thread.cc revision d970bac690baa6f735b0cd187440546869088a0f
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define ATRACE_TAG ATRACE_TAG_DALVIK
18
19#include "thread.h"
20
21#include <cutils/trace.h>
22#include <pthread.h>
23#include <signal.h>
24#include <sys/resource.h>
25#include <sys/time.h>
26
27#include <algorithm>
28#include <bitset>
29#include <cerrno>
30#include <iostream>
31#include <list>
32
33#include "arch/context.h"
34#include "base/mutex.h"
35#include "class_linker-inl.h"
36#include "class_linker.h"
37#include "debugger.h"
38#include "dex_file-inl.h"
39#include "entrypoints/entrypoint_utils.h"
40#include "entrypoints/quick/quick_alloc_entrypoints.h"
41#include "gc_map.h"
42#include "gc/accounting/card_table-inl.h"
43#include "gc/allocator/rosalloc.h"
44#include "gc/heap.h"
45#include "gc/space/space.h"
46#include "handle_scope-inl.h"
47#include "handle_scope.h"
48#include "indirect_reference_table-inl.h"
49#include "jni_internal.h"
50#include "mirror/art_field-inl.h"
51#include "mirror/art_method-inl.h"
52#include "mirror/class_loader.h"
53#include "mirror/class-inl.h"
54#include "mirror/object_array-inl.h"
55#include "mirror/stack_trace_element.h"
56#include "monitor.h"
57#include "object_lock.h"
58#include "quick_exception_handler.h"
59#include "quick/quick_method_frame_info.h"
60#include "reflection.h"
61#include "runtime.h"
62#include "scoped_thread_state_change.h"
63#include "ScopedLocalRef.h"
64#include "ScopedUtfChars.h"
65#include "stack.h"
66#include "thread_list.h"
67#include "thread-inl.h"
68#include "utils.h"
69#include "verifier/dex_gc_map.h"
70#include "verify_object-inl.h"
71#include "vmap_table.h"
72#include "well_known_classes.h"
73
74namespace art {
75
76bool Thread::is_started_ = false;
77pthread_key_t Thread::pthread_key_self_;
78ConditionVariable* Thread::resume_cond_ = nullptr;
79const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
80
81static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
82
83void Thread::InitCardTable() {
84  tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
85}
86
87static void UnimplementedEntryPoint() {
88  UNIMPLEMENTED(FATAL);
89}
90
91void InitEntryPoints(InterpreterEntryPoints* ipoints, JniEntryPoints* jpoints,
92                     PortableEntryPoints* ppoints, QuickEntryPoints* qpoints);
93
94void Thread::InitTlsEntryPoints() {
95  // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
96  uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.interpreter_entrypoints);
97  uintptr_t* end = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(begin) +
98                                                sizeof(tlsPtr_.quick_entrypoints));
99  for (uintptr_t* it = begin; it != end; ++it) {
100    *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
101  }
102  InitEntryPoints(&tlsPtr_.interpreter_entrypoints, &tlsPtr_.jni_entrypoints,
103                  &tlsPtr_.portable_entrypoints, &tlsPtr_.quick_entrypoints);
104}
105
106void Thread::ResetQuickAllocEntryPointsForThread() {
107  ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
108}
109
110void Thread::SetDeoptimizationShadowFrame(ShadowFrame* sf) {
111  tlsPtr_.deoptimization_shadow_frame = sf;
112}
113
114void Thread::SetDeoptimizationReturnValue(const JValue& ret_val) {
115  tls64_.deoptimization_return_value.SetJ(ret_val.GetJ());
116}
117
118ShadowFrame* Thread::GetAndClearDeoptimizationShadowFrame(JValue* ret_val) {
119  ShadowFrame* sf = tlsPtr_.deoptimization_shadow_frame;
120  tlsPtr_.deoptimization_shadow_frame = nullptr;
121  ret_val->SetJ(tls64_.deoptimization_return_value.GetJ());
122  return sf;
123}
124
125void Thread::SetShadowFrameUnderConstruction(ShadowFrame* sf) {
126  sf->SetLink(tlsPtr_.shadow_frame_under_construction);
127  tlsPtr_.shadow_frame_under_construction = sf;
128}
129
130void Thread::ClearShadowFrameUnderConstruction() {
131  CHECK_NE(static_cast<ShadowFrame*>(nullptr), tlsPtr_.shadow_frame_under_construction);
132  tlsPtr_.shadow_frame_under_construction = tlsPtr_.shadow_frame_under_construction->GetLink();
133}
134
135void Thread::InitTid() {
136  tls32_.tid = ::art::GetTid();
137}
138
139void Thread::InitAfterFork() {
140  // One thread (us) survived the fork, but we have a new tid so we need to
141  // update the value stashed in this Thread*.
142  InitTid();
143}
144
145void* Thread::CreateCallback(void* arg) {
146  Thread* self = reinterpret_cast<Thread*>(arg);
147  Runtime* runtime = Runtime::Current();
148  if (runtime == nullptr) {
149    LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
150    return nullptr;
151  }
152  {
153    // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
154    //       after self->Init().
155    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
156    // Check that if we got here we cannot be shutting down (as shutdown should never have started
157    // while threads are being born).
158    CHECK(!runtime->IsShuttingDownLocked());
159    self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
160    Runtime::Current()->EndThreadBirth();
161  }
162  {
163    ScopedObjectAccess soa(self);
164
165    // Copy peer into self, deleting global reference when done.
166    CHECK(self->tlsPtr_.jpeer != nullptr);
167    self->tlsPtr_.opeer = soa.Decode<mirror::Object*>(self->tlsPtr_.jpeer);
168    self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
169    self->tlsPtr_.jpeer = nullptr;
170    self->SetThreadName(self->GetThreadName(soa)->ToModifiedUtf8().c_str());
171    Dbg::PostThreadStart(self);
172
173    // Invoke the 'run' method of our java.lang.Thread.
174    mirror::Object* receiver = self->tlsPtr_.opeer;
175    jmethodID mid = WellKnownClasses::java_lang_Thread_run;
176    InvokeVirtualOrInterfaceWithJValues(soa, receiver, mid, nullptr);
177  }
178  // Detach and delete self.
179  Runtime::Current()->GetThreadList()->Unregister(self);
180
181  return nullptr;
182}
183
184Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
185                                  mirror::Object* thread_peer) {
186  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer);
187  Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
188  // Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
189  // to stop it from going away.
190  if (kIsDebugBuild) {
191    MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
192    if (result != nullptr && !result->IsSuspended()) {
193      Locks::thread_list_lock_->AssertHeld(soa.Self());
194    }
195  }
196  return result;
197}
198
199Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
200                                  jobject java_thread) {
201  return FromManagedThread(soa, soa.Decode<mirror::Object*>(java_thread));
202}
203
204static size_t FixStackSize(size_t stack_size) {
205  // A stack size of zero means "use the default".
206  if (stack_size == 0) {
207    stack_size = Runtime::Current()->GetDefaultStackSize();
208  }
209
210  // Dalvik used the bionic pthread default stack size for native threads,
211  // so include that here to support apps that expect large native stacks.
212  stack_size += 1 * MB;
213
214  // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
215  if (stack_size < PTHREAD_STACK_MIN) {
216    stack_size = PTHREAD_STACK_MIN;
217  }
218
219  if (Runtime::Current()->ExplicitStackOverflowChecks()) {
220    // It's likely that callers are trying to ensure they have at least a certain amount of
221    // stack space, so we should add our reserved space on top of what they requested, rather
222    // than implicitly take it away from them.
223    stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
224  } else {
225    // If we are going to use implicit stack checks, allocate space for the protected
226    // region at the bottom of the stack.
227    stack_size += Thread::kStackOverflowImplicitCheckSize +
228        GetStackOverflowReservedBytes(kRuntimeISA);
229  }
230
231  // Some systems require the stack size to be a multiple of the system page size, so round up.
232  stack_size = RoundUp(stack_size, kPageSize);
233
234  return stack_size;
235}
236
237// Global variable to prevent the compiler optimizing away the page reads for the stack.
238byte dont_optimize_this;
239
240// Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
241// overflow is detected.  It is located right below the stack_begin_.
242//
243// There is a little complexity here that deserves a special mention.  On some
244// architectures, the stack created using a VM_GROWSDOWN flag
245// to prevent memory being allocated when it's not needed.  This flag makes the
246// kernel only allocate memory for the stack by growing down in memory.  Because we
247// want to put an mprotected region far away from that at the stack top, we need
248// to make sure the pages for the stack are mapped in before we call mprotect.  We do
249// this by reading every page from the stack bottom (highest address) to the stack top.
250// We then madvise this away.
251void Thread::InstallImplicitProtection() {
252  byte* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
253  byte* stack_himem = tlsPtr_.stack_end;
254  byte* stack_top = reinterpret_cast<byte*>(reinterpret_cast<uintptr_t>(&stack_himem) &
255      ~(kPageSize - 1));    // Page containing current top of stack.
256
257  // First remove the protection on the protected region as will want to read and
258  // write it.  This may fail (on the first attempt when the stack is not mapped)
259  // but we ignore that.
260  UnprotectStack();
261
262  // Map in the stack.  This must be done by reading from the
263  // current stack pointer downwards as the stack may be mapped using VM_GROWSDOWN
264  // in the kernel.  Any access more than a page below the current SP might cause
265  // a segv.
266
267  // Read every page from the high address to the low.
268  for (byte* p = stack_top; p >= pregion; p -= kPageSize) {
269    dont_optimize_this = *p;
270  }
271
272  VLOG(threads) << "installing stack protected region at " << std::hex <<
273      static_cast<void*>(pregion) << " to " <<
274      static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
275
276  // Protect the bottom of the stack to prevent read/write to it.
277  ProtectStack();
278
279  // Tell the kernel that we won't be needing these pages any more.
280  // NB. madvise will probably write zeroes into the memory (on linux it does).
