thread.cc revision 760172c3ccd6e75f6f1a89d8006934e8ffb1303e
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_DALVIK
18
19#include "thread.h"
20
21#include <cutils/trace.h>
22#include <pthread.h>
23#include <signal.h>
24#include <sys/resource.h>
25#include <sys/time.h>
26
27#include <algorithm>
28#include <bitset>
29#include <cerrno>
30#include <iostream>
31#include <list>
32
33#include "arch/context.h"
34#include "base/mutex.h"
35#include "class_linker-inl.h"
36#include "class_linker.h"
37#include "debugger.h"
38#include "dex_file-inl.h"
39#include "entrypoints/entrypoint_utils.h"
40#include "entrypoints/quick/quick_alloc_entrypoints.h"
41#include "gc_map.h"
42#include "gc/accounting/card_table-inl.h"
43#include "gc/allocator/rosalloc.h"
44#include "gc/heap.h"
45#include "gc/space/space.h"
46#include "handle_scope-inl.h"
47#include "handle_scope.h"
48#include "indirect_reference_table-inl.h"
49#include "jni_internal.h"
50#include "mirror/art_field-inl.h"
51#include "mirror/art_method-inl.h"
52#include "mirror/class_loader.h"
53#include "mirror/class-inl.h"
54#include "mirror/object_array-inl.h"
55#include "mirror/stack_trace_element.h"
56#include "monitor.h"
57#include "object_lock.h"
58#include "quick_exception_handler.h"
59#include "quick/quick_method_frame_info.h"
60#include "reflection.h"
61#include "runtime.h"
62#include "scoped_thread_state_change.h"
63#include "ScopedLocalRef.h"
64#include "ScopedUtfChars.h"
65#include "stack.h"
66#include "thread_list.h"
67#include "thread-inl.h"
68#include "utils.h"
69#include "verifier/dex_gc_map.h"
70#include "verify_object-inl.h"
71#include "vmap_table.h"
72#include "well_known_classes.h"
73
74namespace art {
75
76bool Thread::is_started_ = false;
77pthread_key_t Thread::pthread_key_self_;
78ConditionVariable* Thread::resume_cond_ = nullptr;
79const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
80
81static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
82
83void Thread::InitCardTable() {
84  tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
85}
86
87static void UnimplementedEntryPoint() {
88  UNIMPLEMENTED(FATAL);
89}
90
91void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
92                     PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
93
94void Thread::InitTlsEntryPoints() {
95  // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
96  uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints);
97  uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) +
98                                                sizeof(tlsPtr_.quick_entrypoints));
99  for (uintptr_t* it = begin; it != end; ++it) {
100    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
101  }
102  InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints,
103                  &tlsPtr_.portable_entrypoints, &tlsPtr_.quick_entrypoints);
104}
105
106void Thread::ResetQuickAllocEntryPointsForThread() {
107  ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
108}
109
110void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
111  tlsPtr_.deoptimization_shadow_frame = sf;
112}
113
114void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
115  tls64_.deoptimization_return_value.SetJ(ret_val.GetJ());
116}
117
118ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
119  ShadowFrame* sf = tlsPtr_.deoptimization_shadow_frame;
120  tlsPtr_.deoptimization_shadow_frame = nullptr;
121  ret_val->SetJ(tls64_.deoptimization_return_value.GetJ());
122  return sf;
123}
124
125void Thread::SetShadowFrameUnderConstruction(ShadowFrame* sf) {
126  sf->SetLink(tlsPtr_.shadow_frame_under_construction);
127  tlsPtr_.shadow_frame_under_construction = sf;
128}
129
130void Thread::ClearShadowFrameUnderConstruction() {
131  CHECK_NE(static_cast<ShadowFrame*>(nullptr), tlsPtr_.shadow_frame_under_construction);
132  tlsPtr_.shadow_frame_under_construction = tlsPtr_.shadow_frame_under_construction->GetLink();
133}
134
135void Thread::InitTid() {
136  tls32_.tid = ::art::GetTid();
137}
138
139void Thread::InitAfterFork() {
140  // One thread (us) survived the fork, but we have a new tid so we need to
141  // update the value stashed in this Thread*.
142  InitTid();
143}
144
145void* Thread::CreateCallback(void* arg) {
146  Thread* self = reinterpret_cast<Thread*>(arg);
147  Runtime* runtime = Runtime::Current();
148  if (runtime == nullptr) {
149    LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
150    return nullptr;
151  }
152  {
153    // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
154    //       after self->Init().
155    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
156    // Check that if we got here we cannot be shutting down (as shutdown should never have started
157    // while threads are being born).
158    CHECK(!runtime->IsShuttingDownLocked());
159    self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
160    Runtime::Current()->EndThreadBirth();
161  }
162  {
163    ScopedObjectAccess soa(self);
164
165    // Copy peer into self, deleting global reference when done.
166    CHECK(self->tlsPtr_.jpeer != nullptr);
167    self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
168    self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
169    self->tlsPtr_.jpeer = nullptr;
170    self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str());
171    Dbg::PostThreadStart(self);
172
173    // Invoke the 'run' method of our java.lang.Thread.
174    mirror::Object* receiver = self->tlsPtr_.opeer;
175    jmethodID mid = WellKnownClasses::java_lang_Thread_run;
176    InvokeVirtualOrInterfaceWithJValues(soa, receiver, mid, nullptr);
177  }
178  // Detach and delete self.
179  Runtime::Current()->GetThreadList()->Unregister(self);
180
181  return nullptr;
182}
183
184Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
185                                  mirror::Object* thread_peer) {
186  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
187  Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
188  // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
189  // to stop it from going away.
190  if (kIsDebugBuild) {
191    MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
192    if (result != nullptr && !result->IsSuspended()) {
193      Locks::thread_list_lock_->AssertHeld(soa.Self());
194    }
195  }
196  return result;
197}
198
199Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
200                                  jobject java_thread) {
201  return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
202}
203
204static size_t FixStackSize(size_t stack_size) {
205  // A stack size of zero means "use the default".
206  if (stack_size == 0) {
207    stack_size = Runtime::Current()->GetDefaultStackSize();
208  }
209
210  // Dalvik used the bionic pthread default stack size for native threads,
211  // so include that here to support apps that expect large native stacks.
212  stack_size += 1 * MB;
213
214  // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
215  if (stack_size < PTHREAD_STACK_MIN) {
216    stack_size = PTHREAD_STACK_MIN;
217  }
218
219  if (Runtime::Current()->ExplicitStackOverflowChecks()) {
220    // It's likely that callers are trying to ensure they have at least a certain amount of
221    // stack space, so we should add our reserved space on top of what they requested, rather
222    // than implicitly take it away from them.
223    stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
224  } else {
225    // If we are going to use implicit stack checks, allocate space for the protected
226    // region at the bottom of the stack.
227    stack_size += Thread::kStackOverflowImplicitCheckSize +
228        GetStackOverflowReservedBytes(kRuntimeISA);
229  }
230
231  // Some systems require the stack size to be a multiple of the system page size, so round up.
232  stack_size = RoundUp(stack_size, kPageSize);
233
234  return stack_size;
235}
236
237// Global variable to prevent the compiler optimizing away the page reads for the stack.
238byte dont_optimize_this;
239
240// Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
241// overflow is detected.  It is located right below the stack_begin_.
242//
243// There is a little complexity here that deserves a special mention.  On some
244// architectures, the stack created using a VM_GROWSDOWN flag
245// to prevent memory being allocated when it's not needed.  This flag makes the
246// kernel only allocate memory for the stack by growing down in memory.  Because we
247// want to put an mprotected region far away from that at the stack top, we need
248// to make sure the pages for the stack are mapped in before we call mprotect.  We do
249// this by reading every page from the stack bottom (highest address) to the stack top.
250// We then madvise this away.
251void Thread::InstallImplicitProtection() {
252  byte* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
253  byte* stack_himem = tlsPtr_.stack_end;
254  byte* stack_top = reinterpret_cast<byte*>(reinterpret_cast<uintptr_t>(&stack_himem) &
255      ~(kPageSize - 1));    // Page containing current top of stack.
256
257  // First remove the protection on the protected region as will want to read and
258  // write it.  This may fail (on the first attempt when the stack is not mapped)
259  // but we ignore that.
260  UnprotectStack();
261
262  // Map in the stack.  This must be done by reading from the
263  // current stack pointer downwards as the stack may be mapped using VM_GROWSDOWN
264  // in the kernel.  Any access more than a page below the current SP might cause
265  // a segv.
266
267  // Read every page from the high address to the low.
268  for (byte* p = stack_top; p >= pregion; p -= kPageSize) {
269    dont_optimize_this = *p;
270  }
271
272  VLOG(threads) << "installing stack protected region at " << std::hex <<
273      static_cast<void*>(pregion) << " to " <<
274      static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
275
276  // Protect the bottom of the stack to prevent read/write to it.
277  ProtectStack();
278
279  // Tell the kernel that we won't be needing these pages any more.
280  // NB. madvise will probably write zeroes into the memory (on linux it does).
281  uint32_t unwanted_size = stack_top - pregion - kPageSize;
282  madvise(pregion, unwanted_size, MADV_DONTNEED);
283}
284
285void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
286  CHECK(java_peer != nullptr);
287  Thread* self = static_cast<JNIEnvExt*>(env)->self;
288  Runtime* runtime = Runtime::Current();
289
290  // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
291  bool thread_start_during_shutdown = false;
292  {
293    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
294    if (runtime->IsShuttingDownLocked()) {
295      thread_start_during_shutdown = true;
296    } else {
297      runtime->StartThreadBirth();
298    }
299  }
300  if (thread_start_during_shutdown) {
301    ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
302    env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
303    return;
304  }
305
306  Thread* child_thread = new Thread(is_daemon);
307  // Use global JNI ref to hold peer live while child thread starts.
