thread.cc revision 83b1940e6482b9d8feba5c492507735686650ea5
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_DALVIK
18
19#include "thread.h"
20
21#include <cutils/trace.h>
22#include <pthread.h>
23#include <signal.h>
24#include <sys/resource.h>
25#include <sys/time.h>
26
27#include <algorithm>
28#include <bitset>
29#include <cerrno>
30#include <iostream>
31#include <list>
32
33#include "arch/context.h"
34#include "base/mutex.h"
35#include "class_linker-inl.h"
36#include "class_linker.h"
37#include "debugger.h"
38#include "dex_file-inl.h"
39#include "entrypoints/entrypoint_utils.h"
40#include "entrypoints/quick/quick_alloc_entrypoints.h"
41#include "gc_map.h"
42#include "gc/accounting/card_table-inl.h"
43#include "gc/allocator/rosalloc.h"
44#include "gc/heap.h"
45#include "gc/space/space.h"
46#include "handle_scope-inl.h"
47#include "handle_scope.h"
48#include "indirect_reference_table-inl.h"
49#include "jni_internal.h"
50#include "mirror/art_field-inl.h"
51#include "mirror/art_method-inl.h"
52#include "mirror/class_loader.h"
53#include "mirror/class-inl.h"
54#include "mirror/object_array-inl.h"
55#include "mirror/stack_trace_element.h"
56#include "monitor.h"
57#include "object_lock.h"
58#include "quick_exception_handler.h"
59#include "quick/quick_method_frame_info.h"
60#include "reflection.h"
61#include "runtime.h"
62#include "scoped_thread_state_change.h"
63#include "ScopedLocalRef.h"
64#include "ScopedUtfChars.h"
65#include "stack.h"
66#include "thread_list.h"
67#include "thread-inl.h"
68#include "utils.h"
69#include "verifier/dex_gc_map.h"
70#include "verify_object-inl.h"
71#include "vmap_table.h"
72#include "well_known_classes.h"
73
74namespace art {
75
76bool Thread::is_started_ = false;
77pthread_key_t Thread::pthread_key_self_;
78ConditionVariable* Thread::resume_cond_ = nullptr;
79const size_t Thread::kStackOverflowImplicitCheckSize = kStackOverflowProtectedSize +
80    GetStackOverflowReservedBytes(kRuntimeISA);
81
82static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
83
84void Thread::InitCardTable() {
85  tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
86}
87
88static void UnimplementedEntryPoint() {
89  UNIMPLEMENTED(FATAL);
90}
91
92void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
93                     PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
94
95void Thread::InitTlsEntryPoints() {
96  // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
97  uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints);
98  uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) +
99                                                sizeof(tlsPtr_.quick_entrypoints));
100  for (uintptr_t* it = begin; it != end; ++it) {
101    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
102  }
103  InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints,
104                  &tlsPtr_.portable_entrypoints, &tlsPtr_.quick_entrypoints);
105}
106
107void Thread::ResetQuickAllocEntryPointsForThread() {
108  ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
109}
110
111void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
112  tlsPtr_.deoptimization_shadow_frame = sf;
113}
114
115void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
116  tls64_.deoptimization_return_value.SetJ(ret_val.GetJ());
117}
118
119ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
120  ShadowFrame* sf = tlsPtr_.deoptimization_shadow_frame;
121  tlsPtr_.deoptimization_shadow_frame = nullptr;
122  ret_val->SetJ(tls64_.deoptimization_return_value.GetJ());
123  return sf;
124}
125
126void Thread::SetShadowFrameUnderConstruction(ShadowFrame* sf) {
127  sf->SetLink(tlsPtr_.shadow_frame_under_construction);
128  tlsPtr_.shadow_frame_under_construction = sf;
129}
130
131void Thread::ClearShadowFrameUnderConstruction() {
132  CHECK_NE(static_cast<ShadowFrame*>(nullptr), tlsPtr_.shadow_frame_under_construction);
133  tlsPtr_.shadow_frame_under_construction = tlsPtr_.shadow_frame_under_construction->GetLink();
134}
135
136void Thread::InitTid() {
137  tls32_.tid = ::art::GetTid();
138}
139
140void Thread::InitAfterFork() {
141  // One thread (us) survived the fork, but we have a new tid so we need to
142  // update the value stashed in this Thread*.
143  InitTid();
144}
145
146void* Thread::CreateCallback(void* arg) {
147  Thread* self = reinterpret_cast<Thread*>(arg);
148  Runtime* runtime = Runtime::Current();
149  if (runtime == nullptr) {
150    LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
151    return nullptr;
152  }
153  {
154    // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
155    //       after self->Init().
156    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
157    // Check that if we got here we cannot be shutting down (as shutdown should never have started
158    // while threads are being born).
159    CHECK(!runtime->IsShuttingDownLocked());
160    self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
161    Runtime::Current()->EndThreadBirth();
162  }
163  {
164    ScopedObjectAccess soa(self);
165
166    // Copy peer into self, deleting global reference when done.
167    CHECK(self->tlsPtr_.jpeer != nullptr);
168    self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
169    self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
170    self->tlsPtr_.jpeer = nullptr;
171    self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str());
172    Dbg::PostThreadStart(self);
173
174    // Invoke the 'run' method of our java.lang.Thread.
175    mirror::Object* receiver = self->tlsPtr_.opeer;
176    jmethodID mid = WellKnownClasses::java_lang_Thread_run;
177    InvokeVirtualOrInterfaceWithJValues(soa, receiver, mid, nullptr);
178  }
179  // Detach and delete self.
180  Runtime::Current()->GetThreadList()->Unregister(self);
181
182  return nullptr;
183}
184
185Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
186                                  mirror::Object* thread_peer) {
187  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
188  Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
189  // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
190  // to stop it from going away.
191  if (kIsDebugBuild) {
192    MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
193    if (result != nullptr && !result->IsSuspended()) {
194      Locks::thread_list_lock_->AssertHeld(soa.Self());
195    }
196  }
197  return result;
198}
199
200Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
201                                  jobject java_thread) {
202  return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
203}
204
205static size_t FixStackSize(size_t stack_size) {
206  // A stack size of zero means "use the default".
207  if (stack_size == 0) {
208    stack_size = Runtime::Current()->GetDefaultStackSize();
209  }
210
211  // Dalvik used the bionic pthread default stack size for native threads,
212  // so include that here to support apps that expect large native stacks.
213  stack_size += 1 * MB;
214
215  // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
216  if (stack_size < PTHREAD_STACK_MIN) {
217    stack_size = PTHREAD_STACK_MIN;
218  }
219
220  if (Runtime::Current()->ExplicitStackOverflowChecks()) {
221    // It's likely that callers are trying to ensure they have at least a certain amount of
222    // stack space, so we should add our reserved space on top of what they requested, rather
223    // than implicitly take it away from them.
224    stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
225  } else {
226    // If we are going to use implicit stack checks, allocate space for the protected
227    // region at the bottom of the stack.
228    stack_size += Thread::kStackOverflowImplicitCheckSize;
229  }
230
231  // Some systems require the stack size to be a multiple of the system page size, so round up.
232  stack_size = RoundUp(stack_size, kPageSize);
233
234  return stack_size;
235}
236
237// Global variable to prevent the compiler optimizing away the page reads for the stack.
238byte dont_optimize_this;
239
240// Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
241// overflow is detected.  It is located right below the stack_end_.  Just below that
242// is the StackOverflow reserved region used when creating the StackOverflow
243// exception.
244//
245// There is a little complexity here that deserves a special mention.  When running on the
246// host (glibc), the process's main thread's stack is allocated with a special flag
247// to prevent memory being allocated when it's not needed.  This flag makes the
248// kernel only allocate memory for the stack by growing down in memory.  Because we
249// want to put an mprotected region far away from that at the stack top, we need
250// to make sure the pages for the stack are mapped in before we call mprotect.  We do
251// this by reading every page from the stack bottom (highest address) to the stack top.
252// We then madvise this away.
253void Thread::InstallImplicitProtection(bool is_main_stack) {
254  byte* pregion = tlsPtr_.stack_end;
255  byte* stack_lowmem = tlsPtr_.stack_begin;
256  byte* stack_top = reinterpret_cast<byte*>(reinterpret_cast<uintptr_t>(&pregion) &
257      ~(kPageSize - 1));    // Page containing current top of stack.
258
259  const bool running_on_intel = (kRuntimeISA == kX86) || (kRuntimeISA == kX86_64);
260
261  if (running_on_intel) {
262    // On Intel, we need to map in the main stack.  This must be done by reading from the
263    // current stack pointer downwards as the stack is mapped using VM_GROWSDOWN
264    // in the kernel.  Any access more than a page below the current SP will cause
265    // a segv.
266    if (is_main_stack) {
267      // First we need to unprotect the protected region because this may
268      // be called more than once for a particular stack and we will crash
269      // if we try to read the protected page.
270      mprotect(pregion - kStackOverflowProtectedSize, kStackOverflowProtectedSize, PROT_READ);
271
272      // Read every page from the high address to the low.
273      for (byte* p = stack_top; p > stack_lowmem; p -= kPageSize) {
274        dont_optimize_this = *p;
275      }
276    }
277  }
278
279  // Check and place a marker word at the lowest usable address in the stack.  This
280  // is used to prevent a double protection.
281  constexpr uint32_t kMarker = 0xdadadada;
282  uintptr_t *marker = reinterpret_cast<uintptr_t*>(pregion);
283  if (*marker == kMarker) {
284    // The region has already been set up.  But on the main stack on the host we have
285    // removed the protected region in order to read the stack memory.  We need to put
286    // this back again.
287    if (is_main_stack && running_on_intel) {
288      mprotect(pregion - kStackOverflowProtectedSize, kStackOverflowProtectedSize, PROT_NONE);
289      madvise(stack_lowmem, stack_top - stack_lowmem, MADV_DONTNEED);
290    }
291    return;
292  }
293  // Add marker so that we can detect a second attempt to do this.