281  uint32_t unwanted_size = stack_top - pregion - kPageSize;
282  madvise(pregion, unwanted_size, MADV_DONTNEED);
283}
284
285void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
286  CHECK(java_peer != nullptr);
287  Thread* self = static_cast<JNIEnvExt*>(env)->self;
288  Runtime* runtime = Runtime::Current();
289
290  // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
291  bool thread_start_during_shutdown = false;
292  {
293    MutexLock mu(self, *Locks::runtime_shutdown_lock_);
294    if (runtime->IsShuttingDownLocked()) {
295      thread_start_during_shutdown = true;
296    } else {
297      runtime->StartThreadBirth();
298    }
299  }
300  if (thread_start_during_shutdown) {
301    ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
302    env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
303    return;
304  }
305
306  Thread* child_thread = new Thread(is_daemon);
307  // Use global JNI ref to hold peer live while child thread starts.
308  child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
309  stack_size = FixStackSize(stack_size);
310
311  // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
312  // assign it.
313  env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
314                    reinterpret_cast<jlong>(child_thread));
315
316  pthread_t new_pthread;
317  pthread_attr_t attr;
318  CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
319  CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED");
320  CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
321  int pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, child_thread);
322  CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
323
324  if (pthread_create_result != 0) {
325    // pthread_create(3) failed, so clean up.
326    {
327      MutexLock mu(self, *Locks::runtime_shutdown_lock_);
328      runtime->EndThreadBirth();
329    }
330    // Manually delete the global reference since Thread::Init will not have been run.
331    env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
332    child_thread->tlsPtr_.jpeer = nullptr;
333    delete child_thread;
334    child_thread = nullptr;
335    // TODO: remove from thread group?
336    env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
337    {
338      std::string msg(StringPrintf("pthread_create (%s stack) failed: %s",
339                                   PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
340      ScopedObjectAccess soa(env);
341      soa.Self()->ThrowOutOfMemoryError(msg.c_str());
342    }
343  }
344}
345
346void Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm) {
347  // This function does all the initialization that must be run by the native thread it applies to.
348  // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
349  // we can handshake with the corresponding native thread when it's ready.) Check this native
350  // thread hasn't been through here already...
351  CHECK(Thread::Current() == nullptr);
352  SetUpAlternateSignalStack();
353  InitCpu();
354  InitTlsEntryPoints();
355  RemoveSuspendTrigger();
356  InitCardTable();
357  InitTid();
358  // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
359  // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
360  tlsPtr_.pthread_self = pthread_self();
361  CHECK(is_started_);
362  CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
363  DCHECK_EQ(Thread::Current(), this);
364
365  tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
366  InitStackHwm();
367
368  tlsPtr_.jni_env = new JNIEnvExt(this, java_vm);
369  thread_list->Register(this);
370}
371
372Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group,
373                       bool create_peer) {
374  Thread* self;
375  Runtime* runtime = Runtime::Current();
376  if (runtime == nullptr) {
377    LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
378    return nullptr;
379  }
380  {
381    MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
382    if (runtime->IsShuttingDownLocked()) {
383      LOG(ERROR) << "Thread attaching while runtime is shutting down: " << thread_name;
384      return nullptr;
385    } else {
386      Runtime::Current()->StartThreadBirth();
387      self = new Thread(as_daemon);
388      self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
389      Runtime::Current()->EndThreadBirth();
390    }
391  }
392
393  CHECK_NE(self->GetState(), kRunnable);
394  self->SetState(kNative);
395
396  // If we're the main thread, ClassLinker won't be created until after we're attached,
397  // so that thread needs a two-stage attach. Regular threads don't need this hack.
398  // In the compiler, all threads need this hack, because no-one's going to be getting
399  // a native peer!
400  if (create_peer) {
401    self->CreatePeer(thread_name, as_daemon, thread_group);
402  } else {
403    // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
404    if (thread_name != nullptr) {
405      self->tlsPtr_.name->assign(thread_name);
406      ::art::SetThreadName(thread_name);
407    }
408  }
409
410  return self;
411}
412
413void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
414  Runtime* runtime = Runtime::Current();
415  CHECK(runtime->IsStarted());
416  JNIEnv* env = tlsPtr_.jni_env;
417
418  if (thread_group == nullptr) {
419    thread_group = runtime->GetMainThreadGroup();
420  }
421  ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
422  jint thread_priority = GetNativePriority();
423  jboolean thread_is_daemon = as_daemon;
424
425  ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
426  if (peer.get() == nullptr) {
427    CHECK(IsExceptionPending());
428    return;
429  }
430  {
431    ScopedObjectAccess soa(this);
432    tlsPtr_.opeer = soa.Decode<mirror::Object*>(peer.get());
433  }
434  env->CallNonvirtualVoidMethod(peer.get(),
435                                WellKnownClasses::java_lang_Thread,
436                                WellKnownClasses::java_lang_Thread_init,
437                                thread_group, thread_name.get(), thread_priority, thread_is_daemon);
438  AssertNoPendingException();
439
440  Thread* self = this;
441  DCHECK_EQ(self, Thread::Current());
442  env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
443                    reinterpret_cast<jlong>(self));
444
445  ScopedObjectAccess soa(self);
446  StackHandleScope<1> hs(self);
447  Handle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName(soa)));
448  if (peer_thread_name.Get() == nullptr) {
449    // The Thread constructor should have set the Thread.name to a
450    // non-null value. However, because we can run without code
451    // available (in the compiler, in tests), we manually assign the
452    // fields the constructor should have set.
453    if (runtime->IsActiveTransaction()) {
454      InitPeer<true>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
455    } else {
456      InitPeer<false>(soa, thread_is_daemon, thread_group, thread_name.get(), thread_priority);
457    }
458    peer_thread_name.Assign(GetThreadName(soa));
459  }
460  // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
461  if (peer_thread_name.Get() != nullptr) {
462    SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
463  }
464}
465
466template<bool kTransactionActive>
467void Thread::InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
468                      jobject thread_name, jint thread_priority) {
469  soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->
470      SetBoolean<kTransactionActive>(tlsPtr_.opeer, thread_is_daemon);
471  soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->
472      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_group));
473  soa.DecodeField(WellKnownClasses::java_lang_Thread_name)->
474      SetObject<kTransactionActive>(tlsPtr_.opeer, soa.Decode<mirror::Object*>(thread_name));
475  soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)->
476      SetInt<kTransactionActive>(tlsPtr_.opeer, thread_priority);
477}
478
479void Thread::SetThreadName(const char* name) {
480  tlsPtr_.name->assign(name);
481  ::art::SetThreadName(name);
482  Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
483}
484
485void Thread::InitStackHwm() {
486  void* read_stack_base;
487  size_t read_stack_size;
488  GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size);
489
490  // TODO: include this in the thread dumps; potentially useful in SIGQUIT output?
491  VLOG(threads) << StringPrintf("Native stack is at %p (%s)", read_stack_base,
492                                PrettySize(read_stack_size).c_str());
493
494  tlsPtr_.stack_begin = reinterpret_cast<byte*>(read_stack_base);
495  tlsPtr_.stack_size = read_stack_size;
496
497  // The minimum stack size we can cope with is the overflow reserved bytes (typically
498  // 8K) + the protected region size (4K) + another page (4K).  Typically this will
499  // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
500  // between 8K and 12K.
501  uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
502    + 4 * KB;
503  if (read_stack_size <= min_stack) {
504    LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << read_stack_size
505        << " bytes)";
506  }
507
508  // TODO: move this into the Linux GetThreadStack implementation.
509#if !defined(__APPLE__)
510  // If we're the main thread, check whether we were run with an unlimited stack. In that case,
511  // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
512  // will be broken because we'll die long before we get close to 2GB.
513  bool is_main_thread = (::art::GetTid() == getpid());
514  if (is_main_thread) {
515    rlimit stack_limit;
516    if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
517      PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
518    }
519    if (stack_limit.rlim_cur == RLIM_INFINITY) {
520      // Find the default stack size for new threads...
521      pthread_attr_t default_attributes;
522      size_t default_stack_size;
523      CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query");
524      CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size),
525                         "default stack size query");
526      CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query");
527
528      // ...and use that as our limit.
529      size_t old_stack_size = read_stack_size;
530      tlsPtr_.stack_size = default_stack_size;
531      tlsPtr_.stack_begin += (old_stack_size - default_stack_size);
532      VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
533                    << " to " << PrettySize(default_stack_size)
534                    << " with base " << reinterpret_cast<void*>(tlsPtr_.stack_begin);
535    }
536  }
537#endif
538
539  // Set stack_end_ to the bottom of the stack saving space of stack overflows
540  bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
541  ResetDefaultStackEnd();
542
543  // Install the protected region if we are doing implicit overflow checks.
544  if (implicit_stack_check) {
545    size_t guardsize;
546    pthread_attr_t attributes;
547    CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), "guard size query");
548    CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, &guardsize), "guard size query");
549    CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), "guard size query");
550    // The thread might have protected region at the bottom.  We need
551    // to install our own region so we need to move the limits
552    // of the stack to make room for it.
553
554#if defined(__i386__) || defined(__x86_64__)
555    // Work around issue trying to read last page of stack on Intel.
556    // The bug for this is b/17111575.  The problem is that we are
557    // unable to read the page just above the guard page on the
558    // main stack on an intel target.  When the bug is fixed
559    // this can be removed.
560    if (::art::GetTid() == getpid()) {
561      guardsize += 4 * KB;
562    }
563#endif
564    tlsPtr_.stack_begin += guardsize + kStackOverflowProtectedSize;
565    tlsPtr_.stack_end += guardsize + kStackOverflowProtectedSize;
566    tlsPtr_.stack_size -= guardsize;
567
568    InstallImplicitProtection();
569  }
570
571  // Sanity check.
572  int stack_variable;
573  CHECK_GT(&stack_variable, reinterpret_cast<void*>(tlsPtr_.stack_end));
574}
575
576void Thread::ShortDump(std::ostream& os) const {
577  os << "Thread[";
578  if (GetThreadId() != 0) {
579    // If we're in kStarting, we won't have a thin lock id or tid yet.
