      checkpoints[i] = tlsPtr_.checkpoint_functions[i];
668      tlsPtr_.checkpoint_functions[i] = nullptr;
669    }
670    AtomicClearFlag(kCheckpointRequest);
671  }
672
673  // Outside the lock, run all the checkpoint functions that
674  // we collected.
675  bool found_checkpoint = false;
676  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
677    if (checkpoints[i] != nullptr) {
678      ATRACE_BEGIN("Checkpoint function");
679      checkpoints[i]->Run(this);
680      ATRACE_END();
681      found_checkpoint = true;
682    }
683  }
684  CHECK(found_checkpoint);
685}
686
687bool Thread::RequestCheckpoint(Closure* function) {
688  union StateAndFlags old_state_and_flags;
689  old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
690  if (old_state_and_flags.as_struct.state != kRunnable) {
691    return false;  // Fail, thread is suspended and so can't run a checkpoint.
692  }
693
694  uint32_t available_checkpoint = kMaxCheckpoints;
695  for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
696    if (tlsPtr_.checkpoint_functions[i] == nullptr) {
697      available_checkpoint = i;
698      break;
699    }
700  }
701  if (available_checkpoint == kMaxCheckpoints) {
702    // No checkpoint functions available, we can't run a checkpoint
703    return false;
704  }
705  tlsPtr_.checkpoint_functions[available_checkpoint] = function;
706
707  // Checkpoint function installed now install flag bit.
708  // We must be runnable to request a checkpoint.
709  DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
710  union StateAndFlags new_state_and_flags;
711  new_state_and_flags.as_int = old_state_and_flags.as_int;
712  new_state_and_flags.as_struct.flags |= kCheckpointRequest;
713  bool success =
714      tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(old_state_and_flags.as_int,
715                                                                                       new_state_and_flags.as_int);
716  if (UNLIKELY(!success)) {
717    // The thread changed state before the checkpoint was installed.
718    CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function);
719    tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr;
720  } else {
721    CHECK_EQ(ReadFlag(kCheckpointRequest), true);
722    TriggerSuspend();
723  }
724  return success;
725}
726
727void Thread::FullSuspendCheck() {
728  VLOG(threads) << this << " self-suspending";
729  ATRACE_BEGIN("Full suspend check");
730  // Make thread appear suspended to other threads, release mutator_lock_.
731  TransitionFromRunnableToSuspended(kSuspended);
732  // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
733  TransitionFromSuspendedToRunnable();
734  ATRACE_END();
735  VLOG(threads) << this << " self-reviving";
736}
737
738void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
739  std::string group_name;
740  int priority;
741  bool is_daemon = false;
742  Thread* self = Thread::Current();
743
744  // Don't do this if we are aborting since the GC may have all the threads suspended. This will
745  // cause ScopedObjectAccessUnchecked to deadlock.
746  if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
747    ScopedObjectAccessUnchecked soa(self);
748    priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
749        ->GetInt(thread->tlsPtr_.opeer);
750    is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
751        ->GetBoolean(thread->tlsPtr_.opeer);
752
753    mirror::Object* thread_group =
754        soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);
755
756    if (thread_group != nullptr) {
757      mirror::ArtField* group_name_field =
758          soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
759      mirror::String* group_name_string =
760          reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
761      group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
762    }
763  } else {
764    priority = GetNativePriority();
765  }
766
767  std::string scheduler_group_name(GetSchedulerGroupName(tid));
768  if (scheduler_group_name.empty()) {
769    scheduler_group_name = "default";
770  }
771
772  if (thread != nullptr) {
773    os << '"' << *thread->tlsPtr_.name << '"';
774    if (is_daemon) {
775      os << " daemon";
776    }
777    os << " prio=" << priority
778       << " tid=" << thread->GetThreadId()
779       << " " << thread->GetState();
780    if (thread->IsStillStarting()) {
781      os << " (still starting up)";
782    }
783    os << "\n";
784  } else {
785    os << '"' << ::art::GetThreadName(tid) << '"'
786       << " prio=" << priority
787       << " (not attached)\n";
788  }
789
790  if (thread != nullptr) {
791    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
792    os << "  | group=\"" << group_name << "\""
793       << " sCount=" << thread->tls32_.suspend_count
794       << " dsCount=" << thread->tls32_.debug_suspend_count
795       << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
796       << " self=" << reinterpret_cast<const void*>(thread) << "\n";
797  }
798
799  os << "  | sysTid=" << tid
800     << " nice=" << getpriority(PRIO_PROCESS, tid)
801     << " cgrp=" << scheduler_group_name;
802  if (thread != nullptr) {
803    int policy;
804    sched_param sp;
805    CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
806                       __FUNCTION__);
807    os << " sched=" << policy << "/" << sp.sched_priority
808       << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
809  }
810  os << "\n";
811
812  // Grab the scheduler stats for this thread.
813  std::string scheduler_stats;
814  if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
815    scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
816  } else {
817    scheduler_stats = "0 0 0";
818  }
819
820  char native_thread_state = '?';
821  int utime = 0;
822  int stime = 0;
823  int task_cpu = 0;
824  GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
825
826  os << "  | state=" << native_thread_state
827     << " schedstat=( " << scheduler_stats << " )"
828     << " utm=" << utime
829     << " stm=" << stime
830     << " core=" << task_cpu
831     << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
832  if (thread != nullptr) {
833    os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
834        << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
835        << PrettySize(thread->tlsPtr_.stack_size) << "\n";
836    // Dump the held mutexes.
837    os << "  | held mutexes=";
838    for (size_t i = 0; i < kLockLevelCount; ++i) {
839      if (i != kMonitorLock) {
840        BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
841        if (mutex != nullptr) {
842          os << " \"" << mutex->GetName() << "\"";
843          if (mutex->IsReaderWriterMutex()) {
844            ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
845            if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
846              os << "(exclusive held)";
847            } else {
848              os << "(shared held)";
849            }
850          }
851        }
852      }
853    }
854    os << "\n";
855  }
856}
857
858void Thread::DumpState(std::ostream& os) const {
859  Thread::DumpState(os, this, GetTid());
860}
861
862struct StackDumpVisitor : public StackVisitor {
863  StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
864      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
865      : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
866        last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) {
867  }
868
869  virtual ~StackDumpVisitor() {
870    if (frame_count == 0) {
871      os << "  (no managed stack frames)\n";
872    }
873  }
874
875  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
876    mirror::ArtMethod* m = GetMethod();
877    if (m->IsRuntimeMethod()) {
878      return true;
879    }
880    const int kMaxRepetition = 3;
881    mirror::Class* c = m->GetDeclaringClass();
882    mirror::DexCache* dex_cache = c->GetDexCache();
883    int line_number = -1;
884    if (dex_cache != nullptr) {  // be tolerant of bad input
885      const DexFile& dex_file = *dex_cache->GetDexFile();
886      line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
887    }
888    if (line_number == last_line_number && last_method == m) {
889      ++repetition_count;
890    } else {
891      if (repetition_count >= kMaxRepetition) {
892        os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
893      }
894      repetition_count = 0;
895      last_line_number = line_number;
896      last_method = m;
897    }
898    if (repetition_count < kMaxRepetition) {
899      os << "  at " << PrettyMethod(m, false);
900      if (m->IsNative()) {
901        os << "(Native method)";
902      } else {
903        const char* source_file(m->GetDeclaringClassSourceFile());
904        os << "(" << (source_file != nullptr ? source_file : "unavailable")
905           << ":" << line_number << ")";
906      }
907      os << "\n";
908      if (frame_count == 0) {
909        Monitor::DescribeWait(os, thread);
910      }
911      if (can_allocate) {
912        // Visit locks, but do not abort on errors. This would trigger a nested abort.