294  *marker = kMarker;
295
296  if (!running_on_intel) {
297    // Running on !Intel, stacks are mapped cleanly.  The protected region for the
298    // main stack just needs to be mapped in.  We do this by writing one byte per page.
299    for (byte* p = pregion - kStackOverflowProtectedSize;  p < pregion; p += kPageSize) {
300      *p = 0;
301    }
302  }
303
304  pregion -= kStackOverflowProtectedSize;
305
306  VLOG(threads) << "installing stack protected region at " << std::hex <<
307      static_cast<void*>(pregion) << " to " <<
308      static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
309
310
311  if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
312    LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. Reason:"
313        << strerror(errno) << kStackOverflowProtectedSize;
314  }
315
316  // Tell the kernel that we won't be needing these pages any more.
317  // NB. madvise will probably write zeroes into the memory (on linux it does).
318  if (is_main_stack) {
319    if (running_on_intel) {
320      // On the host, it's the whole stack (minus a page to prevent overwrite of stack top).
321      madvise(stack_lowmem, stack_top - stack_lowmem - kPageSize, MADV_DONTNEED);
322    } else {
323      // On Android, just the protected region.
324      madvise(pregion, kStackOverflowProtectedSize, MADV_DONTNEED);
325    }
326  }
327}
328
329void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
330  CHECK(java_peer != nullptr);
331  Thread* self = static_cast<JNIEnvExt*>(env)->self;
332  Runtime* runtime = Runtime::Current();
333
334  // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
335  bool thread_start_during_shutdown = false;
336  {
337    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
338    if (runtime->IsShuttingDownLocked()) {
339      thread_start_during_shutdown = true;
340    } else {
341      runtime->StartThreadBirth();
342    }
343  }
344  if (thread_start_during_shutdown) {
345    ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
346    env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
347    return;
348  }
349
350  Thread* child_thread = new Thread(is_daemon);
351  // Use global JNI ref to hold peer live while child thread starts.
352  child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
353  stack_size = FixStackSize(stack_size);
354
355  // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
356  // assign it.
357  env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
358                    reinterpret_cast<jlong>(child_thread));
359
360  pthread_t new_pthread;
361  pthread_attr_t attr;
362  CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
363  CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
364  CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
365  int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
366  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
367
368  if (pthread_create_result != 0) {
369    // pthread_create(3) failed, so clean up.
370    {
371      MutexLock mu(self, *Locks::runtime_shutdown_lock_);
372      runtime->EndThreadBirth();
373    }
374    // Manually delete the global reference since Thread::Init will not have been run.
375    env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
376    child_thread->tlsPtr_.jpeer = nullptr;
377    delete child_thread;
378    child_thread = nullptr;
379    // TODO: remove from thread group?
380    env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
381    {
382      std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
383                                   PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
384      ScopedObjectAccess soa(env);
385      soa.Self()->ThrowOutOfMemoryError(msg.c_str());
386    }
387  }
388}
389
390void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
391  // This function does all the initialization that must be run by the native thread it applies to.
392  // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
393  // we can handshake with the corresponding native thread when it's ready.) Check this native
394  // thread hasn't been through here already...
395  CHECK(Thread::Current() == nullptr);
396  SetUpAlternateSignalStack();
397  InitCpu();
398  InitTlsEntryPoints();
399  RemoveSuspendTrigger();
400  InitCardTable();
401  InitTid();
402  // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
403  // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
404  tlsPtr_.pthread_self = pthread_self();
405  CHECK(is_started_);
406  CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
407  DCHECK_EQ(Thread::Current(), this);
408
409  tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
410  InitStackHwm();
411
412  tlsPtr_.jni_env = new JNIEnvExt(this, java_vm);
413  thread_list->Register(this);
414}
415
416Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
417                       bool create_peer) {
418  Thread* self;
419  Runtime* runtime = Runtime::Current();
420  if (runtime == nullptr) {
421    LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
422    return nullptr;
423  }
424  {
425    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
426    if (runtime->IsShuttingDownLocked()) {
427      LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
428      return nullptr;
429    } else {
430      Runtime::Current()->StartThreadBirth();
431      self = new Thread(as_daemon);
432      self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
433      Runtime::Current()->EndThreadBirth();
434    }
435  }
436
437  CHECK_NE(self->GetState(), kRunnable);
438  self->SetState(kNative);
439
440  // If we're the main thread, ClassLinker won't be created until after we're attached,
441  // so that thread needs a two-stage attach. Regular threads don't need this hack.
442  // In the compiler, all threads need this hack, because no-one's going to be getting
443  // a native peer!
444  if (create_peer) {
445    self->CreatePeer(thread_name, as_daemon, thread_group);
446  } else {
447    // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
448    if (thread_name != nullptr) {
449      self->tlsPtr_.name->assign(thread_name);
450      ::art::SetThreadName(thread_name);
451    }
452  }
453
454  return self;
455}
456
457void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
458  Runtime* runtime = Runtime::Current();
459  CHECK(runtime->IsStarted());
460  JNIEnv* env = tlsPtr_.jni_env;
461
462  if (thread_group == nullptr) {
463    thread_group = runtime->GetMainThreadGroup();
464  }
465  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
466  jint thread_priority = GetNativePriority();
467  jboolean thread_is_daemon = as_daemon;
468
469  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
470  if (peer.get() == nullptr) {
471    CHECK(IsExceptionPending());
472    return;
473  }
474  {
475    ScopedObjectAccess soa(this);
476    tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
477  }
478  env->CallNonvirtualVoidMethod(peer.get(),
479                                WellKnownClasses::java_lang_Thread,
480                                WellKnownClasses::java_lang_Thread_init,
481                                thread_group, thread_name.get(), thread_priority, thread_is_daemon);
482  AssertNoPendingException();
483
484  Thread* self = this;
485  DCHECK_EQ(self, Thread::Current());
486  env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
487                    reinterpret_cast<jlong>(self));
488
489  ScopedObjectAccess soa(self);
490  StackHandleScope<1> hs(self);
491  Handle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa)));
492  if (peer_thread_name.Get() == nullptr) {
493    // The Thread constructor should have set the Thread.name to a
494    // non-null value. However, because we can run without code
495    // available (in the compiler, in tests), we manually assign the
496    // fields the constructor should have set.
497    if (runtime->IsActiveTransaction()) {
498      InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
499    } else {
500      InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
501    }
502    peer_thread_name.Assign(GetThreadName(soa));
503  }
504  // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
505  if (peer_thread_name.Get() != nullptr) {
506    SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
507  }
508}
509
510template<bool kTransactionActive>
511void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
512                      jobject thread_name, jint thread_priority) {
513  soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
514      SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
515  soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
516      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
517  soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
518      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
519  soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
520      SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
521}
522
523void Thread::SetThreadName(const char* name) {
524  tlsPtr_.name->assign(name);
525  ::art::SetThreadName(name);
526  Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
527}
528
529void Thread::InitStackHwm() {
530  void* read_stack_base;
531  size_t read_stack_size;
532  GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size);
533
534  // TODO: include this in the thread dumps; potentially useful in SIGQUIT output?
535  VLOG(threads) << StringPrintf("Native stack is at %p (%s)", read_stack_base,
536                                PrettySize(read_stack_size).c_str());
537
538  tlsPtr_.stack_begin = reinterpret_cast<byte*>(read_stack_base);
539  tlsPtr_.stack_size = read_stack_size;
540
541  if (read_stack_size <= GetStackOverflowReservedBytes(kRuntimeISA)) {
542    LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << read_stack_size
543        << " bytes)";
544  }
545
546  // TODO: move this into the Linux GetThreadStack implementation.
547#if defined(__APPLE__)
548  bool is_main_thread = false;
549#else
550  // If we're the main thread, check whether we were run with an unlimited stack. In that case,
551  // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
552  // will be broken because we'll die long before we get close to 2GB.
553  bool is_main_thread = (::art::GetTid() == getpid());
554  if (is_main_thread) {
555    rlimit stack_limit;
556    if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
557      PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
558    }
559    if (stack_limit.rlim_cur == RLIM_INFINITY) {
560      // Find the default stack size for new threads...
561      pthread_attr_t default_attributes;
562      size_t default_stack_size;
563      CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
564      CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
565                         "default stack size query");
566      CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
567
568      // ...and use that as our limit.
569      size_t old_stack_size = read_stack_size;
570      tlsPtr_.stack_size = default_stack_size;
571      tlsPtr_.stack_begin += (old_stack_size - default_stack_size);
572      VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
573                    << " to " << PrettySize(default_stack_size)
574                    << " with base " << reinterpret_cast<void*>(tlsPtr_.stack_begin);
575    }
576  }
577#endif
578
579  // Set stack_end_ to the bottom of the stack saving space of stack overflows
580  bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
581  ResetDefaultStackEnd(implicit_stack_check);
582
583  // Install the protected region if we are doing implicit overflow checks.
584  if (implicit_stack_check) {
585    if (is_main_thread) {
586      size_t guardsize;
587      pthread_attr_t attributes;
588      CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), "guard size query");
589      CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, &guardsize), "guard size query");
590      CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), "guard size query");
591      // The main thread might have protected region at the bottom.  We need
592      // to install our own region so we need to move the limits
593      // of the stack to make room for it.
594      tlsPtr_.stack_begin += guardsize;
595      tlsPtr_.stack_end += guardsize;
596      tlsPtr_.stack_size -= guardsize;
597    }
598    InstallImplicitProtection(is_main_thread);
599  }
600
601  // Sanity check.
602  int stack_variable;
603  CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end));
604}
605
606void Thread::ShortDump(std::ostream& os) const {
607  os << "Thread[";
608  if (GetThreadId() != 0) {
609    // If we're in kStarting, we won't have a thin lock id or tid yet.