580    os << GetThreadId()
581             << ",tid=" << GetTid() << ',';
582  }
583  os << GetState()
584           << ",Thread*=" << this
585           << ",peer=" << tlsPtr_.opeer
586           << ",\"" << *tlsPtr_.name << "\""
587           << "]";
588}
589
590void Thread::Dump(std::ostream& os) const {
591  DumpState(os);
592  DumpStack(os);
593}
594
595mirror::String* Thread::GetThreadName(const ScopedObjectAccessAlreadyRunnable& soa) const {
596  mirror::ArtField* f = soa.DecodeField(WellKnownClasses::java_lang_Thread_name);
597  return (tlsPtr_.opeer != nullptr) ? reinterpret_cast<mirror::String*>(f->GetObject(tlsPtr_.opeer)) : nullptr;
598}
599
600void Thread::GetThreadName(std::string& name) const {
601  name.assign(*tlsPtr_.name);
602}
603
604uint64_t Thread::GetCpuMicroTime() const {
605#if defined(HAVE_POSIX_CLOCKS)
606  clockid_t cpu_clock_id;
607  pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
608  timespec now;
609  clock_gettime(cpu_clock_id, &now);
610  return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
611#else
612  UNIMPLEMENTED(WARNING);
613  return -1;
614#endif
615}
616
617// Attempt to rectify locks so that we dump thread list with required locks before exiting.
618static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
619  LOG(ERROR) << *thread << " suspend count already zero.";
620  Locks::thread_suspend_count_lock_->Unlock(self);
621  if (!Locks::mutator_lock_->IsSharedHeld(self)) {
622    Locks::mutator_lock_->SharedTryLock(self);
623    if (!Locks::mutator_lock_->IsSharedHeld(self)) {
624      LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
625    }
626  }
627  if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
628    Locks::thread_list_lock_->TryLock(self);
629    if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
630      LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
631    }
632  }
633  std::ostringstream ss;
634  Runtime::Current()->GetThreadList()->DumpLocked(ss);
635  LOG(FATAL) << ss.str();
636}
637
638void Thread::ModifySuspendCount(Thread* self, int delta, bool for_debugger) {
639  if (kIsDebugBuild) {
640    DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
641          << delta << " " << tls32_.debug_suspend_count << " " << this;
642    DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
643    Locks::thread_suspend_count_lock_->AssertHeld(self);
644    if (this != self && !IsSuspended()) {
645      Locks::thread_list_lock_->AssertHeld(self);
646    }
647  }
648  if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
649    UnsafeLogFatalForSuspendCount(self, this);
650    return;
651  }
652
653  tls32_.suspend_count += delta;
654  if (for_debugger) {
655    tls32_.debug_suspend_count += delta;
656  }
657
658  if (tls32_.suspend_count == 0) {
659    AtomicClearFlag(kSuspendRequest);
660  } else {
661    AtomicSetFlag(kSuspendRequest);
662    TriggerSuspend();
663  }
664}
665
666void Thread::RunCheckpointFunction() {
667  Closure *checkpoints[kMaxCheckpoints];
668
669  // Grab the suspend_count lock and copy the current set of
670  // checkpoints.  Then clear the list and the flag.  The RequestCheckpoint
671  // function will also grab this lock so we prevent a race between setting
672  // the kCheckpointRequest flag and clearing it.
673  {
674    MutexLock mu(this, *Locks::thread_suspend_count_lock_);
675    for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
676      checkpoints[i] = tlsPtr_.checkpoint_functions[i];
677      tlsPtr_.checkpoint_functions[i] = nullptr;
678    }
679    AtomicClearFlag(kCheckpointRequest);
680  }
681
682  // Outside the lock, run all the checkpoint functions that
683  // we collected.
684  bool found_checkpoint = false;
685  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
686    if (checkpoints[i] != nullptr) {
687      ATRACE_BEGIN("Checkpoint function");
688      checkpoints[i]->Run(this);
689      ATRACE_END();
690      found_checkpoint = true;
691    }
692  }
693  CHECK(found_checkpoint);
694}
695
696bool Thread::RequestCheckpoint(Closure* function) {
697  union StateAndFlags old_state_and_flags;
698  old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
699  if (old_state_and_flags.as_struct.state != kRunnable) {
700    return false;  // Fail, thread is suspended and so can't run a checkpoint.
701  }
702
703  uint32_t available_checkpoint = kMaxCheckpoints;
704  for (uint32_t i = 0 ; i < kMaxCheckpoints; ++i) {
705    if (tlsPtr_.checkpoint_functions[i] == nullptr) {
706      available_checkpoint = i;
707      break;
708    }
709  }
710  if (available_checkpoint == kMaxCheckpoints) {
711    // No checkpoint functions available, we can't run a checkpoint
712    return false;
713  }
714  tlsPtr_.checkpoint_functions[available_checkpoint] = function;
715
716  // Checkpoint function installed now install flag bit.
717  // We must be runnable to request a checkpoint.
718  DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
719  union StateAndFlags new_state_and_flags;
720  new_state_and_flags.as_int = old_state_and_flags.as_int;
721  new_state_and_flags.as_struct.flags |= kCheckpointRequest;
722  bool success =
723      tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(old_state_and_flags.as_int,
724                                                                                       new_state_and_flags.as_int);
725  if (UNLIKELY(!success)) {
726    // The thread changed state before the checkpoint was installed.
727    CHECK_EQ(tlsPtr_.checkpoint_functions[available_checkpoint], function);
728    tlsPtr_.checkpoint_functions[available_checkpoint] = nullptr;
729  } else {
730    CHECK_EQ(ReadFlag(kCheckpointRequest), true);
731    TriggerSuspend();
732  }
733  return success;
734}
735
736void Thread::FullSuspendCheck() {
737  VLOG(threads) << this << " self-suspending";
738  ATRACE_BEGIN("Full suspend check");
739  // Make thread appear suspended to other threads, release mutator_lock_.
740  TransitionFromRunnableToSuspended(kSuspended);
741  // Transition back to runnable noting requests to suspend, re-acquire share on mutator_lock_.
742  TransitionFromSuspendedToRunnable();
743  ATRACE_END();
744  VLOG(threads) << this << " self-reviving";
745}
746
747void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
748  std::string group_name;
749  int priority;
750  bool is_daemon = false;
751  Thread* self = Thread::Current();
752
753  // Don't do this if we are aborting since the GC may have all the threads suspended. This will
754  // cause ScopedObjectAccessUnchecked to deadlock.
755  if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
756    ScopedObjectAccessUnchecked soa(self);
757    priority = soa.DecodeField(WellKnownClasses::java_lang_Thread_priority)
758        ->GetInt(thread->tlsPtr_.opeer);
759    is_daemon = soa.DecodeField(WellKnownClasses::java_lang_Thread_daemon)
760        ->GetBoolean(thread->tlsPtr_.opeer);
761
762    mirror::Object* thread_group =
763        soa.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(thread->tlsPtr_.opeer);
764
765    if (thread_group != nullptr) {
766      mirror::ArtField* group_name_field =
767          soa.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name);
768      mirror::String* group_name_string =
769          reinterpret_cast<mirror::String*>(group_name_field->GetObject(thread_group));
770      group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
771    }
772  } else {
773    priority = GetNativePriority();
774  }
775
776  std::string scheduler_group_name(GetSchedulerGroupName(tid));
777  if (scheduler_group_name.empty()) {
778    scheduler_group_name = "default";
779  }
780
781  if (thread != nullptr) {
782    os << '"' << *thread->tlsPtr_.name << '"';
783    if (is_daemon) {
784      os << " daemon";
785    }
786    os << " prio=" << priority
787       << " tid=" << thread->GetThreadId()
788       << " " << thread->GetState();
789    if (thread->IsStillStarting()) {
790      os << " (still starting up)";
791    }
792    os << "\n";
793  } else {
794    os << '"' << ::art::GetThreadName(tid) << '"'
795       << " prio=" << priority
796       << " (not attached)\n";
797  }
798
799  if (thread != nullptr) {
800    MutexLock mu(self, *Locks::thread_suspend_count_lock_);
801    os << "  | group=\"" << group_name << "\""
802       << " sCount=" << thread->tls32_.suspend_count
803       << " dsCount=" << thread->tls32_.debug_suspend_count
804       << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
805       << " self=" << reinterpret_cast<const void*>(thread) << "\n";
806  }
807
808  os << "  | sysTid=" << tid
809     << " nice=" << getpriority(PRIO_PROCESS, tid)
810     << " cgrp=" << scheduler_group_name;
811  if (thread != nullptr) {
812    int policy;
813    sched_param sp;
814    CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
815                       __FUNCTION__);
816    os << " sched=" << policy << "/" << sp.sched_priority
817       << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
818  }
819  os << "\n";
820
821  // Grab the scheduler stats for this thread.
822  std::string scheduler_stats;
823  if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
824    scheduler_stats.resize(scheduler_stats.size() - 1);  // Lose the trailing '\n'.
825  } else {
826    scheduler_stats = "0 0 0";
827  }
828
829  char native_thread_state = '?';
830  int utime = 0;
831  int stime = 0;
832  int task_cpu = 0;
833  GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
834
835  os << "  | state=" << native_thread_state
836     << " schedstat=( " << scheduler_stats << " )"
837     << " utm=" << utime
838     << " stm=" << stime
839     << " core=" << task_cpu
840     << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
841  if (thread != nullptr) {
842    os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
843        << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
844        << PrettySize(thread->tlsPtr_.stack_size) << "\n";
845    // Dump the held mutexes.