913        Monitor::VisitLocks(this, DumpLockedObject, &os, false);
914      }
915    }
916
917    ++frame_count;
918    return true;
919  }
920
921  static void DumpLockedObject(mirror::Object* o, void* context)
922      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
923    std::ostream& os = *reinterpret_cast<std::ostream*>(context);
924    os << "  - locked ";
925    if (o == nullptr) {
926      os << "an unknown object";
927    } else {
928      if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
929          Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
930        // Getting the identity hashcode here would result in lock inflation and suspension of the
931        // current thread, which isn't safe if this is the only runnable thread.
932        os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
933                           PrettyTypeOf(o).c_str());
934      } else {
935        os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), PrettyTypeOf(o).c_str());
936      }
937    }
938    os << "\n";
939  }
940
941  std::ostream& os;
942  const Thread* thread;
943  const bool can_allocate;
944  mirror::ArtMethod* method;
945  mirror::ArtMethod* last_method;
946  int last_line_number;
947  int repetition_count;
948  int frame_count;
949};
950
951static bool ShouldShowNativeStack(const Thread* thread)
952    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
953  ThreadState state = thread->GetState();
954
955  // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
956  if (state > kWaiting && state < kStarting) {
957    return true;
958  }
959
960  // In an Object.wait variant or Thread.sleep? That's not interesting.
961  if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
962    return false;
963  }
964
965  // In some other native method? That's interesting.
966  // We don't just check kNative because native methods will be in state kSuspended if they're
967  // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
968  // thread-startup states if it's early enough in their life cycle (http://b/7432159).
969  mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
970  return current_method != nullptr && current_method->IsNative();
971}
972
973void Thread::DumpJavaStack(std::ostream& os) const {
974  std::unique_ptr<Context> context(Context::Create());
975  StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
976                          !tls32_.throwing_OutOfMemoryError);
977  dumper.WalkStack();
978}
979
980void Thread::DumpStack(std::ostream& os) const {
981  // TODO: we call this code when dying but may not have suspended the thread ourself. The
982  //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
983  //       the race with the thread_suspend_count_lock_).
984  bool dump_for_abort = (gAborting > 0);
985  bool safe_to_dump = (this == Thread::Current() || IsSuspended());
986  if (!kIsDebugBuild) {
987    // We always want to dump the stack for an abort, however, there is no point dumping another
988    // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
989    safe_to_dump = (safe_to_dump || dump_for_abort);
990  }
991  if (safe_to_dump) {
992    // If we're currently in native code, dump that stack before dumping the managed stack.
993    if (dump_for_abort || ShouldShowNativeStack(this)) {
994      DumpKernelStack(os, GetTid(), "  kernel: ", false);
995      DumpNativeStack(os, GetTid(), "  native: ", GetCurrentMethod(nullptr));
996    }
997    DumpJavaStack(os);
998  } else {
999    os << "Not able to dump stack of thread that isn't suspended";
1000  }
1001}
1002
1003void Thread::ThreadExitCallback(void* arg) {
1004  Thread* self = reinterpret_cast<Thread*>(arg);
1005  if (self->tls32_.thread_exit_check_count == 0) {
1006    LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
1007        "going to use a pthread_key_create destructor?): " << *self;
1008    CHECK(is_started_);
1009    CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
1010    self->tls32_.thread_exit_check_count = 1;
1011  } else {
1012    LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
1013  }
1014}
1015
1016void Thread::Startup() {
1017  CHECK(!is_started_);
1018  is_started_ = true;
1019  {
1020    // MutexLock to keep annotalysis happy.
1021    //
1022    // Note we use nullptr for the thread because Thread::Current can
1023    // return garbage since (is_started_ == true) and
1024    // Thread::pthread_key_self_ is not yet initialized.
1025    // This was seen on glibc.
1026    MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1027    resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1028                                         *Locks::thread_suspend_count_lock_);
1029  }
1030
1031  // Allocate a TLS slot.
1032  CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
1033
1034  // Double-check the TLS slot allocation.
1035  if (pthread_getspecific(pthread_key_self_) != nullptr) {
1036    LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
1037  }
1038}
1039
1040void Thread::FinishStartup() {
1041  Runtime* runtime = Runtime::Current();
1042  CHECK(runtime->IsStarted());
1043
1044  // Finish attaching the main thread.
1045  ScopedObjectAccess soa(Thread::Current());
1046  Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
1047
1048  Runtime::Current()->GetClassLinker()->RunRootClinits();
1049}
1050
1051void Thread::Shutdown() {
1052  CHECK(is_started_);
1053  is_started_ = false;
1054  CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
1055  MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
1056  if (resume_cond_ != nullptr) {
1057    delete resume_cond_;
1058    resume_cond_ = nullptr;
1059  }
1060}
1061
1062Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) {
1063  wait_mutex_ = new Mutex("a thread wait mutex");
1064  wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
1065  tlsPtr_.debug_invoke_req = new DebugInvokeReq;
1066  tlsPtr_.single_step_control = new SingleStepControl;
1067  tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
1068  tlsPtr_.name = new std::string(kThreadNameDuringStartup);
1069
1070  CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
1071  tls32_.state_and_flags.as_struct.flags = 0;
1072  tls32_.state_and_flags.as_struct.state = kNative;
1073  memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
1074  std::fill(tlsPtr_.rosalloc_runs,
1075            tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBrackets,
1076            gc::allocator::RosAlloc::GetDedicatedFullRun());
1077  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
1078    tlsPtr_.checkpoint_functions[i] = nullptr;
1079  }
1080}
1081
1082bool Thread::IsStillStarting() const {
1083  // You might think you can check whether the state is kStarting, but for much of thread startup,
1084  // the thread is in kNative; it might also be in kVmWait.
1085  // You might think you can check whether the peer is nullptr, but the peer is actually created and
1086  // assigned fairly early on, and needs to be.
1087  // It turns out that the last thing to change is the thread name; that's a good proxy for "has
1088  // this thread _ever_ entered kRunnable".