610    os << GetThreadId()
611             << ",tid=" << GetTid() << ',';
612  }
613  os << GetState()
614           << ",Thread*=" << this
615           << ",peer=" << tlsPtr_.opeer
616           << ",\"" << *tlsPtr_.name << "\""
617           << "]";
618}
619
620void Thread::Dump(std::ostream& os) const {
621  DumpState(os);
622  DumpStack(os);
623}
624
625mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const {
626  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
627  return (tlsPtr_.opeer != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
628}
629
630void Thread::GetThreadName(std::string& name) const {
631  name.assign(*tlsPtr_.name);
632}
633
634uint64_t Thread::GetCpuMicroTime() const {
635#if defined(HAVE_POSIX_CLOCKS)
636  clockid_t cpu_clock_id;
637  pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
638  timespec now;
639  clock_gettime(cpu_clock_id, &now);
640  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
641#else
642  UNIMPLEMENTED(WARNING);
643  return -1;
644#endif
645}
646
647// Attempt to rectify locks so that we dump thread list with required locks before exiting.
648static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
649  LOG(ERROR) << *thread << " suspend count already zero.";
650  Locks::thread_suspend_count_lock_->Unlock(self);
651  if (!Locks::mutator_lock_->IsSharedHeld(self)) {
652    Locks::mutator_lock_->SharedTryLock(self);
653    if (!Locks::mutator_lock_->IsSharedHeld(self)) {
654      LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
655    }
656  }
657  if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
658    Locks::thread_list_lock_->TryLock(self);
659    if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
660      LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
661    }
662  }
663  std::ostringstream ss;
664  Runtime::Current()->GetThreadList()->DumpLocked(ss);
665  LOG(FATAL) << ss.str();
666}
667
668void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
669  if (kIsDebugBuild) {
670    DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
671          << delta << " " << tls32_.debug_suspend_count << " " << this;
672    DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
673    Locks::thread_suspend_count_lock_->AssertHeld(self);
674    if (this != self && !IsSuspended()) {
675      Locks::thread_list_lock_->AssertHeld(self);
676    }
677  }
678  if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
679    UnsafeLogFatalForSuspendCount(self, this);
680    return;
681  }
682
683  tls32_.suspend_count += delta;
684  if (for_debugger) {
685    tls32_.debug_suspend_count += delta;
686  }
687
688  if (tls32_.suspend_count == 0) {
689    AtomicClearFlag(kSuspendRequest);
690  } else {
691    AtomicSetFlag(kSuspendRequest);
692    TriggerSuspend();
693  }
694}
695
696void Thread::RunCheckpointFunction() {
697  Closure *checkpoints[kMaxCheckpoints];
698
699  // Grab the suspend_count lock and copy the current set of
700  // checkpoints.  Then clear the list and the flag.  The RequestCheckpoint
701  // function will also grab this lock so we prevent a race between setting
702  // the kCheckpointRequest flag and clearing it.
703  {
704    MutexLock mu(this, *Locks::thread_suspend_count_lock_);
705    for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
706      checkpoints[i] = tlsPtr_.checkpoint_functions[i];
707      tlsPtr_.checkpoint_functions[i] = nullptr;
708    }
709    AtomicClearFlag(kCheckpointRequest);
710  }
711
712  // Outside the lock, run all the checkpoint functions that
713  // we collected.
714  bool found_checkpoint = false;
715  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
716    if (checkpoints[i] != nullptr) {
717      ATRACE_BEGIN("Checkpoint function");
718      checkpoints[i]->Run(this);
719      ATRACE_END();
720      found_checkpoint = true;
721    }
722  }
723  CHECK(found_checkpoint);
724}
725
726bool Thread::RequestCheckpoint(Closure* function) {
727  union StateAndFlags old_state_and_flags;
728  old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
729  if (old_state_and_flags.as_struct.state != kRunnable) {
730    return false;  // Fail, thread is suspended and so can't run a checkpoint.
731  }
732
733  uint32_t available_checkpoint = kMaxCheckpoints;
734  for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
735    if (tlsPtr_.checkpoint_functions[i] == nullptr) {
736      available_checkpoint = i;
737      break;
738    }
739  }
740  if (available_checkpoint == kMaxCheckpoints) {
741    // No checkpoint functions available, we can't run a checkpoint
742    return false;
743  }
744  tlsPtr_.checkpoint_functions[available_checkpoint] = function;
745
746  // Checkpoint function installed now install flag bit.
747  // We must be runnable to request a checkpoint.
748  DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
749  union StateAndFlags new_state_and_flags;
750  new_state_and_flags.as_int = old_state_and_flags.as_int;
751  new_state_and_flags.as_struct.flags |= kCheckpointRequest;
752  bool success =
753      tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(old_state_and_flags.as_int,
754                                                                                       new_state_and_flags.as_int);
755  if (UNLIKELY(!success)) {
756    // The thread changed state before the checkpoint was installed.
757    CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function);
758    tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr;
759  } else {
760    CHECK_EQ(ReadFlag(kCheckpointRequest), true);
761    TriggerSuspend();
762  }
763  return success;
764}
765
766void Thread::FullSuspendCheck() {
767  VLOG(threads) << this << " self-suspending";
768  ATRACE_BEGIN("Full suspend check");
769  // Make thread appear suspended to other threads, release mutator_lock_.
770  TransitionFromRunnableToSuspended(kSuspended);
771  // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
772  TransitionFromSuspendedToRunnable();
773  ATRACE_END();
774  VLOG(threads) << this << " self-reviving";
775}
776
777void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
778  std::string group_name;
779  int priority;
780  bool is_daemon = false;
781  Thread* self = Thread::Current();
782
783  // Don't do this if we are aborting since the GC may have all the threads suspended. This will
784  // cause ScopedObjectAccessUnchecked to deadlock.
785  if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
786    ScopedObjectAccessUnchecked soa(self);
787    priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
788        ->GetInt(thread->tlsPtr_.opeer);
789    is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
790        ->GetBoolean(thread->tlsPtr_.opeer);
791
792    mirror::Object* thread_group =
793        soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);
794
795    if (thread_group != nullptr) {
796      mirror::ArtField* group_name_field =
797          soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
798      mirror::String* group_name_string =
799          reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
800      group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
801    }
802  } else {
803    priority = GetNativePriority();
804  }
805
806  std::string scheduler_group_name(GetSchedulerGroupName(tid));
807  if (scheduler_group_name.empty()) {
808    scheduler_group_name = "default";
809  }
810
811  if (thread != nullptr) {
812    os << '"' << *thread->tlsPtr_.name << '"';
813    if (is_daemon) {
814      os << " daemon";
815    }
816    os << " prio=" << priority
817       << " tid=" << thread->GetThreadId()
818       << " " << thread->GetState();
819    if (thread->IsStillStarting()) {
820      os << " (still starting up)";
821    }
822    os << "\n";
823  } else {
824    os << '"' << ::art::GetThreadName(tid) << '"'
825       << " prio=" << priority
826       << " (not attached)\n";
827  }
828
829  if (thread != nullptr) {
830    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
831    os << "  | group=\"" << group_name << "\""
832       << " sCount=" << thread->tls32_.suspend_count
833       << " dsCount=" << thread->tls32_.debug_suspend_count
834       << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
835       << " self=" << reinterpret_cast<const void*>(thread) << "\n";
836  }
837
838  os << "  | sysTid=" << tid
839     << " nice=" << getpriority(PRIO_PROCESS, tid)
840     << " cgrp=" << scheduler_group_name;
841  if (thread != nullptr) {
842    int policy;
843    sched_param sp;
844    CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
845                       __FUNCTION__);
846    os << " sched=" << policy << "/" << sp.sched_priority
847       << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
848  }
849  os << "\n";
850
851  // Grab the scheduler stats for this thread.
852  std::string scheduler_stats;
853  if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
854    scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
855  } else {
856    scheduler_stats = "0 0 0";
857  }
858
859  char native_thread_state = '?';
860  int utime = 0;
861  int stime = 0;
862  int task_cpu = 0;
863  GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
864
865  os << "  | state=" << native_thread_state
866     << " schedstat=( " << scheduler_stats << " )"
867     << " utm=" << utime
868     << " stm=" << stime
869     << " core=" << task_cpu
870     << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
871  if (thread != nullptr) {
872    os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
873        << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
874        << PrettySize(thread->tlsPtr_.stack_size) << "\n";
875    // Dump the held mutexes.
876    os << "  | held mutexes=";
877    for (size_t i = 0; i < kLockLevelCount; ++i) {
878      if (i != kMonitorLock) {
879        BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
880        if (mutex != nullptr) {
881          os << " \"" << mutex->GetName() << "\"";
882          if (mutex->IsReaderWriterMutex()) {
883            ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
884            if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
885              os << "(exclusive held)";
886            } else {
887              os << "(shared held)";
888            }
889          }
890        }
891      }
892    }
893    os << "\n";
894  }
895}
896
897void Thread::DumpState(std::ostream& os) const {
898  Thread::DumpState(os, this, GetTid());
899}
900
901struct StackDumpVisitor : public StackVisitor {
902  StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
903      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
904      : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
905        last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) {
906  }
907
908  virtual ~StackDumpVisitor() {
909    if (frame_count == 0) {
910      os << "  (no managed stack frames)\n";
911    }
912  }
913
914  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
915    mirror::ArtMethod* m = GetMethod();
916    if (m->IsRuntimeMethod()) {
917      return true;
918    }
919    const int kMaxRepetition = 3;
920    mirror::Class* c = m->GetDeclaringClass();
921    mirror::DexCache* dex_cache = c->GetDexCache();
922    int line_number = -1;
923    if (dex_cache != nullptr) {  // be tolerant of bad input
924      const DexFile& dex_file = *dex_cache->GetDexFile();
925      line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
926    }
927    if (line_number == last_line_number && last_method == m) {
928      ++repetition_count;
929    } else {
930      if (repetition_count >= kMaxRepetition) {
931        os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
932      }
933      repetition_count = 0;
934      last_line_number = line_number;
935      last_method = m;
936    }
937    if (repetition_count < kMaxRepetition) {
938      os << "  at " << PrettyMethod(m, false);
939      if (m->IsNative()) {
940        os << "(Native method)";
941      } else {
942        const char* source_file(m->GetDeclaringClassSourceFile());
943        os << "(" << (source_file != nullptr ? source_file : "unavailable")
944           << ":" << line_number << ")";
945      }
946      os << "\n";
947      if (frame_count == 0) {
948        Monitor::DescribeWait(os, thread);
949      }
950      if (can_allocate) {
951        Monitor::VisitLocks(this, DumpLockedObject, &os);
952      }
953    }
954
955    ++frame_count;
956    return true;
957  }
958
959  static void DumpLockedObject(mirror::Object* o, void* context)
960      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
961    std::ostream& os = *reinterpret_cast<std::ostream*>(context);
962    os << "  - locked ";
963    if (o == nullptr) {
964      os << "an unknown object";
965    } else {
966      if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
967          Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
968        // Getting the identity hashcode here would result in lock inflation and suspension of the
969        // current thread, which isn't safe if this is the only runnable thread.