846    os << "  | held mutexes=";
847    for (size_t i = 0; i < kLockLevelCount; ++i) {
848      if (i != kMonitorLock) {
849        BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
850        if (mutex != nullptr) {
851          os << " \"" << mutex->GetName() << "\"";
852          if (mutex->IsReaderWriterMutex()) {
853            ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
854            if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
855              os << "(exclusive held)";
856            } else {
857              os << "(shared held)";
858            }
859          }
860        }
861      }
862    }
863    os << "\n";
864  }
865}
866
867void Thread::DumpState(std::ostream& os) const {
868  Thread::DumpState(os, this, GetTid());
869}
870
871struct StackDumpVisitor : public StackVisitor {
872  StackDumpVisitor(std::ostream& os, Thread* thread, Context* context, bool can_allocate)
873      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
874      : StackVisitor(thread, context), os(os), thread(thread), can_allocate(can_allocate),
875        last_method(nullptr), last_line_number(0), repetition_count(0), frame_count(0) {
876  }
877
878  virtual ~StackDumpVisitor() {
879    if (frame_count == 0) {
880      os << "  (no managed stack frames)\n";
881    }
882  }
883
884  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
885    mirror::ArtMethod* m = GetMethod();
886    if (m->IsRuntimeMethod()) {
887      return true;
888    }
889    const int kMaxRepetition = 3;
890    mirror::Class* c = m->GetDeclaringClass();
891    mirror::DexCache* dex_cache = c->GetDexCache();
892    int line_number = -1;
893    if (dex_cache != nullptr) {  // be tolerant of bad input
894      const DexFile& dex_file = *dex_cache->GetDexFile();
895      line_number = dex_file.GetLineNumFromPC(m, GetDexPc(false));
896    }
897    if (line_number == last_line_number && last_method == m) {
898      ++repetition_count;
899    } else {
900      if (repetition_count >= kMaxRepetition) {
901        os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
902      }
903      repetition_count = 0;
904      last_line_number = line_number;
905      last_method = m;
906    }
907    if (repetition_count < kMaxRepetition) {
908      os << "  at " << PrettyMethod(m, false);
909      if (m->IsNative()) {
910        os << "(Native method)";
911      } else {
912        const char* source_file(m->GetDeclaringClassSourceFile());
913        os << "(" << (source_file != nullptr ? source_file : "unavailable")
914           << ":" << line_number << ")";
915      }
916      os << "\n";
917      if (frame_count == 0) {
918        Monitor::DescribeWait(os, thread);
919      }
920      if (can_allocate) {
921        // Visit locks, but do not abort on errors. This would trigger a nested abort.
922        Monitor::VisitLocks(this, DumpLockedObject, &os, false);
923      }
924    }
925
926    ++frame_count;
927    return true;
928  }
929
930  static void DumpLockedObject(mirror::Object* o, void* context)
931      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
932    std::ostream& os = *reinterpret_cast<std::ostream*>(context);
933    os << "  - locked ";
934    if (o == nullptr) {
935      os << "an unknown object";
936    } else {
937      if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
938          Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
939        // Getting the identity hashcode here would result in lock inflation and suspension of the
940        // current thread, which isn't safe if this is the only runnable thread.
941        os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
942                           PrettyTypeOf(o).c_str());
943      } else {
944        os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), PrettyTypeOf(o).c_str());
945      }
946    }
947    os << "\n";
948  }
949
950  std::ostream& os;
951  const Thread* thread;
952  const bool can_allocate;
953  mirror::ArtMethod* method;
954  mirror::ArtMethod* last_method;
955  int last_line_number;
956  int repetition_count;
957  int frame_count;
958};
959
960static bool ShouldShowNativeStack(const Thread* thread)
961    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
962  ThreadState state = thread->GetState();
963
964  // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
965  if (state > kWaiting && state < kStarting) {
966    return true;
967  }
968
969  // In an Object.wait variant or Thread.sleep? That's not interesting.
970  if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
971    return false;
972  }
973
974  // In some other native method? That's interesting.
975  // We don't just check kNative because native methods will be in state kSuspended if they're
976  // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
977  // thread-startup states if it's early enough in their life cycle (http://b/7432159).
978  mirror::ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
979  return current_method != nullptr && current_method->IsNative();
980}
981
982void Thread::DumpJavaStack(std::ostream& os) const {
983  std::unique_ptr<Context> context(Context::Create());
984  StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
985                          !tls32_.throwing_OutOfMemoryError);
986  dumper.WalkStack();
987}
988
989void Thread::DumpStack(std::ostream& os) const {
990  // TODO: we call this code when dying but may not have suspended the thread ourself. The
991  //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
992  //       the race with the thread_suspend_count_lock_).
993  bool dump_for_abort = (gAborting > 0);
994  bool safe_to_dump = (this == Thread::Current() || IsSuspended());
995  if (!kIsDebugBuild) {
996    // We always want to dump the stack for an abort, however, there is no point dumping another
997    // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
998    safe_to_dump = (safe_to_dump || dump_for_abort);
999  }
1000  if (safe_to_dump) {
1001    // If we're currently in native code, dump that stack before dumping the managed stack.
1002    if (dump_for_abort || ShouldShowNativeStack(this)) {
1003      DumpKernelStack(os, GetTid(), "  kernel: ", false);
1004      DumpNativeStack(os, GetTid(), "  native: ", GetCurrentMethod(nullptr));
1005    }
1006    DumpJavaStack(os);
1007  } else {
1008    os << "Not able to dump stack of thread that isn't suspended";
1009  }
1010}
1011
1012void Thread::ThreadExitCallback(void* arg) {
1013  Thread* self = reinterpret_cast<Thread*>(arg);
1014  if (self->tls32_.thread_exit_check_count == 0) {
1015    LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
1016        "going to use a pthread_key_create destructor?): " << *self;
1017    CHECK(is_started_);
1018    CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
1019    self->tls32_.thread_exit_check_count = 1;
1020  } else {
1021    LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
1022  }
1023}
1024
1025void Thread::Startup() {
1026  CHECK(!is_started_);
1027  is_started_ = true;
1028  {
1029    // MutexLock to keep annotalysis happy.
1030    //
1031    // Note we use nullptr for the thread because Thread::Current can
1032    // return garbage since (is_started_ == true) and
1033    // Thread::pthread_key_self_ is not yet initialized.
1034    // This was seen on glibc.
1035    MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
1036    resume_cond_ = new ConditionVariable("Thread resumption condition variable",
1037                                         *Locks::thread_suspend_count_lock_);
1038  }
1039
1040  // Allocate a TLS slot.
1041  CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key");
1042
1043  // Double-check the TLS slot allocation.
1044  if (pthread_getspecific(pthread_key_self_) != nullptr) {
1045    LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
1046  }
1047}
1048
1049void Thread::FinishStartup() {
1050  Runtime* runtime = Runtime::Current();
1051  CHECK(runtime->IsStarted());
1052
1053  // Finish attaching the main thread.
1054  ScopedObjectAccess soa(Thread::Current());
1055  Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
1056
1057  Runtime::Current()->GetClassLinker()->RunRootClinits();
1058}
1059
1060void Thread::Shutdown() {
1061  CHECK(is_started_);
1062  is_started_ = false;
1063  CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
1064  MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
1065  if (resume_cond_ != nullptr) {
1066    delete resume_cond_;
1067    resume_cond_ = nullptr;
1068  }
1069}
1070
1071Thread::Thread(bool daemon) : tls32_(daemon), wait_monitor_(nullptr), interrupted_(false) {
1072  wait_mutex_ = new Mutex("a thread wait mutex");
1073  wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
1074  tlsPtr_.debug_invoke_req = new DebugInvokeReq;
1075  tlsPtr_.single_step_control = new SingleStepControl;
1076  tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
1077  tlsPtr_.name = new std::string(kThreadNameDuringStartup);
1078
1079  CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread);
1080  tls32_.state_and_flags.as_struct.flags = 0;
1081  tls32_.state_and_flags.as_struct.state = kNative;
1082  memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
1083  std::fill(tlsPtr_.rosalloc_runs,
1084            tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBrackets,
1085            gc::allocator::RosAlloc::GetDedicatedFullRun());
1086  for (uint32_t i = 0; i < kMaxCheckpoints; ++i) {
1087    tlsPtr_.checkpoint_functions[i] = nullptr;
1088  }
1089}
1090
1091bool Thread::IsStillStarting() const {
1092  // You might think you can check whether the state is kStarting, but for much of thread startup,
1093  // the thread is in kNative; it might also be in kVmWait.
1094  // You might think you can check whether the peer is nullptr, but the peer is actually created and
1095  // assigned fairly early on, and needs to be.
1096  // It turns out that the last thing to change is the thread name; that's a good proxy for "has
1097  // this thread _ever_ entered kRunnable".
1098  return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
1099      (*tlsPtr_.name == kThreadNameDuringStartup);
1100}
1101
1102void Thread::AssertNoPendingException() const {
1103  if (UNLIKELY(IsExceptionPending())) {
1104    ScopedObjectAccess soa(Thread::Current());
1105    mirror::Throwable* exception = GetException(nullptr);
1106    LOG(FATAL) << "No pending exception expected: " << exception->Dump();
1107  }
1108}
1109
1110void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
1111  if (UNLIKELY(IsExceptionPending())) {
1112    ScopedObjectAccess soa(Thread::Current());
1113    mirror::Throwable* exception = GetException(nullptr);
1114    LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
1115        << exception->Dump();
1116  }
1117}
1118
1119static void MonitorExitVisitor(mirror::Object** object, void* arg, uint32_t /*thread_id*/,
1120                               RootType /*root_type*/)
1121    NO_THREAD_SAFETY_ANALYSIS {
1122  Thread* self = reinterpret_cast<Thread*>(arg);
1123  mirror::Object* entered_monitor = *object;
1124  if (self->HoldsLock(entered_monitor)) {
1125    LOG(WARNING) << "Calling MonitorExit on object "
1126                 << object << " (" << PrettyTypeOf(entered_monitor) << ")"
1127                 << " left locked by native thread "
1128                 << *Thread::Current() << " which is detaching";
1129    entered_monitor->MonitorExit(self);
1130  }
1131}
1132
1133void Thread::Destroy() {
1134  Thread* self = this;
1135  DCHECK_EQ(self, Thread::Current());
1136
1137  if (tlsPtr_.opeer != nullptr) {
1138    ScopedObjectAccess soa(self);
1139    // We may need to call user-supplied managed code, do this before final clean-up.