1089  return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
1090      (*tlsPtr_.name == kThreadNameDuringStartup);
1091}
1092
1093void Thread::AssertNoPendingException() const {
1094  if (UNLIKELY(IsExceptionPending())) {
1095    ScopedObjectAccess soa(Thread::Current());
1096    mirror::Throwable* exception = GetException(nullptr);
1097    LOG(FATAL) << "No pending exception expected: " << exception->Dump();
1098  }
1099}
1100
1101void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
1102  if (UNLIKELY(IsExceptionPending())) {
1103    ScopedObjectAccess soa(Thread::Current());
1104    mirror::Throwable* exception = GetException(nullptr);
1105    LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
1106        << exception->Dump();
1107  }
1108}
1109
1110static void MonitorExitVisitor(mirror::Object** object, void* arg, uint32_t /*thread_id*/,
1111                               RootType /*root_type*/)
1112    NO_THREAD_SAFETY_ANALYSIS {
1113  Thread* self = reinterpret_cast<Thread*>(arg);
1114  mirror::Object* entered_monitor = *object;
1115  if (self->HoldsLock(entered_monitor)) {
1116    LOG(WARNING) << "Calling MonitorExit on object "
1117                 << object << " (" << PrettyTypeOf(entered_monitor) << ")"
1118                 << " left locked by native thread "
1119                 << *Thread::Current() << " which is detaching";
1120    entered_monitor->MonitorExit(self);
1121  }
1122}
1123
1124void Thread::Destroy() {
1125  Thread* self = this;
1126  DCHECK_EQ(self, Thread::Current());
1127
1128  if (tlsPtr_.opeer != nullptr) {
1129    ScopedObjectAccess soa(self);
1130    // We may need to call user-supplied managed code, do this before final clean-up.
1131    HandleUncaughtExceptions(soa);
1132    RemoveFromThreadGroup(soa);
1133
1134    // this.nativePeer = 0;
1135    if (Runtime::Current()->IsActiveTransaction()) {
1136      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1137          ->SetLong<true>(tlsPtr_.opeer, 0);
1138    } else {
1139      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1140          ->SetLong<false>(tlsPtr_.opeer, 0);
1141    }
1142    Dbg::PostThreadDeath(self);
1143
1144    // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1145    // who is waiting.
1146    mirror::Object* lock =
1147        soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
1148    // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1149    if (lock != nullptr) {
1150      StackHandleScope<1> hs(self);
1151      Handle<mirror::Object> h_obj(hs.NewHandle(lock));
1152      ObjectLock<mirror::Object> locker(self, h_obj);
1153      locker.NotifyAll();
1154    }
1155  }
1156
1157  // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1158  if (tlsPtr_.jni_env != nullptr) {
1159    tlsPtr_.jni_env->monitors.VisitRoots(MonitorExitVisitor, self, 0, kRootVMInternal);
1160  }
1161}
1162
1163Thread::~Thread() {
1164  if (tlsPtr_.jni_env != nullptr && tlsPtr_.jpeer != nullptr) {
1165    // If pthread_create fails we don't have a jni env here.
1166    tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
1167    tlsPtr_.jpeer = nullptr;
1168  }
1169  tlsPtr_.opeer = nullptr;
1170
1171  bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
1172  if (initialized) {
1173    delete tlsPtr_.jni_env;
1174    tlsPtr_.jni_env = nullptr;
1175  }
1176  CHECK_NE(GetState(), kRunnable);
1177  CHECK_NE(ReadFlag(kCheckpointRequest), true);
1178  CHECK(tlsPtr_.checkpoint_functions[0] == nullptr);
1179  CHECK(tlsPtr_.checkpoint_functions[1] == nullptr);
1180  CHECK(tlsPtr_.checkpoint_functions[2] == nullptr);
1181
1182  // We may be deleting a still born thread.
1183  SetStateUnsafe(kTerminated);
1184
1185  delete wait_cond_;
1186  delete wait_mutex_;
1187
1188  if (tlsPtr_.long_jump_context != nullptr) {
1189    delete tlsPtr_.long_jump_context;
1190  }
1191
1192  if (initialized) {
1193    CleanupCpu();
1194  }
1195
1196  delete tlsPtr_.debug_invoke_req;
1197  delete tlsPtr_.single_step_control;
1198  delete tlsPtr_.instrumentation_stack;
1199  delete tlsPtr_.name;
1200  delete tlsPtr_.stack_trace_sample;
1201
1202  Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1203
1204  TearDownAlternateSignalStack();
1205}
1206
1207void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1208  if (!IsExceptionPending()) {
1209    return;
1210  }
1211  ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1212  ScopedThreadStateChange tsc(this, kNative);
1213
1214  // Get and clear the exception.
1215  ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
1216  tlsPtr_.jni_env->ExceptionClear();
1217
1218  // If the thread has its own handler, use that.
1219  ScopedLocalRef<jobject> handler(tlsPtr_.jni_env,
1220                                  tlsPtr_.jni_env->GetObjectField(peer.get(),
1221                                      WellKnownClasses::java_lang_Thread_uncaughtHandler));
1222  if (handler.get() == nullptr) {
1223    // Otherwise use the thread group's default handler.
1224    handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(),
1225                                                  WellKnownClasses::java_lang_Thread_group));
1226  }
1227
1228  // Call the handler.
1229  tlsPtr_.jni_env->CallVoidMethod(handler.get(),
1230      WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
1231      peer.get(), exception.get());
1232
1233  // If the handler threw, clear that exception too.
1234  tlsPtr_.jni_env->ExceptionClear();
1235}
1236
1237void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1238  // this.group.removeThread(this);
1239  // group can be null if we're in the compiler or a test.
1240  mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
1241      ->GetObject(tlsPtr_.opeer);
1242  if (ogroup != nullptr) {
1243    ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1244    ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1245    ScopedThreadStateChange tsc(soa.Self(), kNative);
1246    tlsPtr_.jni_env->CallVoidMethod(group.get(),
1247                                    WellKnownClasses::java_lang_ThreadGroup_removeThread,
1248                                    peer.get());
1249  }
1250}
1251
1252size_t Thread::NumHandleReferences() {
1253  size_t count = 0;
1254  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1255    count += cur->NumberOfReferences();
1256  }
1257  return count;
1258}
1259
1260bool Thread::HandleScopeContains(jobject obj) const {
1261  StackReference<mirror::Object>* hs_entry =
1262      reinterpret_cast<StackReference<mirror::Object>*>(obj);
1263  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1264    if (cur->Contains(hs_entry)) {
1265      return true;
1266    }
1267  }
1268  // JNI code invoked from portable code uses shadow frames rather than the handle scope.
1269  return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
1270}
1271
1272void Thread::HandleScopeVisitRoots(RootCallback* visitor, void* arg, uint32_t thread_id) {
1273  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1274    size_t num_refs = cur->NumberOfReferences();
1275    for (size_t j = 0; j < num_refs; ++j) {
1276      mirror::Object* object = cur->GetReference(j);
1277      if (object != nullptr) {
1278        mirror::Object* old_obj = object;
1279        visitor(&object, arg, thread_id, kRootNativeStack);
1280        if (old_obj != object) {
1281          cur->SetReference(j, object);
1282        }
1283      }
1284    }
1285  }
1286}
1287
1288mirror::Object* Thread::DecodeJObject(jobject obj) const {
1289  Locks::mutator_lock_->AssertSharedHeld(this);
1290  if (obj == nullptr) {
1291    return nullptr;
1292  }
1293  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1294  IndirectRefKind kind = GetIndirectRefKind(ref);
1295  mirror::Object* result;
1296  // The "kinds" below are sorted by the frequency we expect to encounter them.
1297  if (kind == kLocal) {
1298    IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
1299    // Local references do not need a read barrier.