970        os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
971                           PrettyTypeOf(o).c_str());
972      } else {
973        os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), PrettyTypeOf(o).c_str());
974      }
975    }
976    os << "\n";
977  }
978
979  std::ostream& os;
980  const Thread* thread;
981  const bool can_allocate;
982  mirror::ArtMethod* method;
983  mirror::ArtMethod* last_method;
984  int last_line_number;
985  int repetition_count;
986  int frame_count;
987};
988
989static bool ShouldShowNativeStack(const Thread* thread)
990    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
991  ThreadState state = thread->GetState();
992
993  // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
994  if (state > kWaiting && state < kStarting) {
995    return true;
996  }
997
998  // In an Object.wait variant or Thread.sleep? That's not interesting.
999  if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
1000    return false;
1001  }
1002
1003  // In some other native method? That's interesting.
1004  // We don't just check kNative because native methods will be in state kSuspended if they're
1005  // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
1006  // thread-startup states if it's early enough in their life cycle (http://b/7432159).
1007  mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
1008  return current_method != nullptr && current_method->IsNative();
1009}
1010
1011void Thread::DumpJavaStack(std::ostream& os) const {
1012  std::unique_ptr<Context> context(Context::Create());
1013  StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
1014                          !tls32_.throwing_OutOfMemoryError);
1015  dumper.WalkStack();
1016}
1017
1018void Thread::DumpStack(std::ostream& os) const {
1019  // TODO: we call this code when dying but may not have suspended the thread ourself. The
1020  //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
1021  //       the race with the thread_suspend_count_lock_).
1022  bool dump_for_abort = (gAborting > 0);
1023  bool safe_to_dump = (this == Thread::Current() || IsSuspended());
1024  if (!kIsDebugBuild) {
1025    // We always want to dump the stack for an abort, however, there is no point dumping another
1026    // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
1027    safe_to_dump = (safe_to_dump || dump_for_abort);
1028  }
1029  if (safe_to_dump) {
1030    // If we're currently in native code, dump that stack before dumping the managed stack.
1031    if (dump_for_abort || ShouldShowNativeStack(this)) {
1032      DumpKernelStack(os, GetTid(), "  kernel: ", false);
1033      DumpNativeStack(os, GetTid(), "  native: ", GetCurrentMethod(nullptr));
1034    }
1035    DumpJavaStack(os);
1036  } else {
1037    os << "Not able to dump stack of thread that isn't suspended";
1038  }
1039}
1040
1041void Thread::ThreadExitCallback(void* arg) {
1042  Thread* self = reinterpret_cast<Thread*>(arg);
1043  if (self->tls32_.thread_exit_check_count == 0) {
1044    LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
1045        "going to use a pthread_key_create destructor?): " << *self;
1046    CHECK(is_started_);
1047    CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
1048    self->tls32_.thread_exit_check_count = 1;
1049  } else {
1050    LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
1051  }
1052}
1053
1054void Thread::Startup() {
1055  CHECK(!is_started_);
1056  is_started_ = true;
1057  {
1058    // MutexLock to keep annotalysis happy.
1059    //
1060    // Note we use nullptr for the thread because Thread::Current can
1061    // return garbage since (is_started_ == true) and
1062    // Thread::pthread_key_self_ is not yet initialized.
1063    // This was seen on glibc.
1064    MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1065    resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1066                                         *Locks::thread_suspend_count_lock_);
1067  }
1068
1069  // Allocate a TLS slot.
1070  CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
1071
1072  // Double-check the TLS slot allocation.
1073  if (pthread_getspecific(pthread_key_self_) != nullptr) {
1074    LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
1075  }
1076}
1077
1078void Thread::FinishStartup() {
1079  Runtime* runtime = Runtime::Current();
1080  CHECK(runtime->IsStarted());
1081
1082  // Finish attaching the main thread.
1083  ScopedObjectAccess soa(Thread::Current());
1084  Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
1085
1086  Runtime::Current()->GetClassLinker()->RunRootClinits();
1087}
1088
1089void Thread::Shutdown() {
1090  CHECK(is_started_);
1091  is_started_ = false;
1092  CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
1093  MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
1094  if (resume_cond_ != nullptr) {
1095    delete resume_cond_;
1096    resume_cond_ = nullptr;
1097  }
1098}
1099
1100Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) {
1101  wait_mutex_ = new Mutex("a thread wait mutex");
1102  wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
1103  tlsPtr_.debug_invoke_req = new DebugInvokeReq;
1104  tlsPtr_.single_step_control = new SingleStepControl;
1105  tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
1106  tlsPtr_.name = new std::string(kThreadNameDuringStartup);
1107
1108  CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
1109  tls32_.state_and_flags.as_struct.flags = 0;
1110  tls32_.state_and_flags.as_struct.state = kNative;
1111  memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
1112  std::fill(tlsPtr_.rosalloc_runs,
1113            tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBrackets,
1114            gc::allocator::RosAlloc::GetDedicatedFullRun());
1115  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
1116    tlsPtr_.checkpoint_functions[i] = nullptr;
1117  }
1118}
1119
1120bool Thread::IsStillStarting() const {
1121  // You might think you can check whether the state is kStarting, but for much of thread startup,
1122  // the thread is in kNative; it might also be in kVmWait.
1123  // You might think you can check whether the peer is nullptr, but the peer is actually created and
1124  // assigned fairly early on, and needs to be.
1125  // It turns out that the last thing to change is the thread name; that's a good proxy for "has
1126  // this thread _ever_ entered kRunnable".
1127  return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
1128      (*tlsPtr_.name == kThreadNameDuringStartup);
1129}
1130
1131void Thread::AssertNoPendingException() const {
1132  if (UNLIKELY(IsExceptionPending())) {
1133    ScopedObjectAccess soa(Thread::Current());
1134    mirror::Throwable* exception = GetException(nullptr);
1135    LOG(FATAL) << "No pending exception expected: " << exception->Dump();
1136  }
1137}
1138
1139void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
1140  if (UNLIKELY(IsExceptionPending())) {
1141    ScopedObjectAccess soa(Thread::Current());
1142    mirror::Throwable* exception = GetException(nullptr);
1143    LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
1144        << exception->Dump();
1145  }
1146}
1147
1148static void MonitorExitVisitor(mirror::Object** object, void* arg, uint32_t /*thread_id*/,
1149                               RootType /*root_type*/)
1150    NO_THREAD_SAFETY_ANALYSIS {
1151  Thread* self = reinterpret_cast<Thread*>(arg);
1152  mirror::Object* entered_monitor = *object;
1153  if (self->HoldsLock(entered_monitor)) {
1154    LOG(WARNING) << "Calling MonitorExit on object "
1155                 << object << " (" << PrettyTypeOf(entered_monitor) << ")"
1156                 << " left locked by native thread "
1157                 << *Thread::Current() << " which is detaching";
1158    entered_monitor->MonitorExit(self);
1159  }
1160}
1161
1162void Thread::Destroy() {
1163  Thread* self = this;
1164  DCHECK_EQ(self, Thread::Current());
1165
1166  if (tlsPtr_.opeer != nullptr) {
1167    ScopedObjectAccess soa(self);
1168    // We may need to call user-supplied managed code, do this before final clean-up.
1169    HandleUncaughtExceptions(soa);
1170    RemoveFromThreadGroup(soa);
1171
1172    // this.nativePeer = 0;
1173    if (Runtime::Current()->IsActiveTransaction()) {
1174      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1175          ->SetLong<true>(tlsPtr_.opeer, 0);
1176    } else {
1177      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1178          ->SetLong<false>(tlsPtr_.opeer, 0);
1179    }
1180    Dbg::PostThreadDeath(self);
1181
1182    // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1183    // who is waiting.
1184    mirror::Object* lock =
1185        soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
1186    // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1187    if (lock != nullptr) {
1188      StackHandleScope<1> hs(self);
1189      Handle<mirror::Object> h_obj(hs.NewHandle(lock));
1190      ObjectLock<mirror::Object> locker(self, h_obj);
1191      locker.NotifyAll();
1192    }
1193  }
1194
1195  // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1196  if (tlsPtr_.jni_env != nullptr) {
1197    tlsPtr_.jni_env->monitors.VisitRoots(MonitorExitVisitor, self, 0, kRootVMInternal);
1198  }
1199}
1200
1201Thread::~Thread() {
1202  if (tlsPtr_.jni_env != nullptr && tlsPtr_.jpeer != nullptr) {
1203    // If pthread_create fails we don't have a jni env here.