308  child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
309  stack_size = FixStackSize(stack_size);
310
311  // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
312  // assign it.
313  env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
314                    reinterpret_cast<jlong>(child_thread));
315
316  pthread_t new_pthread;
317  pthread_attr_t attr;
318  CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
319  CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
320  CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
321  int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
322  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
323
324  if (pthread_create_result != 0) {
325    // pthread_create(3) failed, so clean up.
326    {
327      MutexLock mu(self, *Locks::runtime_shutdown_lock_);
328      runtime->EndThreadBirth();
329    }
330    // Manually delete the global reference since Thread::Init will not have been run.
331    env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
332    child_thread->tlsPtr_.jpeer = nullptr;
333    delete child_thread;
334    child_thread = nullptr;
335    // TODO: remove from thread group?
336    env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
337    {
338      std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
339                                   PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
340      ScopedObjectAccess soa(env);
341      soa.Self()->ThrowOutOfMemoryError(msg.c_str());
342    }
343  }
344}
345
346void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
347  // This function does all the initialization that must be run by the native thread it applies to.
348  // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
349  // we can handshake with the corresponding native thread when it's ready.) Check this native
350  // thread hasn't been through here already...
351  CHECK(Thread::Current() == nullptr);
352  SetUpAlternateSignalStack();
353  InitCpu();
354  InitTlsEntryPoints();
355  RemoveSuspendTrigger();
356  InitCardTable();
357  InitTid();
358  // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
359  // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
360  tlsPtr_.pthread_self = pthread_self();
361  CHECK(is_started_);
362  CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
363  DCHECK_EQ(Thread::Current(), this);
364
365  tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
366  InitStackHwm();
367
368  tlsPtr_.jni_env = new JNIEnvExt(this, java_vm);
369  thread_list->Register(this);
370}
371
372Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
373                       bool create_peer) {
374  Thread* self;
375  Runtime* runtime = Runtime::Current();
376  if (runtime == nullptr) {
377    LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
378    return nullptr;
379  }
380  {
381    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
382    if (runtime->IsShuttingDownLocked()) {
383      LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
384      return nullptr;
385    } else {
386      Runtime::Current()->StartThreadBirth();
387      self = new Thread(as_daemon);
388      self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
389      Runtime::Current()->EndThreadBirth();
390    }
391  }
392
393  CHECK_NE(self->GetState(), kRunnable);
394  self->SetState(kNative);
395
396  // If we're the main thread, ClassLinker won't be created until after we're attached,
397  // so that thread needs a two-stage attach. Regular threads don't need this hack.
398  // In the compiler, all threads need this hack, because no-one's going to be getting
399  // a native peer!
400  if (create_peer) {
401    self->CreatePeer(thread_name, as_daemon, thread_group);
402  } else {
403    // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
404    if (thread_name != nullptr) {
405      self->tlsPtr_.name->assign(thread_name);
406      ::art::SetThreadName(thread_name);
407    }
408  }
409
410  return self;
411}
412
413void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
414  Runtime* runtime = Runtime::Current();
415  CHECK(runtime->IsStarted());
416  JNIEnv* env = tlsPtr_.jni_env;
417
418  if (thread_group == nullptr) {
419    thread_group = runtime->GetMainThreadGroup();
420  }
421  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
422  jint thread_priority = GetNativePriority();
423  jboolean thread_is_daemon = as_daemon;
424
425  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
426  if (peer.get() == nullptr) {
427    CHECK(IsExceptionPending());
428    return;
429  }
430  {
431    ScopedObjectAccess soa(this);
432    tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
433  }
434  env->CallNonvirtualVoidMethod(peer.get(),
435                                WellKnownClasses::java_lang_Thread,
436                                WellKnownClasses::java_lang_Thread_init,
437                                thread_group, thread_name.get(), thread_priority, thread_is_daemon);
438  AssertNoPendingException();
439
440  Thread* self = this;
441  DCHECK_EQ(self, Thread::Current());
442  env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
443                    reinterpret_cast<jlong>(self));
444
445  ScopedObjectAccess soa(self);
446  StackHandleScope<1> hs(self);
447  Handle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa)));
448  if (peer_thread_name.Get() == nullptr) {
449    // The Thread constructor should have set the Thread.name to a
450    // non-null value. However, because we can run without code
451    // available (in the compiler, in tests), we manually assign the
452    // fields the constructor should have set.
453    if (runtime->IsActiveTransaction()) {
454      InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
455    } else {
456      InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
457    }
458    peer_thread_name.Assign(GetThreadName(soa));
459  }
460  // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
461  if (peer_thread_name.Get() != nullptr) {
462    SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
463  }
464}
465
466template<bool kTransactionActive>
467void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
468                      jobject thread_name, jint thread_priority) {
469  soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
470      SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
471  soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
472      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
473  soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
474      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
475  soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
476      SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
477}
478
479void Thread::SetThreadName(const char* name) {
480  tlsPtr_.name->assign(name);
481  ::art::SetThreadName(name);
482  Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
483}
484
485void Thread::InitStackHwm() {
486  void* read_stack_base;
487  size_t read_stack_size;
488  GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size);
489
490  // TODO: include this in the thread dumps; potentially useful in SIGQUIT output?
491  VLOG(threads) << StringPrintf("Native stack is at %p (%s)", read_stack_base,
492                                PrettySize(read_stack_size).c_str());
493
494  tlsPtr_.stack_begin = reinterpret_cast<byte*>(read_stack_base);
495  tlsPtr_.stack_size = read_stack_size;
496
497  // The minimum stack size we can cope with is the overflow reserved bytes (typically
498  // 8K) + the protected region size (4K) + another page (4K).  Typically this will
499  // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
500  // between 8K and 12K.
501  uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
502    + 4 * KB;
503  if (read_stack_size <= min_stack) {
504    LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << read_stack_size
505        << " bytes)";
506  }
507
508  // TODO: move this into the Linux GetThreadStack implementation.
509#if !defined(__APPLE__)
510  // If we're the main thread, check whether we were run with an unlimited stack. In that case,
511  // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
512  // will be broken because we'll die long before we get close to 2GB.
513  bool is_main_thread = (::art::GetTid() == getpid());
514  if (is_main_thread) {
515    rlimit stack_limit;
516    if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
517      PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
518    }
519    if (stack_limit.rlim_cur == RLIM_INFINITY) {
520      // Find the default stack size for new threads...
521      pthread_attr_t default_attributes;
522      size_t default_stack_size;
523      CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
524      CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
525                         "default stack size query");
526      CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
527
528      // ...and use that as our limit.
529      size_t old_stack_size = read_stack_size;
530      tlsPtr_.stack_size = default_stack_size;
531      tlsPtr_.stack_begin += (old_stack_size - default_stack_size);
532      VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
533                    << " to " << PrettySize(default_stack_size)
534                    << " with base " << reinterpret_cast<void*>(tlsPtr_.stack_begin);
535    }
536  }
537#endif
538
539  // Set stack_end_ to the bottom of the stack saving space of stack overflows
540  bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
541  ResetDefaultStackEnd();
542
543  // Install the protected region if we are doing implicit overflow checks.
544  if (implicit_stack_check) {
545    size_t guardsize;
546    pthread_attr_t attributes;
547    CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), "guard size query");
548    CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, &guardsize), "guard size query");
549    CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), "guard size query");
550    // The thread might have protected region at the bottom.  We need
551    // to install our own region so we need to move the limits
552    // of the stack to make room for it.
553    tlsPtr_.stack_begin += guardsize + kStackOverflowProtectedSize;
554    tlsPtr_.stack_end += guardsize + kStackOverflowProtectedSize;
555    tlsPtr_.stack_size -= guardsize;
556
557    InstallImplicitProtection();
558  }
559
560  // Sanity check.
561  int stack_variable;
562  CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end));
563}
564
565void Thread::ShortDump(std::ostream& os) const {
566  os << "Thread[";
567  if (GetThreadId() != 0) {
568    // If we're in kStarting, we won't have a thin lock id or tid yet.
569    os << GetThreadId()
570             << ",tid=" << GetTid() << ',';
571  }
572  os << GetState()
573           << ",Thread*=" << this
574           << ",peer=" << tlsPtr_.opeer
575           << ",\"" << *tlsPtr_.name << "\""
576           << "]";
577}
578
579void Thread::Dump(std::ostream& os) const {
580  DumpState(os);
581  DumpStack(os);
582}
583
584mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const {
585  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
586  return (tlsPtr_.opeer != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
587}
588
589void Thread::GetThreadName(std::string& name) const {
590  name.assign(*tlsPtr_.name);
591}
592
593uint64_t Thread::GetCpuMicroTime() const {
594#if defined(HAVE_POSIX_CLOCKS)
595  clockid_t cpu_clock_id;
596  pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
597  timespec now;
598  clock_gettime(cpu_clock_id, &now);
599  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
600#else
601  UNIMPLEMENTED(WARNING);
602  return -1;
603#endif
604}
605
606// Attempt to rectify locks so that we dump thread list with required locks before exiting.