1140    HandleUncaughtExceptions(soa);
1141    RemoveFromThreadGroup(soa);
1142
1143    // this.nativePeer = 0;
1144    if (Runtime::Current()->IsActiveTransaction()) {
1145      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1146          ->SetLong<true>(tlsPtr_.opeer, 0);
1147    } else {
1148      soa.DecodeField(WellKnownClasses::java_lang_Thread_nativePeer)
1149          ->SetLong<false>(tlsPtr_.opeer, 0);
1150    }
1151    Dbg::PostThreadDeath(self);
1152
1153    // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
1154    // who is waiting.
1155    mirror::Object* lock =
1156        soa.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
1157    // (This conditional is only needed for tests, where Thread.lock won't have been set.)
1158    if (lock != nullptr) {
1159      StackHandleScope<1> hs(self);
1160      Handle<mirror::Object> h_obj(hs.NewHandle(lock));
1161      ObjectLock<mirror::Object> locker(self, h_obj);
1162      locker.NotifyAll();
1163    }
1164  }
1165
1166  // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
1167  if (tlsPtr_.jni_env != nullptr) {
1168    tlsPtr_.jni_env->monitors.VisitRoots(MonitorExitVisitor, self, 0, kRootVMInternal);
1169  }
1170}
1171
1172Thread::~Thread() {
1173  if (tlsPtr_.jni_env != nullptr && tlsPtr_.jpeer != nullptr) {
1174    // If pthread_create fails we don't have a jni env here.
1175    tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
1176    tlsPtr_.jpeer = nullptr;
1177  }
1178  tlsPtr_.opeer = nullptr;
1179
1180  bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
1181  if (initialized) {
1182    delete tlsPtr_.jni_env;
1183    tlsPtr_.jni_env = nullptr;
1184  }
1185  CHECK_NE(GetState(), kRunnable);
1186  CHECK_NE(ReadFlag(kCheckpointRequest), true);
1187  CHECK(tlsPtr_.checkpoint_functions[0] == nullptr);
1188  CHECK(tlsPtr_.checkpoint_functions[1] == nullptr);
1189  CHECK(tlsPtr_.checkpoint_functions[2] == nullptr);
1190
1191  // We may be deleting a still born thread.
1192  SetStateUnsafe(kTerminated);
1193
1194  delete wait_cond_;
1195  delete wait_mutex_;
1196
1197  if (tlsPtr_.long_jump_context != nullptr) {
1198    delete tlsPtr_.long_jump_context;
1199  }
1200
1201  if (initialized) {
1202    CleanupCpu();
1203  }
1204
1205  delete tlsPtr_.debug_invoke_req;
1206  delete tlsPtr_.single_step_control;
1207  delete tlsPtr_.instrumentation_stack;
1208  delete tlsPtr_.name;
1209  delete tlsPtr_.stack_trace_sample;
1210
1211  Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
1212
1213  TearDownAlternateSignalStack();
1214}
1215
1216void Thread::HandleUncaughtExceptions(ScopedObjectAccess& soa) {
1217  if (!IsExceptionPending()) {
1218    return;
1219  }
1220  ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1221  ScopedThreadStateChange tsc(this, kNative);
1222
1223  // Get and clear the exception.
1224  ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
1225  tlsPtr_.jni_env->ExceptionClear();
1226
1227  // If the thread has its own handler, use that.
1228  ScopedLocalRef<jobject> handler(tlsPtr_.jni_env,
1229                                  tlsPtr_.jni_env->GetObjectField(peer.get(),
1230                                      WellKnownClasses::java_lang_Thread_uncaughtHandler));
1231  if (handler.get() == nullptr) {
1232    // Otherwise use the thread group's default handler.
1233    handler.reset(tlsPtr_.jni_env->GetObjectField(peer.get(),
1234                                                  WellKnownClasses::java_lang_Thread_group));
1235  }
1236
1237  // Call the handler.
1238  tlsPtr_.jni_env->CallVoidMethod(handler.get(),
1239      WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException,
1240      peer.get(), exception.get());
1241
1242  // If the handler threw, clear that exception too.
1243  tlsPtr_.jni_env->ExceptionClear();
1244}
1245
1246void Thread::RemoveFromThreadGroup(ScopedObjectAccess& soa) {
1247  // this.group.removeThread(this);
1248  // group can be null if we're in the compiler or a test.
1249  mirror::Object* ogroup = soa.DecodeField(WellKnownClasses::java_lang_Thread_group)
1250      ->GetObject(tlsPtr_.opeer);
1251  if (ogroup != nullptr) {
1252    ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
1253    ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
1254    ScopedThreadStateChange tsc(soa.Self(), kNative);
1255    tlsPtr_.jni_env->CallVoidMethod(group.get(),
1256                                    WellKnownClasses::java_lang_ThreadGroup_removeThread,
1257                                    peer.get());
1258  }
1259}
1260
1261size_t Thread::NumHandleReferences() {
1262  size_t count = 0;
1263  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1264    count += cur->NumberOfReferences();
1265  }
1266  return count;
1267}
1268
1269bool Thread::HandleScopeContains(jobject obj) const {
1270  StackReference<mirror::Object>* hs_entry =
1271      reinterpret_cast<StackReference<mirror::Object>*>(obj);
1272  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1273    if (cur->Contains(hs_entry)) {
1274      return true;
1275    }
1276  }
1277  // JNI code invoked from portable code uses shadow frames rather than the handle scope.
1278  return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
1279}
1280
1281void Thread::HandleScopeVisitRoots(RootCallback* visitor, void* arg, uint32_t thread_id) {
1282  for (HandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
1283    size_t num_refs = cur->NumberOfReferences();
1284    for (size_t j = 0; j < num_refs; ++j) {
1285      mirror::Object* object = cur->GetReference(j);
1286      if (object != nullptr) {
1287        mirror::Object* old_obj = object;
1288        visitor(&object, arg, thread_id, kRootNativeStack);
1289        if (old_obj != object) {
1290          cur->SetReference(j, object);
1291        }
1292      }
1293    }
1294  }
1295}
1296
1297mirror::Object* Thread::DecodeJObject(jobject obj) const {
1298  Locks::mutator_lock_->AssertSharedHeld(this);
1299  if (obj == nullptr) {
1300    return nullptr;
1301  }
1302  IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
1303  IndirectRefKind kind = GetIndirectRefKind(ref);
1304  mirror::Object* result;
1305  // The "kinds" below are sorted by the frequency we expect to encounter them.
1306  if (kind == kLocal) {
1307    IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
1308    // Local references do not need a read barrier.
1309    result = locals.Get<kWithoutReadBarrier>(ref);
1310  } else if (kind == kHandleScopeOrInvalid) {
1311    // TODO: make stack indirect reference table lookup more efficient.
1312    // Check if this is a local reference in the handle scope.
1313    if (LIKELY(HandleScopeContains(obj))) {
1314      // Read from handle scope.
1315      result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
1316      VerifyObject(result);
1317    } else {
1318      result = kInvalidIndirectRefObject;
1319    }
1320  } else if (kind == kGlobal) {
1321    JavaVMExt* const vm = Runtime::Current()->GetJavaVM();
1322    result = vm->globals.SynchronizedGet(const_cast<Thread*>(this), &vm->globals_lock, ref);
1323  } else {
1324    DCHECK_EQ(kind, kWeakGlobal);
1325    result = Runtime::Current()->GetJavaVM()->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
1326    if (result == kClearedJniWeakGlobal) {
1327      // This is a special case where it's okay to return nullptr.
1328      return nullptr;
1329    }
1330  }
1331
1332  if (UNLIKELY(result == nullptr)) {
1333    JniAbortF(nullptr, "use of deleted %s %p", ToStr<IndirectRefKind>(kind).c_str(), obj);
1334  }
1335  return result;
1336}
1337
1338// Implements java.lang.Thread.interrupted.
1339bool Thread::Interrupted() {
1340  MutexLock mu(Thread::Current(), *wait_mutex_);
1341  bool interrupted = IsInterruptedLocked();
1342  SetInterruptedLocked(false);
1343  return interrupted;
1344}
1345
1346// Implements java.lang.Thread.isInterrupted.
1347bool Thread::IsInterrupted() {
1348  MutexLock mu(Thread::Current(), *wait_mutex_);
1349  return IsInterruptedLocked();
1350}
1351
1352void Thread::Interrupt(Thread* self) {
1353  MutexLock mu(self, *wait_mutex_);
1354  if (interrupted_) {
1355    return;
1356  }
1357  interrupted_ = true;
1358  NotifyLocked(self);
1359}
1360
1361void Thread::Notify() {
1362  Thread* self = Thread::Current();
1363  MutexLock mu(self, *wait_mutex_);
1364  NotifyLocked(self);
1365}
1366
1367void Thread::NotifyLocked(Thread* self) {
1368  if (wait_monitor_ != nullptr) {
1369    wait_cond_->Signal(self);
1370  }
1371}
1372
1373class CountStackDepthVisitor : public StackVisitor {
1374 public:
1375  explicit CountStackDepthVisitor(Thread* thread)
1376      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1377      : StackVisitor(thread, nullptr),
1378        depth_(0), skip_depth_(0), skipping_(true) {}
1379
1380  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1381    // We want to skip frames up to and including the exception's constructor.
1382    // Note we also skip the frame if it doesn't have a method (namely the callee
1383    // save frame)
1384    mirror::ArtMethod* m = GetMethod();
1385    if (skipping_ && !m->IsRuntimeMethod() &&
1386        !mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
1387      skipping_ = false;
1388    }
1389    if (!skipping_) {
1390      if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
1391        ++depth_;
1392      }
1393    } else {
1394      ++skip_depth_;
1395    }
1396    return true;
1397  }
1398
1399  int GetDepth() const {
1400    return depth_;
1401  }
1402
1403  int GetSkipDepth() const {
1404    return skip_depth_;
1405  }
1406
1407 private:
1408  uint32_t depth_;
1409  uint32_t skip_depth_;
1410  bool skipping_;
1411};
1412
1413template<bool kTransactionActive>
1414class BuildInternalStackTraceVisitor : public StackVisitor {
1415 public:
1416  explicit BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
1417      : StackVisitor(thread, nullptr), self_(self),
1418        skip_depth_(skip_depth), count_(0), dex_pc_trace_(nullptr), method_trace_(nullptr) {}
1419
1420  bool Init(int depth)
1421      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1422    // Allocate method trace with an extra slot that will hold the PC trace
1423    StackHandleScope<1> hs(self_);
1424    ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1425    Handle<mirror::ObjectArray<mirror::Object>> method_trace(
1426        hs.NewHandle(class_linker->AllocObjectArray<mirror::Object>(self_, depth + 1)));
1427    if (method_trace.Get() == nullptr) {
1428      return false;
1429    }
1430    mirror::IntArray* dex_pc_trace = mirror::IntArray::Alloc(self_, depth);
1431    if (dex_pc_trace == nullptr) {
1432      return false;
1433    }
1434    // Save PC trace in last element of method trace, also places it into the
1435    // object graph.