1300    result = locals.Get<kWithoutReadBarrier>(ref);
1301  } else if (kind == kHandleScopeOrInvalid) {
1302    // TODO: make stack indirect reference table lookup more efficient.
1303    // Check if this is a local reference in the handle scope.
1304    if (LIKELY(HandleScopeContains(obj))) {
1305      // Read from handle scope.
1306      result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
1307      VerifyObject(result);
1308    } else {
1309      result = kInvalidIndirectRefObject;
1310    }
1311  } else if (kind == kGlobal) {
1312    JavaVMExt* const vm = Runtime::Current()->GetJavaVM();
1313    result = vm->globals.SynchronizedGet(const_cast<Thread*>(this), &vm->globals_lock, ref);
1314  } else {
1315    DCHECK_EQ(kind, kWeakGlobal);
1316    result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1317    if (result == kClearedJniWeakGlobal) {
1318      // This is a special case where it's okay to return nullptr.
1319      return nullptr;
1320    }
1321  }
1322
1323  if (UNLIKELY(result == nullptr)) {
1324    JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
1325  }
1326  return result;
1327}
1328
1329// Implements java.lang.Thread.interrupted.
1330bool Thread::Interrupted() {
1331  MutexLock mu(Thread::Current(), *wait_mutex_);
1332  bool interrupted = IsInterruptedLocked();
1333  SetInterruptedLocked(false);
1334  return interrupted;
1335}
1336
1337// Implements java.lang.Thread.isInterrupted.
1338bool Thread::IsInterrupted() {
1339  MutexLock mu(Thread::Current(), *wait_mutex_);
1340  return IsInterruptedLocked();
1341}
1342
1343void Thread::Interrupt(Thread* self) {
1344  MutexLock mu(self, *wait_mutex_);
1345  if (interrupted_) {
1346    return;
1347  }
1348  interrupted_ = true;
1349  NotifyLocked(self);
1350}
1351
1352void Thread::Notify() {
1353  Thread* self = Thread::Current();
1354  MutexLock mu(self, *wait_mutex_);
1355  NotifyLocked(self);
1356}
1357
1358void Thread::NotifyLocked(Thread* self) {
1359  if (wait_monitor_ != nullptr) {
1360    wait_cond_->Signal(self);
1361  }
1362}
1363
1364class CountStackDepthVisitor : public StackVisitor {
1365 public:
1366  explicit CountStackDepthVisitor(Thread* thread)
1367      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1368      : StackVisitor(thread, nullptr),
1369        depth_(0), skip_depth_(0), skipping_(true) {}
1370
1371  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1372    // We want to skip frames up to and including the exception's constructor.
1373    // Note we also skip the frame if it doesn't have a method (namely the callee
1374    // save frame)
1375    mirror::ArtMethod* m = GetMethod();
1376    if (skipping_ && !m->IsRuntimeMethod() &&
1377        !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1378      skipping_ = false;
1379    }
1380    if (!skipping_) {
1381      if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
1382        ++depth_;
1383      }
1384    } else {
1385      ++skip_depth_;
1386    }
1387    return true;
1388  }
1389
1390  int GetDepth() const {
1391    return depth_;
1392  }
1393
1394  int GetSkipDepth() const {
1395    return skip_depth_;
1396  }
1397
1398 private:
1399  uint32_t depth_;
1400  uint32_t skip_depth_;
1401  bool skipping_;
1402};
1403
1404template<bool kTransactionActive>
1405class BuildInternalStackTraceVisitor : public StackVisitor {
1406 public:
1407  explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1408      : StackVisitor(thread, nullptr), self_(self),
1409        skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {}
1410
1411  bool Init(int depth)
1412      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1413    // Allocate method trace with an extra slot that will hold the PC trace
1414    StackHandleScope<1> hs(self_);
1415    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1416    Handle<mirror::ObjectArray<mirror::Object>> method_trace(
1417        hs.NewHandle(class_linker->AllocObjectArray<mirror::Object>(self_, depth + 1)));
1418    if (method_trace.Get() == nullptr) {
1419      return false;
1420    }
1421    mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
1422    if (dex_pc_trace == nullptr) {
1423      return false;
1424    }
1425    // Save PC trace in last element of method trace, also places it into the
1426    // object graph.
1427    // We are called from native: use non-transactional mode.
1428    method_trace->Set<kTransactionActive>(depth, dex_pc_trace);
1429    // Set the Object*s and assert that no thread suspension is now possible.
1430    const char* last_no_suspend_cause =
1431        self_->StartAssertNoThreadSuspension("Building internal stack trace");
1432    CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
1433    method_trace_ = method_trace.Get();
1434    dex_pc_trace_ = dex_pc_trace;
1435    return true;
1436  }
1437
1438  virtual ~BuildInternalStackTraceVisitor() {
1439    if (method_trace_ != nullptr) {
1440      self_->EndAssertNoThreadSuspension(nullptr);
1441    }
1442  }
1443
1444  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1445    if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) {
1446      return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1447    }
1448    if (skip_depth_ > 0) {
1449      skip_depth_--;
1450      return true;
1451    }
1452    mirror::ArtMethod* m = GetMethod();
1453    if (m->IsRuntimeMethod()) {
1454      return true;  // Ignore runtime frames (in particular callee save).
1455    }
1456    method_trace_->Set<kTransactionActive>(count_, m);
1457    dex_pc_trace_->Set<kTransactionActive>(count_,
1458        m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
1459    ++count_;
1460    return true;
1461  }
1462
1463  mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
1464    return method_trace_;
1465  }
1466
1467 private:
1468  Thread* const self_;
1469  // How many more frames to skip.
1470  int32_t skip_depth_;
1471  // Current position down stack trace.
1472  uint32_t count_;
1473  // Array of dex PC values.
1474  mirror::IntArray* dex_pc_trace_;
1475  // An array of the methods on the stack, the last entry is a reference to the PC trace.
1476  mirror::ObjectArray<mirror::Object>* method_trace_;
1477};
1478
1479template<bool kTransactionActive>
1480jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
1481  // Compute depth of stack
1482  CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1483  count_visitor.WalkStack();
1484  int32_t depth = count_visitor.GetDepth();
1485  int32_t skip_depth = count_visitor.GetSkipDepth();
1486
1487  // Build internal stack trace.
1488  BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
1489                                                                         const_cast<Thread*>(this),
1490                                                                         skip_depth);
1491  if (!build_trace_visitor.Init(depth)) {
1492    return nullptr;  // Allocation failed.
1493  }
1494  build_trace_visitor.WalkStack();
1495  mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
1496  if (kIsDebugBuild) {
1497    for (int32_t i = 0; i < trace->GetLength(); ++i) {
1498      CHECK(trace->Get(i) != nullptr);
1499    }
1500  }
1501  return soa.AddLocalReference<jobjectArray>(trace);
1502}
1503template jobject Thread::CreateInternalStackTrace<false>(
1504    const ScopedObjectAccessAlreadyRunnable& soa) const;
1505template jobject Thread::CreateInternalStackTrace<true>(
1506    const ScopedObjectAccessAlreadyRunnable& soa) const;
1507
1508jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
1509    const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array,
1510    int* stack_depth) {
1511  // Decode the internal stack trace into the depth, method trace and PC trace
1512  int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1;
1513
1514  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1515
1516  jobjectArray result;
1517
1518  if (output_array != nullptr) {
1519    // Reuse the array we were given.
