thread.cc revision b3ec51e63c5041f77389ee001b47a8897b2a7acc
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_DALVIK
18
19#include "thread.h"
20
21#include <cutils/trace.h>
22#include <pthread.h>
23#include <signal.h>
24#include <sys/resource.h>
25#include <sys/time.h>
26
27#include <algorithm>
28#include <bitset>
29#include <cerrno>
30#include <iostream>
31#include <list>
32
33#include "arch/context.h"
34#include "base/mutex.h"
35#include "class_linker.h"
36#include "class_linker-inl.h"
37#include "debugger.h"
38#include "dex_file-inl.h"
39#include "entrypoints/entrypoint_utils.h"
40#include "entrypoints/quick/quick_alloc_entrypoints.h"
41#include "gc_map.h"
42#include "gc/accounting/card_table-inl.h"
43#include "gc/heap.h"
44#include "gc/space/space.h"
45#include "handle_scope.h"
46#include "indirect_reference_table-inl.h"
47#include "jni_internal.h"
48#include "mirror/art_field-inl.h"
49#include "mirror/art_method-inl.h"
50#include "mirror/class-inl.h"
51#include "mirror/class_loader.h"
52#include "mirror/object_array-inl.h"
53#include "mirror/stack_trace_element.h"
54#include "monitor.h"
55#include "object_utils.h"
56#include "quick_exception_handler.h"
57#include "quick/quick_method_frame_info.h"
58#include "reflection.h"
59#include "runtime.h"
60#include "scoped_thread_state_change.h"
61#include "ScopedLocalRef.h"
62#include "ScopedUtfChars.h"
63#include "handle_scope-inl.h"
64#include "stack.h"
65#include "thread-inl.h"
66#include "thread_list.h"
67#include "utils.h"
68#include "verifier/dex_gc_map.h"
69#include "verify_object-inl.h"
70#include "vmap_table.h"
71#include "well_known_classes.h"
72
73namespace art {
74
75bool Thread::is_started_ = false;
76pthread_key_t Thread::pthread_key_self_;
77ConditionVariable* Thread::resume_cond_ = nullptr;
78const size_t Thread::kStackOverflowImplicitCheckSize = kStackOverflowProtectedSize +
79    GetStackOverflowReservedBytes(kRuntimeISA);
80
81static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
82
83void Thread::InitCardTable() {
84  tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
85}
86
87static void UnimplementedEntryPoint() {
88  UNIMPLEMENTED(FATAL);
89}
90
91void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
92                     PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
93
94void Thread::InitTlsEntryPoints() {
95  // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
96  uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints);
97  uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) +
98                                                sizeof(tlsPtr_.quick_entrypoints));
99  for (uintptr_t* it = begin; it != end; ++it) {
100    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
101  }
102  InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints,
103                  &tlsPtr_.portable_entrypoints, &tlsPtr_.quick_entrypoints);
104}
105
106void Thread::ResetQuickAllocEntryPointsForThread() {
107  ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
108}
109
110void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
111  tlsPtr_.deoptimization_shadow_frame = sf;
112}
113
114void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
115  tls64_.deoptimization_return_value.SetJ(ret_val.GetJ());
116}
117
118ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
119  ShadowFrame* sf = tlsPtr_.deoptimization_shadow_frame;
120  tlsPtr_.deoptimization_shadow_frame = nullptr;
121  ret_val->SetJ(tls64_.deoptimization_return_value.GetJ());
122  return sf;
123}
124
125void Thread::SetShadowFrameUnderConstruction(ShadowFrame* sf) {
126  sf->SetLink(tlsPtr_.shadow_frame_under_construction);
127  tlsPtr_.shadow_frame_under_construction = sf;
128}
129
130void Thread::ClearShadowFrameUnderConstruction() {
131  CHECK_NE(static_cast<ShadowFrame*>(nullptr), tlsPtr_.shadow_frame_under_construction);
132  tlsPtr_.shadow_frame_under_construction = tlsPtr_.shadow_frame_under_construction->GetLink();
133}
134
135void Thread::InitTid() {
136  tls32_.tid = ::art::GetTid();
137}
138
139void Thread::InitAfterFork() {
140  // One thread (us) survived the fork, but we have a new tid so we need to
141  // update the value stashed in this Thread*.
142  InitTid();
143}
144
145void* Thread::CreateCallback(void* arg) {
146  Thread* self = reinterpret_cast<Thread*>(arg);
147  Runtime* runtime = Runtime::Current();
148  if (runtime == nullptr) {
149    LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
150    return nullptr;
151  }
152  {
153    // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
154    //       after self->Init().
155    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
156    // Check that if we got here we cannot be shutting down (as shutdown should never have started
157    // while threads are being born).
158    CHECK(!runtime->IsShuttingDownLocked());
159    self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
160    Runtime::Current()->EndThreadBirth();
161  }
162  {
163    ScopedObjectAccess soa(self);
164
165    // Copy peer into self, deleting global reference when done.
166    CHECK(self->tlsPtr_.jpeer != nullptr);
167    self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
168    self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
169    self->tlsPtr_.jpeer = nullptr;
170    self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str());
171    Dbg::PostThreadStart(self);
172
173    // Invoke the 'run' method of our java.lang.Thread.
174    mirror::Object* receiver = self->tlsPtr_.opeer;
175    jmethodID mid = WellKnownClasses::java_lang_Thread_run;
176    InvokeVirtualOrInterfaceWithJValues(soa, receiver, mid, nullptr);
177  }
178  // Detach and delete self.
179  Runtime::Current()->GetThreadList()->Unregister(self);
180
181  return nullptr;
182}
183
184Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
185                                  mirror::Object* thread_peer) {
186  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
187  Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
188  // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
189  // to stop it from going away.
190  if (kIsDebugBuild) {
191    MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
192    if (result != nullptr && !result->IsSuspended()) {
193      Locks::thread_list_lock_->AssertHeld(soa.Self());
194    }
195  }
196  return result;
197}
198
199Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
200                                  jobject java_thread) {
201  return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
202}
203
204static size_t FixStackSize(size_t stack_size) {
205  // A stack size of zero means "use the default".
206  if (stack_size == 0) {
207    stack_size = Runtime::Current()->GetDefaultStackSize();
208  }
209
210  // Dalvik used the bionic pthread default stack size for native threads,
211  // so include that here to support apps that expect large native stacks.
212  stack_size += 1 * MB;
213
214  // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
215  if (stack_size < PTHREAD_STACK_MIN) {
216    stack_size = PTHREAD_STACK_MIN;
217  }
218
219  if (Runtime::Current()->ExplicitStackOverflowChecks()) {
220    // It's likely that callers are trying to ensure they have at least a certain amount of
221    // stack space, so we should add our reserved space on top of what they requested, rather
222    // than implicitly take it away from them.
223    stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
224  } else {
225    // If we are going to use implicit stack checks, allocate space for the protected
226    // region at the bottom of the stack.
227    stack_size += Thread::kStackOverflowImplicitCheckSize;
228  }
229
230  // Some systems require the stack size to be a multiple of the system page size, so round up.
231  stack_size = RoundUp(stack_size, kPageSize);
232
233  return stack_size;
234}
235
236// Global variable to prevent the compiler optimizing away the page reads for the stack.
237byte dont_optimize_this;
238
239// Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
240// overflow is detected.  It is located right below the stack_end_.  Just below that
241// is the StackOverflow reserved region used when creating the StackOverflow
242// exception.
243//
244// There is a little complexity here that deserves a special mention.  When running on the
245// host (glibc), the process's main thread's stack is allocated with a special flag
246// to prevent memory being allocated when it's not needed.  This flag makes the
247// kernel only allocate memory for the stack by growing down in memory.  Because we
248// want to put an mprotected region far away from that at the stack top, we need
249// to make sure the pages for the stack are mapped in before we call mprotect.  We do
250// this by reading every page from the stack bottom (highest address) to the stack top.
251// We then madvise this away.
252void Thread::InstallImplicitProtection(bool is_main_stack) {
253  byte* pregion = tlsPtr_.stack_end;
254  byte* stack_lowmem = tlsPtr_.stack_begin;
255  byte* stack_top = reinterpret_cast<byte*>(reinterpret_cast<uintptr_t>(&pregion) &
256      ~(kPageSize - 1));    // Page containing current top of stack.
257
258  const bool running_on_intel = (kRuntimeISA == kX86) || (kRuntimeISA == kX86_64);
259
260  if (running_on_intel) {
261    // On Intel, we need to map in the main stack.  This must be done by reading from the
262    // current stack pointer downwards as the stack is mapped using VM_GROWSDOWN
263    // in the kernel.  Any access more than a page below the current SP will cause
264    // a segv.
265    if (is_main_stack) {
266      // First we need to unprotect the protected region because this may
267      // be called more than once for a particular stack and we will crash
268      // if we try to read the protected page.
269      mprotect(pregion - kStackOverflowProtectedSize, kStackOverflowProtectedSize, PROT_READ);
270
271      // Read every page from the high address to the low.
272      for (byte* p = stack_top; p > stack_lowmem; p -= kPageSize) {
273        dont_optimize_this = *p;
274      }
275    }
276  }
277
278  // Check and place a marker word at the lowest usable address in the stack.  This
279  // is used to prevent a double protection.
280  constexpr uint32_t kMarker = 0xdadadada;
281  uintptr_t *marker = reinterpret_cast<uintptr_t*>(pregion);
282  if (*marker == kMarker) {
283    // The region has already been set up.  But on the main stack on the host we have
284    // removed the protected region in order to read the stack memory.  We need to put
285    // this back again.
286    if (is_main_stack && running_on_intel) {
287      mprotect(pregion - kStackOverflowProtectedSize, kStackOverflowProtectedSize, PROT_NONE);
288      madvise(stack_lowmem, stack_top - stack_lowmem, MADV_DONTNEED);
289    }
290    return;
291  }
292  // Add marker so that we can detect a second attempt to do this.