1204    tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
1205    tlsPtr_.jpeer = nullptr;
1206  }
1207  tlsPtr_.opeer = nullptr;
1208
1209  bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
1210  if (initialized) {
1211    delete tlsPtr_.jni_env;
1212    tlsPtr_.jni_env = nullptr;
1213  }
1214  CHECK_NE(GetState(), kRunnable);
1215  CHECK_NE(ReadFlag(kCheckpointRequest), true);
1216  CHECK(tlsPtr_.checkpoint_functions[0] == nullptr);
1217  CHECK(tlsPtr_.checkpoint_functions[1] == nullptr);
1218  CHECK(tlsPtr_.checkpoint_functions[2] == nullptr);
1219
1220  // We may be deleting a still born thread.
1221  SetStateUnsafe(kTerminated);
1222
1223  delete wait_cond_;
1224  delete wait_mutex_;
1225
1226  if (tlsPtr_.long_jump_context != nullptr) {
1227    delete tlsPtr_.long_jump_context;
1228  }
1229
1230  if (initialized) {
1231    CleanupCpu();
1232  }
1233
1234  delete tlsPtr_.debug_invoke_req;
1235  delete tlsPtr_.single_step_control;
1236  delete tlsPtr_.instrumentation_stack;
1237  delete tlsPtr_.name;
1238  delete tlsPtr_.stack_trace_sample;
1239
1240  Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1241
1242  TearDownAlternateSignalStack();
1243}
1244
1245void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1246  if (!IsExceptionPending()) {
1247    return;
1248  }
1249  ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1250  ScopedThreadStateChange tsc(this, kNative);
1251
1252  // Get and clear the exception.
1253  ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
1254  tlsPtr_.jni_env->ExceptionClear();
1255
1256  // If the thread has its own handler, use that.
1257  ScopedLocalRef<jobject> handler(tlsPtr_.jni_env,
1258                                  tlsPtr_.jni_env->GetObjectField(peer.get(),
1259                                      WellKnownClasses::java_lang_Thread_uncaughtHandler));
1260  if (handler.get() == nullptr) {
1261    // Otherwise use the thread group's default handler.
1262    handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(),
1263                                                  WellKnownClasses::java_lang_Thread_group));
1264  }
1265
1266  // Call the handler.
1267  tlsPtr_.jni_env->CallVoidMethod(handler.get(),
1268      WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
1269      peer.get(), exception.get());
1270
1271  // If the handler threw, clear that exception too.
1272  tlsPtr_.jni_env->ExceptionClear();
1273}
1274
1275void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1276  // this.group.removeThread(this);
1277  // group can be null if we're in the compiler or a test.
1278  mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
1279      ->GetObject(tlsPtr_.opeer);
1280  if (ogroup != nullptr) {
1281    ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1282    ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1283    ScopedThreadStateChange tsc(soa.Self(), kNative);
1284    tlsPtr_.jni_env->CallVoidMethod(group.get(),
1285                                    WellKnownClasses::java_lang_ThreadGroup_removeThread,
1286                                    peer.get());
1287  }
1288}
1289
1290size_t Thread::NumHandleReferences() {
1291  size_t count = 0;
1292  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1293    count += cur->NumberOfReferences();
1294  }
1295  return count;
1296}
1297
1298bool Thread::HandleScopeContains(jobject obj) const {
1299  StackReference<mirror::Object>* hs_entry =
1300      reinterpret_cast<StackReference<mirror::Object>*>(obj);
1301  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1302    if (cur->Contains(hs_entry)) {
1303      return true;
1304    }
1305  }
1306  // JNI code invoked from portable code uses shadow frames rather than the handle scope.
1307  return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
1308}
1309
1310void Thread::HandleScopeVisitRoots(RootCallback* visitor, void* arg, uint32_t thread_id) {
1311  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1312    size_t num_refs = cur->NumberOfReferences();
1313    for (size_t j = 0; j < num_refs; ++j) {
1314      mirror::Object* object = cur->GetReference(j);
1315      if (object != nullptr) {
1316        mirror::Object* old_obj = object;
1317        visitor(&object, arg, thread_id, kRootNativeStack);
1318        if (old_obj != object) {
1319          cur->SetReference(j, object);
1320        }
1321      }
1322    }
1323  }
1324}
1325
1326mirror::Object* Thread::DecodeJObject(jobject obj) const {
1327  Locks::mutator_lock_->AssertSharedHeld(this);
1328  if (obj == nullptr) {
1329    return nullptr;
1330  }
1331  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1332  IndirectRefKind kind = GetIndirectRefKind(ref);
1333  mirror::Object* result;
1334  // The "kinds" below are sorted by the frequency we expect to encounter them.
1335  if (kind == kLocal) {
1336    IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
1337    // Local references do not need a read barrier.
1338    result = locals.Get<kWithoutReadBarrier>(ref);
1339  } else if (kind == kHandleScopeOrInvalid) {
1340    // TODO: make stack indirect reference table lookup more efficient.
1341    // Check if this is a local reference in the handle scope.
1342    if (LIKELY(HandleScopeContains(obj))) {
1343      // Read from handle scope.
1344      result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
1345      VerifyObject(result);
1346    } else {
1347      result = kInvalidIndirectRefObject;
1348    }
1349  } else if (kind == kGlobal) {
1350    JavaVMExt* const vm = Runtime::Current()->GetJavaVM();
1351    result = vm->globals.SynchronizedGet(const_cast<Thread*>(this), &vm->globals_lock, ref);
1352  } else {
1353    DCHECK_EQ(kind, kWeakGlobal);
1354    result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1355    if (result == kClearedJniWeakGlobal) {
1356      // This is a special case where it's okay to return nullptr.
1357      return nullptr;
1358    }
1359  }
1360
1361  if (UNLIKELY(result == nullptr)) {
1362    JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
1363  }
1364  return result;
1365}
1366
1367// Implements java.lang.Thread.interrupted.
1368bool Thread::Interrupted() {
1369  MutexLock mu(Thread::Current(), *wait_mutex_);
1370  bool interrupted = IsInterruptedLocked();
1371  SetInterruptedLocked(false);
1372  return interrupted;
1373}
1374
1375// Implements java.lang.Thread.isInterrupted.
1376bool Thread::IsInterrupted() {
1377  MutexLock mu(Thread::Current(), *wait_mutex_);
1378  return IsInterruptedLocked();
1379}
1380
1381void Thread::Interrupt(Thread* self) {
1382  MutexLock mu(self, *wait_mutex_);
1383  if (interrupted_) {
1384    return;
1385  }
1386  interrupted_ = true;
1387  NotifyLocked(self);
1388}
1389
1390void Thread::Notify() {
1391  Thread* self = Thread::Current();
1392  MutexLock mu(self, *wait_mutex_);
1393  NotifyLocked(self);
1394}
1395
1396void Thread::NotifyLocked(Thread* self) {
1397  if (wait_monitor_ != nullptr) {
1398    wait_cond_->Signal(self);
1399  }
1400}
1401
1402class CountStackDepthVisitor : public StackVisitor {
1403 public:
1404  explicit CountStackDepthVisitor(Thread* thread)
1405      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1406      : StackVisitor(thread, nullptr),
1407        depth_(0), skip_depth_(0), skipping_(true) {}
1408
1409  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1410    // We want to skip frames up to and including the exception's constructor.
1411    // Note we also skip the frame if it doesn't have a method (namely the callee
1412    // save frame)
1413    mirror::ArtMethod* m = GetMethod();
1414    if (skipping_ && !m->IsRuntimeMethod() &&
1415        !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1416      skipping_ = false;
1417    }
1418    if (!skipping_) {
1419      if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
1420        ++depth_;
1421      }
1422    } else {
1423      ++skip_depth_;
1424    }
1425    return true;
1426  }
1427
1428  int GetDepth() const {
1429    return depth_;
1430  }
1431
1432  int GetSkipDepth() const {
1433    return skip_depth_;
1434  }
1435
1436 private:
1437  uint32_t depth_;
1438  uint32_t skip_depth_;
1439  bool skipping_;
1440};
1441
1442template<bool kTransactionActive>
1443class BuildInternalStackTraceVisitor : public StackVisitor {
1444 public:
1445  explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1446      : StackVisitor(thread, nullptr), self_(self),
1447        skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {}
1448
1449  bool Init(int depth)
1450      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1451    // Allocate method trace with an extra slot that will hold the PC trace
1452    StackHandleScope<1> hs(self_);
1453    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1454    Handle<mirror::ObjectArray<mirror::Object>> method_trace(
1455        hs.NewHandle(class_linker->AllocObjectArray<mirror::Object>(self_, depth + 1)));
1456    if (method_trace.Get() == nullptr) {
1457      return false;
1458    }
1459    mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
1460    if (dex_pc_trace == nullptr) {
1461      return false;
1462    }
1463    // Save PC trace in last element of method trace, also places it into the
1464    // object graph.
1465    // We are called from native: use non-transactional mode.
1466    method_trace->Set<kTransactionActive>(depth, dex_pc_trace);
1467    // Set the Object*s and assert that no thread suspension is now possible.
1468    const char* last_no_suspend_cause =
1469        self_->StartAssertNoThreadSuspension("Building internal stack trace");
1470    CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
1471    method_trace_ = method_trace.Get();
1472    dex_pc_trace_ = dex_pc_trace;
1473    return true;
1474  }
1475
1476  virtual ~BuildInternalStackTraceVisitor() {
1477    if (method_trace_ != nullptr) {
1478      self_->EndAssertNoThreadSuspension(nullptr);
1479    }
1480  }
1481
1482  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1483    if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) {
1484      return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1485    }
1486    if (skip_depth_ > 0) {
1487      skip_depth_--;
1488      return true;
1489    }
1490    mirror::ArtMethod* m = GetMethod();
1491    if (m->IsRuntimeMethod()) {
1492      return true;  // Ignore runtime frames (in particular callee save).