607static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
608  LOG(ERROR) << *thread << " suspend count already zero.";
609  Locks::thread_suspend_count_lock_->Unlock(self);
610  if (!Locks::mutator_lock_->IsSharedHeld(self)) {
611    Locks::mutator_lock_->SharedTryLock(self);
612    if (!Locks::mutator_lock_->IsSharedHeld(self)) {
613      LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
614    }
615  }
616  if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
617    Locks::thread_list_lock_->TryLock(self);
618    if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
619      LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
620    }
621  }
622  std::ostringstream ss;
623  Runtime::Current()->GetThreadList()->DumpLocked(ss);
624  LOG(FATAL) << ss.str();
625}
626
627void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
628  if (kIsDebugBuild) {
629    DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
630          << delta << " " << tls32_.debug_suspend_count << " " << this;
631    DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
632    Locks::thread_suspend_count_lock_->AssertHeld(self);
633    if (this != self && !IsSuspended()) {
634      Locks::thread_list_lock_->AssertHeld(self);
635    }
636  }
637  if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
638    UnsafeLogFatalForSuspendCount(self, this);
639    return;
640  }
641
642  tls32_.suspend_count += delta;
643  if (for_debugger) {
644    tls32_.debug_suspend_count += delta;
645  }
646
647  if (tls32_.suspend_count == 0) {
648    AtomicClearFlag(kSuspendRequest);
649  } else {
650    AtomicSetFlag(kSuspendRequest);
651    TriggerSuspend();
652  }
653}
654
655void Thread::RunCheckpointFunction() {
656  Closure *checkpoints[kMaxCheckpoints];
657
658  // Grab the suspend_count lock and copy the current set of
659  // checkpoints.  Then clear the list and the flag.  The RequestCheckpoint
660  // function will also grab this lock so we prevent a race between setting
661  // the kCheckpointRequest flag and clearing it.
662  {
663    MutexLock mu(this, *Locks::thread_suspend_count_lock_);
664    for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
665      checkpoints[i] = tlsPtr_.checkpoint_functions[i];
666      tlsPtr_.checkpoint_functions[i] = nullptr;
667    }
668    AtomicClearFlag(kCheckpointRequest);
669  }
670
671  // Outside the lock, run all the checkpoint functions that
672  // we collected.
673  bool found_checkpoint = false;
674  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
675    if (checkpoints[i] != nullptr) {
676      ATRACE_BEGIN("Checkpoint function");
677      checkpoints[i]->Run(this);
678      ATRACE_END();
679      found_checkpoint = true;
680    }
681  }
682  CHECK(found_checkpoint);
683}
684
685bool Thread::RequestCheckpoint(Closure* function) {
686  union StateAndFlags old_state_and_flags;
687  old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
688  if (old_state_and_flags.as_struct.state != kRunnable) {
689    return false;  // Fail, thread is suspended and so can't run a checkpoint.
690  }
691
692  uint32_t available_checkpoint = kMaxCheckpoints;
693  for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
694    if (tlsPtr_.checkpoint_functions[i] == nullptr) {
695      available_checkpoint = i;
696      break;
697    }
698  }
699  if (available_checkpoint == kMaxCheckpoints) {
700    // No checkpoint functions available, we can't run a checkpoint
701    return false;
702  }
703  tlsPtr_.checkpoint_functions[available_checkpoint] = function;
704
705  // Checkpoint function installed now install flag bit.
706  // We must be runnable to request a checkpoint.
707  DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
708  union StateAndFlags new_state_and_flags;
709  new_state_and_flags.as_int = old_state_and_flags.as_int;
710  new_state_and_flags.as_struct.flags |= kCheckpointRequest;
711  bool success =
712      tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(old_state_and_flags.as_int,
713                                                                                       new_state_and_flags.as_int);
714  if (UNLIKELY(!success)) {
715    // The thread changed state before the checkpoint was installed.
716    CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function);
717    tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr;
718  } else {
719    CHECK_EQ(ReadFlag(kCheckpointRequest), true);
720    TriggerSuspend();
721  }
722  return success;
723}
724
725void Thread::FullSuspendCheck() {
726  VLOG(threads) << this << " self-suspending";
727  ATRACE_BEGIN("Full suspend check");
728  // Make thread appear suspended to other threads, release mutator_lock_.
729  TransitionFromRunnableToSuspended(kSuspended);
730  // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
731  TransitionFromSuspendedToRunnable();
732  ATRACE_END();
733  VLOG(threads) << this << " self-reviving";
734}
735
736void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
737  std::string group_name;
738  int priority;
739  bool is_daemon = false;
740  Thread* self = Thread::Current();
741
742  // Don't do this if we are aborting since the GC may have all the threads suspended. This will
743  // cause ScopedObjectAccessUnchecked to deadlock.
744  if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
745    ScopedObjectAccessUnchecked soa(self);
746    priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
747        ->GetInt(thread->tlsPtr_.opeer);
748    is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
749        ->GetBoolean(thread->tlsPtr_.opeer);
750
751    mirror::Object* thread_group =
752        soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);
753
754    if (thread_group != nullptr) {
755      mirror::ArtField* group_name_field =
756          soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
757      mirror::String* group_name_string =
758          reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
759      group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
760    }
761  } else {
762    priority = GetNativePriority();
763  }
764
765  std::string scheduler_group_name(GetSchedulerGroupName(tid));
766  if (scheduler_group_name.empty()) {
767    scheduler_group_name = "default";
768  }
769
770  if (thread != nullptr) {
771    os << '"' << *thread->tlsPtr_.name << '"';
772    if (is_daemon) {
773      os << " daemon";
774    }
775    os << " prio=" << priority
776       << " tid=" << thread->GetThreadId()
777       << " " << thread->GetState();
778    if (thread->IsStillStarting()) {
779      os << " (still starting up)";
780    }
781    os << "\n";
782  } else {
783    os << '"' << ::art::GetThreadName(tid) << '"'
784       << " prio=" << priority
785       << " (not attached)\n";
786  }
787
788  if (thread != nullptr) {
789    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
790    os << "  | group=\"" << group_name << "\""
791       << " sCount=" << thread->tls32_.suspend_count
792       << " dsCount=" << thread->tls32_.debug_suspend_count
793       << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
794       << " self=" << reinterpret_cast<const void*>(thread) << "\n";
795  }
796
797  os << "  | sysTid=" << tid
798     << " nice=" << getpriority(PRIO_PROCESS, tid)
799     << " cgrp=" << scheduler_group_name;
800  if (thread != nullptr) {
801    int policy;
802    sched_param sp;
803    CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
804                       __FUNCTION__);
805    os << " sched=" << policy << "/" << sp.sched_priority
806       << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
807  }
808  os << "\n";
809
810  // Grab the scheduler stats for this thread.
811  std::string scheduler_stats;
812  if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
813    scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
814  } else {
815    scheduler_stats = "0 0 0";
816  }
817
818  char native_thread_state = '?';
819  int utime = 0;
820  int stime = 0;
821  int task_cpu = 0;
822  GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
823
824  os << "  | state=" << native_thread_state
825     << " schedstat=( " << scheduler_stats << " )"
826     << " utm=" << utime
827     << " stm=" << stime
828     << " core=" << task_cpu
829     << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
830  if (thread != nullptr) {
831    os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
832        << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
833        << PrettySize(thread->tlsPtr_.stack_size) << "\n";
834    // Dump the held mutexes.
835    os << "  | held mutexes=";
836    for (size_t i = 0; i < kLockLevelCount; ++i) {
837      if (i != kMonitorLock) {
838        BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
839        if (mutex != nullptr) {
840          os << " \"" << mutex->GetName() << "\"";
841          if (mutex->IsReaderWriterMutex()) {
842            ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
843            if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
844              os << "(exclusive held)";
845            } else {
846              os << "(shared held)";
847            }
848          }
849        }
850      }
851    }
852    os << "\n";
853  }
854}
855
856void Thread::DumpState(std::ostream& os) const {
857  Thread::DumpState(os, this, GetTid());
858}
859
860struct StackDumpVisitor : public StackVisitor {
861  StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
862      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
863      : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
864        last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) {
865  }
866
867  virtual ~StackDumpVisitor() {
868    if (frame_count == 0) {
869      os << "  (no managed stack frames)\n";
870    }
871  }
872
873  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
874    mirror::ArtMethod* m = GetMethod();
875    if (m->IsRuntimeMethod()) {
876      return true;
877    }
878    const int kMaxRepetition = 3;
879    mirror::Class* c = m->GetDeclaringClass();
880    mirror::DexCache* dex_cache = c->GetDexCache();
881    int line_number = -1;
882    if (dex_cache != nullptr) {  // be tolerant of bad input
883      const DexFile& dex_file = *dex_cache->GetDexFile();
884      line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
885    }
886    if (line_number == last_line_number && last_method == m) {
887      ++repetition_count;
888    } else {
889      if (repetition_count >= kMaxRepetition) {
890        os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
891      }
892      repetition_count = 0;
893      last_line_number = line_number;
894      last_method = m;
895    }
896    if (repetition_count < kMaxRepetition) {
897      os << "  at " << PrettyMethod(m, false);
898      if (m->IsNative()) {
899        os << "(Native method)";
900      } else {
901        const char* source_file(m->GetDeclaringClassSourceFile());
902        os << "(" << (source_file != nullptr ? source_file : "unavailable")
903           << ":" << line_number << ")";
904      }
905      os << "\n";
906      if (frame_count == 0) {
907        Monitor::DescribeWait(os, thread);
908      }
909      if (can_allocate) {
910        // Visit locks, but do not abort on errors. This would trigger a nested abort.
911        Monitor::VisitLocks(this, DumpLockedObject, &os, false);
912      }
913    }
914
915    ++frame_count;
916    return true;
917  }
918
919  static void DumpLockedObject(mirror::Object* o, void* context)
920      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
921    std::ostream& os = *reinterpret_cast<std::ostream*>(context);
922    os << "  - locked ";
923    if (o == nullptr) {
924      os << "an unknown object";
925    } else {
926      if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
927          Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
928        // Getting the identity hashcode here would result in lock inflation and suspension of the
929        // current thread, which isn't safe if this is the only runnable thread.