1520    result = output_array;
1521    // ...adjusting the number of frames we'll write to not exceed the array length.
1522    const int32_t traces_length =
1523        soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
1524    depth = std::min(depth, traces_length);
1525  } else {
1526    // Create java_trace array and place in local reference table
1527    mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
1528        class_linker->AllocStackTraceElementArray(soa.Self(), depth);
1529    if (java_traces == nullptr) {
1530      return nullptr;
1531    }
1532    result = soa.AddLocalReference<jobjectArray>(java_traces);
1533  }
1534
1535  if (stack_depth != nullptr) {
1536    *stack_depth = depth;
1537  }
1538
1539  for (int32_t i = 0; i < depth; ++i) {
1540    mirror::ObjectArray<mirror::Object>* method_trace =
1541          soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
1542    // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1543    mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
1544    int32_t line_number;
1545    StackHandleScope<3> hs(soa.Self());
1546    auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
1547    auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
1548    if (method->IsProxyMethod()) {
1549      line_number = -1;
1550      class_name_object.Assign(method->GetDeclaringClass()->GetName());
1551      // source_name_object intentionally left null for proxy methods
1552    } else {
1553      mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
1554      uint32_t dex_pc = pc_trace->Get(i);
1555      line_number = method->GetLineNumFromDexPC(dex_pc);
1556      // Allocate element, potentially triggering GC
1557      // TODO: reuse class_name_object via Class::name_?
1558      const char* descriptor = method->GetDeclaringClassDescriptor();
1559      CHECK(descriptor != nullptr);
1560      std::string class_name(PrettyDescriptor(descriptor));
1561      class_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
1562      if (class_name_object.Get() == nullptr) {
1563        return nullptr;
1564      }
1565      const char* source_file = method->GetDeclaringClassSourceFile();
1566      if (source_file != nullptr) {
1567        source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
1568        if (source_name_object.Get() == nullptr) {
1569          return nullptr;
1570        }
1571      }
1572    }
1573    const char* method_name = method->GetName();
1574    CHECK(method_name != nullptr);
1575    Handle<mirror::String> method_name_object(
1576        hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
1577    if (method_name_object.Get() == nullptr) {
1578      return nullptr;
1579    }
1580    mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
1581        soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
1582    if (obj == nullptr) {
1583      return nullptr;
1584    }
1585    // We are called from native: use non-transactional mode.
1586    soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
1587  }
1588  return result;
1589}
1590
1591void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
1592                                const char* exception_class_descriptor, const char* fmt, ...) {
1593  va_list args;
1594  va_start(args, fmt);
1595  ThrowNewExceptionV(throw_location, exception_class_descriptor,
1596                     fmt, args);
1597  va_end(args);
1598}
1599
1600void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
1601                                const char* exception_class_descriptor,
1602                                const char* fmt, va_list ap) {
1603  std::string msg;
1604  StringAppendV(&msg, fmt, ap);
1605  ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
1606}
1607
1608void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
1609                               const char* msg) {
1610  // Callers should either clear or call ThrowNewWrappedException.
1611  AssertNoPendingExceptionForNewException(msg);
1612  ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
1613}
1614
1615void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
1616                                      const char* exception_class_descriptor,
1617                                      const char* msg) {
1618  DCHECK_EQ(this, Thread::Current());
1619  ScopedObjectAccessUnchecked soa(this);
1620  StackHandleScope<5> hs(soa.Self());
1621  // Ensure we don't forget arguments over object allocation.
1622  Handle<mirror::Object> saved_throw_this(hs.NewHandle(throw_location.GetThis()));
1623  Handle<mirror::ArtMethod> saved_throw_method(hs.NewHandle(throw_location.GetMethod()));
1624  // Ignore the cause throw location. TODO: should we report this as a re-throw?
1625  ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException(nullptr)));
1626  bool is_exception_reported = IsExceptionReportedToInstrumentation();
1627  ClearException();
1628  Runtime* runtime = Runtime::Current();
1629
1630  mirror::ClassLoader* cl = nullptr;
1631  if (saved_throw_method.Get() != nullptr) {
1632    cl = saved_throw_method.Get()->GetDeclaringClass()->GetClassLoader();
1633  }
1634  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(cl));
1635  Handle<mirror::Class> exception_class(
1636      hs.NewHandle(runtime->GetClassLinker()->FindClass(this, exception_class_descriptor,
1637                                                        class_loader)));
1638  if (UNLIKELY(exception_class.Get() == nullptr)) {
1639    CHECK(IsExceptionPending());
1640    LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1641    return;
1642  }
1643
1644  if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class, true, true))) {
1645    DCHECK(IsExceptionPending());
1646    return;
1647  }
1648  DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1649  Handle<mirror::Throwable> exception(
1650      hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this))));
1651
1652  // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
1653  if (exception.Get() == nullptr) {
1654    ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1655                                         throw_location.GetDexPc());
1656    SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1657    SetExceptionReportedToInstrumentation(is_exception_reported);
1658    return;
1659  }
1660
1661  // Choose an appropriate constructor and set up the arguments.
1662  const char* signature;
1663  ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
1664  if (msg != nullptr) {
1665    // Ensure we remember this and the method over the String allocation.
1666    msg_string.reset(
1667        soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
1668    if (UNLIKELY(msg_string.get() == nullptr)) {
1669      CHECK(IsExceptionPending());  // OOME.
1670      return;
1671    }
1672    if (cause.get() == nullptr) {
1673      signature = "(Ljava/lang/String;)V";
1674    } else {
1675      signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1676    }
1677  } else {
1678    if (cause.get() == nullptr) {
1679      signature = "()V";
1680    } else {
1681      signature = "(Ljava/lang/Throwable;)V";
1682    }
1683  }
1684  mirror::ArtMethod* exception_init_method =
1685      exception_class->FindDeclaredDirectMethod("<init>", signature);
1686
1687  CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
1688      << PrettyDescriptor(exception_class_descriptor);
1689
1690  if (UNLIKELY(!runtime->IsStarted())) {
1691    // Something is trying to throw an exception without a started runtime, which is the common
1692    // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1693    // the exception fields directly.