293  *marker = kMarker;
294
295  if (!running_on_intel) {
296    // Running on !Intel, stacks are mapped cleanly.  The protected region for the
297    // main stack just needs to be mapped in.  We do this by writing one byte per page.
298    for (byte* p = pregion - kStackOverflowProtectedSize;  p < pregion; p += kPageSize) {
299      *p = 0;
300    }
301  }
302
303  pregion -= kStackOverflowProtectedSize;
304
305  VLOG(threads) << "installing stack protected region at " << std::hex <<
306      static_cast<void*>(pregion) << " to " <<
307      static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
308
309
310  if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
311    LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. Reason:"
312        << strerror(errno) << kStackOverflowProtectedSize;
313  }
314
315  // Tell the kernel that we won't be needing these pages any more.
316  // NB. madvise will probably write zeroes into the memory (on linux it does).
317  if (is_main_stack) {
318    if (running_on_intel) {
319      // On the host, it's the whole stack (minus a page to prevent overwrite of stack top).
320      madvise(stack_lowmem, stack_top - stack_lowmem - kPageSize, MADV_DONTNEED);
321    } else {
322      // On Android, just the protected region.
323      madvise(pregion, kStackOverflowProtectedSize, MADV_DONTNEED);
324    }
325  }
326}
327
328void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
329  CHECK(java_peer != nullptr);
330  Thread* self = static_cast<JNIEnvExt*>(env)->self;
331  Runtime* runtime = Runtime::Current();
332
333  // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
334  bool thread_start_during_shutdown = false;
335  {
336    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
337    if (runtime->IsShuttingDownLocked()) {
338      thread_start_during_shutdown = true;
339    } else {
340      runtime->StartThreadBirth();
341    }
342  }
343  if (thread_start_during_shutdown) {
344    ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
345    env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
346    return;
347  }
348
349  Thread* child_thread = new Thread(is_daemon);
350  // Use global JNI ref to hold peer live while child thread starts.
351  child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
352  stack_size = FixStackSize(stack_size);
353
354  // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
355  // assign it.
356  env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
357                    reinterpret_cast<jlong>(child_thread));
358
359  pthread_t new_pthread;
360  pthread_attr_t attr;
361  CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
362  CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
363  CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
364  int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
365  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
366
367  if (pthread_create_result != 0) {
368    // pthread_create(3) failed, so clean up.
369    {
370      MutexLock mu(self, *Locks::runtime_shutdown_lock_);
371      runtime->EndThreadBirth();
372    }
373    // Manually delete the global reference since Thread::Init will not have been run.
374    env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
375    child_thread->tlsPtr_.jpeer = nullptr;
376    delete child_thread;
377    child_thread = nullptr;
378    // TODO: remove from thread group?
379    env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
380    {
381      std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
382                                   PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
383      ScopedObjectAccess soa(env);
384      soa.Self()->ThrowOutOfMemoryError(msg.c_str());
385    }
386  }
387}
388
389void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
390  // This function does all the initialization that must be run by the native thread it applies to.
391  // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
392  // we can handshake with the corresponding native thread when it's ready.) Check this native
393  // thread hasn't been through here already...
394  CHECK(Thread::Current() == nullptr);
395  SetUpAlternateSignalStack();
396  InitCpu();
397  InitTlsEntryPoints();
398  RemoveSuspendTrigger();
399  InitCardTable();
400  InitTid();
401  // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
402  // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
403  tlsPtr_.pthread_self = pthread_self();
404  CHECK(is_started_);
405  CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
406  DCHECK_EQ(Thread::Current(), this);
407
408  tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
409  InitStackHwm();
410
411  tlsPtr_.jni_env = new JNIEnvExt(this, java_vm);
412  thread_list->Register(this);
413}
414
415Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
416                       bool create_peer) {
417  Thread* self;
418  Runtime* runtime = Runtime::Current();
419  if (runtime == nullptr) {
420    LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
421    return nullptr;
422  }
423  {
424    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
425    if (runtime->IsShuttingDownLocked()) {
426      LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
427      return nullptr;
428    } else {
429      Runtime::Current()->StartThreadBirth();
430      self = new Thread(as_daemon);
431      self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
432      Runtime::Current()->EndThreadBirth();
433    }
434  }
435
436  CHECK_NE(self->GetState(), kRunnable);
437  self->SetState(kNative);
438
439  // If we're the main thread, ClassLinker won't be created until after we're attached,
440  // so that thread needs a two-stage attach. Regular threads don't need this hack.
441  // In the compiler, all threads need this hack, because no-one's going to be getting
442  // a native peer!
443  if (create_peer) {
444    self->CreatePeer(thread_name, as_daemon, thread_group);
445  } else {
446    // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
447    if (thread_name != nullptr) {
448      self->tlsPtr_.name->assign(thread_name);
449      ::art::SetThreadName(thread_name);
450    }
451  }
452
453  return self;
454}
455
456void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
457  Runtime* runtime = Runtime::Current();
458  CHECK(runtime->IsStarted());
459  JNIEnv* env = tlsPtr_.jni_env;
460
461  if (thread_group == nullptr) {
462    thread_group = runtime->GetMainThreadGroup();
463  }
464  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
465  jint thread_priority = GetNativePriority();
466  jboolean thread_is_daemon = as_daemon;
467
468  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
469  if (peer.get() == nullptr) {
470    CHECK(IsExceptionPending());
471    return;
472  }
473  {
474    ScopedObjectAccess soa(this);
475    tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
476  }
477  env->CallNonvirtualVoidMethod(peer.get(),
478                                WellKnownClasses::java_lang_Thread,
479                                WellKnownClasses::java_lang_Thread_init,
480                                thread_group, thread_name.get(), thread_priority, thread_is_daemon);
481  AssertNoPendingException();
482
483  Thread* self = this;
484  DCHECK_EQ(self, Thread::Current());
485  env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
486                    reinterpret_cast<jlong>(self));
487
488  ScopedObjectAccess soa(self);
489  StackHandleScope<1> hs(self);
490  Handle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa)));
491  if (peer_thread_name.Get() == nullptr) {
492    // The Thread constructor should have set the Thread.name to a
493    // non-null value. However, because we can run without code
494    // available (in the compiler, in tests), we manually assign the
495    // fields the constructor should have set.
496    if (runtime->IsActiveTransaction()) {
497      InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
498    } else {
499      InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
500    }
501    peer_thread_name.Assign(GetThreadName(soa));
502  }
503  // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
504  if (peer_thread_name.Get() != nullptr) {
505    SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
506  }
507}
508
509template<bool kTransactionActive>
510void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
511                      jobject thread_name, jint thread_priority) {
512  soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
513      SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
514  soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
515      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
516  soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
517      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
518  soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
519      SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
520}
521
522void Thread::SetThreadName(const char* name) {
523  tlsPtr_.name->assign(name);
524  ::art::SetThreadName(name);
525  Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
526}
527
528void Thread::InitStackHwm() {
529  void* read_stack_base;
530  size_t read_stack_size;
531  GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size);
532
533  // TODO: include this in the thread dumps; potentially useful in SIGQUIT output?
534  VLOG(threads) << StringPrintf("Native stack is at %p (%s)", read_stack_base,
535                                PrettySize(read_stack_size).c_str());
536
537  tlsPtr_.stack_begin = reinterpret_cast<byte*>(read_stack_base);
538  tlsPtr_.stack_size = read_stack_size;
539
540  if (read_stack_size <= GetStackOverflowReservedBytes(kRuntimeISA)) {
541    LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << read_stack_size
542        << " bytes)";
543  }
544
545  // TODO: move this into the Linux GetThreadStack implementation.
546#if defined(__APPLE__)
547  bool is_main_thread = false;
548#else
549  // If we're the main thread, check whether we were run with an unlimited stack. In that case,
550  // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
551  // will be broken because we'll die long before we get close to 2GB.
552  bool is_main_thread = (::art::GetTid() == getpid());
553  if (is_main_thread) {
554    rlimit stack_limit;
555    if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
556      PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
557    }
558    if (stack_limit.rlim_cur == RLIM_INFINITY) {
559      // Find the default stack size for new threads...
560      pthread_attr_t default_attributes;
561      size_t default_stack_size;
562      CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
563      CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
564                         "default stack size query");
565      CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
566
567      // ...and use that as our limit.
568      size_t old_stack_size = read_stack_size;
569      tlsPtr_.stack_size = default_stack_size;
570      tlsPtr_.stack_begin += (old_stack_size - default_stack_size);
571      VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
572                    << " to " << PrettySize(default_stack_size)
573                    << " with base " << reinterpret_cast<void*>(tlsPtr_.stack_begin);
574    }
575  }
576#endif
577
578  // Set stack_end_ to the bottom of the stack saving space of stack overflows
579  bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
580  ResetDefaultStackEnd(implicit_stack_check);
581
582  // Install the protected region if we are doing implicit overflow checks.
583  if (implicit_stack_check) {
584    if (is_main_thread) {
585      size_t guardsize;
586      pthread_attr_t attributes;
587      CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), "guard size query");
588      CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, &guardsize), "guard size query");
589      CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), "guard size query");
590      // The main thread might have protected region at the bottom.  We need
591      // to install our own region so we need to move the limits
592      // of the stack to make room for it.
593      tlsPtr_.stack_begin += guardsize;
594      tlsPtr_.stack_end += guardsize;
595      tlsPtr_.stack_size -= guardsize;
596    }
597    InstallImplicitProtection(is_main_thread);
598  }
599
600  // Sanity check.
601  int stack_variable;
602  CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end));
603}
604
605void Thread::ShortDump(std::ostream& os) const {
606  os << "Thread[";
607  if (GetThreadId() != 0) {
608    // If we're in kStarting, we won't have a thin lock id or tid yet.