930        os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
931                           PrettyTypeOf(o).c_str());
932      } else {
933        os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), PrettyTypeOf(o).c_str());
934      }
935    }
936    os << "\n";
937  }
938
939  std::ostream& os;
940  const Thread* thread;
941  const bool can_allocate;
942  mirror::ArtMethod* method;
943  mirror::ArtMethod* last_method;
944  int last_line_number;
945  int repetition_count;
946  int frame_count;
947};
948
949static bool ShouldShowNativeStack(const Thread* thread)
950    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
951  ThreadState state = thread->GetState();
952
953  // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
954  if (state > kWaiting && state < kStarting) {
955    return true;
956  }
957
958  // In an Object.wait variant or Thread.sleep? That's not interesting.
959  if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
960    return false;
961  }
962
963  // In some other native method? That's interesting.
964  // We don't just check kNative because native methods will be in state kSuspended if they're
965  // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
966  // thread-startup states if it's early enough in their life cycle (http://b/7432159).
967  mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
968  return current_method != nullptr && current_method->IsNative();
969}
970
971void Thread::DumpJavaStack(std::ostream& os) const {
972  std::unique_ptr<Context> context(Context::Create());
973  StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
974                          !tls32_.throwing_OutOfMemoryError);
975  dumper.WalkStack();
976}
977
978void Thread::DumpStack(std::ostream& os) const {
979  // TODO: we call this code when dying but may not have suspended the thread ourself. The
980  //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
981  //       the race with the thread_suspend_count_lock_).
982  bool dump_for_abort = (gAborting > 0);
983  bool safe_to_dump = (this == Thread::Current() || IsSuspended());
984  if (!kIsDebugBuild) {
985    // We always want to dump the stack for an abort, however, there is no point dumping another
986    // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
987    safe_to_dump = (safe_to_dump || dump_for_abort);
988  }
989  if (safe_to_dump) {
990    // If we're currently in native code, dump that stack before dumping the managed stack.
991    if (dump_for_abort || ShouldShowNativeStack(this)) {
992      DumpKernelStack(os, GetTid(), "  kernel: ", false);
993      DumpNativeStack(os, GetTid(), "  native: ", GetCurrentMethod(nullptr));
994    }
995    DumpJavaStack(os);
996  } else {
997    os << "Not able to dump stack of thread that isn't suspended";
998  }
999}
1000
1001void Thread::ThreadExitCallback(void* arg) {
1002  Thread* self = reinterpret_cast<Thread*>(arg);
1003  if (self->tls32_.thread_exit_check_count == 0) {
1004    LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
1005        "going to use a pthread_key_create destructor?): " << *self;
1006    CHECK(is_started_);
1007    CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
1008    self->tls32_.thread_exit_check_count = 1;
1009  } else {
1010    LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
1011  }
1012}
1013
1014void Thread::Startup() {
1015  CHECK(!is_started_);
1016  is_started_ = true;
1017  {
1018    // MutexLock to keep annotalysis happy.
1019    //
1020    // Note we use nullptr for the thread because Thread::Current can
1021    // return garbage since (is_started_ == true) and
1022    // Thread::pthread_key_self_ is not yet initialized.
1023    // This was seen on glibc.
1024    MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1025    resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1026                                         *Locks::thread_suspend_count_lock_);
1027  }
1028
1029  // Allocate a TLS slot.
1030  CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
1031
1032  // Double-check the TLS slot allocation.
1033  if (pthread_getspecific(pthread_key_self_) != nullptr) {
1034    LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
1035  }
1036}
1037
1038void Thread::FinishStartup() {
1039  Runtime* runtime = Runtime::Current();
1040  CHECK(runtime->IsStarted());
1041
1042  // Finish attaching the main thread.
1043  ScopedObjectAccess soa(Thread::Current());
1044  Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
1045
1046  Runtime::Current()->GetClassLinker()->RunRootClinits();
1047}
1048
1049void Thread::Shutdown() {
1050  CHECK(is_started_);
1051  is_started_ = false;
1052  CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
1053  MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
1054  if (resume_cond_ != nullptr) {
1055    delete resume_cond_;
1056    resume_cond_ = nullptr;
1057  }
1058}
1059
1060Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) {
1061  wait_mutex_ = new Mutex("a thread wait mutex");
1062  wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
1063  tlsPtr_.debug_invoke_req = new DebugInvokeReq;
1064  tlsPtr_.single_step_control = new SingleStepControl;
1065  tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
1066  tlsPtr_.name = new std::string(kThreadNameDuringStartup);
1067
1068  CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
1069  tls32_.state_and_flags.as_struct.flags = 0;
1070  tls32_.state_and_flags.as_struct.state = kNative;
1071  memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
1072  std::fill(tlsPtr_.rosalloc_runs,
1073            tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBrackets,
1074            gc::allocator::RosAlloc::GetDedicatedFullRun());
1075  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
1076    tlsPtr_.checkpoint_functions[i] = nullptr;
1077  }
1078}
1079
1080bool Thread::IsStillStarting() const {
1081  // You might think you can check whether the state is kStarting, but for much of thread startup,
1082  // the thread is in kNative; it might also be in kVmWait.
1083  // You might think you can check whether the peer is nullptr, but the peer is actually created and
1084  // assigned fairly early on, and needs to be.
1085  // It turns out that the last thing to change is the thread name; that's a good proxy for "has
1086  // this thread _ever_ entered kRunnable".
1087  return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
1088      (*tlsPtr_.name == kThreadNameDuringStartup);
1089}
1090
1091void Thread::AssertNoPendingException() const {
1092  if (UNLIKELY(IsExceptionPending())) {
1093    ScopedObjectAccess soa(Thread::Current());
1094    mirror::Throwable* exception = GetException(nullptr);
1095    LOG(FATAL) << "No pending exception expected: " << exception->Dump();
1096  }
1097}
1098
1099void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
1100  if (UNLIKELY(IsExceptionPending())) {
1101    ScopedObjectAccess soa(Thread::Current());
1102    mirror::Throwable* exception = GetException(nullptr);
1103    LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
1104        << exception->Dump();
1105  }
1106}
1107
1108static void MonitorExitVisitor(mirror::Object** object, void* arg, uint32_t /*thread_id*/,
1109                               RootType /*root_type*/)
1110    NO_THREAD_SAFETY_ANALYSIS {
1111  Thread* self = reinterpret_cast<Thread*>(arg);
1112  mirror::Object* entered_monitor = *object;
1113  if (self->HoldsLock(entered_monitor)) {
1114    LOG(WARNING) << "Calling MonitorExit on object "
1115                 << object << " (" << PrettyTypeOf(entered_monitor) << ")"
1116                 << " left locked by native thread "
1117                 << *Thread::Current() << " which is detaching";
1118    entered_monitor->MonitorExit(self);
1119  }
1120}
1121
1122void Thread::Destroy() {
1123  Thread* self = this;
1124  DCHECK_EQ(self, Thread::Current());
1125
1126  if (tlsPtr_.opeer != nullptr) {
1127    ScopedObjectAccess soa(self);
1128    // We may need to call user-supplied managed code, do this before final clean-up.
1129    HandleUncaughtExceptions(soa);
1130    RemoveFromThreadGroup(soa);
1131
1132    // this.nativePeer = 0;
1133    if (Runtime::Current()->IsActiveTransaction()) {
1134      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1135          ->SetLong<true>(tlsPtr_.opeer, 0);
1136    } else {
1137      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1138          ->SetLong<false>(tlsPtr_.opeer, 0);
1139    }
1140    Dbg::PostThreadDeath(self);
1141
1142    // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1143    // who is waiting.
1144    mirror::Object* lock =
1145        soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
1146    // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1147    if (lock != nullptr) {
1148      StackHandleScope<1> hs(self);
1149      Handle<mirror::Object> h_obj(hs.NewHandle(lock));
1150      ObjectLock<mirror::Object> locker(self, h_obj);
1151      locker.NotifyAll();
1152    }
1153  }
1154
1155  // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1156  if (tlsPtr_.jni_env != nullptr) {
1157    tlsPtr_.jni_env->monitors.VisitRoots(MonitorExitVisitor, self, 0, kRootVMInternal);
1158  }
1159}
1160
1161Thread::~Thread() {
1162  if (tlsPtr_.jni_env != nullptr && tlsPtr_.jpeer != nullptr) {
1163    // If pthread_create fails we don't have a jni env here.
1164    tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
1165    tlsPtr_.jpeer = nullptr;
1166  }
1167  tlsPtr_.opeer = nullptr;
1168
1169  bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
1170  if (initialized) {
1171    delete tlsPtr_.jni_env;
1172    tlsPtr_.jni_env = nullptr;
1173  }
1174  CHECK_NE(GetState(), kRunnable);
1175  CHECK_NE(ReadFlag(kCheckpointRequest), true);
1176  CHECK(tlsPtr_.checkpoint_functions[0] == nullptr);
1177  CHECK(tlsPtr_.checkpoint_functions[1] == nullptr);
1178  CHECK(tlsPtr_.checkpoint_functions[2] == nullptr);
1179
1180  // We may be deleting a still born thread.
1181  SetStateUnsafe(kTerminated);
1182
1183  delete wait_cond_;
1184  delete wait_mutex_;
1185
1186  if (tlsPtr_.long_jump_context != nullptr) {
1187    delete tlsPtr_.long_jump_context;
1188  }
1189
1190  if (initialized) {
1191    CleanupCpu();
1192  }
1193
1194  delete tlsPtr_.debug_invoke_req;
1195  delete tlsPtr_.single_step_control;
1196  delete tlsPtr_.instrumentation_stack;
1197  delete tlsPtr_.name;
1198  delete tlsPtr_.stack_trace_sample;
1199
1200  Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1201
1202  TearDownAlternateSignalStack();
1203}
1204
1205void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1206  if (!IsExceptionPending()) {
1207    return;
1208  }
1209  ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1210  ScopedThreadStateChange tsc(this, kNative);
1211
1212  // Get and clear the exception.