1694    if (msg != nullptr) {
1695      exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
1696    }
1697    if (cause.get() != nullptr) {
1698      exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
1699    }
1700    ScopedLocalRef<jobject> trace(GetJniEnv(),
1701                                  Runtime::Current()->IsActiveTransaction()
1702                                      ? CreateInternalStackTrace<true>(soa)
1703                                      : CreateInternalStackTrace<false>(soa));
1704    if (trace.get() != nullptr) {
1705      exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
1706    }
1707    ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1708                                         throw_location.GetDexPc());
1709    SetException(gc_safe_throw_location, exception.Get());
1710    SetExceptionReportedToInstrumentation(is_exception_reported);
1711  } else {
1712    jvalue jv_args[2];
1713    size_t i = 0;
1714
1715    if (msg != nullptr) {
1716      jv_args[i].l = msg_string.get();
1717      ++i;
1718    }
1719    if (cause.get() != nullptr) {
1720      jv_args[i].l = cause.get();
1721      ++i;
1722    }
1723    InvokeWithJValues(soa, exception.Get(), soa.EncodeMethod(exception_init_method), jv_args);
1724    if (LIKELY(!IsExceptionPending())) {
1725      ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1726                                           throw_location.GetDexPc());
1727      SetException(gc_safe_throw_location, exception.Get());
1728      SetExceptionReportedToInstrumentation(is_exception_reported);
1729    }
1730  }
1731}
1732
1733void Thread::ThrowOutOfMemoryError(const char* msg) {
1734  LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1735      msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
1736  ThrowLocation throw_location = GetCurrentLocationForThrow();
1737  if (!tls32_.throwing_OutOfMemoryError) {
1738    tls32_.throwing_OutOfMemoryError = true;
1739    ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
1740    tls32_.throwing_OutOfMemoryError = false;
1741  } else {
1742    Dump(LOG(ERROR));  // The pre-allocated OOME has no stack, so help out and log one.
1743    SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1744  }
1745}
1746
1747Thread* Thread::CurrentFromGdb() {
1748  return Thread::Current();
1749}
1750
1751void Thread::DumpFromGdb() const {
1752  std::ostringstream ss;
1753  Dump(ss);
1754  std::string str(ss.str());
1755  // log to stderr for debugging command line processes
1756  std::cerr << str;
1757#ifdef HAVE_ANDROID_OS
1758  // log to logcat for debugging frameworks processes
1759  LOG(INFO) << str;
1760#endif
1761}
1762
1763// Explicitly instantiate 32 and 64bit thread offset dumping support.
1764template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset);
1765template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset);
1766
1767template<size_t ptr_size>
1768void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
1769#define DO_THREAD_OFFSET(x, y) \
1770    if (offset == x.Uint32Value()) { \
1771      os << y; \
1772      return; \
1773    }
1774  DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
1775  DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
1776  DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
1777  DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
1778  DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
1779  DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
1780  DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
1781  DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
1782  DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
1783  DO_THREAD_OFFSET(TopOfManagedStackPcOffset<ptr_size>(), "top_quick_frame_pc")
1784  DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
1785  DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
1786  DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
1787#undef DO_THREAD_OFFSET
1788
1789#define INTERPRETER_ENTRY_POINT_INFO(x) \
1790    if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1791      os << #x; \
1792      return; \
1793    }
1794  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge)
1795  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge)
1796#undef INTERPRETER_ENTRY_POINT_INFO
1797
1798#define JNI_ENTRY_POINT_INFO(x) \
1799    if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1800      os << #x; \
1801      return; \
1802    }
1803  JNI_ENTRY_POINT_INFO(pDlsymLookup)
1804#undef JNI_ENTRY_POINT_INFO
1805
1806#define PORTABLE_ENTRY_POINT_INFO(x) \
1807    if (PORTABLE_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1808      os << #x; \
1809      return; \
1810    }
1811  PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline)
1812  PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline)
1813  PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge)
1814#undef PORTABLE_ENTRY_POINT_INFO
1815
1816#define QUICK_ENTRY_POINT_INFO(x) \
1817    if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1818      os << #x; \
1819      return; \
1820    }
1821  QUICK_ENTRY_POINT_INFO(pAllocArray)
1822  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
1823  QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
1824  QUICK_ENTRY_POINT_INFO(pAllocObject)
1825  QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
1826  QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
1827  QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
1828  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
1829  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
1830  QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
1831  QUICK_ENTRY_POINT_INFO(pCheckCast)
1832  QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
1833  QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
1834  QUICK_ENTRY_POINT_INFO(pInitializeType)
1835  QUICK_ENTRY_POINT_INFO(pResolveString)
1836  QUICK_ENTRY_POINT_INFO(pSet32Instance)
1837  QUICK_ENTRY_POINT_INFO(pSet32Static)
1838  QUICK_ENTRY_POINT_INFO(pSet64Instance)
1839  QUICK_ENTRY_POINT_INFO(pSet64Static)
1840  QUICK_ENTRY_POINT_INFO(pSetObjInstance)
1841  QUICK_ENTRY_POINT_INFO(pSetObjStatic)
1842  QUICK_ENTRY_POINT_INFO(pGet32Instance)
1843  QUICK_ENTRY_POINT_INFO(pGet32Static)
1844  QUICK_ENTRY_POINT_INFO(pGet64Instance)
1845  QUICK_ENTRY_POINT_INFO(pGet64Static)
1846  QUICK_ENTRY_POINT_INFO(pGetObjInstance)
1847  QUICK_ENTRY_POINT_INFO(pGetObjStatic)
1848  QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
1849  QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
1850  QUICK_ENTRY_POINT_INFO(pAputObject)
1851  QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
1852  QUICK_ENTRY_POINT_INFO(pJniMethodStart)
1853  QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
1854  QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
1855  QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
1856  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
1857  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
1858  QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
1859  QUICK_ENTRY_POINT_INFO(pLockObject)
1860  QUICK_ENTRY_POINT_INFO(pUnlockObject)
1861  QUICK_ENTRY_POINT_INFO(pCmpgDouble)
1862  QUICK_ENTRY_POINT_INFO(pCmpgFloat)
1863  QUICK_ENTRY_POINT_INFO(pCmplDouble)
1864  QUICK_ENTRY_POINT_INFO(pCmplFloat)
1865  QUICK_ENTRY_POINT_INFO(pFmod)
1866  QUICK_ENTRY_POINT_INFO(pL2d)
1867  QUICK_ENTRY_POINT_INFO(pFmodf)
1868  QUICK_ENTRY_POINT_INFO(pL2f)
1869  QUICK_ENTRY_POINT_INFO(pD2iz)
1870  QUICK_ENTRY_POINT_INFO(pF2iz)
1871  QUICK_ENTRY_POINT_INFO(pIdivmod)
1872  QUICK_ENTRY_POINT_INFO(pD2l)
1873  QUICK_ENTRY_POINT_INFO(pF2l)
1874  QUICK_ENTRY_POINT_INFO(pLdiv)
1875  QUICK_ENTRY_POINT_INFO(pLmod)
1876  QUICK_ENTRY_POINT_INFO(pLmul)
1877  QUICK_ENTRY_POINT_INFO(pShlLong)
1878  QUICK_ENTRY_POINT_INFO(pShrLong)
1879  QUICK_ENTRY_POINT_INFO(pUshrLong)
1880  QUICK_ENTRY_POINT_INFO(pIndexOf)
1881  QUICK_ENTRY_POINT_INFO(pStringCompareTo)
1882  QUICK_ENTRY_POINT_INFO(pMemcpy)
1883  QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
1884  QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
1885  QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
1886  QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
1887  QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
1888  QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
1889  QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
1890  QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
1891  QUICK_ENTRY_POINT_INFO(pTestSuspend)
1892  QUICK_ENTRY_POINT_INFO(pDeliverException)
1893  QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
1894  QUICK_ENTRY_POINT_INFO(pThrowDivZero)
1895  QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
1896  QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
1897  QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
1898  QUICK_ENTRY_POINT_INFO(pA64Load)
1899  QUICK_ENTRY_POINT_INFO(pA64Store)
1900#undef QUICK_ENTRY_POINT_INFO
1901
1902  os << offset;
1903}
1904
1905void Thread::QuickDeliverException() {
1906  // Get exception from thread.