609    os << GetThreadId()
610             << ",tid=" << GetTid() << ',';
611  }
612  os << GetState()
613           << ",Thread*=" << this
614           << ",peer=" << tlsPtr_.opeer
615           << ",\"" << *tlsPtr_.name << "\""
616           << "]";
617}
618
619void Thread::Dump(std::ostream& os) const {
620  DumpState(os);
621  DumpStack(os);
622}
623
624mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const {
625  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
626  return (tlsPtr_.opeer != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
627}
628
629void Thread::GetThreadName(std::string& name) const {
630  name.assign(*tlsPtr_.name);
631}
632
633uint64_t Thread::GetCpuMicroTime() const {
634#if defined(HAVE_POSIX_CLOCKS)
635  clockid_t cpu_clock_id;
636  pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
637  timespec now;
638  clock_gettime(cpu_clock_id, &now);
639  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
640#else
641  UNIMPLEMENTED(WARNING);
642  return -1;
643#endif
644}
645
646// Attempt to rectify locks so that we dump thread list with required locks before exiting.
647static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
648  LOG(ERROR) << *thread << " suspend count already zero.";
649  Locks::thread_suspend_count_lock_->Unlock(self);
650  if (!Locks::mutator_lock_->IsSharedHeld(self)) {
651    Locks::mutator_lock_->SharedTryLock(self);
652    if (!Locks::mutator_lock_->IsSharedHeld(self)) {
653      LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
654    }
655  }
656  if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
657    Locks::thread_list_lock_->TryLock(self);
658    if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
659      LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
660    }
661  }
662  std::ostringstream ss;
663  Runtime::Current()->GetThreadList()->DumpLocked(ss);
664  LOG(FATAL) << ss.str();
665}
666
667void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
668  if (kIsDebugBuild) {
669    DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
670          << delta << " " << tls32_.debug_suspend_count << " " << this;
671    DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
672    Locks::thread_suspend_count_lock_->AssertHeld(self);
673    if (this != self && !IsSuspended()) {
674      Locks::thread_list_lock_->AssertHeld(self);
675    }
676  }
677  if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
678    UnsafeLogFatalForSuspendCount(self, this);
679    return;
680  }
681
682  tls32_.suspend_count += delta;
683  if (for_debugger) {
684    tls32_.debug_suspend_count += delta;
685  }
686
687  if (tls32_.suspend_count == 0) {
688    AtomicClearFlag(kSuspendRequest);
689  } else {
690    AtomicSetFlag(kSuspendRequest);
691    TriggerSuspend();
692  }
693}
694
695void Thread::RunCheckpointFunction() {
696  Closure *checkpoints[kMaxCheckpoints];
697
698  // Grab the suspend_count lock and copy the current set of
699  // checkpoints.  Then clear the list and the flag.  The RequestCheckpoint
700  // function will also grab this lock so we prevent a race between setting
701  // the kCheckpointRequest flag and clearing it.
702  {
703    MutexLock mu(this, *Locks::thread_suspend_count_lock_);
704    for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
705      checkpoints[i] = tlsPtr_.checkpoint_functions[i];
706      tlsPtr_.checkpoint_functions[i] = nullptr;
707    }
708    AtomicClearFlag(kCheckpointRequest);
709  }
710
711  // Outside the lock, run all the checkpoint functions that
712  // we collected.
713  bool found_checkpoint = false;
714  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
715    if (checkpoints[i] != nullptr) {
716      ATRACE_BEGIN("Checkpoint function");
717      checkpoints[i]->Run(this);
718      ATRACE_END();
719      found_checkpoint = true;
720    }
721  }
722  CHECK(found_checkpoint);
723}
724
725bool Thread::RequestCheckpoint(Closure* function) {
726  union StateAndFlags old_state_and_flags;
727  old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
728  if (old_state_and_flags.as_struct.state != kRunnable) {
729    return false;  // Fail, thread is suspended and so can't run a checkpoint.
730  }
731
732  uint32_t available_checkpoint = kMaxCheckpoints;
733  for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
734    if (tlsPtr_.checkpoint_functions[i] == nullptr) {
735      available_checkpoint = i;
736      break;
737    }
738  }
739  if (available_checkpoint == kMaxCheckpoints) {
740    // No checkpoint functions available, we can't run a checkpoint
741    return false;
742  }
743  tlsPtr_.checkpoint_functions[available_checkpoint] = function;
744
745  // Checkpoint function installed now install flag bit.
746  // We must be runnable to request a checkpoint.
747  DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
748  union StateAndFlags new_state_and_flags;
749  new_state_and_flags.as_int = old_state_and_flags.as_int;
750  new_state_and_flags.as_struct.flags |= kCheckpointRequest;
751  bool success =
752      tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(old_state_and_flags.as_int,
753                                                                                       new_state_and_flags.as_int);
754  if (UNLIKELY(!success)) {
755    // The thread changed state before the checkpoint was installed.
756    CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function);
757    tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr;
758  } else {
759    CHECK_EQ(ReadFlag(kCheckpointRequest), true);
760    TriggerSuspend();
761  }
762  return success;
763}
764
765void Thread::FullSuspendCheck() {
766  VLOG(threads) << this << " self-suspending";
767  ATRACE_BEGIN("Full suspend check");
768  // Make thread appear suspended to other threads, release mutator_lock_.
769  TransitionFromRunnableToSuspended(kSuspended);
770  // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
771  TransitionFromSuspendedToRunnable();
772  ATRACE_END();
773  VLOG(threads) << this << " self-reviving";
774}
775
776void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
777  std::string group_name;
778  int priority;
779  bool is_daemon = false;
780  Thread* self = Thread::Current();
781
782  // Don't do this if we are aborting since the GC may have all the threads suspended. This will
783  // cause ScopedObjectAccessUnchecked to deadlock.
784  if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
785    ScopedObjectAccessUnchecked soa(self);
786    priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
787        ->GetInt(thread->tlsPtr_.opeer);
788    is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
789        ->GetBoolean(thread->tlsPtr_.opeer);
790
791    mirror::Object* thread_group =
792        soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);
793
794    if (thread_group != nullptr) {
795      mirror::ArtField* group_name_field =
796          soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
797      mirror::String* group_name_string =
798          reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
799      group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
800    }
801  } else {
802    priority = GetNativePriority();
803  }
804
805  std::string scheduler_group_name(GetSchedulerGroupName(tid));
806  if (scheduler_group_name.empty()) {
807    scheduler_group_name = "default";
808  }
809
810  if (thread != nullptr) {
811    os << '"' << *thread->tlsPtr_.name << '"';
812    if (is_daemon) {
813      os << " daemon";
814    }
815    os << " prio=" << priority
816       << " tid=" << thread->GetThreadId()
817       << " " << thread->GetState();
818    if (thread->IsStillStarting()) {
819      os << " (still starting up)";
820    }
821    os << "\n";
822  } else {
823    os << '"' << ::art::GetThreadName(tid) << '"'
824       << " prio=" << priority
825       << " (not attached)\n";
826  }
827
828  if (thread != nullptr) {
829    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
830    os << "  | group=\"" << group_name << "\""
831       << " sCount=" << thread->tls32_.suspend_count
832       << " dsCount=" << thread->tls32_.debug_suspend_count
833       << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
834       << " self=" << reinterpret_cast<const void*>(thread) << "\n";
835  }
836
837  os << "  | sysTid=" << tid
838     << " nice=" << getpriority(PRIO_PROCESS, tid)
839     << " cgrp=" << scheduler_group_name;
840  if (thread != nullptr) {
841    int policy;
842    sched_param sp;
843    CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
844                       __FUNCTION__);
845    os << " sched=" << policy << "/" << sp.sched_priority
846       << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
847  }
848  os << "\n";
849
850  // Grab the scheduler stats for this thread.
851  std::string scheduler_stats;
852  if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
853    scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
854  } else {
855    scheduler_stats = "0 0 0";
856  }
857
858  char native_thread_state = '?';
859  int utime = 0;
860  int stime = 0;
861  int task_cpu = 0;
862  GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
863
864  os << "  | state=" << native_thread_state
865     << " schedstat=( " << scheduler_stats << " )"
866     << " utm=" << utime
867     << " stm=" << stime
868     << " core=" << task_cpu
869     << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
870  if (thread != nullptr) {
871    os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
872        << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
873        << PrettySize(thread->tlsPtr_.stack_size) << "\n";
874    // Dump the held mutexes.
875    os << "  | held mutexes=";
876    for (size_t i = 0; i < kLockLevelCount; ++i) {
877      if (i != kMonitorLock) {
878        BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
879        if (mutex != nullptr) {
880          os << " \"" << mutex->GetName() << "\"";
881          if (mutex->IsReaderWriterMutex()) {
882            ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
883            if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
884              os << "(exclusive held)";
885            } else {
886              os << "(shared held)";
887            }
888          }
889        }
890      }
891    }
892    os << "\n";
893  }
894}
895
896void Thread::DumpState(std::ostream& os) const {
897  Thread::DumpState(os, this, GetTid());
898}
899
900struct StackDumpVisitor : public StackVisitor {
901  StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
902      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
903      : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
904        last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) {
905  }
906
907  virtual ~StackDumpVisitor() {
908    if (frame_count == 0) {
909      os << "  (no managed stack frames)\n";
910    }
911  }
912
913  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
914    mirror::ArtMethod* m = GetMethod();
915    if (m->IsRuntimeMethod()) {
916      return true;
917    }
918    const int kMaxRepetition = 3;
919    mirror::Class* c = m->GetDeclaringClass();
920    mirror::DexCache* dex_cache = c->GetDexCache();
921    int line_number = -1;
922    if (dex_cache != nullptr) {  // be tolerant of bad input
923      const DexFile& dex_file = *dex_cache->GetDexFile();
924      line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
925    }
926    if (line_number == last_line_number && last_method == m) {
927      ++repetition_count;
928    } else {
929      if (repetition_count >= kMaxRepetition) {
930        os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
931      }
932      repetition_count = 0;
933      last_line_number = line_number;
934      last_method = m;
935    }
936    if (repetition_count < kMaxRepetition) {
937      os << "  at " << PrettyMethod(m, false);
938      if (m->IsNative()) {
939        os << "(Native method)";
940      } else {
941        const char* source_file(m->GetDeclaringClassSourceFile());
942        os << "(" << (source_file != nullptr ? source_file : "unavailable")
943           << ":" << line_number << ")";
944      }
945      os << "\n";
946      if (frame_count == 0) {
947        Monitor::DescribeWait(os, thread);
948      }
949      if (can_allocate) {
950        Monitor::VisitLocks(this, DumpLockedObject, &os);
951      }
952    }
953
954    ++frame_count;
955    return true;
956  }
957
958  static void DumpLockedObject(mirror::Object* o, void* context)
959      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
960    std::ostream& os = *reinterpret_cast<std::ostream*>(context);
961    os << "  - locked ";
962    if (o == nullptr) {
963      os << "an unknown object";
964    } else {
965      if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
966          Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
967        // Getting the identity hashcode here would result in lock inflation and suspension of the
968        // current thread, which isn't safe if this is the only runnable thread.