1213  ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
1214  tlsPtr_.jni_env->ExceptionClear();
1215
1216  // If the thread has its own handler, use that.
1217  ScopedLocalRef<jobject> handler(tlsPtr_.jni_env,
1218                                  tlsPtr_.jni_env->GetObjectField(peer.get(),
1219                                      WellKnownClasses::java_lang_Thread_uncaughtHandler));
1220  if (handler.get() == nullptr) {
1221    // Otherwise use the thread group's default handler.
1222    handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(),
1223                                                  WellKnownClasses::java_lang_Thread_group));
1224  }
1225
1226  // Call the handler.
1227  tlsPtr_.jni_env->CallVoidMethod(handler.get(),
1228      WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
1229      peer.get(), exception.get());
1230
1231  // If the handler threw, clear that exception too.
1232  tlsPtr_.jni_env->ExceptionClear();
1233}
1234
1235void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1236  // this.group.removeThread(this);
1237  // group can be null if we're in the compiler or a test.
1238  mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
1239      ->GetObject(tlsPtr_.opeer);
1240  if (ogroup != nullptr) {
1241    ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1242    ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1243    ScopedThreadStateChange tsc(soa.Self(), kNative);
1244    tlsPtr_.jni_env->CallVoidMethod(group.get(),
1245                                    WellKnownClasses::java_lang_ThreadGroup_removeThread,
1246                                    peer.get());
1247  }
1248}
1249
1250size_t Thread::NumHandleReferences() {
1251  size_t count = 0;
1252  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1253    count += cur->NumberOfReferences();
1254  }
1255  return count;
1256}
1257
1258bool Thread::HandleScopeContains(jobject obj) const {
1259  StackReference<mirror::Object>* hs_entry =
1260      reinterpret_cast<StackReference<mirror::Object>*>(obj);
1261  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1262    if (cur->Contains(hs_entry)) {
1263      return true;
1264    }
1265  }
1266  // JNI code invoked from portable code uses shadow frames rather than the handle scope.
1267  return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
1268}
1269
1270void Thread::HandleScopeVisitRoots(RootCallback* visitor, void* arg, uint32_t thread_id) {
1271  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1272    size_t num_refs = cur->NumberOfReferences();
1273    for (size_t j = 0; j < num_refs; ++j) {
1274      mirror::Object* object = cur->GetReference(j);
1275      if (object != nullptr) {
1276        mirror::Object* old_obj = object;
1277        visitor(&object, arg, thread_id, kRootNativeStack);
1278        if (old_obj != object) {
1279          cur->SetReference(j, object);
1280        }
1281      }
1282    }
1283  }
1284}
1285
1286mirror::Object* Thread::DecodeJObject(jobject obj) const {
1287  Locks::mutator_lock_->AssertSharedHeld(this);
1288  if (obj == nullptr) {
1289    return nullptr;
1290  }
1291  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1292  IndirectRefKind kind = GetIndirectRefKind(ref);
1293  mirror::Object* result;
1294  // The "kinds" below are sorted by the frequency we expect to encounter them.
1295  if (kind == kLocal) {
1296    IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
1297    // Local references do not need a read barrier.
1298    result = locals.Get<kWithoutReadBarrier>(ref);
1299  } else if (kind == kHandleScopeOrInvalid) {
1300    // TODO: make stack indirect reference table lookup more efficient.
1301    // Check if this is a local reference in the handle scope.
1302    if (LIKELY(HandleScopeContains(obj))) {
1303      // Read from handle scope.
1304      result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
1305      VerifyObject(result);
1306    } else {
1307      result = kInvalidIndirectRefObject;
1308    }
1309  } else if (kind == kGlobal) {
1310    JavaVMExt* const vm = Runtime::Current()->GetJavaVM();
1311    result = vm->globals.SynchronizedGet(const_cast<Thread*>(this), &vm->globals_lock, ref);
1312  } else {
1313    DCHECK_EQ(kind, kWeakGlobal);
1314    result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1315    if (result == kClearedJniWeakGlobal) {
1316      // This is a special case where it's okay to return nullptr.
1317      return nullptr;
1318    }
1319  }
1320
1321  if (UNLIKELY(result == nullptr)) {
1322    JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
1323  }
1324  return result;
1325}
1326
1327// Implements java.lang.Thread.interrupted.
1328bool Thread::Interrupted() {
1329  MutexLock mu(Thread::Current(), *wait_mutex_);
1330  bool interrupted = IsInterruptedLocked();
1331  SetInterruptedLocked(false);
1332  return interrupted;
1333}
1334
1335// Implements java.lang.Thread.isInterrupted.
1336bool Thread::IsInterrupted() {
1337  MutexLock mu(Thread::Current(), *wait_mutex_);
1338  return IsInterruptedLocked();
1339}
1340
1341void Thread::Interrupt(Thread* self) {
1342  MutexLock mu(self, *wait_mutex_);
1343  if (interrupted_) {
1344    return;
1345  }
1346  interrupted_ = true;
1347  NotifyLocked(self);
1348}
1349
1350void Thread::Notify() {
1351  Thread* self = Thread::Current();
1352  MutexLock mu(self, *wait_mutex_);
1353  NotifyLocked(self);
1354}
1355
1356void Thread::NotifyLocked(Thread* self) {
1357  if (wait_monitor_ != nullptr) {
1358    wait_cond_->Signal(self);
1359  }
1360}
1361
1362class CountStackDepthVisitor : public StackVisitor {
1363 public:
1364  explicit CountStackDepthVisitor(Thread* thread)
1365      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1366      : StackVisitor(thread, nullptr),
1367        depth_(0), skip_depth_(0), skipping_(true) {}
1368
1369  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1370    // We want to skip frames up to and including the exception's constructor.
1371    // Note we also skip the frame if it doesn't have a method (namely the callee
1372    // save frame)
1373    mirror::ArtMethod* m = GetMethod();
1374    if (skipping_ && !m->IsRuntimeMethod() &&
1375        !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1376      skipping_ = false;
1377    }
1378    if (!skipping_) {
1379      if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
1380        ++depth_;
1381      }
1382    } else {
1383      ++skip_depth_;
1384    }
1385    return true;
1386  }
1387
1388  int GetDepth() const {
1389    return depth_;
1390  }
1391
1392  int GetSkipDepth() const {
1393    return skip_depth_;
1394  }
1395
1396 private:
1397  uint32_t depth_;
1398  uint32_t skip_depth_;
1399  bool skipping_;
1400};
1401
1402template<bool kTransactionActive>
1403class BuildInternalStackTraceVisitor : public StackVisitor {
1404 public:
1405  explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1406      : StackVisitor(thread, nullptr), self_(self),
1407        skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {}
1408
1409  bool Init(int depth)
1410      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1411    // Allocate method trace with an extra slot that will hold the PC trace
1412    StackHandleScope<1> hs(self_);
1413    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1414    Handle<mirror::ObjectArray<mirror::Object>> method_trace(
1415        hs.NewHandle(class_linker->AllocObjectArray<mirror::Object>(self_, depth + 1)));
1416    if (method_trace.Get() == nullptr) {
1417      return false;
1418    }
1419    mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
1420    if (dex_pc_trace == nullptr) {
1421      return false;
1422    }
1423    // Save PC trace in last element of method trace, also places it into the
1424    // object graph.
1425    // We are called from native: use non-transactional mode.
1426    method_trace->Set<kTransactionActive>(depth, dex_pc_trace);
1427    // Set the Object*s and assert that no thread suspension is now possible.
1428    const char* last_no_suspend_cause =
1429        self_->StartAssertNoThreadSuspension("Building internal stack trace");
1430    CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
1431    method_trace_ = method_trace.Get();
1432    dex_pc_trace_ = dex_pc_trace;
1433    return true;
1434  }
1435
1436  virtual ~BuildInternalStackTraceVisitor() {
1437    if (method_trace_ != nullptr) {
1438      self_->EndAssertNoThreadSuspension(nullptr);
1439    }
1440  }
1441
1442  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1443    if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) {
1444      return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1445    }
1446    if (skip_depth_ > 0) {
1447      skip_depth_--;
1448      return true;
1449    }
1450    mirror::ArtMethod* m = GetMethod();
1451    if (m->IsRuntimeMethod()) {
1452      return true;  // Ignore runtime frames (in particular callee save).
1453    }
1454    method_trace_->Set<kTransactionActive>(count_, m);
1455    dex_pc_trace_->Set<kTransactionActive>(count_,
1456        m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
1457    ++count_;
1458    return true;
1459  }
1460
1461  mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
1462    return method_trace_;
1463  }
1464
1465 private:
1466  Thread* const self_;
1467  // How many more frames to skip.
1468  int32_t skip_depth_;
1469  // Current position down stack trace.
1470  uint32_t count_;
1471  // Array of dex PC values.
1472  mirror::IntArray* dex_pc_trace_;
1473  // An array of the methods on the stack, the last entry is a reference to the PC trace.
1474  mirror::ObjectArray<mirror::Object>* method_trace_;
1475};
1476
1477template<bool kTransactionActive>
1478jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
1479  // Compute depth of stack
1480  CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1481  count_visitor.WalkStack();
1482  int32_t depth = count_visitor.GetDepth();
1483  int32_t skip_depth = count_visitor.GetSkipDepth();
1484
1485  // Build internal stack trace.
1486  BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
1487                                                                         const_cast<Thread*>(this),
1488                                                                         skip_depth);
1489  if (!build_trace_visitor.Init(depth)) {
1490    return nullptr;  // Allocation failed.