1907  ThrowLocation throw_location;
1908  mirror::Throwable* exception = GetException(&throw_location);
1909  CHECK(exception != nullptr);
1910  // Don't leave exception visible while we try to find the handler, which may cause class
1911  // resolution.
1912  bool is_exception_reported = IsExceptionReportedToInstrumentation();
1913  ClearException();
1914  bool is_deoptimization = (exception == GetDeoptimizationException());
1915  QuickExceptionHandler exception_handler(this, is_deoptimization);
1916  if (is_deoptimization) {
1917    exception_handler.DeoptimizeStack();
1918  } else {
1919    exception_handler.FindCatch(throw_location, exception, is_exception_reported);
1920  }
1921  exception_handler.UpdateInstrumentationStack();
1922  exception_handler.DoLongJump();
1923  LOG(FATAL) << "UNREACHABLE";
1924}
1925
1926Context* Thread::GetLongJumpContext() {
1927  Context* result = tlsPtr_.long_jump_context;
1928  if (result == nullptr) {
1929    result = Context::Create();
1930  } else {
1931    tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
1932    result->Reset();
1933  }
1934  return result;
1935}
1936
1937// Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
1938//       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
1939struct CurrentMethodVisitor FINAL : public StackVisitor {
1940  CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error)
1941      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1942      : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0),
1943        abort_on_error_(abort_on_error) {}
1944  bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1945    mirror::ArtMethod* m = GetMethod();
1946    if (m->IsRuntimeMethod()) {
1947      // Continue if this is a runtime method.
1948      return true;
1949    }
1950    if (context_ != nullptr) {
1951      this_object_ = GetThisObject();
1952    }
1953    method_ = m;
1954    dex_pc_ = GetDexPc(abort_on_error_);
1955    return false;
1956  }
1957  mirror::Object* this_object_;
1958  mirror::ArtMethod* method_;
1959  uint32_t dex_pc_;
1960  const bool abort_on_error_;
1961};
1962
1963mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const {
1964  CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error);
1965  visitor.WalkStack(false);
1966  if (dex_pc != nullptr) {
1967    *dex_pc = visitor.dex_pc_;
1968  }
1969  return visitor.method_;
1970}
1971
1972ThrowLocation Thread::GetCurrentLocationForThrow() {
1973  Context* context = GetLongJumpContext();
1974  CurrentMethodVisitor visitor(this, context, true);
1975  visitor.WalkStack(false);
1976  ReleaseLongJumpContext(context);
1977  return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
1978}
1979
1980bool Thread::HoldsLock(mirror::Object* object) const {
1981  if (object == nullptr) {
1982    return false;
1983  }
1984  return object->GetLockOwnerThreadId() == GetThreadId();
1985}
1986
1987// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
1988template <typename RootVisitor>
1989class ReferenceMapVisitor : public StackVisitor {
1990 public:
1991  ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
1992      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1993      : StackVisitor(thread, context), visitor_(visitor) {}
1994
1995  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1996    if (false) {
1997      LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
1998                << StringPrintf("@ PC:%04x", GetDexPc());
1999    }
2000    ShadowFrame* shadow_frame = GetCurrentShadowFrame();
2001    if (shadow_frame != nullptr) {
2002      VisitShadowFrame(shadow_frame);
2003    } else {
2004      VisitQuickFrame();
2005    }
2006    return true;
2007  }
2008
2009  void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2010    mirror::ArtMethod** method_addr = shadow_frame->GetMethodAddress();
2011    visitor_(reinterpret_cast<mirror::Object**>(method_addr), 0 /*ignored*/, this);
2012    mirror::ArtMethod* m = *method_addr;
2013    DCHECK(m != nullptr);
2014    size_t num_regs = shadow_frame->NumberOfVRegs();
2015    if (m->IsNative() || shadow_frame->HasReferenceArray()) {
2016      // handle scope for JNI or References for interpreter.
2017      for (size_t reg = 0; reg < num_regs; ++reg) {
2018        mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2019        if (ref != nullptr) {
2020          mirror::Object* new_ref = ref;
2021          visitor_(&new_ref, reg, this);
2022          if (new_ref != ref) {
2023            shadow_frame->SetVRegReference(reg, new_ref);
2024          }
2025        }
2026      }
2027    } else {
2028      // Java method.
2029      // Portable path use DexGcMap and store in Method.native_gc_map_.
2030      const uint8_t* gc_map = m->GetNativeGcMap();
2031      CHECK(gc_map != nullptr) << PrettyMethod(m);
2032      verifier::DexPcToReferenceMap dex_gc_map(gc_map);
2033      uint32_t dex_pc = shadow_frame->GetDexPC();
2034      const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
2035      DCHECK(reg_bitmap != nullptr);
2036      num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
2037      for (size_t reg = 0; reg < num_regs; ++reg) {
2038        if (TestBitmap(reg, reg_bitmap)) {
2039          mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2040          if (ref != nullptr) {
2041            mirror::Object* new_ref = ref;
2042            visitor_(&new_ref, reg, this);
2043            if (new_ref != ref) {
2044              shadow_frame->SetVRegReference(reg, new_ref);
2045            }
2046          }
2047        }
2048      }
2049    }
2050  }
2051
2052 private:
2053  void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2054    StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2055    mirror::ArtMethod* m = cur_quick_frame->AsMirrorPtr();
2056    mirror::ArtMethod* old_method = m;
2057    visitor_(reinterpret_cast<mirror::Object**>(&m), 0 /*ignored*/, this);
2058    if (m != old_method) {
2059      cur_quick_frame->Assign(m);
2060    }
2061
2062    // Process register map (which native and runtime methods don't have)
2063    if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
2064      const uint8_t* native_gc_map = m->GetNativeGcMap();
2065      CHECK(native_gc_map != nullptr) << PrettyMethod(m);
2066      const DexFile::CodeItem* code_item = m->GetCodeItem();
2067      DCHECK(code_item != nullptr) << PrettyMethod(m);  // Can't be nullptr or how would we compile its instructions?
2068      NativePcOffsetToReferenceMap map(native_gc_map);
2069      size_t num_regs = std::min(map.RegWidth() * 8,
2070                                 static_cast<size_t>(code_item->registers_size_));
2071      if (num_regs > 0) {
2072        Runtime* runtime = Runtime::Current();
2073        const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m);
2074        uintptr_t native_pc_offset = m->NativePcOffset(GetCurrentQuickFramePc(), entry_point);
2075        const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset);
2076        DCHECK(reg_bitmap != nullptr);
2077        const void* code_pointer = mirror::ArtMethod::EntryPointToCodePointer(entry_point);
2078        const VmapTable vmap_table(m->GetVmapTable(code_pointer));
2079        QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer);
2080        // For all dex registers in the bitmap
2081        StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2082        DCHECK(cur_quick_frame != nullptr);
2083        for (size_t reg = 0; reg < num_regs; ++reg) {
2084          // Does this register hold a reference?