969        os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
970                           PrettyTypeOf(o).c_str());
971      } else {
972        os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), PrettyTypeOf(o).c_str());
973      }
974    }
975    os << "\n";
976  }
977
978  std::ostream& os;
979  const Thread* thread;
980  const bool can_allocate;
981  mirror::ArtMethod* method;
982  mirror::ArtMethod* last_method;
983  int last_line_number;
984  int repetition_count;
985  int frame_count;
986};
987
988static bool ShouldShowNativeStack(const Thread* thread)
989    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
990  ThreadState state = thread->GetState();
991
992  // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
993  if (state > kWaiting && state < kStarting) {
994    return true;
995  }
996
997  // In an Object.wait variant or Thread.sleep? That's not interesting.
998  if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
999    return false;
1000  }
1001
1002  // In some other native method? That's interesting.
1003  // We don't just check kNative because native methods will be in state kSuspended if they're
1004  // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
1005  // thread-startup states if it's early enough in their life cycle (http://b/7432159).
1006  mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
1007  return current_method != nullptr && current_method->IsNative();
1008}
1009
1010void Thread::DumpJavaStack(std::ostream& os) const {
1011  std::unique_ptr<Context> context(Context::Create());
1012  StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
1013                          !tls32_.throwing_OutOfMemoryError);
1014  dumper.WalkStack();
1015}
1016
1017void Thread::DumpStack(std::ostream& os) const {
1018  // TODO: we call this code when dying but may not have suspended the thread ourself. The
1019  //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
1020  //       the race with the thread_suspend_count_lock_).
1021  bool dump_for_abort = (gAborting > 0);
1022  bool safe_to_dump = (this == Thread::Current() || IsSuspended());
1023  if (!kIsDebugBuild) {
1024    // We always want to dump the stack for an abort, however, there is no point dumping another
1025    // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
1026    safe_to_dump = (safe_to_dump || dump_for_abort);
1027  }
1028  if (safe_to_dump) {
1029    // If we're currently in native code, dump that stack before dumping the managed stack.
1030    if (dump_for_abort || ShouldShowNativeStack(this)) {
1031      DumpKernelStack(os, GetTid(), "  kernel: ", false);
1032      DumpNativeStack(os, GetTid(), "  native: ", GetCurrentMethod(nullptr));
1033    }
1034    DumpJavaStack(os);
1035  } else {
1036    os << "Not able to dump stack of thread that isn't suspended";
1037  }
1038}
1039
1040void Thread::ThreadExitCallback(void* arg) {
1041  Thread* self = reinterpret_cast<Thread*>(arg);
1042  if (self->tls32_.thread_exit_check_count == 0) {
1043    LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
1044        "going to use a pthread_key_create destructor?): " << *self;
1045    CHECK(is_started_);
1046    CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
1047    self->tls32_.thread_exit_check_count = 1;
1048  } else {
1049    LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
1050  }
1051}
1052
1053void Thread::Startup() {
1054  CHECK(!is_started_);
1055  is_started_ = true;
1056  {
1057    // MutexLock to keep annotalysis happy.
1058    //
1059    // Note we use nullptr for the thread because Thread::Current can
1060    // return garbage since (is_started_ == true) and
1061    // Thread::pthread_key_self_ is not yet initialized.
1062    // This was seen on glibc.
1063    MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1064    resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1065                                         *Locks::thread_suspend_count_lock_);
1066  }
1067
1068  // Allocate a TLS slot.
1069  CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
1070
1071  // Double-check the TLS slot allocation.
1072  if (pthread_getspecific(pthread_key_self_) != nullptr) {
1073    LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
1074  }
1075}
1076
1077void Thread::FinishStartup() {
1078  Runtime* runtime = Runtime::Current();
1079  CHECK(runtime->IsStarted());
1080
1081  // Finish attaching the main thread.
1082  ScopedObjectAccess soa(Thread::Current());
1083  Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
1084
1085  Runtime::Current()->GetClassLinker()->RunRootClinits();
1086}
1087
1088void Thread::Shutdown() {
1089  CHECK(is_started_);
1090  is_started_ = false;
1091  CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
1092  MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
1093  if (resume_cond_ != nullptr) {
1094    delete resume_cond_;
1095    resume_cond_ = nullptr;
1096  }
1097}
1098
1099Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) {
1100  wait_mutex_ = new Mutex("a thread wait mutex");
1101  wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
1102  tlsPtr_.debug_invoke_req = new DebugInvokeReq;
1103  tlsPtr_.single_step_control = new SingleStepControl;
1104  tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
1105  tlsPtr_.name = new std::string(kThreadNameDuringStartup);
1106
1107  CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
1108  tls32_.state_and_flags.as_struct.flags = 0;
1109  tls32_.state_and_flags.as_struct.state = kNative;
1110  memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
1111  std::fill(tlsPtr_.rosalloc_runs,
1112            tlsPtr_.rosalloc_runs + gc::allocator::RosAlloc::kNumThreadLocalSizeBrackets,
1113            gc::allocator::RosAlloc::GetDedicatedFullRun());
1114  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
1115    tlsPtr_.checkpoint_functions[i] = nullptr;
1116  }
1117}
1118
1119bool Thread::IsStillStarting() const {
1120  // You might think you can check whether the state is kStarting, but for much of thread startup,
1121  // the thread is in kNative; it might also be in kVmWait.
1122  // You might think you can check whether the peer is nullptr, but the peer is actually created and
1123  // assigned fairly early on, and needs to be.
1124  // It turns out that the last thing to change is the thread name; that's a good proxy for "has
1125  // this thread _ever_ entered kRunnable".
1126  return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
1127      (*tlsPtr_.name == kThreadNameDuringStartup);
1128}
1129
1130void Thread::AssertNoPendingException() const {
1131  if (UNLIKELY(IsExceptionPending())) {
1132    ScopedObjectAccess soa(Thread::Current());
1133    mirror::Throwable* exception = GetException(nullptr);
1134    LOG(FATAL) << "No pending exception expected: " << exception->Dump();
1135  }
1136}
1137
1138void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
1139  if (UNLIKELY(IsExceptionPending())) {
1140    ScopedObjectAccess soa(Thread::Current());
1141    mirror::Throwable* exception = GetException(nullptr);
1142    LOG(FATAL) << "Throwing new exception " << msg << " with unexpected pending exception: "
1143        << exception->Dump();
1144  }
1145}
1146
1147static void MonitorExitVisitor(mirror::Object** object, void* arg, uint32_t /*thread_id*/,
1148                               RootType /*root_type*/)
1149    NO_THREAD_SAFETY_ANALYSIS {
1150  Thread* self = reinterpret_cast<Thread*>(arg);
1151  mirror::Object* entered_monitor = *object;
1152  if (self->HoldsLock(entered_monitor)) {
1153    LOG(WARNING) << "Calling MonitorExit on object "
1154                 << object << " (" << PrettyTypeOf(entered_monitor) << ")"
1155                 << " left locked by native thread "
1156                 << *Thread::Current() << " which is detaching";
1157    entered_monitor->MonitorExit(self);
1158  }
1159}
1160
1161void Thread::Destroy() {
1162  Thread* self = this;
1163  DCHECK_EQ(self, Thread::Current());
1164
1165  if (tlsPtr_.opeer != nullptr) {
1166    ScopedObjectAccess soa(self);
1167    // We may need to call user-supplied managed code, do this before final clean-up.
1168    HandleUncaughtExceptions(soa);
1169    RemoveFromThreadGroup(soa);
1170
1171    // this.nativePeer = 0;
1172    if (Runtime::Current()->IsActiveTransaction()) {
1173      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1174          ->SetLong<true>(tlsPtr_.opeer, 0);
1175    } else {
1176      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1177          ->SetLong<false>(tlsPtr_.opeer, 0);
1178    }
1179    Dbg::PostThreadDeath(self);
1180
1181    // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1182    // who is waiting.
1183    mirror::Object* lock =
1184        soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
1185    // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1186    if (lock != nullptr) {
1187      StackHandleScope<1> hs(self);
1188      Handle<mirror::Object> h_obj(hs.NewHandle(lock));
1189      ObjectLock<mirror::Object> locker(self, h_obj);
1190      locker.NotifyAll();
1191    }
1192  }
1193
1194  // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1195  if (tlsPtr_.jni_env != nullptr) {
1196    tlsPtr_.jni_env->monitors.VisitRoots(MonitorExitVisitor, self, 0, kRootVMInternal);
1197  }
1198}
1199
1200Thread::~Thread() {
1201  if (tlsPtr_.jni_env != nullptr && tlsPtr_.jpeer != nullptr) {
1202    // If pthread_create fails we don't have a jni env here.