1491  }
1492  build_trace_visitor.WalkStack();
1493  mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
1494  if (kIsDebugBuild) {
1495    for (int32_t i = 0; i < trace->GetLength(); ++i) {
1496      CHECK(trace->Get(i) != nullptr);
1497    }
1498  }
1499  return soa.AddLocalReference<jobjectArray>(trace);
1500}
1501template jobject Thread::CreateInternalStackTrace<false>(
1502    const ScopedObjectAccessAlreadyRunnable& soa) const;
1503template jobject Thread::CreateInternalStackTrace<true>(
1504    const ScopedObjectAccessAlreadyRunnable& soa) const;
1505
1506jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
1507    const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array,
1508    int* stack_depth) {
1509  // Decode the internal stack trace into the depth, method trace and PC trace
1510  int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1;
1511
1512  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1513
1514  jobjectArray result;
1515
1516  if (output_array != nullptr) {
1517    // Reuse the array we were given.
1518    result = output_array;
1519    // ...adjusting the number of frames we'll write to not exceed the array length.
1520    const int32_t traces_length =
1521        soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
1522    depth = std::min(depth, traces_length);
1523  } else {
1524    // Create java_trace array and place in local reference table
1525    mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
1526        class_linker->AllocStackTraceElementArray(soa.Self(), depth);
1527    if (java_traces == nullptr) {
1528      return nullptr;
1529    }
1530    result = soa.AddLocalReference<jobjectArray>(java_traces);
1531  }
1532
1533  if (stack_depth != nullptr) {
1534    *stack_depth = depth;
1535  }
1536
1537  for (int32_t i = 0; i < depth; ++i) {
1538    mirror::ObjectArray<mirror::Object>* method_trace =
1539          soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
1540    // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1541    mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
1542    int32_t line_number;
1543    StackHandleScope<3> hs(soa.Self());
1544    auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
1545    auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
1546    if (method->IsProxyMethod()) {
1547      line_number = -1;
1548      class_name_object.Assign(method->GetDeclaringClass()->GetName());
1549      // source_name_object intentionally left null for proxy methods
1550    } else {
1551      mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
1552      uint32_t dex_pc = pc_trace->Get(i);
1553      line_number = method->GetLineNumFromDexPC(dex_pc);
1554      // Allocate element, potentially triggering GC
1555      // TODO: reuse class_name_object via Class::name_?
1556      const char* descriptor = method->GetDeclaringClassDescriptor();
1557      CHECK(descriptor != nullptr);
1558      std::string class_name(PrettyDescriptor(descriptor));
1559      class_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
1560      if (class_name_object.Get() == nullptr) {
1561        return nullptr;
1562      }
1563      const char* source_file = method->GetDeclaringClassSourceFile();
1564      if (source_file != nullptr) {
1565        source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
1566        if (source_name_object.Get() == nullptr) {
1567          return nullptr;
1568        }
1569      }
1570    }
1571    const char* method_name = method->GetName();
1572    CHECK(method_name != nullptr);
1573    Handle<mirror::String> method_name_object(
1574        hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
1575    if (method_name_object.Get() == nullptr) {
1576      return nullptr;
1577    }
1578    mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
1579        soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
1580    if (obj == nullptr) {
1581      return nullptr;
1582    }
1583    // We are called from native: use non-transactional mode.
1584    soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
1585  }
1586  return result;
1587}
1588
1589void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
1590                                const char* exception_class_descriptor, const char* fmt, ...) {
1591  va_list args;
1592  va_start(args, fmt);
1593  ThrowNewExceptionV(throw_location, exception_class_descriptor,
1594                     fmt, args);
1595  va_end(args);
1596}
1597
1598void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
1599                                const char* exception_class_descriptor,
1600                                const char* fmt, va_list ap) {
1601  std::string msg;
1602  StringAppendV(&msg, fmt, ap);
1603  ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
1604}
1605
1606void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
1607                               const char* msg) {
1608  // Callers should either clear or call ThrowNewWrappedException.
1609  AssertNoPendingExceptionForNewException(msg);
1610  ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
1611}
1612
1613void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
1614                                      const char* exception_class_descriptor,
1615                                      const char* msg) {
1616  DCHECK_EQ(this, Thread::Current());
1617  ScopedObjectAccessUnchecked soa(this);
1618  StackHandleScope<5> hs(soa.Self());
1619  // Ensure we don't forget arguments over object allocation.
1620  Handle<mirror::Object> saved_throw_this(hs.NewHandle(throw_location.GetThis()));
1621  Handle<mirror::ArtMethod> saved_throw_method(hs.NewHandle(throw_location.GetMethod()));
1622  // Ignore the cause throw location. TODO: should we report this as a re-throw?
1623  ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException(nullptr)));
1624  bool is_exception_reported = IsExceptionReportedToInstrumentation();
1625  ClearException();
1626  Runtime* runtime = Runtime::Current();
1627
1628  mirror::ClassLoader* cl = nullptr;
1629  if (saved_throw_method.Get() != nullptr) {
1630    cl = saved_throw_method.Get()->GetDeclaringClass()->GetClassLoader();
1631  }
1632  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(cl));
1633  Handle<mirror::Class> exception_class(
1634      hs.NewHandle(runtime->GetClassLinker()->FindClass(this, exception_class_descriptor,
1635                                                        class_loader)));
1636  if (UNLIKELY(exception_class.Get() == nullptr)) {
1637    CHECK(IsExceptionPending());
1638    LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1639    return;
1640  }
1641
1642  if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class, true, true))) {
1643    DCHECK(IsExceptionPending());
1644    return;
1645  }
1646  DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1647  Handle<mirror::Throwable> exception(
1648      hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this))));
1649
1650  // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
1651  if (exception.Get() == nullptr) {
1652    ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1653                                         throw_location.GetDexPc());
1654    SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1655    SetExceptionReportedToInstrumentation(is_exception_reported);
1656    return;
1657  }
1658
1659  // Choose an appropriate constructor and set up the arguments.
1660  const char* signature;
1661  ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
1662  if (msg != nullptr) {
1663    // Ensure we remember this and the method over the String allocation.
1664    msg_string.reset(
1665        soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
1666    if (UNLIKELY(msg_string.get() == nullptr)) {
1667      CHECK(IsExceptionPending());  // OOME.
1668      return;
1669    }
1670    if (cause.get() == nullptr) {
1671      signature = "(Ljava/lang/String;)V";
1672    } else {
1673      signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1674    }
1675  } else {
1676    if (cause.get() == nullptr) {
1677      signature = "()V";
1678    } else {
1679      signature = "(Ljava/lang/Throwable;)V";
1680    }
1681  }
1682  mirror::ArtMethod* exception_init_method =
1683      exception_class->FindDeclaredDirectMethod("<init>", signature);
1684
1685  CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
1686      << PrettyDescriptor(exception_class_descriptor);
1687
1688  if (UNLIKELY(!runtime->IsStarted())) {
1689    // Something is trying to throw an exception without a started runtime, which is the common
1690    // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1691    // the exception fields directly.
1692    if (msg != nullptr) {
1693      exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
1694    }
1695    if (cause.get() != nullptr) {
1696      exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
1697    }
1698    ScopedLocalRef<jobject> trace(GetJniEnv(),
1699                                  Runtime::Current()->IsActiveTransaction()
1700                                      ? CreateInternalStackTrace<true>(soa)
1701                                      : CreateInternalStackTrace<false>(soa));
1702    if (trace.get() != nullptr) {
1703      exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
1704    }
1705    ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1706                                         throw_location.GetDexPc());
1707    SetException(gc_safe_throw_location, exception.Get());
1708    SetExceptionReportedToInstrumentation(is_exception_reported);
1709  } else {
1710    jvalue jv_args[2];
1711    size_t i = 0;
1712
1713    if (msg != nullptr) {
1714      jv_args[i].l = msg_string.get();
1715      ++i;
1716    }
1717    if (cause.get() != nullptr) {
1718      jv_args[i].l = cause.get();
1719      ++i;
1720    }
1721    InvokeWithJValues(soa, exception.Get(), soa.EncodeMethod(exception_init_method), jv_args);
1722    if (LIKELY(!IsExceptionPending())) {
1723      ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1724                                           throw_location.GetDexPc());
1725      SetException(gc_safe_throw_location, exception.Get());
1726      SetExceptionReportedToInstrumentation(is_exception_reported);
1727    }
1728  }
1729}
1730
1731void Thread::ThrowOutOfMemoryError(const char* msg) {
1732  LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1733      msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
1734  ThrowLocation throw_location = GetCurrentLocationForThrow();
1735  if (!tls32_.throwing_OutOfMemoryError) {
1736    tls32_.throwing_OutOfMemoryError = true;
1737    ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
1738    tls32_.throwing_OutOfMemoryError = false;
1739  } else {
1740    Dump(LOG(ERROR));  // The pre-allocated OOME has no stack, so help out and log one.
1741    SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1742  }
1743}
1744
1745Thread* Thread::CurrentFromGdb() {
1746  return Thread::Current();
1747}
1748
1749void Thread::DumpFromGdb() const {
1750  std::ostringstream ss;
1751  Dump(ss);
1752  std::string str(ss.str());
1753  // log to stderr for debugging command line processes
1754  std::cerr << str;
1755#ifdef HAVE_ANDROID_OS
1756  // log to logcat for debugging frameworks processes
1757  LOG(INFO) << str;
1758#endif
1759}
1760
1761// Explicitly instantiate 32 and 64bit thread offset dumping support.