1493    }
1494    method_trace_->Set<kTransactionActive>(count_, m);
1495    dex_pc_trace_->Set<kTransactionActive>(count_,
1496        m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
1497    ++count_;
1498    return true;
1499  }
1500
1501  mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
1502    return method_trace_;
1503  }
1504
1505 private:
1506  Thread* const self_;
1507  // How many more frames to skip.
1508  int32_t skip_depth_;
1509  // Current position down stack trace.
1510  uint32_t count_;
1511  // Array of dex PC values.
1512  mirror::IntArray* dex_pc_trace_;
1513  // An array of the methods on the stack, the last entry is a reference to the PC trace.
1514  mirror::ObjectArray<mirror::Object>* method_trace_;
1515};
1516
1517template<bool kTransactionActive>
1518jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
1519  // Compute depth of stack
1520  CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1521  count_visitor.WalkStack();
1522  int32_t depth = count_visitor.GetDepth();
1523  int32_t skip_depth = count_visitor.GetSkipDepth();
1524
1525  // Build internal stack trace.
1526  BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
1527                                                                         const_cast<Thread*>(this),
1528                                                                         skip_depth);
1529  if (!build_trace_visitor.Init(depth)) {
1530    return nullptr;  // Allocation failed.
1531  }
1532  build_trace_visitor.WalkStack();
1533  mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
1534  if (kIsDebugBuild) {
1535    for (int32_t i = 0; i < trace->GetLength(); ++i) {
1536      CHECK(trace->Get(i) != nullptr);
1537    }
1538  }
1539  return soa.AddLocalReference<jobjectArray>(trace);
1540}
1541template jobject Thread::CreateInternalStackTrace<false>(
1542    const ScopedObjectAccessAlreadyRunnable& soa) const;
1543template jobject Thread::CreateInternalStackTrace<true>(
1544    const ScopedObjectAccessAlreadyRunnable& soa) const;
1545
1546jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
1547    const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array,
1548    int* stack_depth) {
1549  // Decode the internal stack trace into the depth, method trace and PC trace
1550  int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1;
1551
1552  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1553
1554  jobjectArray result;
1555
1556  if (output_array != nullptr) {
1557    // Reuse the array we were given.
1558    result = output_array;
1559    // ...adjusting the number of frames we'll write to not exceed the array length.
1560    const int32_t traces_length =
1561        soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
1562    depth = std::min(depth, traces_length);
1563  } else {
1564    // Create java_trace array and place in local reference table
1565    mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
1566        class_linker->AllocStackTraceElementArray(soa.Self(), depth);
1567    if (java_traces == nullptr) {
1568      return nullptr;
1569    }
1570    result = soa.AddLocalReference<jobjectArray>(java_traces);
1571  }
1572
1573  if (stack_depth != nullptr) {
1574    *stack_depth = depth;
1575  }
1576
1577  for (int32_t i = 0; i < depth; ++i) {
1578    mirror::ObjectArray<mirror::Object>* method_trace =
1579          soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
1580    // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1581    mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
1582    int32_t line_number;
1583    StackHandleScope<3> hs(soa.Self());
1584    auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
1585    auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
1586    if (method->IsProxyMethod()) {
1587      line_number = -1;
1588      class_name_object.Assign(method->GetDeclaringClass()->GetName());
1589      // source_name_object intentionally left null for proxy methods
1590    } else {
1591      mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
1592      uint32_t dex_pc = pc_trace->Get(i);
1593      line_number = method->GetLineNumFromDexPC(dex_pc);
1594      // Allocate element, potentially triggering GC
1595      // TODO: reuse class_name_object via Class::name_?
1596      const char* descriptor = method->GetDeclaringClassDescriptor();
1597      CHECK(descriptor != nullptr);
1598      std::string class_name(PrettyDescriptor(descriptor));
1599      class_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
1600      if (class_name_object.Get() == nullptr) {
1601        return nullptr;
1602      }
1603      const char* source_file = method->GetDeclaringClassSourceFile();
1604      if (source_file != nullptr) {
1605        source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
1606        if (source_name_object.Get() == nullptr) {
1607          return nullptr;
1608        }
1609      }
1610    }
1611    const char* method_name = method->GetName();
1612    CHECK(method_name != nullptr);
1613    Handle<mirror::String> method_name_object(
1614        hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
1615    if (method_name_object.Get() == nullptr) {
1616      return nullptr;
1617    }
1618    mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
1619        soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
1620    if (obj == nullptr) {
1621      return nullptr;
1622    }
1623    // We are called from native: use non-transactional mode.
1624    soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
1625  }
1626  return result;
1627}
1628
1629void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
1630                                const char* exception_class_descriptor, const char* fmt, ...) {
1631  va_list args;
1632  va_start(args, fmt);
1633  ThrowNewExceptionV(throw_location, exception_class_descriptor,
1634                     fmt, args);
1635  va_end(args);
1636}
1637
1638void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
1639                                const char* exception_class_descriptor,
1640                                const char* fmt, va_list ap) {
1641  std::string msg;
1642  StringAppendV(&msg, fmt, ap);
1643  ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
1644}
1645
1646void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
1647                               const char* msg) {
1648  // Callers should either clear or call ThrowNewWrappedException.
1649  AssertNoPendingExceptionForNewException(msg);
1650  ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
1651}
1652
1653void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
1654                                      const char* exception_class_descriptor,
1655                                      const char* msg) {
1656  DCHECK_EQ(this, Thread::Current());
1657  ScopedObjectAccessUnchecked soa(this);
1658  StackHandleScope<5> hs(soa.Self());
1659  // Ensure we don't forget arguments over object allocation.
1660  Handle<mirror::Object> saved_throw_this(hs.NewHandle(throw_location.GetThis()));
1661  Handle<mirror::ArtMethod> saved_throw_method(hs.NewHandle(throw_location.GetMethod()));
1662  // Ignore the cause throw location. TODO: should we report this as a re-throw?
1663  ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException(nullptr)));
1664  bool is_exception_reported = IsExceptionReportedToInstrumentation();
1665  ClearException();
1666  Runtime* runtime = Runtime::Current();
1667
1668  mirror::ClassLoader* cl = nullptr;
1669  if (saved_throw_method.Get() != nullptr) {
1670    cl = saved_throw_method.Get()->GetDeclaringClass()->GetClassLoader();
1671  }
1672  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(cl));
1673  Handle<mirror::Class> exception_class(
1674      hs.NewHandle(runtime->GetClassLinker()->FindClass(this, exception_class_descriptor,
1675                                                        class_loader)));
1676  if (UNLIKELY(exception_class.Get() == nullptr)) {
1677    CHECK(IsExceptionPending());
1678    LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1679    return;
1680  }
1681
1682  if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class, true, true))) {
1683    DCHECK(IsExceptionPending());
1684    return;
1685  }
1686  DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1687  Handle<mirror::Throwable> exception(
1688      hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this))));
1689
1690  // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
1691  if (exception.Get() == nullptr) {
1692    ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1693                                         throw_location.GetDexPc());
1694    SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1695    SetExceptionReportedToInstrumentation(is_exception_reported);
1696    return;
1697  }
1698
1699  // Choose an appropriate constructor and set up the arguments.
1700  const char* signature;
1701  ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
1702  if (msg != nullptr) {
1703    // Ensure we remember this and the method over the String allocation.
1704    msg_string.reset(
1705        soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
1706    if (UNLIKELY(msg_string.get() == nullptr)) {
1707      CHECK(IsExceptionPending());  // OOME.
1708      return;
1709    }
1710    if (cause.get() == nullptr) {
1711      signature = "(Ljava/lang/String;)V";
1712    } else {
1713      signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1714    }
1715  } else {
1716    if (cause.get() == nullptr) {
1717      signature = "()V";
1718    } else {
1719      signature = "(Ljava/lang/Throwable;)V";
1720    }
1721  }
1722  mirror::ArtMethod* exception_init_method =
1723      exception_class->FindDeclaredDirectMethod("<init>", signature);
1724
1725  CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
1726      << PrettyDescriptor(exception_class_descriptor);
1727
1728  if (UNLIKELY(!runtime->IsStarted())) {
1729    // Something is trying to throw an exception without a started runtime, which is the common
1730    // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1731    // the exception fields directly.
1732    if (msg != nullptr) {
1733      exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
1734    }
1735    if (cause.get() != nullptr) {
1736      exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
1737    }
1738    ScopedLocalRef<jobject> trace(GetJniEnv(),
1739                                  Runtime::Current()->IsActiveTransaction()
1740                                      ? CreateInternalStackTrace<true>(soa)
1741                                      : CreateInternalStackTrace<false>(soa));
1742    if (trace.get() != nullptr) {
1743      exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
1744    }
1745    ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1746                                         throw_location.GetDexPc());
1747    SetException(gc_safe_throw_location, exception.Get());
1748    SetExceptionReportedToInstrumentation(is_exception_reported);
1749  } else {
1750    jvalue jv_args[2];
1751    size_t i = 0;
1752
1753    if (msg != nullptr) {
1754      jv_args[i].l = msg_string.get();
1755      ++i;
1756    }
1757    if (cause.get() != nullptr) {
1758      jv_args[i].l = cause.get();
1759      ++i;
1760    }
1761    InvokeWithJValues(soa, exception.Get(), soa.EncodeMethod(exception_init_method), jv_args);
1762    if (LIKELY(!IsExceptionPending())) {
1763      ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1764                                           throw_location.GetDexPc());
1765      SetException(gc_safe_throw_location, exception.Get());
1766      SetExceptionReportedToInstrumentation(is_exception_reported);
1767    }
1768  }
1769}
1770
1771void Thread::ThrowOutOfMemoryError(const char* msg) {
1772  LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1773      msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
1774  ThrowLocation throw_location = GetCurrentLocationForThrow();
1775  if (!tls32_.throwing_OutOfMemoryError) {
1776    tls32_.throwing_OutOfMemoryError = true;
1777    ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
1778    tls32_.throwing_OutOfMemoryError = false;
1779  } else {
1780    Dump(LOG(ERROR));  // The pre-allocated OOME has no stack, so help out and log one.
1781    SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1782  }
1783}
1784
1785Thread* Thread::CurrentFromGdb() {
1786  return Thread::Current();
1787}
1788
1789void Thread::DumpFromGdb() const {
1790  std::ostringstream ss;
1791  Dump(ss);
1792  std::string str(ss.str());
1793  // log to stderr for debugging command line processes
1794  std::cerr << str;
1795#ifdef HAVE_ANDROID_OS
1796  // log to logcat for debugging frameworks processes
1797  LOG(INFO) << str;
1798#endif
1799}
1800
1801// Explicitly instantiate 32 and 64bit thread offset dumping support.