1203    tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
1204    tlsPtr_.jpeer = nullptr;
1205  }
1206  tlsPtr_.opeer = nullptr;
1207
1208  bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
1209  if (initialized) {
1210    delete tlsPtr_.jni_env;
1211    tlsPtr_.jni_env = nullptr;
1212  }
1213  CHECK_NE(GetState(), kRunnable);
1214  CHECK_NE(ReadFlag(kCheckpointRequest), true);
1215  CHECK(tlsPtr_.checkpoint_functions[0] == nullptr);
1216  CHECK(tlsPtr_.checkpoint_functions[1] == nullptr);
1217  CHECK(tlsPtr_.checkpoint_functions[2] == nullptr);
1218
1219  // We may be deleting a still born thread.
1220  SetStateUnsafe(kTerminated);
1221
1222  delete wait_cond_;
1223  delete wait_mutex_;
1224
1225  if (tlsPtr_.long_jump_context != nullptr) {
1226    delete tlsPtr_.long_jump_context;
1227  }
1228
1229  if (initialized) {
1230    CleanupCpu();
1231  }
1232
1233  delete tlsPtr_.debug_invoke_req;
1234  delete tlsPtr_.single_step_control;
1235  delete tlsPtr_.instrumentation_stack;
1236  delete tlsPtr_.name;
1237  delete tlsPtr_.stack_trace_sample;
1238
1239  Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1240
1241  TearDownAlternateSignalStack();
1242}
1243
1244void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1245  if (!IsExceptionPending()) {
1246    return;
1247  }
1248  ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1249  ScopedThreadStateChange tsc(this, kNative);
1250
1251  // Get and clear the exception.
1252  ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
1253  tlsPtr_.jni_env->ExceptionClear();
1254
1255  // If the thread has its own handler, use that.
1256  ScopedLocalRef<jobject> handler(tlsPtr_.jni_env,
1257                                  tlsPtr_.jni_env->GetObjectField(peer.get(),
1258                                      WellKnownClasses::java_lang_Thread_uncaughtHandler));
1259  if (handler.get() == nullptr) {
1260    // Otherwise use the thread group's default handler.
1261    handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(),
1262                                                  WellKnownClasses::java_lang_Thread_group));
1263  }
1264
1265  // Call the handler.
1266  tlsPtr_.jni_env->CallVoidMethod(handler.get(),
1267      WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
1268      peer.get(), exception.get());
1269
1270  // If the handler threw, clear that exception too.
1271  tlsPtr_.jni_env->ExceptionClear();
1272}
1273
1274void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1275  // this.group.removeThread(this);
1276  // group can be null if we're in the compiler or a test.
1277  mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
1278      ->GetObject(tlsPtr_.opeer);
1279  if (ogroup != nullptr) {
1280    ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1281    ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1282    ScopedThreadStateChange tsc(soa.Self(), kNative);
1283    tlsPtr_.jni_env->CallVoidMethod(group.get(),
1284                                    WellKnownClasses::java_lang_ThreadGroup_removeThread,
1285                                    peer.get());
1286  }
1287}
1288
1289size_t Thread::NumHandleReferences() {
1290  size_t count = 0;
1291  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1292    count += cur->NumberOfReferences();
1293  }
1294  return count;
1295}
1296
1297bool Thread::HandleScopeContains(jobject obj) const {
1298  StackReference<mirror::Object>* hs_entry =
1299      reinterpret_cast<StackReference<mirror::Object>*>(obj);
1300  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1301    if (cur->Contains(hs_entry)) {
1302      return true;
1303    }
1304  }
1305  // JNI code invoked from portable code uses shadow frames rather than the handle scope.
1306  return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
1307}
1308
1309void Thread::HandleScopeVisitRoots(RootCallback* visitor, void* arg, uint32_t thread_id) {
1310  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1311    size_t num_refs = cur->NumberOfReferences();
1312    for (size_t j = 0; j < num_refs; ++j) {
1313      mirror::Object* object = cur->GetReference(j);
1314      if (object != nullptr) {
1315        mirror::Object* old_obj = object;
1316        visitor(&object, arg, thread_id, kRootNativeStack);
1317        if (old_obj != object) {
1318          cur->SetReference(j, object);
1319        }
1320      }
1321    }
1322  }
1323}
1324
1325mirror::Object* Thread::DecodeJObject(jobject obj) const {
1326  Locks::mutator_lock_->AssertSharedHeld(this);
1327  if (obj == nullptr) {
1328    return nullptr;
1329  }
1330  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1331  IndirectRefKind kind = GetIndirectRefKind(ref);
1332  mirror::Object* result;
1333  // The "kinds" below are sorted by the frequency we expect to encounter them.
1334  if (kind == kLocal) {
1335    IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
1336    // Local references do not need a read barrier.
1337    result = locals.Get<kWithoutReadBarrier>(ref);
1338  } else if (kind == kHandleScopeOrInvalid) {
1339    // TODO: make stack indirect reference table lookup more efficient.
1340    // Check if this is a local reference in the handle scope.
1341    if (LIKELY(HandleScopeContains(obj))) {
1342      // Read from handle scope.
1343      result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
1344      VerifyObject(result);
1345    } else {
1346      result = kInvalidIndirectRefObject;
1347    }
1348  } else if (kind == kGlobal) {
1349    JavaVMExt* const vm = Runtime::Current()->GetJavaVM();
1350    result = vm->globals.SynchronizedGet(const_cast<Thread*>(this), &vm->globals_lock, ref);
1351  } else {
1352    DCHECK_EQ(kind, kWeakGlobal);
1353    result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1354    if (result == kClearedJniWeakGlobal) {
1355      // This is a special case where it's okay to return nullptr.
1356      return nullptr;
1357    }
1358  }
1359
1360  if (UNLIKELY(result == nullptr)) {
1361    JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
1362  }
1363  return result;
1364}
1365
1366// Implements java.lang.Thread.interrupted.
1367bool Thread::Interrupted() {
1368  MutexLock mu(Thread::Current(), *wait_mutex_);
1369  bool interrupted = IsInterruptedLocked();
1370  SetInterruptedLocked(false);
1371  return interrupted;
1372}
1373
1374// Implements java.lang.Thread.isInterrupted.
1375bool Thread::IsInterrupted() {
1376  MutexLock mu(Thread::Current(), *wait_mutex_);
1377  return IsInterruptedLocked();
1378}
1379
1380void Thread::Interrupt(Thread* self) {
1381  MutexLock mu(self, *wait_mutex_);
1382  if (interrupted_) {
1383    return;
1384  }
1385  interrupted_ = true;
1386  NotifyLocked(self);
1387}
1388
1389void Thread::Notify() {
1390  Thread* self = Thread::Current();
1391  MutexLock mu(self, *wait_mutex_);
1392  NotifyLocked(self);
1393}
1394
1395void Thread::NotifyLocked(Thread* self) {
1396  if (wait_monitor_ != nullptr) {
1397    wait_cond_->Signal(self);
1398  }
1399}
1400
1401class CountStackDepthVisitor : public StackVisitor {
1402 public:
1403  explicit CountStackDepthVisitor(Thread* thread)
1404      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1405      : StackVisitor(thread, nullptr),
1406        depth_(0), skip_depth_(0), skipping_(true) {}
1407
1408  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1409    // We want to skip frames up to and including the exception's constructor.
1410    // Note we also skip the frame if it doesn't have a method (namely the callee
1411    // save frame)
1412    mirror::ArtMethod* m = GetMethod();
1413    if (skipping_ && !m->IsRuntimeMethod() &&
1414        !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1415      skipping_ = false;
1416    }
1417    if (!skipping_) {
1418      if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
1419        ++depth_;
1420      }
1421    } else {
1422      ++skip_depth_;
1423    }
1424    return true;
1425  }
1426
1427  int GetDepth() const {
1428    return depth_;
1429  }
1430
1431  int GetSkipDepth() const {
1432    return skip_depth_;
1433  }
1434
1435 private:
1436  uint32_t depth_;
1437  uint32_t skip_depth_;
1438  bool skipping_;
1439};
1440
1441template<bool kTransactionActive>
1442class BuildInternalStackTraceVisitor : public StackVisitor {
1443 public:
1444  explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1445      : StackVisitor(thread, nullptr), self_(self),
1446        skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {}
1447
1448  bool Init(int depth)
1449      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1450    // Allocate method trace with an extra slot that will hold the PC trace
1451    StackHandleScope<1> hs(self_);
1452    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1453    Handle<mirror::ObjectArray<mirror::Object>> method_trace(
1454        hs.NewHandle(class_linker->AllocObjectArray<mirror::Object>(self_, depth + 1)));
1455    if (method_trace.Get() == nullptr) {
1456      return false;
1457    }
1458    mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
1459    if (dex_pc_trace == nullptr) {
1460      return false;
1461    }
1462    // Save PC trace in last element of method trace, also places it into the
1463    // object graph.
1464    // We are called from native: use non-transactional mode.
1465    method_trace->Set<kTransactionActive>(depth, dex_pc_trace);
1466    // Set the Object*s and assert that no thread suspension is now possible.
1467    const char* last_no_suspend_cause =
1468        self_->StartAssertNoThreadSuspension("Building internal stack trace");
1469    CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
1470    method_trace_ = method_trace.Get();
1471    dex_pc_trace_ = dex_pc_trace;
1472    return true;
1473  }
1474
1475  virtual ~BuildInternalStackTraceVisitor() {
1476    if (method_trace_ != nullptr) {
1477      self_->EndAssertNoThreadSuspension(nullptr);
1478    }
1479  }
1480
1481  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1482    if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) {
1483      return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1484    }
1485    if (skip_depth_ > 0) {
1486      skip_depth_--;
1487      return true;
1488    }
1489    mirror::ArtMethod* m = GetMethod();
1490    if (m->IsRuntimeMethod()) {
1491      return true;  // Ignore runtime frames (in particular callee save).