1762template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset);
1763template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset);
1764
1765template<size_t ptr_size>
1766void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
1767#define DO_THREAD_OFFSET(x, y) \
1768    if (offset == x.Uint32Value()) { \
1769      os << y; \
1770      return; \
1771    }
1772  DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
1773  DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
1774  DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
1775  DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
1776  DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
1777  DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
1778  DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
1779  DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
1780  DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
1781  DO_THREAD_OFFSET(TopOfManagedStackPcOffset<ptr_size>(), "top_quick_frame_pc")
1782  DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
1783  DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
1784  DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
1785#undef DO_THREAD_OFFSET
1786
1787#define INTERPRETER_ENTRY_POINT_INFO(x) \
1788    if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1789      os << #x; \
1790      return; \
1791    }
1792  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge)
1793  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge)
1794#undef INTERPRETER_ENTRY_POINT_INFO
1795
1796#define JNI_ENTRY_POINT_INFO(x) \
1797    if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1798      os << #x; \
1799      return; \
1800    }
1801  JNI_ENTRY_POINT_INFO(pDlsymLookup)
1802#undef JNI_ENTRY_POINT_INFO
1803
1804#define PORTABLE_ENTRY_POINT_INFO(x) \
1805    if (PORTABLE_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1806      os << #x; \
1807      return; \
1808    }
1809  PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline)
1810  PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline)
1811  PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge)
1812#undef PORTABLE_ENTRY_POINT_INFO
1813
1814#define QUICK_ENTRY_POINT_INFO(x) \
1815    if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1816      os << #x; \
1817      return; \
1818    }
1819  QUICK_ENTRY_POINT_INFO(pAllocArray)
1820  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
1821  QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
1822  QUICK_ENTRY_POINT_INFO(pAllocObject)
1823  QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
1824  QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
1825  QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
1826  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
1827  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
1828  QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
1829  QUICK_ENTRY_POINT_INFO(pCheckCast)
1830  QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
1831  QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
1832  QUICK_ENTRY_POINT_INFO(pInitializeType)
1833  QUICK_ENTRY_POINT_INFO(pResolveString)
1834  QUICK_ENTRY_POINT_INFO(pSet32Instance)
1835  QUICK_ENTRY_POINT_INFO(pSet32Static)
1836  QUICK_ENTRY_POINT_INFO(pSet64Instance)
1837  QUICK_ENTRY_POINT_INFO(pSet64Static)
1838  QUICK_ENTRY_POINT_INFO(pSetObjInstance)
1839  QUICK_ENTRY_POINT_INFO(pSetObjStatic)
1840  QUICK_ENTRY_POINT_INFO(pGet32Instance)
1841  QUICK_ENTRY_POINT_INFO(pGet32Static)
1842  QUICK_ENTRY_POINT_INFO(pGet64Instance)
1843  QUICK_ENTRY_POINT_INFO(pGet64Static)
1844  QUICK_ENTRY_POINT_INFO(pGetObjInstance)
1845  QUICK_ENTRY_POINT_INFO(pGetObjStatic)
1846  QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
1847  QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
1848  QUICK_ENTRY_POINT_INFO(pAputObject)
1849  QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
1850  QUICK_ENTRY_POINT_INFO(pJniMethodStart)
1851  QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
1852  QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
1853  QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
1854  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
1855  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
1856  QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
1857  QUICK_ENTRY_POINT_INFO(pLockObject)
1858  QUICK_ENTRY_POINT_INFO(pUnlockObject)
1859  QUICK_ENTRY_POINT_INFO(pCmpgDouble)
1860  QUICK_ENTRY_POINT_INFO(pCmpgFloat)
1861  QUICK_ENTRY_POINT_INFO(pCmplDouble)
1862  QUICK_ENTRY_POINT_INFO(pCmplFloat)
1863  QUICK_ENTRY_POINT_INFO(pFmod)
1864  QUICK_ENTRY_POINT_INFO(pL2d)
1865  QUICK_ENTRY_POINT_INFO(pFmodf)
1866  QUICK_ENTRY_POINT_INFO(pL2f)
1867  QUICK_ENTRY_POINT_INFO(pD2iz)
1868  QUICK_ENTRY_POINT_INFO(pF2iz)
1869  QUICK_ENTRY_POINT_INFO(pIdivmod)
1870  QUICK_ENTRY_POINT_INFO(pD2l)
1871  QUICK_ENTRY_POINT_INFO(pF2l)
1872  QUICK_ENTRY_POINT_INFO(pLdiv)
1873  QUICK_ENTRY_POINT_INFO(pLmod)
1874  QUICK_ENTRY_POINT_INFO(pLmul)
1875  QUICK_ENTRY_POINT_INFO(pShlLong)
1876  QUICK_ENTRY_POINT_INFO(pShrLong)
1877  QUICK_ENTRY_POINT_INFO(pUshrLong)
1878  QUICK_ENTRY_POINT_INFO(pIndexOf)
1879  QUICK_ENTRY_POINT_INFO(pStringCompareTo)
1880  QUICK_ENTRY_POINT_INFO(pMemcpy)
1881  QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
1882  QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
1883  QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
1884  QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
1885  QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
1886  QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
1887  QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
1888  QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
1889  QUICK_ENTRY_POINT_INFO(pTestSuspend)
1890  QUICK_ENTRY_POINT_INFO(pDeliverException)
1891  QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
1892  QUICK_ENTRY_POINT_INFO(pThrowDivZero)
1893  QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
1894  QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
1895  QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
1896  QUICK_ENTRY_POINT_INFO(pA64Load)
1897  QUICK_ENTRY_POINT_INFO(pA64Store)
1898#undef QUICK_ENTRY_POINT_INFO
1899
1900  os << offset;
1901}
1902
1903void Thread::QuickDeliverException() {
1904  // Get exception from thread.
1905  ThrowLocation throw_location;
1906  mirror::Throwable* exception = GetException(&throw_location);
1907  CHECK(exception != nullptr);
1908  // Don't leave exception visible while we try to find the handler, which may cause class
1909  // resolution.
1910  bool is_exception_reported = IsExceptionReportedToInstrumentation();
1911  ClearException();
1912  bool is_deoptimization = (exception == GetDeoptimizationException());
1913  QuickExceptionHandler exception_handler(this, is_deoptimization);
1914  if (is_deoptimization) {
1915    exception_handler.DeoptimizeStack();
1916  } else {
1917    exception_handler.FindCatch(throw_location, exception, is_exception_reported);
1918  }
1919  exception_handler.UpdateInstrumentationStack();
1920  exception_handler.DoLongJump();
1921  LOG(FATAL) << "UNREACHABLE";
1922}
1923
1924Context* Thread::GetLongJumpContext() {
1925  Context* result = tlsPtr_.long_jump_context;
1926  if (result == nullptr) {
1927    result = Context::Create();
1928  } else {
1929    tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
1930    result->Reset();
1931  }
1932  return result;
1933}
1934
1935// Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
1936//       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
1937struct CurrentMethodVisitor FINAL : public StackVisitor {
1938  CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error)
1939      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1940      : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0),
1941        abort_on_error_(abort_on_error) {}
1942  bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1943    mirror::ArtMethod* m = GetMethod();
1944    if (m->IsRuntimeMethod()) {
1945      // Continue if this is a runtime method.
1946      return true;
1947    }
1948    if (context_ != nullptr) {
1949      this_object_ = GetThisObject();
1950    }
1951    method_ = m;
1952    dex_pc_ = GetDexPc(abort_on_error_);
1953    return false;
1954  }
1955  mirror::Object* this_object_;
1956  mirror::ArtMethod* method_;
1957  uint32_t dex_pc_;
1958  const bool abort_on_error_;
1959};
1960
1961mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const {
1962  CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error);
1963  visitor.WalkStack(false);
1964  if (dex_pc != nullptr) {
1965    *dex_pc = visitor.dex_pc_;
1966  }
1967  return visitor.method_;
1968}
1969
1970ThrowLocation Thread::GetCurrentLocationForThrow() {
1971  Context* context = GetLongJumpContext();
1972  CurrentMethodVisitor visitor(this, context, true);
1973  visitor.WalkStack(false);
1974  ReleaseLongJumpContext(context);
1975  return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
1976}
1977
1978bool Thread::HoldsLock(mirror::Object* object) const {
1979  if (object == nullptr) {
1980    return false;
1981  }
1982  return object->GetLockOwnerThreadId() == GetThreadId();
1983}
1984
1985// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
1986template <typename RootVisitor>
1987class ReferenceMapVisitor : public StackVisitor {
1988 public:
1989  ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
1990      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1991      : StackVisitor(thread, context), visitor_(visitor) {}
1992
1993  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1994    if (false) {
1995      LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
1996                << StringPrintf("@ PC:%04x", GetDexPc());
1997    }
1998    ShadowFrame* shadow_frame = GetCurrentShadowFrame();
1999    if (shadow_frame != nullptr) {
2000      VisitShadowFrame(shadow_frame);
2001    } else {
2002      VisitQuickFrame();
2003    }
2004    return true;
2005  }
2006
2007  void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2008    mirror::ArtMethod** method_addr = shadow_frame->GetMethodAddress();
2009    visitor_(reinterpret_cast<mirror::Object**>(method_addr), 0 /*ignored*/, this);
2010    mirror::ArtMethod* m = *method_addr;
2011    DCHECK(m != nullptr);
2012    size_t num_regs = shadow_frame->NumberOfVRegs();
2013    if (m->IsNative() || shadow_frame->HasReferenceArray()) {
2014      // handle scope for JNI or References for interpreter.
2015      for (size_t reg = 0; reg < num_regs; ++reg) {
2016        mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2017        if (ref != nullptr) {
2018          mirror::Object* new_ref = ref;
2019          visitor_(&new_ref, reg, this);
2020          if (new_ref != ref) {
2021            shadow_frame->SetVRegReference(reg, new_ref);
2022          }
2023        }
2024      }
2025    } else {
2026      // Java method.