2085          if (TestBitmap(reg, reg_bitmap)) {
2086            uint32_t vmap_offset;
2087            if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
2088              int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset,
2089                                                        kReferenceVReg);
2090              // This is sound as spilled GPRs will be word sized (ie 32 or 64bit).
2091              mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg));
2092              if (*ref_addr != nullptr) {
2093                visitor_(ref_addr, reg, this);
2094              }
2095            } else {
2096              StackReference<mirror::Object>* ref_addr =
2097                  reinterpret_cast<StackReference<mirror::Object>*>(
2098                      GetVRegAddr(cur_quick_frame, code_item, frame_info.CoreSpillMask(),
2099                                  frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg));
2100              mirror::Object* ref = ref_addr->AsMirrorPtr();
2101              if (ref != nullptr) {
2102                mirror::Object* new_ref = ref;
2103                visitor_(&new_ref, reg, this);
2104                if (ref != new_ref) {
2105                  ref_addr->Assign(new_ref);
2106                }
2107              }
2108            }
2109          }
2110        }
2111      }
2112    }
2113  }
2114
2115  static bool TestBitmap(size_t reg, const uint8_t* reg_vector) {
2116    return ((reg_vector[reg / kBitsPerByte] >> (reg % kBitsPerByte)) & 0x01) != 0;
2117  }
2118
2119  // Visitor for when we visit a root.
2120  const RootVisitor& visitor_;
2121};
2122
2123class RootCallbackVisitor {
2124 public:
2125  RootCallbackVisitor(RootCallback* callback, void* arg, uint32_t tid)
2126     : callback_(callback), arg_(arg), tid_(tid) {}
2127
2128  void operator()(mirror::Object** obj, size_t, const StackVisitor*) const {
2129    callback_(obj, arg_, tid_, kRootJavaFrame);
2130  }
2131
2132 private:
2133  RootCallback* const callback_;
2134  void* const arg_;
2135  const uint32_t tid_;
2136};
2137
2138void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) {
2139  VerifyObject(class_loader_override);
2140  tlsPtr_.class_loader_override = class_loader_override;
2141}
2142
2143void Thread::VisitRoots(RootCallback* visitor, void* arg) {
2144  uint32_t thread_id = GetThreadId();
2145  if (tlsPtr_.opeer != nullptr) {
2146    visitor(&tlsPtr_.opeer, arg, thread_id, kRootThreadObject);
2147  }
2148  if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
2149    visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), arg, thread_id, kRootNativeStack);
2150  }
2151  tlsPtr_.throw_location.VisitRoots(visitor, arg);
2152  if (tlsPtr_.class_loader_override != nullptr) {
2153    visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.class_loader_override), arg, thread_id,
2154            kRootNativeStack);
2155  }
2156  if (tlsPtr_.monitor_enter_object != nullptr) {
2157    visitor(&tlsPtr_.monitor_enter_object, arg, thread_id, kRootNativeStack);
2158  }
2159  tlsPtr_.jni_env->locals.VisitRoots(visitor, arg, thread_id, kRootJNILocal);
2160  tlsPtr_.jni_env->monitors.VisitRoots(visitor, arg, thread_id, kRootJNIMonitor);
2161  HandleScopeVisitRoots(visitor, arg, thread_id);
2162  if (tlsPtr_.debug_invoke_req != nullptr) {
2163    tlsPtr_.debug_invoke_req->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2164  }
2165  if (tlsPtr_.single_step_control != nullptr) {
2166    tlsPtr_.single_step_control->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2167  }
2168  if (tlsPtr_.deoptimization_shadow_frame != nullptr) {
2169    RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2170    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2171    for (ShadowFrame* shadow_frame = tlsPtr_.deoptimization_shadow_frame; shadow_frame != nullptr;
2172        shadow_frame = shadow_frame->GetLink()) {
2173      mapper.VisitShadowFrame(shadow_frame);
2174    }
2175  }
2176  if (tlsPtr_.shadow_frame_under_construction != nullptr) {
2177    RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2178    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2179    for (ShadowFrame* shadow_frame = tlsPtr_.shadow_frame_under_construction;
2180        shadow_frame != nullptr;
2181        shadow_frame = shadow_frame->GetLink()) {
2182      mapper.VisitShadowFrame(shadow_frame);
2183    }
2184  }
2185  // Visit roots on this thread's stack
2186  Context* context = GetLongJumpContext();
2187  RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2188  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback);
2189  mapper.WalkStack();
2190  ReleaseLongJumpContext(context);
2191  for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2192    if (frame.this_object_ != nullptr) {
2193      visitor(&frame.this_object_, arg, thread_id, kRootJavaFrame);
2194    }
2195    DCHECK(frame.method_ != nullptr);
2196    visitor(reinterpret_cast<mirror::Object**>(&frame.method_), arg, thread_id, kRootJavaFrame);
2197  }
2198}
2199
2200static void VerifyRoot(mirror::Object** root, void* /*arg*/, uint32_t /*thread_id*/,
2201                       RootType /*root_type*/) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2202  VerifyObject(*root);
2203}
2204
2205void Thread::VerifyStackImpl() {
2206  std::unique_ptr<Context> context(Context::Create());
2207  RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap(), GetThreadId());
2208  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
2209  mapper.WalkStack();
2210}
2211
2212// Set the stack end to that to be used during a stack overflow
2213void Thread::SetStackEndForStackOverflow() {
2214  // During stack overflow we allow use of the full stack.
2215  if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
2216    // However, we seem to have already extended to use the full stack.
2217    LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2218               << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
2219    DumpStack(LOG(ERROR));
2220    LOG(FATAL) << "Recursive stack overflow.";
2221  }
2222
2223  tlsPtr_.stack_end = tlsPtr_.stack_begin;
2224
2225  // Remove the stack overflow protection if is it set up.
2226  bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
2227  if (implicit_stack_check) {
2228    if (!UnprotectStack()) {
2229      LOG(ERROR) << "Unable to remove stack protection for stack overflow";
2230    }
2231  }
2232}
2233
2234void Thread::SetTlab(byte* start, byte* end) {
2235  DCHECK_LE(start, end);
2236  tlsPtr_.thread_local_start = start;
2237  tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
2238  tlsPtr_.thread_local_end = end;
2239  tlsPtr_.thread_local_objects = 0;
2240}
2241
2242bool Thread::HasTlab() const {
2243  bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
2244  if (has_tlab) {
2245    DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
2246  } else {
2247    DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
2248  }
2249  return has_tlab;
2250}
2251
2252std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2253  thread.ShortDump(os);
2254  return os;
2255}
2256
2257void Thread::ProtectStack() {
2258  void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2259  VLOG(threads) << "Protecting stack at " << pregion;
2260  if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
2261    LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
2262        "Reason: "
2263        << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
2264  }
2265}
2266
2267bool Thread::UnprotectStack() {
2268  void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2269  VLOG(threads) << "Unprotecting stack at " << pregion;
2270  return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
2271}
2272
2273
2274}  // namespace art
2275