1492    }
1493    method_trace_->Set<kTransactionActive>(count_, m);
1494    dex_pc_trace_->Set<kTransactionActive>(count_,
1495        m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
1496    ++count_;
1497    return true;
1498  }
1499
1500  mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
1501    return method_trace_;
1502  }
1503
1504 private:
1505  Thread* const self_;
1506  // How many more frames to skip.
1507  int32_t skip_depth_;
1508  // Current position down stack trace.
1509  uint32_t count_;
1510  // Array of dex PC values.
1511  mirror::IntArray* dex_pc_trace_;
1512  // An array of the methods on the stack, the last entry is a reference to the PC trace.
1513  mirror::ObjectArray<mirror::Object>* method_trace_;
1514};
1515
1516template<bool kTransactionActive>
1517jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
1518  // Compute depth of stack
1519  CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1520  count_visitor.WalkStack();
1521  int32_t depth = count_visitor.GetDepth();
1522  int32_t skip_depth = count_visitor.GetSkipDepth();
1523
1524  // Build internal stack trace.
1525  BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
1526                                                                         const_cast<Thread*>(this),
1527                                                                         skip_depth);
1528  if (!build_trace_visitor.Init(depth)) {
1529    return nullptr;  // Allocation failed.
1530  }
1531  build_trace_visitor.WalkStack();
1532  mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
1533  if (kIsDebugBuild) {
1534    for (int32_t i = 0; i < trace->GetLength(); ++i) {
1535      CHECK(trace->Get(i) != nullptr);
1536    }
1537  }
1538  return soa.AddLocalReference<jobjectArray>(trace);
1539}
1540template jobject Thread::CreateInternalStackTrace<false>(
1541    const ScopedObjectAccessAlreadyRunnable& soa) const;
1542template jobject Thread::CreateInternalStackTrace<true>(
1543    const ScopedObjectAccessAlreadyRunnable& soa) const;
1544
1545jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
1546    const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array,
1547    int* stack_depth) {
1548  // Decode the internal stack trace into the depth, method trace and PC trace
1549  int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1;
1550
1551  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1552
1553  jobjectArray result;
1554
1555  if (output_array != nullptr) {
1556    // Reuse the array we were given.
1557    result = output_array;
1558    // ...adjusting the number of frames we'll write to not exceed the array length.
1559    const int32_t traces_length =
1560        soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
1561    depth = std::min(depth, traces_length);
1562  } else {
1563    // Create java_trace array and place in local reference table
1564    mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
1565        class_linker->AllocStackTraceElementArray(soa.Self(), depth);
1566    if (java_traces == nullptr) {
1567      return nullptr;
1568    }
1569    result = soa.AddLocalReference<jobjectArray>(java_traces);
1570  }
1571
1572  if (stack_depth != nullptr) {
1573    *stack_depth = depth;
1574  }
1575
1576  for (int32_t i = 0; i < depth; ++i) {
1577    mirror::ObjectArray<mirror::Object>* method_trace =
1578          soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
1579    // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1580    mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
1581    int32_t line_number;
1582    StackHandleScope<3> hs(soa.Self());
1583    auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
1584    auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
1585    if (method->IsProxyMethod()) {
1586      line_number = -1;
1587      class_name_object.Assign(method->GetDeclaringClass()->GetName());
1588      // source_name_object intentionally left null for proxy methods
1589    } else {
1590      mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
1591      uint32_t dex_pc = pc_trace->Get(i);
1592      line_number = method->GetLineNumFromDexPC(dex_pc);
1593      // Allocate element, potentially triggering GC
1594      // TODO: reuse class_name_object via Class::name_?
1595      const char* descriptor = method->GetDeclaringClassDescriptor();
1596      CHECK(descriptor != nullptr);
1597      std::string class_name(PrettyDescriptor(descriptor));
1598      class_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
1599      if (class_name_object.Get() == nullptr) {
1600        return nullptr;
1601      }
1602      const char* source_file = method->GetDeclaringClassSourceFile();
1603      if (source_file != nullptr) {
1604        source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
1605        if (source_name_object.Get() == nullptr) {
1606          return nullptr;
1607        }
1608      }
1609    }
1610    const char* method_name = method->GetName();
1611    CHECK(method_name != nullptr);
1612    Handle<mirror::String> method_name_object(
1613        hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
1614    if (method_name_object.Get() == nullptr) {
1615      return nullptr;
1616    }
1617    mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
1618        soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
1619    if (obj == nullptr) {
1620      return nullptr;
1621    }
1622    // We are called from native: use non-transactional mode.
1623    soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
1624  }
1625  return result;
1626}
1627
1628void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
1629                                const char* exception_class_descriptor, const char* fmt, ...) {
1630  va_list args;
1631  va_start(args, fmt);
1632  ThrowNewExceptionV(throw_location, exception_class_descriptor,
1633                     fmt, args);
1634  va_end(args);
1635}
1636
1637void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
1638                                const char* exception_class_descriptor,
1639                                const char* fmt, va_list ap) {
1640  std::string msg;
1641  StringAppendV(&msg, fmt, ap);
1642  ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
1643}
1644
1645void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
1646                               const char* msg) {
1647  // Callers should either clear or call ThrowNewWrappedException.
1648  AssertNoPendingExceptionForNewException(msg);
1649  ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
1650}
1651
1652void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
1653                                      const char* exception_class_descriptor,
1654                                      const char* msg) {
1655  DCHECK_EQ(this, Thread::Current());
1656  ScopedObjectAccessUnchecked soa(this);
1657  StackHandleScope<5> hs(soa.Self());
1658  // Ensure we don't forget arguments over object allocation.
1659  Handle<mirror::Object> saved_throw_this(hs.NewHandle(throw_location.GetThis()));
1660  Handle<mirror::ArtMethod> saved_throw_method(hs.NewHandle(throw_location.GetMethod()));
1661  // Ignore the cause throw location. TODO: should we report this as a re-throw?
1662  ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException(nullptr)));
1663  bool is_exception_reported = IsExceptionReportedToInstrumentation();
1664  ClearException();
1665  Runtime* runtime = Runtime::Current();
1666
1667  mirror::ClassLoader* cl = nullptr;
1668  if (saved_throw_method.Get() != nullptr) {
1669    cl = saved_throw_method.Get()->GetDeclaringClass()->GetClassLoader();
1670  }
1671  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(cl));
1672  Handle<mirror::Class> exception_class(
1673      hs.NewHandle(runtime->GetClassLinker()->FindClass(this, exception_class_descriptor,
1674                                                        class_loader)));
1675  if (UNLIKELY(exception_class.Get() == nullptr)) {
1676    CHECK(IsExceptionPending());
1677    LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1678    return;
1679  }
1680
1681  if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class, true, true))) {
1682    DCHECK(IsExceptionPending());
1683    return;
1684  }
1685  DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1686  Handle<mirror::Throwable> exception(
1687      hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this))));
1688
1689  // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
1690  if (exception.Get() == nullptr) {
1691    ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1692                                         throw_location.GetDexPc());
1693    SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1694    SetExceptionReportedToInstrumentation(is_exception_reported);
1695    return;
1696  }
1697
1698  // Choose an appropriate constructor and set up the arguments.
1699  const char* signature;
1700  ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
1701  if (msg != nullptr) {
1702    // Ensure we remember this and the method over the String allocation.
1703    msg_string.reset(
1704        soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
1705    if (UNLIKELY(msg_string.get() == nullptr)) {
1706      CHECK(IsExceptionPending());  // OOME.
1707      return;
1708    }
1709    if (cause.get() == nullptr) {
1710      signature = "(Ljava/lang/String;)V";
1711    } else {
1712      signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1713    }
1714  } else {
1715    if (cause.get() == nullptr) {
1716      signature = "()V";
1717    } else {
1718      signature = "(Ljava/lang/Throwable;)V";
1719    }
1720  }
1721  mirror::ArtMethod* exception_init_method =
1722      exception_class->FindDeclaredDirectMethod("<init>", signature);
1723
1724  CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
1725      << PrettyDescriptor(exception_class_descriptor);
1726
1727  if (UNLIKELY(!runtime->IsStarted())) {
1728    // Something is trying to throw an exception without a started runtime, which is the common
1729    // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1730    // the exception fields directly.
1731    if (msg != nullptr) {
1732      exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
1733    }
1734    if (cause.get() != nullptr) {
1735      exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
1736    }
1737    ScopedLocalRef<jobject> trace(GetJniEnv(),
1738                                  Runtime::Current()->IsActiveTransaction()
1739                                      ? CreateInternalStackTrace<true>(soa)
1740                                      : CreateInternalStackTrace<false>(soa));
1741    if (trace.get() != nullptr) {
1742      exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
1743    }
1744    ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1745                                         throw_location.GetDexPc());
1746    SetException(gc_safe_throw_location, exception.Get());
1747    SetExceptionReportedToInstrumentation(is_exception_reported);
1748  } else {
1749    jvalue jv_args[2];
1750    size_t i = 0;
1751
1752    if (msg != nullptr) {
1753      jv_args[i].l = msg_string.get();
1754      ++i;
1755    }
1756    if (cause.get() != nullptr) {
1757      jv_args[i].l = cause.get();
1758      ++i;
1759    }
1760    InvokeWithJValues(soa, exception.Get(), soa.EncodeMethod(exception_init_method), jv_args);
1761    if (LIKELY(!IsExceptionPending())) {
1762      ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1763                                           throw_location.GetDexPc());
1764      SetException(gc_safe_throw_location, exception.Get());
1765      SetExceptionReportedToInstrumentation(is_exception_reported);
1766    }
1767  }
1768}
1769
1770void Thread::ThrowOutOfMemoryError(const char* msg) {
1771  LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1772      msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
1773  ThrowLocation throw_location = GetCurrentLocationForThrow();
1774  if (!tls32_.throwing_OutOfMemoryError) {
1775    tls32_.throwing_OutOfMemoryError = true;
1776    ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
1777    tls32_.throwing_OutOfMemoryError = false;
1778  } else {
1779    Dump(LOG(ERROR));  // The pre-allocated OOME has no stack, so help out and log one.
1780    SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1781  }
1782}
1783
1784Thread* Thread::CurrentFromGdb() {
1785  return Thread::Current();
1786}
1787
1788void Thread::DumpFromGdb() const {
1789  std::ostringstream ss;
1790  Dump(ss);
1791  std::string str(ss.str());
1792  // log to stderr for debugging command line processes
1793  std::cerr << str;
1794#ifdef HAVE_ANDROID_OS
1795  // log to logcat for debugging frameworks processes
1796  LOG(INFO) << str;
1797#endif
1798}
1799
1800// Explicitly instantiate 32 and 64bit thread offset dumping support.