2027      // Portable path use DexGcMap and store in Method.native_gc_map_.
2028      const uint8_t* gc_map = m->GetNativeGcMap();
2029      CHECK(gc_map != nullptr) << PrettyMethod(m);
2030      verifier::DexPcToReferenceMap dex_gc_map(gc_map);
2031      uint32_t dex_pc = shadow_frame->GetDexPC();
2032      const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
2033      DCHECK(reg_bitmap != nullptr);
2034      num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
2035      for (size_t reg = 0; reg < num_regs; ++reg) {
2036        if (TestBitmap(reg, reg_bitmap)) {
2037          mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2038          if (ref != nullptr) {
2039            mirror::Object* new_ref = ref;
2040            visitor_(&new_ref, reg, this);
2041            if (new_ref != ref) {
2042              shadow_frame->SetVRegReference(reg, new_ref);
2043            }
2044          }
2045        }
2046      }
2047    }
2048  }
2049
2050 private:
2051  void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2052    StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2053    mirror::ArtMethod* m = cur_quick_frame->AsMirrorPtr();
2054    mirror::ArtMethod* old_method = m;
2055    visitor_(reinterpret_cast<mirror::Object**>(&m), 0 /*ignored*/, this);
2056    if (m != old_method) {
2057      cur_quick_frame->Assign(m);
2058    }
2059
2060    // Process register map (which native and runtime methods don't have)
2061    if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
2062      const uint8_t* native_gc_map = m->GetNativeGcMap();
2063      CHECK(native_gc_map != nullptr) << PrettyMethod(m);
2064      const DexFile::CodeItem* code_item = m->GetCodeItem();
2065      DCHECK(code_item != nullptr) << PrettyMethod(m);  // Can't be nullptr or how would we compile its instructions?
2066      NativePcOffsetToReferenceMap map(native_gc_map);
2067      size_t num_regs = std::min(map.RegWidth() * 8,
2068                                 static_cast<size_t>(code_item->registers_size_));
2069      if (num_regs > 0) {
2070        Runtime* runtime = Runtime::Current();
2071        const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m);
2072        uintptr_t native_pc_offset = m->NativePcOffset(GetCurrentQuickFramePc(), entry_point);
2073        const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset);
2074        DCHECK(reg_bitmap != nullptr);
2075        const void* code_pointer = mirror::ArtMethod::EntryPointToCodePointer(entry_point);
2076        const VmapTable vmap_table(m->GetVmapTable(code_pointer));
2077        QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer);
2078        // For all dex registers in the bitmap
2079        StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2080        DCHECK(cur_quick_frame != nullptr);
2081        for (size_t reg = 0; reg < num_regs; ++reg) {
2082          // Does this register hold a reference?
2083          if (TestBitmap(reg, reg_bitmap)) {
2084            uint32_t vmap_offset;
2085            if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
2086              int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset,
2087                                                        kReferenceVReg);
2088              // This is sound as spilled GPRs will be word sized (ie 32 or 64bit).
2089              mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg));
2090              if (*ref_addr != nullptr) {
2091                visitor_(ref_addr, reg, this);
2092              }
2093            } else {
2094              StackReference<mirror::Object>* ref_addr =
2095                  reinterpret_cast<StackReference<mirror::Object>*>(
2096                      GetVRegAddr(cur_quick_frame, code_item, frame_info.CoreSpillMask(),
2097                                  frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg));
2098              mirror::Object* ref = ref_addr->AsMirrorPtr();
2099              if (ref != nullptr) {
2100                mirror::Object* new_ref = ref;
2101                visitor_(&new_ref, reg, this);
2102                if (ref != new_ref) {
2103                  ref_addr->Assign(new_ref);
2104                }
2105              }
2106            }
2107          }
2108        }
2109      }
2110    }
2111  }
2112
2113  static bool TestBitmap(size_t reg, const uint8_t* reg_vector) {
2114    return ((reg_vector[reg / kBitsPerByte] >> (reg % kBitsPerByte)) & 0x01) != 0;
2115  }
2116
2117  // Visitor for when we visit a root.
2118  const RootVisitor& visitor_;
2119};
2120
2121class RootCallbackVisitor {
2122 public:
2123  RootCallbackVisitor(RootCallback* callback, void* arg, uint32_t tid)
2124     : callback_(callback), arg_(arg), tid_(tid) {}
2125
2126  void operator()(mirror::Object** obj, size_t, const StackVisitor*) const {
2127    callback_(obj, arg_, tid_, kRootJavaFrame);
2128  }
2129
2130 private:
2131  RootCallback* const callback_;
2132  void* const arg_;
2133  const uint32_t tid_;
2134};
2135
2136void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) {
2137  VerifyObject(class_loader_override);
2138  tlsPtr_.class_loader_override = class_loader_override;
2139}
2140
2141void Thread::VisitRoots(RootCallback* visitor, void* arg) {
2142  uint32_t thread_id = GetThreadId();
2143  if (tlsPtr_.opeer != nullptr) {
2144    visitor(&tlsPtr_.opeer, arg, thread_id, kRootThreadObject);
2145  }
2146  if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
2147    visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), arg, thread_id, kRootNativeStack);
2148  }
2149  tlsPtr_.throw_location.VisitRoots(visitor, arg);
2150  if (tlsPtr_.class_loader_override != nullptr) {
2151    visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.class_loader_override), arg, thread_id,
2152            kRootNativeStack);
2153  }
2154  if (tlsPtr_.monitor_enter_object != nullptr) {
2155    visitor(&tlsPtr_.monitor_enter_object, arg, thread_id, kRootNativeStack);
2156  }
2157  tlsPtr_.jni_env->locals.VisitRoots(visitor, arg, thread_id, kRootJNILocal);
2158  tlsPtr_.jni_env->monitors.VisitRoots(visitor, arg, thread_id, kRootJNIMonitor);
2159  HandleScopeVisitRoots(visitor, arg, thread_id);
2160  if (tlsPtr_.debug_invoke_req != nullptr) {
2161    tlsPtr_.debug_invoke_req->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2162  }
2163  if (tlsPtr_.single_step_control != nullptr) {
2164    tlsPtr_.single_step_control->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2165  }
2166  if (tlsPtr_.deoptimization_shadow_frame != nullptr) {
2167    RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2168    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2169    for (ShadowFrame* shadow_frame = tlsPtr_.deoptimization_shadow_frame; shadow_frame != nullptr;
2170        shadow_frame = shadow_frame->GetLink()) {
2171      mapper.VisitShadowFrame(shadow_frame);
2172    }
2173  }
2174  if (tlsPtr_.shadow_frame_under_construction != nullptr) {
2175    RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2176    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2177    for (ShadowFrame* shadow_frame = tlsPtr_.shadow_frame_under_construction;
2178        shadow_frame != nullptr;
2179        shadow_frame = shadow_frame->GetLink()) {
2180      mapper.VisitShadowFrame(shadow_frame);
2181    }
2182  }
2183  // Visit roots on this thread's stack
2184  Context* context = GetLongJumpContext();
2185  RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2186  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback);
2187  mapper.WalkStack();
2188  ReleaseLongJumpContext(context);
2189  for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2190    if (frame.this_object_ != nullptr) {
2191      visitor(&frame.this_object_, arg, thread_id, kRootJavaFrame);
2192    }
2193    DCHECK(frame.method_ != nullptr);
2194    visitor(reinterpret_cast<mirror::Object**>(&frame.method_), arg, thread_id, kRootJavaFrame);
2195  }
2196}
2197
2198static void VerifyRoot(mirror::Object** root, void* /*arg*/, uint32_t /*thread_id*/,
2199                       RootType /*root_type*/) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2200  VerifyObject(*root);
2201}
2202
2203void Thread::VerifyStackImpl() {
2204  std::unique_ptr<Context> context(Context::Create());
2205  RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap(), GetThreadId());
2206  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
2207  mapper.WalkStack();
2208}
2209
2210// Set the stack end to that to be used during a stack overflow
2211void Thread::SetStackEndForStackOverflow() {
2212  // During stack overflow we allow use of the full stack.
2213  if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
2214    // However, we seem to have already extended to use the full stack.
2215    LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2216               << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
2217    DumpStack(LOG(ERROR));
2218    LOG(FATAL) << "Recursive stack overflow.";
2219  }
2220
2221  tlsPtr_.stack_end = tlsPtr_.stack_begin;
2222
2223  // Remove the stack overflow protection if is it set up.
2224  bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
2225  if (implicit_stack_check) {
2226    if (!UnprotectStack()) {
2227      LOG(ERROR) << "Unable to remove stack protection for stack overflow";
2228    }
2229  }
2230}
2231
2232void Thread::SetTlab(byte* start, byte* end) {
2233  DCHECK_LE(start, end);
2234  tlsPtr_.thread_local_start = start;
2235  tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
2236  tlsPtr_.thread_local_end = end;
2237  tlsPtr_.thread_local_objects = 0;
2238}
2239
2240bool Thread::HasTlab() const {
2241  bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
2242  if (has_tlab) {
2243    DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
2244  } else {
2245    DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
2246  }
2247  return has_tlab;
2248}
2249
2250std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2251  thread.ShortDump(os);
2252  return os;
2253}
2254
2255void Thread::ProtectStack() {
2256  void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2257  VLOG(threads) << "Protecting stack at " << pregion;
2258  if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
2259    LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
2260        "Reason: "
2261        << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
2262  }
2263}
2264
2265bool Thread::UnprotectStack() {
2266  void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2267  VLOG(threads) << "Unprotecting stack at " << pregion;
2268  return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
2269}
2270
2271
2272}  // namespace art
2273