1436    // We are called from native: use non-transactional mode.
1437    method_trace->Set<kTransactionActive>(depth, dex_pc_trace);
1438    // Set the Object*s and assert that no thread suspension is now possible.
1439    const char* last_no_suspend_cause =
1440        self_->StartAssertNoThreadSuspension("Building internal stack trace");
1441    CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
1442    method_trace_ = method_trace.Get();
1443    dex_pc_trace_ = dex_pc_trace;
1444    return true;
1445  }
1446
1447  virtual ~BuildInternalStackTraceVisitor() {
1448    if (method_trace_ != nullptr) {
1449      self_->EndAssertNoThreadSuspension(nullptr);
1450    }
1451  }
1452
1453  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1454    if (method_trace_ == nullptr || dex_pc_trace_ == nullptr) {
1455      return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
1456    }
1457    if (skip_depth_ > 0) {
1458      skip_depth_--;
1459      return true;
1460    }
1461    mirror::ArtMethod* m = GetMethod();
1462    if (m->IsRuntimeMethod()) {
1463      return true;  // Ignore runtime frames (in particular callee save).
1464    }
1465    method_trace_->Set<kTransactionActive>(count_, m);
1466    dex_pc_trace_->Set<kTransactionActive>(count_,
1467        m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
1468    ++count_;
1469    return true;
1470  }
1471
1472  mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
1473    return method_trace_;
1474  }
1475
1476 private:
1477  Thread* const self_;
1478  // How many more frames to skip.
1479  int32_t skip_depth_;
1480  // Current position down stack trace.
1481  uint32_t count_;
1482  // Array of dex PC values.
1483  mirror::IntArray* dex_pc_trace_;
1484  // An array of the methods on the stack, the last entry is a reference to the PC trace.
1485  mirror::ObjectArray<mirror::Object>* method_trace_;
1486};
1487
1488template<bool kTransactionActive>
1489jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
1490  // Compute depth of stack
1491  CountStackDepthVisitor count_visitor(const_cast<Thread*>(this));
1492  count_visitor.WalkStack();
1493  int32_t depth = count_visitor.GetDepth();
1494  int32_t skip_depth = count_visitor.GetSkipDepth();
1495
1496  // Build internal stack trace.
1497  BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
1498                                                                         const_cast<Thread*>(this),
1499                                                                         skip_depth);
1500  if (!build_trace_visitor.Init(depth)) {
1501    return nullptr;  // Allocation failed.
1502  }
1503  build_trace_visitor.WalkStack();
1504  mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
1505  if (kIsDebugBuild) {
1506    for (int32_t i = 0; i < trace->GetLength(); ++i) {
1507      CHECK(trace->Get(i) != nullptr);
1508    }
1509  }
1510  return soa.AddLocalReference<jobjectArray>(trace);
1511}
1512template jobject Thread::CreateInternalStackTrace<false>(
1513    const ScopedObjectAccessAlreadyRunnable& soa) const;
1514template jobject Thread::CreateInternalStackTrace<true>(
1515    const ScopedObjectAccessAlreadyRunnable& soa) const;
1516
1517jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
1518    const ScopedObjectAccessAlreadyRunnable& soa, jobject internal, jobjectArray output_array,
1519    int* stack_depth) {
1520  // Decode the internal stack trace into the depth, method trace and PC trace
1521  int32_t depth = soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal)->GetLength() - 1;
1522
1523  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
1524
1525  jobjectArray result;
1526
1527  if (output_array != nullptr) {
1528    // Reuse the array we were given.
1529    result = output_array;
1530    // ...adjusting the number of frames we'll write to not exceed the array length.
1531    const int32_t traces_length =
1532        soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->GetLength();
1533    depth = std::min(depth, traces_length);
1534  } else {
1535    // Create java_trace array and place in local reference table
1536    mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
1537        class_linker->AllocStackTraceElementArray(soa.Self(), depth);
1538    if (java_traces == nullptr) {
1539      return nullptr;
1540    }
1541    result = soa.AddLocalReference<jobjectArray>(java_traces);
1542  }
1543
1544  if (stack_depth != nullptr) {
1545    *stack_depth = depth;
1546  }
1547
1548  for (int32_t i = 0; i < depth; ++i) {
1549    mirror::ObjectArray<mirror::Object>* method_trace =
1550          soa.Decode<mirror::ObjectArray<mirror::Object>*>(internal);
1551    // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
1552    mirror::ArtMethod* method = down_cast<mirror::ArtMethod*>(method_trace->Get(i));
1553    int32_t line_number;
1554    StackHandleScope<3> hs(soa.Self());
1555    auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
1556    auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
1557    if (method->IsProxyMethod()) {
1558      line_number = -1;
1559      class_name_object.Assign(method->GetDeclaringClass()->GetName());
1560      // source_name_object intentionally left null for proxy methods
1561    } else {
1562      mirror::IntArray* pc_trace = down_cast<mirror::IntArray*>(method_trace->Get(depth));
1563      uint32_t dex_pc = pc_trace->Get(i);
1564      line_number = method->GetLineNumFromDexPC(dex_pc);
1565      // Allocate element, potentially triggering GC
1566      // TODO: reuse class_name_object via Class::name_?
1567      const char* descriptor = method->GetDeclaringClassDescriptor();
1568      CHECK(descriptor != nullptr);
1569      std::string class_name(PrettyDescriptor(descriptor));
1570      class_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
1571      if (class_name_object.Get() == nullptr) {
1572        return nullptr;
1573      }
1574      const char* source_file = method->GetDeclaringClassSourceFile();
1575      if (source_file != nullptr) {
1576        source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
1577        if (source_name_object.Get() == nullptr) {
1578          return nullptr;
1579        }
1580      }
1581    }
1582    const char* method_name = method->GetName();
1583    CHECK(method_name != nullptr);
1584    Handle<mirror::String> method_name_object(
1585        hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
1586    if (method_name_object.Get() == nullptr) {
1587      return nullptr;
1588    }
1589    mirror::StackTraceElement* obj = mirror::StackTraceElement::Alloc(
1590        soa.Self(), class_name_object, method_name_object, source_name_object, line_number);
1591    if (obj == nullptr) {
1592      return nullptr;
1593    }
1594    // We are called from native: use non-transactional mode.
1595    soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>*>(result)->Set<false>(i, obj);
1596  }
1597  return result;
1598}
1599
1600void Thread::ThrowNewExceptionF(const ThrowLocation& throw_location,
1601                                const char* exception_class_descriptor, const char* fmt, ...) {
1602  va_list args;
1603  va_start(args, fmt);
1604  ThrowNewExceptionV(throw_location, exception_class_descriptor,
1605                     fmt, args);
1606  va_end(args);
1607}
1608
1609void Thread::ThrowNewExceptionV(const ThrowLocation& throw_location,
1610                                const char* exception_class_descriptor,
1611                                const char* fmt, va_list ap) {
1612  std::string msg;
1613  StringAppendV(&msg, fmt, ap);
1614  ThrowNewException(throw_location, exception_class_descriptor, msg.c_str());
1615}
1616
1617void Thread::ThrowNewException(const ThrowLocation& throw_location, const char* exception_class_descriptor,
1618                               const char* msg) {
1619  // Callers should either clear or call ThrowNewWrappedException.
1620  AssertNoPendingExceptionForNewException(msg);
1621  ThrowNewWrappedException(throw_location, exception_class_descriptor, msg);
1622}
1623
1624void Thread::ThrowNewWrappedException(const ThrowLocation& throw_location,
1625                                      const char* exception_class_descriptor,
1626                                      const char* msg) {
1627  DCHECK_EQ(this, Thread::Current());
1628  ScopedObjectAccessUnchecked soa(this);
1629  StackHandleScope<5> hs(soa.Self());
1630  // Ensure we don't forget arguments over object allocation.
1631  Handle<mirror::Object> saved_throw_this(hs.NewHandle(throw_location.GetThis()));
1632  Handle<mirror::ArtMethod> saved_throw_method(hs.NewHandle(throw_location.GetMethod()));
1633  // Ignore the cause throw location. TODO: should we report this as a re-throw?
1634  ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException(nullptr)));
1635  bool is_exception_reported = IsExceptionReportedToInstrumentation();
1636  ClearException();
1637  Runtime* runtime = Runtime::Current();
1638
1639  mirror::ClassLoader* cl = nullptr;
1640  if (saved_throw_method.Get() != nullptr) {
1641    cl = saved_throw_method.Get()->GetDeclaringClass()->GetClassLoader();
1642  }
1643  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(cl));
1644  Handle<mirror::Class> exception_class(
1645      hs.NewHandle(runtime->GetClassLinker()->FindClass(this, exception_class_descriptor,
1646                                                        class_loader)));
1647  if (UNLIKELY(exception_class.Get() == nullptr)) {
1648    CHECK(IsExceptionPending());
1649    LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
1650    return;
1651  }
1652
1653  if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(exception_class, true, true))) {
1654    DCHECK(IsExceptionPending());
1655    return;
1656  }
1657  DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
1658  Handle<mirror::Throwable> exception(
1659      hs.NewHandle(down_cast<mirror::Throwable*>(exception_class->AllocObject(this))));
1660
1661  // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
1662  if (exception.Get() == nullptr) {
1663    ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1664                                         throw_location.GetDexPc());
1665    SetException(gc_safe_throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1666    SetExceptionReportedToInstrumentation(is_exception_reported);
1667    return;
1668  }
1669
1670  // Choose an appropriate constructor and set up the arguments.