1801template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset);
1802template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset);
1803
1804template<size_t ptr_size>
1805void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
1806#define DO_THREAD_OFFSET(x, y) \
1807    if (offset == x.Uint32Value()) { \
1808      os << y; \
1809      return; \
1810    }
1811  DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
1812  DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
1813  DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
1814  DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
1815  DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
1816  DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
1817  DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
1818  DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
1819  DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
1820  DO_THREAD_OFFSET(TopOfManagedStackPcOffset<ptr_size>(), "top_quick_frame_pc")
1821  DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
1822  DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
1823  DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
1824#undef DO_THREAD_OFFSET
1825
1826#define INTERPRETER_ENTRY_POINT_INFO(x) \
1827    if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1828      os << #x; \
1829      return; \
1830    }
1831  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge)
1832  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge)
1833#undef INTERPRETER_ENTRY_POINT_INFO
1834
1835#define JNI_ENTRY_POINT_INFO(x) \
1836    if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1837      os << #x; \
1838      return; \
1839    }
1840  JNI_ENTRY_POINT_INFO(pDlsymLookup)
1841#undef JNI_ENTRY_POINT_INFO
1842
1843#define PORTABLE_ENTRY_POINT_INFO(x) \
1844    if (PORTABLE_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1845      os << #x; \
1846      return; \
1847    }
1848  PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline)
1849  PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline)
1850  PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge)
1851#undef PORTABLE_ENTRY_POINT_INFO
1852
1853#define QUICK_ENTRY_POINT_INFO(x) \
1854    if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1855      os << #x; \
1856      return; \
1857    }
1858  QUICK_ENTRY_POINT_INFO(pAllocArray)
1859  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
1860  QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
1861  QUICK_ENTRY_POINT_INFO(pAllocObject)
1862  QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
1863  QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
1864  QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
1865  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
1866  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
1867  QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
1868  QUICK_ENTRY_POINT_INFO(pCheckCast)
1869  QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
1870  QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
1871  QUICK_ENTRY_POINT_INFO(pInitializeType)
1872  QUICK_ENTRY_POINT_INFO(pResolveString)
1873  QUICK_ENTRY_POINT_INFO(pSet32Instance)
1874  QUICK_ENTRY_POINT_INFO(pSet32Static)
1875  QUICK_ENTRY_POINT_INFO(pSet64Instance)
1876  QUICK_ENTRY_POINT_INFO(pSet64Static)
1877  QUICK_ENTRY_POINT_INFO(pSetObjInstance)
1878  QUICK_ENTRY_POINT_INFO(pSetObjStatic)
1879  QUICK_ENTRY_POINT_INFO(pGet32Instance)
1880  QUICK_ENTRY_POINT_INFO(pGet32Static)
1881  QUICK_ENTRY_POINT_INFO(pGet64Instance)
1882  QUICK_ENTRY_POINT_INFO(pGet64Static)
1883  QUICK_ENTRY_POINT_INFO(pGetObjInstance)
1884  QUICK_ENTRY_POINT_INFO(pGetObjStatic)
1885  QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
1886  QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
1887  QUICK_ENTRY_POINT_INFO(pAputObject)
1888  QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
1889  QUICK_ENTRY_POINT_INFO(pJniMethodStart)
1890  QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
1891  QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
1892  QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
1893  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
1894  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
1895  QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
1896  QUICK_ENTRY_POINT_INFO(pLockObject)
1897  QUICK_ENTRY_POINT_INFO(pUnlockObject)
1898  QUICK_ENTRY_POINT_INFO(pCmpgDouble)
1899  QUICK_ENTRY_POINT_INFO(pCmpgFloat)
1900  QUICK_ENTRY_POINT_INFO(pCmplDouble)
1901  QUICK_ENTRY_POINT_INFO(pCmplFloat)
1902  QUICK_ENTRY_POINT_INFO(pFmod)
1903  QUICK_ENTRY_POINT_INFO(pL2d)
1904  QUICK_ENTRY_POINT_INFO(pFmodf)
1905  QUICK_ENTRY_POINT_INFO(pL2f)
1906  QUICK_ENTRY_POINT_INFO(pD2iz)
1907  QUICK_ENTRY_POINT_INFO(pF2iz)
1908  QUICK_ENTRY_POINT_INFO(pIdivmod)
1909  QUICK_ENTRY_POINT_INFO(pD2l)
1910  QUICK_ENTRY_POINT_INFO(pF2l)
1911  QUICK_ENTRY_POINT_INFO(pLdiv)
1912  QUICK_ENTRY_POINT_INFO(pLmod)
1913  QUICK_ENTRY_POINT_INFO(pLmul)
1914  QUICK_ENTRY_POINT_INFO(pShlLong)
1915  QUICK_ENTRY_POINT_INFO(pShrLong)
1916  QUICK_ENTRY_POINT_INFO(pUshrLong)
1917  QUICK_ENTRY_POINT_INFO(pIndexOf)
1918  QUICK_ENTRY_POINT_INFO(pStringCompareTo)
1919  QUICK_ENTRY_POINT_INFO(pMemcpy)
1920  QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
1921  QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
1922  QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
1923  QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
1924  QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
1925  QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
1926  QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
1927  QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
1928  QUICK_ENTRY_POINT_INFO(pTestSuspend)
1929  QUICK_ENTRY_POINT_INFO(pDeliverException)
1930  QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
1931  QUICK_ENTRY_POINT_INFO(pThrowDivZero)
1932  QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
1933  QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
1934  QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
1935#undef QUICK_ENTRY_POINT_INFO
1936
1937  os << offset;
1938}
1939
1940void Thread::QuickDeliverException() {
1941  // Get exception from thread.
1942  ThrowLocation throw_location;
1943  mirror::Throwable* exception = GetException(&throw_location);
1944  CHECK(exception != nullptr);
1945  // Don't leave exception visible while we try to find the handler, which may cause class
1946  // resolution.
1947  bool is_exception_reported = IsExceptionReportedToInstrumentation();
1948  ClearException();
1949  bool is_deoptimization = (exception == GetDeoptimizationException());
1950  QuickExceptionHandler exception_handler(this, is_deoptimization);
1951  if (is_deoptimization) {
1952    exception_handler.DeoptimizeStack();
1953  } else {
1954    exception_handler.FindCatch(throw_location, exception, is_exception_reported);
1955  }
1956  exception_handler.UpdateInstrumentationStack();
1957  exception_handler.DoLongJump();
1958  LOG(FATAL) << "UNREACHABLE";
1959}
1960
1961Context* Thread::GetLongJumpContext() {
1962  Context* result = tlsPtr_.long_jump_context;
1963  if (result == nullptr) {
1964    result = Context::Create();
1965  } else {
1966    tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
1967    result->Reset();
1968  }
1969  return result;
1970}
1971
1972// Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
1973//       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
1974struct CurrentMethodVisitor FINAL : public StackVisitor {
1975  CurrentMethodVisitor(Thread* thread, Context* context)
1976      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1977      : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0) {}
1978  bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1979    mirror::ArtMethod* m = GetMethod();
1980    if (m->IsRuntimeMethod()) {
1981      // Continue if this is a runtime method.
1982      return true;
1983    }
1984    if (context_ != nullptr) {
1985      this_object_ = GetThisObject();
1986    }
1987    method_ = m;
1988    dex_pc_ = GetDexPc(false);  // We may not have a valid PC. Let the caller deal with it.
1989    return false;
1990  }
1991  mirror::Object* this_object_;
1992  mirror::ArtMethod* method_;
1993  uint32_t dex_pc_;
1994};
1995
1996mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc) const {
1997  CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr);
1998  visitor.WalkStack(false);
1999  if (dex_pc != nullptr) {
2000    *dex_pc = visitor.dex_pc_;
2001  }
2002  return visitor.method_;
2003}
2004
2005ThrowLocation Thread::GetCurrentLocationForThrow() {
2006  Context* context = GetLongJumpContext();
2007  CurrentMethodVisitor visitor(this, context);
2008  visitor.WalkStack(false);
2009  CHECK_NE(visitor.dex_pc_, DexFile::kDexNoIndex);  // TODO: Can we relax this?
2010  ReleaseLongJumpContext(context);
2011  return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
2012}
2013
2014bool Thread::HoldsLock(mirror::Object* object) const {
2015  if (object == nullptr) {
2016    return false;
2017  }
2018  return object->GetLockOwnerThreadId() == GetThreadId();
2019}
2020
2021// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
2022template <typename RootVisitor>
2023class ReferenceMapVisitor : public StackVisitor {
2024 public:
2025  ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
2026      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
2027      : StackVisitor(thread, context), visitor_(visitor) {}
2028
2029  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2030    if (false) {
2031      LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
2032                << StringPrintf("@ PC:%04x", GetDexPc());
2033    }
2034    ShadowFrame* shadow_frame = GetCurrentShadowFrame();
2035    if (shadow_frame != nullptr) {
2036      VisitShadowFrame(shadow_frame);
2037    } else {
2038      VisitQuickFrame();
2039    }
2040    return true;
2041  }
2042
2043  void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2044    mirror::ArtMethod** method_addr = shadow_frame->GetMethodAddress();
2045    visitor_(reinterpret_cast<mirror::Object**>(method_addr), 0 /*ignored*/, this);
2046    mirror::ArtMethod* m = *method_addr;
2047    DCHECK(m != nullptr);
2048    size_t num_regs = shadow_frame->NumberOfVRegs();
2049    if (m->IsNative() || shadow_frame->HasReferenceArray()) {
2050      // handle scope for JNI or References for interpreter.