1802template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset);
1803template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset);
1804
1805template<size_t ptr_size>
1806void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
1807#define DO_THREAD_OFFSET(x, y) \
1808    if (offset == x.Uint32Value()) { \
1809      os << y; \
1810      return; \
1811    }
1812  DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
1813  DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
1814  DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
1815  DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
1816  DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
1817  DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
1818  DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
1819  DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
1820  DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
1821  DO_THREAD_OFFSET(TopOfManagedStackPcOffset<ptr_size>(), "top_quick_frame_pc")
1822  DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
1823  DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
1824  DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
1825#undef DO_THREAD_OFFSET
1826
1827#define INTERPRETER_ENTRY_POINT_INFO(x) \
1828    if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1829      os << #x; \
1830      return; \
1831    }
1832  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge)
1833  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge)
1834#undef INTERPRETER_ENTRY_POINT_INFO
1835
1836#define JNI_ENTRY_POINT_INFO(x) \
1837    if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1838      os << #x; \
1839      return; \
1840    }
1841  JNI_ENTRY_POINT_INFO(pDlsymLookup)
1842#undef JNI_ENTRY_POINT_INFO
1843
1844#define PORTABLE_ENTRY_POINT_INFO(x) \
1845    if (PORTABLE_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1846      os << #x; \
1847      return; \
1848    }
1849  PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline)
1850  PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline)
1851  PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge)
1852#undef PORTABLE_ENTRY_POINT_INFO
1853
1854#define QUICK_ENTRY_POINT_INFO(x) \
1855    if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1856      os << #x; \
1857      return; \
1858    }
1859  QUICK_ENTRY_POINT_INFO(pAllocArray)
1860  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
1861  QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
1862  QUICK_ENTRY_POINT_INFO(pAllocObject)
1863  QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
1864  QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
1865  QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
1866  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
1867  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
1868  QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
1869  QUICK_ENTRY_POINT_INFO(pCheckCast)
1870  QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
1871  QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
1872  QUICK_ENTRY_POINT_INFO(pInitializeType)
1873  QUICK_ENTRY_POINT_INFO(pResolveString)
1874  QUICK_ENTRY_POINT_INFO(pSet32Instance)
1875  QUICK_ENTRY_POINT_INFO(pSet32Static)
1876  QUICK_ENTRY_POINT_INFO(pSet64Instance)
1877  QUICK_ENTRY_POINT_INFO(pSet64Static)
1878  QUICK_ENTRY_POINT_INFO(pSetObjInstance)
1879  QUICK_ENTRY_POINT_INFO(pSetObjStatic)
1880  QUICK_ENTRY_POINT_INFO(pGet32Instance)
1881  QUICK_ENTRY_POINT_INFO(pGet32Static)
1882  QUICK_ENTRY_POINT_INFO(pGet64Instance)
1883  QUICK_ENTRY_POINT_INFO(pGet64Static)
1884  QUICK_ENTRY_POINT_INFO(pGetObjInstance)
1885  QUICK_ENTRY_POINT_INFO(pGetObjStatic)
1886  QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
1887  QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
1888  QUICK_ENTRY_POINT_INFO(pAputObject)
1889  QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
1890  QUICK_ENTRY_POINT_INFO(pJniMethodStart)
1891  QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
1892  QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
1893  QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
1894  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
1895  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
1896  QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
1897  QUICK_ENTRY_POINT_INFO(pLockObject)
1898  QUICK_ENTRY_POINT_INFO(pUnlockObject)
1899  QUICK_ENTRY_POINT_INFO(pCmpgDouble)
1900  QUICK_ENTRY_POINT_INFO(pCmpgFloat)
1901  QUICK_ENTRY_POINT_INFO(pCmplDouble)
1902  QUICK_ENTRY_POINT_INFO(pCmplFloat)
1903  QUICK_ENTRY_POINT_INFO(pFmod)
1904  QUICK_ENTRY_POINT_INFO(pL2d)
1905  QUICK_ENTRY_POINT_INFO(pFmodf)
1906  QUICK_ENTRY_POINT_INFO(pL2f)
1907  QUICK_ENTRY_POINT_INFO(pD2iz)
1908  QUICK_ENTRY_POINT_INFO(pF2iz)
1909  QUICK_ENTRY_POINT_INFO(pIdivmod)
1910  QUICK_ENTRY_POINT_INFO(pD2l)
1911  QUICK_ENTRY_POINT_INFO(pF2l)
1912  QUICK_ENTRY_POINT_INFO(pLdiv)
1913  QUICK_ENTRY_POINT_INFO(pLmod)
1914  QUICK_ENTRY_POINT_INFO(pLmul)
1915  QUICK_ENTRY_POINT_INFO(pShlLong)
1916  QUICK_ENTRY_POINT_INFO(pShrLong)
1917  QUICK_ENTRY_POINT_INFO(pUshrLong)
1918  QUICK_ENTRY_POINT_INFO(pIndexOf)
1919  QUICK_ENTRY_POINT_INFO(pStringCompareTo)
1920  QUICK_ENTRY_POINT_INFO(pMemcpy)
1921  QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
1922  QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
1923  QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
1924  QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
1925  QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
1926  QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
1927  QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
1928  QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
1929  QUICK_ENTRY_POINT_INFO(pTestSuspend)
1930  QUICK_ENTRY_POINT_INFO(pDeliverException)
1931  QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
1932  QUICK_ENTRY_POINT_INFO(pThrowDivZero)
1933  QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
1934  QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
1935  QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
1936  QUICK_ENTRY_POINT_INFO(pA64Load)
1937  QUICK_ENTRY_POINT_INFO(pA64Store)
1938#undef QUICK_ENTRY_POINT_INFO
1939
1940  os << offset;
1941}
1942
1943void Thread::QuickDeliverException() {
1944  // Get exception from thread.
1945  ThrowLocation throw_location;
1946  mirror::Throwable* exception = GetException(&throw_location);
1947  CHECK(exception != nullptr);
1948  // Don't leave exception visible while we try to find the handler, which may cause class
1949  // resolution.
1950  bool is_exception_reported = IsExceptionReportedToInstrumentation();
1951  ClearException();
1952  bool is_deoptimization = (exception == GetDeoptimizationException());
1953  QuickExceptionHandler exception_handler(this, is_deoptimization);
1954  if (is_deoptimization) {
1955    exception_handler.DeoptimizeStack();
1956  } else {
1957    exception_handler.FindCatch(throw_location, exception, is_exception_reported);
1958  }
1959  exception_handler.UpdateInstrumentationStack();
1960  exception_handler.DoLongJump();
1961  LOG(FATAL) << "UNREACHABLE";
1962}
1963
1964Context* Thread::GetLongJumpContext() {
1965  Context* result = tlsPtr_.long_jump_context;
1966  if (result == nullptr) {
1967    result = Context::Create();
1968  } else {
1969    tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
1970    result->Reset();
1971  }
1972  return result;
1973}
1974
1975// Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
1976//       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
1977struct CurrentMethodVisitor FINAL : public StackVisitor {
1978  CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error)
1979      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1980      : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0),
1981        abort_on_error_(abort_on_error) {}
1982  bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1983    mirror::ArtMethod* m = GetMethod();
1984    if (m->IsRuntimeMethod()) {
1985      // Continue if this is a runtime method.
1986      return true;
1987    }
1988    if (context_ != nullptr) {
1989      this_object_ = GetThisObject();
1990    }
1991    method_ = m;
1992    dex_pc_ = GetDexPc(abort_on_error_);
1993    return false;
1994  }
1995  mirror::Object* this_object_;
1996  mirror::ArtMethod* method_;
1997  uint32_t dex_pc_;
1998  const bool abort_on_error_;
1999};
2000
2001mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const {
2002  CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error);
2003  visitor.WalkStack(false);
2004  if (dex_pc != nullptr) {
2005    *dex_pc = visitor.dex_pc_;
2006  }
2007  return visitor.method_;
2008}
2009
2010ThrowLocation Thread::GetCurrentLocationForThrow() {
2011  Context* context = GetLongJumpContext();
2012  CurrentMethodVisitor visitor(this, context, true);
2013  visitor.WalkStack(false);
2014  ReleaseLongJumpContext(context);
2015  return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
2016}
2017
2018bool Thread::HoldsLock(mirror::Object* object) const {
2019  if (object == nullptr) {
2020    return false;
2021  }
2022  return object->GetLockOwnerThreadId() == GetThreadId();
2023}
2024
2025// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
2026template <typename RootVisitor>
2027class ReferenceMapVisitor : public StackVisitor {
2028 public:
2029  ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
2030      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
2031      : StackVisitor(thread, context), visitor_(visitor) {}
2032
2033  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2034    if (false) {
2035      LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
2036                << StringPrintf("@ PC:%04x", GetDexPc());
2037    }
2038    ShadowFrame* shadow_frame = GetCurrentShadowFrame();
2039    if (shadow_frame != nullptr) {
2040      VisitShadowFrame(shadow_frame);
2041    } else {
2042      VisitQuickFrame();
2043    }
2044    return true;
2045  }
2046
2047  void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2048    mirror::ArtMethod** method_addr = shadow_frame->GetMethodAddress();
2049    visitor_(reinterpret_cast<mirror::Object**>(method_addr), 0 /*ignored*/, this);
2050    mirror::ArtMethod* m = *method_addr;
2051    DCHECK(m != nullptr);
2052    size_t num_regs = shadow_frame->NumberOfVRegs();
2053    if (m->IsNative() || shadow_frame->HasReferenceArray()) {
2054      // handle scope for JNI or References for interpreter.