1671  const char* signature;
1672  ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
1673  if (msg != nullptr) {
1674    // Ensure we remember this and the method over the String allocation.
1675    msg_string.reset(
1676        soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
1677    if (UNLIKELY(msg_string.get() == nullptr)) {
1678      CHECK(IsExceptionPending());  // OOME.
1679      return;
1680    }
1681    if (cause.get() == nullptr) {
1682      signature = "(Ljava/lang/String;)V";
1683    } else {
1684      signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
1685    }
1686  } else {
1687    if (cause.get() == nullptr) {
1688      signature = "()V";
1689    } else {
1690      signature = "(Ljava/lang/Throwable;)V";
1691    }
1692  }
1693  mirror::ArtMethod* exception_init_method =
1694      exception_class->FindDeclaredDirectMethod("<init>", signature);
1695
1696  CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
1697      << PrettyDescriptor(exception_class_descriptor);
1698
1699  if (UNLIKELY(!runtime->IsStarted())) {
1700    // Something is trying to throw an exception without a started runtime, which is the common
1701    // case in the compiler. We won't be able to invoke the constructor of the exception, so set
1702    // the exception fields directly.
1703    if (msg != nullptr) {
1704      exception->SetDetailMessage(down_cast<mirror::String*>(DecodeJObject(msg_string.get())));
1705    }
1706    if (cause.get() != nullptr) {
1707      exception->SetCause(down_cast<mirror::Throwable*>(DecodeJObject(cause.get())));
1708    }
1709    ScopedLocalRef<jobject> trace(GetJniEnv(),
1710                                  Runtime::Current()->IsActiveTransaction()
1711                                      ? CreateInternalStackTrace<true>(soa)
1712                                      : CreateInternalStackTrace<false>(soa));
1713    if (trace.get() != nullptr) {
1714      exception->SetStackState(down_cast<mirror::Throwable*>(DecodeJObject(trace.get())));
1715    }
1716    ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1717                                         throw_location.GetDexPc());
1718    SetException(gc_safe_throw_location, exception.Get());
1719    SetExceptionReportedToInstrumentation(is_exception_reported);
1720  } else {
1721    jvalue jv_args[2];
1722    size_t i = 0;
1723
1724    if (msg != nullptr) {
1725      jv_args[i].l = msg_string.get();
1726      ++i;
1727    }
1728    if (cause.get() != nullptr) {
1729      jv_args[i].l = cause.get();
1730      ++i;
1731    }
1732    InvokeWithJValues(soa, exception.Get(), soa.EncodeMethod(exception_init_method), jv_args);
1733    if (LIKELY(!IsExceptionPending())) {
1734      ThrowLocation gc_safe_throw_location(saved_throw_this.Get(), saved_throw_method.Get(),
1735                                           throw_location.GetDexPc());
1736      SetException(gc_safe_throw_location, exception.Get());
1737      SetExceptionReportedToInstrumentation(is_exception_reported);
1738    }
1739  }
1740}
1741
1742void Thread::ThrowOutOfMemoryError(const char* msg) {
1743  LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
1744      msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
1745  ThrowLocation throw_location = GetCurrentLocationForThrow();
1746  if (!tls32_.throwing_OutOfMemoryError) {
1747    tls32_.throwing_OutOfMemoryError = true;
1748    ThrowNewException(throw_location, "Ljava/lang/OutOfMemoryError;", msg);
1749    tls32_.throwing_OutOfMemoryError = false;
1750  } else {
1751    Dump(LOG(ERROR));  // The pre-allocated OOME has no stack, so help out and log one.
1752    SetException(throw_location, Runtime::Current()->GetPreAllocatedOutOfMemoryError());
1753  }
1754}
1755
1756Thread* Thread::CurrentFromGdb() {
1757  return Thread::Current();
1758}
1759
1760void Thread::DumpFromGdb() const {
1761  std::ostringstream ss;
1762  Dump(ss);
1763  std::string str(ss.str());
1764  // log to stderr for debugging command line processes
1765  std::cerr << str;
1766#ifdef HAVE_ANDROID_OS
1767  // log to logcat for debugging frameworks processes
1768  LOG(INFO) << str;
1769#endif
1770}
1771
1772// Explicitly instantiate 32 and 64bit thread offset dumping support.
1773template void Thread::DumpThreadOffset<4>(std::ostream& os, uint32_t offset);
1774template void Thread::DumpThreadOffset<8>(std::ostream& os, uint32_t offset);
1775
1776template<size_t ptr_size>
1777void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
1778#define DO_THREAD_OFFSET(x, y) \
1779    if (offset == x.Uint32Value()) { \
1780      os << y; \
1781      return; \
1782    }
1783  DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
1784  DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
1785  DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
1786  DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
1787  DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
1788  DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
1789  DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
1790  DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
1791  DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
1792  DO_THREAD_OFFSET(TopOfManagedStackPcOffset<ptr_size>(), "top_quick_frame_pc")
1793  DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
1794  DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
1795  DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
1796#undef DO_THREAD_OFFSET
1797
1798#define INTERPRETER_ENTRY_POINT_INFO(x) \
1799    if (INTERPRETER_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1800      os << #x; \
1801      return; \
1802    }
1803  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToInterpreterBridge)
1804  INTERPRETER_ENTRY_POINT_INFO(pInterpreterToCompiledCodeBridge)
1805#undef INTERPRETER_ENTRY_POINT_INFO
1806
1807#define JNI_ENTRY_POINT_INFO(x) \
1808    if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1809      os << #x; \
1810      return; \
1811    }
1812  JNI_ENTRY_POINT_INFO(pDlsymLookup)
1813#undef JNI_ENTRY_POINT_INFO
1814
1815#define PORTABLE_ENTRY_POINT_INFO(x) \
1816    if (PORTABLE_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1817      os << #x; \
1818      return; \
1819    }
1820  PORTABLE_ENTRY_POINT_INFO(pPortableImtConflictTrampoline)
1821  PORTABLE_ENTRY_POINT_INFO(pPortableResolutionTrampoline)
1822  PORTABLE_ENTRY_POINT_INFO(pPortableToInterpreterBridge)
1823#undef PORTABLE_ENTRY_POINT_INFO
1824
1825#define QUICK_ENTRY_POINT_INFO(x) \
1826    if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
1827      os << #x; \
1828      return; \
1829    }
1830  QUICK_ENTRY_POINT_INFO(pAllocArray)
1831  QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
1832  QUICK_ENTRY_POINT_INFO(pAllocArrayWithAccessCheck)
1833  QUICK_ENTRY_POINT_INFO(pAllocObject)
1834  QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
1835  QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
1836  QUICK_ENTRY_POINT_INFO(pAllocObjectWithAccessCheck)
1837  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArray)
1838  QUICK_ENTRY_POINT_INFO(pCheckAndAllocArrayWithAccessCheck)
1839  QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
1840  QUICK_ENTRY_POINT_INFO(pCheckCast)
1841  QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
1842  QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
1843  QUICK_ENTRY_POINT_INFO(pInitializeType)
1844  QUICK_ENTRY_POINT_INFO(pResolveString)
1845  QUICK_ENTRY_POINT_INFO(pSet32Instance)
1846  QUICK_ENTRY_POINT_INFO(pSet32Static)
1847  QUICK_ENTRY_POINT_INFO(pSet64Instance)
1848  QUICK_ENTRY_POINT_INFO(pSet64Static)
1849  QUICK_ENTRY_POINT_INFO(pSetObjInstance)
1850  QUICK_ENTRY_POINT_INFO(pSetObjStatic)
1851  QUICK_ENTRY_POINT_INFO(pGet32Instance)
1852  QUICK_ENTRY_POINT_INFO(pGet32Static)
1853  QUICK_ENTRY_POINT_INFO(pGet64Instance)
1854  QUICK_ENTRY_POINT_INFO(pGet64Static)
1855  QUICK_ENTRY_POINT_INFO(pGetObjInstance)
1856  QUICK_ENTRY_POINT_INFO(pGetObjStatic)
1857  QUICK_ENTRY_POINT_INFO(pAputObjectWithNullAndBoundCheck)
1858  QUICK_ENTRY_POINT_INFO(pAputObjectWithBoundCheck)
1859  QUICK_ENTRY_POINT_INFO(pAputObject)
1860  QUICK_ENTRY_POINT_INFO(pHandleFillArrayData)
1861  QUICK_ENTRY_POINT_INFO(pJniMethodStart)
1862  QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
1863  QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
1864  QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
1865  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
1866  QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
1867  QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
1868  QUICK_ENTRY_POINT_INFO(pLockObject)
1869  QUICK_ENTRY_POINT_INFO(pUnlockObject)
1870  QUICK_ENTRY_POINT_INFO(pCmpgDouble)
1871  QUICK_ENTRY_POINT_INFO(pCmpgFloat)
1872  QUICK_ENTRY_POINT_INFO(pCmplDouble)
1873  QUICK_ENTRY_POINT_INFO(pCmplFloat)
1874  QUICK_ENTRY_POINT_INFO(pFmod)
1875  QUICK_ENTRY_POINT_INFO(pL2d)
1876  QUICK_ENTRY_POINT_INFO(pFmodf)
1877  QUICK_ENTRY_POINT_INFO(pL2f)
1878  QUICK_ENTRY_POINT_INFO(pD2iz)
1879  QUICK_ENTRY_POINT_INFO(pF2iz)
1880  QUICK_ENTRY_POINT_INFO(pIdivmod)
1881  QUICK_ENTRY_POINT_INFO(pD2l)
1882  QUICK_ENTRY_POINT_INFO(pF2l)
1883  QUICK_ENTRY_POINT_INFO(pLdiv)
1884  QUICK_ENTRY_POINT_INFO(pLmod)
1885  QUICK_ENTRY_POINT_INFO(pLmul)
1886  QUICK_ENTRY_POINT_INFO(pShlLong)
1887  QUICK_ENTRY_POINT_INFO(pShrLong)
1888  QUICK_ENTRY_POINT_INFO(pUshrLong)
1889  QUICK_ENTRY_POINT_INFO(pIndexOf)
1890  QUICK_ENTRY_POINT_INFO(pStringCompareTo)
1891  QUICK_ENTRY_POINT_INFO(pMemcpy)
1892  QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
1893  QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
1894  QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
1895  QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
1896  QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
1897  QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
1898  QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
1899  QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
1900  QUICK_ENTRY_POINT_INFO(pTestSuspend)
1901  QUICK_ENTRY_POINT_INFO(pDeliverException)
1902  QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
1903  QUICK_ENTRY_POINT_INFO(pThrowDivZero)
1904  QUICK_ENTRY_POINT_INFO(pThrowNoSuchMethod)
1905  QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
1906  QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
1907  QUICK_ENTRY_POINT_INFO(pA64Load)
1908  QUICK_ENTRY_POINT_INFO(pA64Store)
1909#undef QUICK_ENTRY_POINT_INFO
1910
1911  os << offset;
1912}
1913
1914void Thread::QuickDeliverException() {
1915  // Get exception from thread.