2051      for (size_t reg = 0; reg < num_regs; ++reg) {
2052        mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2053        if (ref != nullptr) {
2054          mirror::Object* new_ref = ref;
2055          visitor_(&new_ref, reg, this);
2056          if (new_ref != ref) {
2057            shadow_frame->SetVRegReference(reg, new_ref);
2058          }
2059        }
2060      }
2061    } else {
2062      // Java method.
2063      // Portable path use DexGcMap and store in Method.native_gc_map_.
2064      const uint8_t* gc_map = m->GetNativeGcMap();
2065      CHECK(gc_map != nullptr) << PrettyMethod(m);
2066      verifier::DexPcToReferenceMap dex_gc_map(gc_map);
2067      uint32_t dex_pc = shadow_frame->GetDexPC();
2068      const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
2069      DCHECK(reg_bitmap != nullptr);
2070      num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
2071      for (size_t reg = 0; reg < num_regs; ++reg) {
2072        if (TestBitmap(reg, reg_bitmap)) {
2073          mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2074          if (ref != nullptr) {
2075            mirror::Object* new_ref = ref;
2076            visitor_(&new_ref, reg, this);
2077            if (new_ref != ref) {
2078              shadow_frame->SetVRegReference(reg, new_ref);
2079            }
2080          }
2081        }
2082      }
2083    }
2084  }
2085
2086 private:
2087  void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2088    StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2089    mirror::ArtMethod* m = cur_quick_frame->AsMirrorPtr();
2090    mirror::ArtMethod* old_method = m;
2091    visitor_(reinterpret_cast<mirror::Object**>(&m), 0 /*ignored*/, this);
2092    if (m != old_method) {
2093      cur_quick_frame->Assign(m);
2094    }
2095
2096    // Process register map (which native and runtime methods don't have)
2097    if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
2098      const uint8_t* native_gc_map = m->GetNativeGcMap();
2099      CHECK(native_gc_map != nullptr) << PrettyMethod(m);
2100      const DexFile::CodeItem* code_item = m->GetCodeItem();
2101      DCHECK(code_item != nullptr) << PrettyMethod(m);  // Can't be nullptr or how would we compile its instructions?
2102      NativePcOffsetToReferenceMap map(native_gc_map);
2103      size_t num_regs = std::min(map.RegWidth() * 8,
2104                                 static_cast<size_t>(code_item->registers_size_));
2105      if (num_regs > 0) {
2106        Runtime* runtime = Runtime::Current();
2107        const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m);
2108        uintptr_t native_pc_offset = m->NativePcOffset(GetCurrentQuickFramePc(), entry_point);
2109        const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset);
2110        DCHECK(reg_bitmap != nullptr);
2111        const void* code_pointer = mirror::ArtMethod::EntryPointToCodePointer(entry_point);
2112        const VmapTable vmap_table(m->GetVmapTable(code_pointer));
2113        QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer);
2114        // For all dex registers in the bitmap
2115        StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2116        DCHECK(cur_quick_frame != nullptr);
2117        for (size_t reg = 0; reg < num_regs; ++reg) {
2118          // Does this register hold a reference?
2119          if (TestBitmap(reg, reg_bitmap)) {
2120            uint32_t vmap_offset;
2121            if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
2122              int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset,
2123                                                        kReferenceVReg);
2124              // This is sound as spilled GPRs will be word sized (ie 32 or 64bit).
2125              mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg));
2126              if (*ref_addr != nullptr) {
2127                visitor_(ref_addr, reg, this);
2128              }
2129            } else {
2130              StackReference<mirror::Object>* ref_addr =
2131                  reinterpret_cast<StackReference<mirror::Object>*>(
2132                      GetVRegAddr(cur_quick_frame, code_item, frame_info.CoreSpillMask(),
2133                                  frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg));
2134              mirror::Object* ref = ref_addr->AsMirrorPtr();
2135              if (ref != nullptr) {
2136                mirror::Object* new_ref = ref;
2137                visitor_(&new_ref, reg, this);
2138                if (ref != new_ref) {
2139                  ref_addr->Assign(new_ref);
2140                }
2141              }
2142            }
2143          }
2144        }
2145      }
2146    }
2147  }
2148
2149  static bool TestBitmap(size_t reg, const uint8_t* reg_vector) {
2150    return ((reg_vector[reg / kBitsPerByte] >> (reg % kBitsPerByte)) & 0x01) != 0;
2151  }
2152
2153  // Visitor for when we visit a root.
2154  const RootVisitor& visitor_;
2155};
2156
2157class RootCallbackVisitor {
2158 public:
2159  RootCallbackVisitor(RootCallback* callback, void* arg, uint32_t tid)
2160     : callback_(callback), arg_(arg), tid_(tid) {}
2161
2162  void operator()(mirror::Object** obj, size_t, const StackVisitor*) const {
2163    callback_(obj, arg_, tid_, kRootJavaFrame);
2164  }
2165
2166 private:
2167  RootCallback* const callback_;
2168  void* const arg_;
2169  const uint32_t tid_;
2170};
2171
2172void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) {
2173  VerifyObject(class_loader_override);
2174  tlsPtr_.class_loader_override = class_loader_override;
2175}
2176
2177void Thread::VisitRoots(RootCallback* visitor, void* arg) {
2178  uint32_t thread_id = GetThreadId();
2179  if (tlsPtr_.opeer != nullptr) {
2180    visitor(&tlsPtr_.opeer, arg, thread_id, kRootThreadObject);
2181  }
2182  if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
2183    visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), arg, thread_id, kRootNativeStack);
2184  }
2185  tlsPtr_.throw_location.VisitRoots(visitor, arg);
2186  if (tlsPtr_.class_loader_override != nullptr) {
2187    visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.class_loader_override), arg, thread_id,
2188            kRootNativeStack);
2189  }
2190  if (tlsPtr_.monitor_enter_object != nullptr) {
2191    visitor(&tlsPtr_.monitor_enter_object, arg, thread_id, kRootNativeStack);
2192  }
2193  tlsPtr_.jni_env->locals.VisitRoots(visitor, arg, thread_id, kRootJNILocal);
2194  tlsPtr_.jni_env->monitors.VisitRoots(visitor, arg, thread_id, kRootJNIMonitor);
2195  HandleScopeVisitRoots(visitor, arg, thread_id);
2196  if (tlsPtr_.debug_invoke_req != nullptr) {
2197    tlsPtr_.debug_invoke_req->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2198  }
2199  if (tlsPtr_.single_step_control != nullptr) {
2200    tlsPtr_.single_step_control->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2201  }
2202  if (tlsPtr_.deoptimization_shadow_frame != nullptr) {
2203    RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2204    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2205    for (ShadowFrame* shadow_frame = tlsPtr_.deoptimization_shadow_frame; shadow_frame != nullptr;
2206        shadow_frame = shadow_frame->GetLink()) {
2207      mapper.VisitShadowFrame(shadow_frame);
2208    }
2209  }
2210  if (tlsPtr_.shadow_frame_under_construction != nullptr) {
2211    RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2212    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2213    for (ShadowFrame* shadow_frame = tlsPtr_.shadow_frame_under_construction;
2214        shadow_frame != nullptr;
2215        shadow_frame = shadow_frame->GetLink()) {
2216      mapper.VisitShadowFrame(shadow_frame);
2217    }
2218  }
2219  // Visit roots on this thread's stack
2220  Context* context = GetLongJumpContext();
2221  RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2222  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback);
2223  mapper.WalkStack();
2224  ReleaseLongJumpContext(context);
2225  for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2226    if (frame.this_object_ != nullptr) {
2227      visitor(&frame.this_object_, arg, thread_id, kRootJavaFrame);
2228    }
2229    DCHECK(frame.method_ != nullptr);
2230    visitor(reinterpret_cast<mirror::Object**>(&frame.method_), arg, thread_id, kRootJavaFrame);
2231  }
2232}
2233
2234static void VerifyRoot(mirror::Object** root, void* /*arg*/, uint32_t /*thread_id*/,
2235                       RootType /*root_type*/) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2236  VerifyObject(*root);
2237}
2238
2239void Thread::VerifyStackImpl() {
2240  std::unique_ptr<Context> context(Context::Create());
2241  RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap(), GetThreadId());
2242  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
2243  mapper.WalkStack();
2244}
2245
2246// Set the stack end to that to be used during a stack overflow
2247void Thread::SetStackEndForStackOverflow() {
2248  // During stack overflow we allow use of the full stack.
2249  if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
2250    // However, we seem to have already extended to use the full stack.
2251    LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2252               << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
2253    DumpStack(LOG(ERROR));
2254    LOG(FATAL) << "Recursive stack overflow.";
2255  }
2256
2257  tlsPtr_.stack_end = tlsPtr_.stack_begin;
2258}
2259
2260void Thread::SetTlab(byte* start, byte* end) {
2261  DCHECK_LE(start, end);
2262  tlsPtr_.thread_local_start = start;
2263  tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
2264  tlsPtr_.thread_local_end = end;
2265  tlsPtr_.thread_local_objects = 0;
2266}
2267
2268bool Thread::HasTlab() const {
2269  bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
2270  if (has_tlab) {
2271    DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
2272  } else {
2273    DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
2274  }
2275  return has_tlab;
2276}
2277
2278std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2279  thread.ShortDump(os);
2280  return os;
2281}
2282
2283}  // namespace art
2284