2055      for (size_t reg = 0; reg < num_regs; ++reg) {
2056        mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2057        if (ref != nullptr) {
2058          mirror::Object* new_ref = ref;
2059          visitor_(&new_ref, reg, this);
2060          if (new_ref != ref) {
2061            shadow_frame->SetVRegReference(reg, new_ref);
2062          }
2063        }
2064      }
2065    } else {
2066      // Java method.
2067      // Portable path use DexGcMap and store in Method.native_gc_map_.
2068      const uint8_t* gc_map = m->GetNativeGcMap();
2069      CHECK(gc_map != nullptr) << PrettyMethod(m);
2070      verifier::DexPcToReferenceMap dex_gc_map(gc_map);
2071      uint32_t dex_pc = shadow_frame->GetDexPC();
2072      const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
2073      DCHECK(reg_bitmap != nullptr);
2074      num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
2075      for (size_t reg = 0; reg < num_regs; ++reg) {
2076        if (TestBitmap(reg, reg_bitmap)) {
2077          mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2078          if (ref != nullptr) {
2079            mirror::Object* new_ref = ref;
2080            visitor_(&new_ref, reg, this);
2081            if (new_ref != ref) {
2082              shadow_frame->SetVRegReference(reg, new_ref);
2083            }
2084          }
2085        }
2086      }
2087    }
2088  }
2089
2090 private:
2091  void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2092    StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2093    mirror::ArtMethod* m = cur_quick_frame->AsMirrorPtr();
2094    mirror::ArtMethod* old_method = m;
2095    visitor_(reinterpret_cast<mirror::Object**>(&m), 0 /*ignored*/, this);
2096    if (m != old_method) {
2097      cur_quick_frame->Assign(m);
2098    }
2099
2100    // Process register map (which native and runtime methods don't have)
2101    if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
2102      const uint8_t* native_gc_map = m->GetNativeGcMap();
2103      CHECK(native_gc_map != nullptr) << PrettyMethod(m);
2104      const DexFile::CodeItem* code_item = m->GetCodeItem();
2105      DCHECK(code_item != nullptr) << PrettyMethod(m);  // Can't be nullptr or how would we compile its instructions?
2106      NativePcOffsetToReferenceMap map(native_gc_map);
2107      size_t num_regs = std::min(map.RegWidth() * 8,
2108                                 static_cast<size_t>(code_item->registers_size_));
2109      if (num_regs > 0) {
2110        Runtime* runtime = Runtime::Current();
2111        const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m);
2112        uintptr_t native_pc_offset = m->NativePcOffset(GetCurrentQuickFramePc(), entry_point);
2113        const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset);
2114        DCHECK(reg_bitmap != nullptr);
2115        const void* code_pointer = mirror::ArtMethod::EntryPointToCodePointer(entry_point);
2116        const VmapTable vmap_table(m->GetVmapTable(code_pointer));
2117        QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer);
2118        // For all dex registers in the bitmap
2119        StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2120        DCHECK(cur_quick_frame != nullptr);
2121        for (size_t reg = 0; reg < num_regs; ++reg) {
2122          // Does this register hold a reference?
2123          if (TestBitmap(reg, reg_bitmap)) {
2124            uint32_t vmap_offset;
2125            if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
2126              int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset,
2127                                                        kReferenceVReg);
2128              // This is sound as spilled GPRs will be word sized (ie 32 or 64bit).
2129              mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg));
2130              if (*ref_addr != nullptr) {
2131                visitor_(ref_addr, reg, this);
2132              }
2133            } else {
2134              StackReference<mirror::Object>* ref_addr =
2135                  reinterpret_cast<StackReference<mirror::Object>*>(
2136                      GetVRegAddr(cur_quick_frame, code_item, frame_info.CoreSpillMask(),
2137                                  frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg));
2138              mirror::Object* ref = ref_addr->AsMirrorPtr();
2139              if (ref != nullptr) {
2140                mirror::Object* new_ref = ref;
2141                visitor_(&new_ref, reg, this);
2142                if (ref != new_ref) {
2143                  ref_addr->Assign(new_ref);
2144                }
2145              }
2146            }
2147          }
2148        }
2149      }
2150    }
2151  }
2152
2153  static bool TestBitmap(size_t reg, const uint8_t* reg_vector) {
2154    return ((reg_vector[reg / kBitsPerByte] >> (reg % kBitsPerByte)) & 0x01) != 0;
2155  }
2156
2157  // Visitor for when we visit a root.
2158  const RootVisitor& visitor_;
2159};
2160
2161class RootCallbackVisitor {
2162 public:
2163  RootCallbackVisitor(RootCallback* callback, void* arg, uint32_t tid)
2164     : callback_(callback), arg_(arg), tid_(tid) {}
2165
2166  void operator()(mirror::Object** obj, size_t, const StackVisitor*) const {
2167    callback_(obj, arg_, tid_, kRootJavaFrame);
2168  }
2169
2170 private:
2171  RootCallback* const callback_;
2172  void* const arg_;
2173  const uint32_t tid_;
2174};
2175
2176void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) {
2177  VerifyObject(class_loader_override);
2178  tlsPtr_.class_loader_override = class_loader_override;
2179}
2180
2181void Thread::VisitRoots(RootCallback* visitor, void* arg) {
2182  uint32_t thread_id = GetThreadId();
2183  if (tlsPtr_.opeer != nullptr) {
2184    visitor(&tlsPtr_.opeer, arg, thread_id, kRootThreadObject);
2185  }
2186  if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
2187    visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), arg, thread_id, kRootNativeStack);
2188  }
2189  tlsPtr_.throw_location.VisitRoots(visitor, arg);
2190  if (tlsPtr_.class_loader_override != nullptr) {
2191    visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.class_loader_override), arg, thread_id,
2192            kRootNativeStack);
2193  }
2194  if (tlsPtr_.monitor_enter_object != nullptr) {
2195    visitor(&tlsPtr_.monitor_enter_object, arg, thread_id, kRootNativeStack);
2196  }
2197  tlsPtr_.jni_env->locals.VisitRoots(visitor, arg, thread_id, kRootJNILocal);
2198  tlsPtr_.jni_env->monitors.VisitRoots(visitor, arg, thread_id, kRootJNIMonitor);
2199  HandleScopeVisitRoots(visitor, arg, thread_id);
2200  if (tlsPtr_.debug_invoke_req != nullptr) {
2201    tlsPtr_.debug_invoke_req->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2202  }
2203  if (tlsPtr_.single_step_control != nullptr) {
2204    tlsPtr_.single_step_control->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2205  }
2206  if (tlsPtr_.deoptimization_shadow_frame != nullptr) {
2207    RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2208    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2209    for (ShadowFrame* shadow_frame = tlsPtr_.deoptimization_shadow_frame; shadow_frame != nullptr;
2210        shadow_frame = shadow_frame->GetLink()) {
2211      mapper.VisitShadowFrame(shadow_frame);
2212    }
2213  }
2214  if (tlsPtr_.shadow_frame_under_construction != nullptr) {
2215    RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2216    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2217    for (ShadowFrame* shadow_frame = tlsPtr_.shadow_frame_under_construction;
2218        shadow_frame != nullptr;
2219        shadow_frame = shadow_frame->GetLink()) {
2220      mapper.VisitShadowFrame(shadow_frame);
2221    }
2222  }
2223  // Visit roots on this thread's stack
2224  Context* context = GetLongJumpContext();
2225  RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2226  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback);
2227  mapper.WalkStack();
2228  ReleaseLongJumpContext(context);
2229  for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2230    if (frame.this_object_ != nullptr) {
2231      visitor(&frame.this_object_, arg, thread_id, kRootJavaFrame);
2232    }
2233    DCHECK(frame.method_ != nullptr);
2234    visitor(reinterpret_cast<mirror::Object**>(&frame.method_), arg, thread_id, kRootJavaFrame);
2235  }
2236}
2237
2238static void VerifyRoot(mirror::Object** root, void* /*arg*/, uint32_t /*thread_id*/,
2239                       RootType /*root_type*/) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2240  VerifyObject(*root);
2241}
2242
2243void Thread::VerifyStackImpl() {
2244  std::unique_ptr<Context> context(Context::Create());
2245  RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap(), GetThreadId());
2246  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
2247  mapper.WalkStack();
2248}
2249
2250// Set the stack end to that to be used during a stack overflow
2251void Thread::SetStackEndForStackOverflow() {
2252  // During stack overflow we allow use of the full stack.
2253  if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
2254    // However, we seem to have already extended to use the full stack.
2255    LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2256               << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
2257    DumpStack(LOG(ERROR));
2258    LOG(FATAL) << "Recursive stack overflow.";
2259  }
2260
2261  tlsPtr_.stack_end = tlsPtr_.stack_begin;
2262}
2263
2264void Thread::SetTlab(byte* start, byte* end) {
2265  DCHECK_LE(start, end);
2266  tlsPtr_.thread_local_start = start;
2267  tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
2268  tlsPtr_.thread_local_end = end;
2269  tlsPtr_.thread_local_objects = 0;
2270}
2271
2272bool Thread::HasTlab() const {
2273  bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
2274  if (has_tlab) {
2275    DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
2276  } else {
2277    DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
2278  }
2279  return has_tlab;
2280}
2281
2282std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2283  thread.ShortDump(os);
2284  return os;
2285}
2286
2287}  // namespace art
2288