1916  ThrowLocation throw_location;
1917  mirror::Throwable* exception = GetException(&throw_location);
1918  CHECK(exception != nullptr);
1919  // Don't leave exception visible while we try to find the handler, which may cause class
1920  // resolution.
1921  bool is_exception_reported = IsExceptionReportedToInstrumentation();
1922  ClearException();
1923  bool is_deoptimization = (exception == GetDeoptimizationException());
1924  QuickExceptionHandler exception_handler(this, is_deoptimization);
1925  if (is_deoptimization) {
1926    exception_handler.DeoptimizeStack();
1927  } else {
1928    exception_handler.FindCatch(throw_location, exception, is_exception_reported);
1929  }
1930  exception_handler.UpdateInstrumentationStack();
1931  exception_handler.DoLongJump();
1932  LOG(FATAL) << "UNREACHABLE";
1933}
1934
1935Context* Thread::GetLongJumpContext() {
1936  Context* result = tlsPtr_.long_jump_context;
1937  if (result == nullptr) {
1938    result = Context::Create();
1939  } else {
1940    tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
1941    result->Reset();
1942  }
1943  return result;
1944}
1945
1946// Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
1947//       so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
1948struct CurrentMethodVisitor FINAL : public StackVisitor {
1949  CurrentMethodVisitor(Thread* thread, Context* context, bool abort_on_error)
1950      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
1951      : StackVisitor(thread, context), this_object_(nullptr), method_(nullptr), dex_pc_(0),
1952        abort_on_error_(abort_on_error) {}
1953  bool VisitFrame() OVERRIDE SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1954    mirror::ArtMethod* m = GetMethod();
1955    if (m->IsRuntimeMethod()) {
1956      // Continue if this is a runtime method.
1957      return true;
1958    }
1959    if (context_ != nullptr) {
1960      this_object_ = GetThisObject();
1961    }
1962    method_ = m;
1963    dex_pc_ = GetDexPc(abort_on_error_);
1964    return false;
1965  }
1966  mirror::Object* this_object_;
1967  mirror::ArtMethod* method_;
1968  uint32_t dex_pc_;
1969  const bool abort_on_error_;
1970};
1971
1972mirror::ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error) const {
1973  CurrentMethodVisitor visitor(const_cast<Thread*>(this), nullptr, abort_on_error);
1974  visitor.WalkStack(false);
1975  if (dex_pc != nullptr) {
1976    *dex_pc = visitor.dex_pc_;
1977  }
1978  return visitor.method_;
1979}
1980
1981ThrowLocation Thread::GetCurrentLocationForThrow() {
1982  Context* context = GetLongJumpContext();
1983  CurrentMethodVisitor visitor(this, context, true);
1984  visitor.WalkStack(false);
1985  ReleaseLongJumpContext(context);
1986  return ThrowLocation(visitor.this_object_, visitor.method_, visitor.dex_pc_);
1987}
1988
1989bool Thread::HoldsLock(mirror::Object* object) const {
1990  if (object == nullptr) {
1991    return false;
1992  }
1993  return object->GetLockOwnerThreadId() == GetThreadId();
1994}
1995
1996// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
1997template <typename RootVisitor>
1998class ReferenceMapVisitor : public StackVisitor {
1999 public:
2000  ReferenceMapVisitor(Thread* thread, Context* context, const RootVisitor& visitor)
2001      SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
2002      : StackVisitor(thread, context), visitor_(visitor) {}
2003
2004  bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2005    if (false) {
2006      LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod())
2007                << StringPrintf("@ PC:%04x", GetDexPc());
2008    }
2009    ShadowFrame* shadow_frame = GetCurrentShadowFrame();
2010    if (shadow_frame != nullptr) {
2011      VisitShadowFrame(shadow_frame);
2012    } else {
2013      VisitQuickFrame();
2014    }
2015    return true;
2016  }
2017
2018  void VisitShadowFrame(ShadowFrame* shadow_frame) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2019    mirror::ArtMethod** method_addr = shadow_frame->GetMethodAddress();
2020    visitor_(reinterpret_cast<mirror::Object**>(method_addr), 0 /*ignored*/, this);
2021    mirror::ArtMethod* m = *method_addr;
2022    DCHECK(m != nullptr);
2023    size_t num_regs = shadow_frame->NumberOfVRegs();
2024    if (m->IsNative() || shadow_frame->HasReferenceArray()) {
2025      // handle scope for JNI or References for interpreter.
2026      for (size_t reg = 0; reg < num_regs; ++reg) {
2027        mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2028        if (ref != nullptr) {
2029          mirror::Object* new_ref = ref;
2030          visitor_(&new_ref, reg, this);
2031          if (new_ref != ref) {
2032            shadow_frame->SetVRegReference(reg, new_ref);
2033          }
2034        }
2035      }
2036    } else {
2037      // Java method.
2038      // Portable path use DexGcMap and store in Method.native_gc_map_.
2039      const uint8_t* gc_map = m->GetNativeGcMap();
2040      CHECK(gc_map != nullptr) << PrettyMethod(m);
2041      verifier::DexPcToReferenceMap dex_gc_map(gc_map);
2042      uint32_t dex_pc = shadow_frame->GetDexPC();
2043      const uint8_t* reg_bitmap = dex_gc_map.FindBitMap(dex_pc);
2044      DCHECK(reg_bitmap != nullptr);
2045      num_regs = std::min(dex_gc_map.RegWidth() * 8, num_regs);
2046      for (size_t reg = 0; reg < num_regs; ++reg) {
2047        if (TestBitmap(reg, reg_bitmap)) {
2048          mirror::Object* ref = shadow_frame->GetVRegReference(reg);
2049          if (ref != nullptr) {
2050            mirror::Object* new_ref = ref;
2051            visitor_(&new_ref, reg, this);
2052            if (new_ref != ref) {
2053              shadow_frame->SetVRegReference(reg, new_ref);
2054            }
2055          }
2056        }
2057      }
2058    }
2059  }
2060
2061 private:
2062  void VisitQuickFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2063    StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2064    mirror::ArtMethod* m = cur_quick_frame->AsMirrorPtr();
2065    mirror::ArtMethod* old_method = m;
2066    visitor_(reinterpret_cast<mirror::Object**>(&m), 0 /*ignored*/, this);
2067    if (m != old_method) {
2068      cur_quick_frame->Assign(m);
2069    }
2070
2071    // Process register map (which native and runtime methods don't have)
2072    if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) {
2073      const uint8_t* native_gc_map = m->GetNativeGcMap();
2074      CHECK(native_gc_map != nullptr) << PrettyMethod(m);
2075      const DexFile::CodeItem* code_item = m->GetCodeItem();
2076      DCHECK(code_item != nullptr) << PrettyMethod(m);  // Can't be nullptr or how would we compile its instructions?
2077      NativePcOffsetToReferenceMap map(native_gc_map);
2078      size_t num_regs = std::min(map.RegWidth() * 8,
2079                                 static_cast<size_t>(code_item->registers_size_));
2080      if (num_regs > 0) {
2081        Runtime* runtime = Runtime::Current();
2082        const void* entry_point = runtime->GetInstrumentation()->GetQuickCodeFor(m);
2083        uintptr_t native_pc_offset = m->NativePcOffset(GetCurrentQuickFramePc(), entry_point);
2084        const uint8_t* reg_bitmap = map.FindBitMap(native_pc_offset);
2085        DCHECK(reg_bitmap != nullptr);
2086        const void* code_pointer = mirror::ArtMethod::EntryPointToCodePointer(entry_point);
2087        const VmapTable vmap_table(m->GetVmapTable(code_pointer));
2088        QuickMethodFrameInfo frame_info = m->GetQuickFrameInfo(code_pointer);
2089        // For all dex registers in the bitmap
2090        StackReference<mirror::ArtMethod>* cur_quick_frame = GetCurrentQuickFrame();
2091        DCHECK(cur_quick_frame != nullptr);
2092        for (size_t reg = 0; reg < num_regs; ++reg) {
2093          // Does this register hold a reference?
2094          if (TestBitmap(reg, reg_bitmap)) {
2095            uint32_t vmap_offset;
2096            if (vmap_table.IsInContext(reg, kReferenceVReg, &vmap_offset)) {
2097              int vmap_reg = vmap_table.ComputeRegister(frame_info.CoreSpillMask(), vmap_offset,
2098                                                        kReferenceVReg);
2099              // This is sound as spilled GPRs will be word sized (ie 32 or 64bit).
2100              mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(vmap_reg));
2101              if (*ref_addr != nullptr) {
2102                visitor_(ref_addr, reg, this);
2103              }
2104            } else {
2105              StackReference<mirror::Object>* ref_addr =
2106                  reinterpret_cast<StackReference<mirror::Object>*>(
2107                      GetVRegAddr(cur_quick_frame, code_item, frame_info.CoreSpillMask(),
2108                                  frame_info.FpSpillMask(), frame_info.FrameSizeInBytes(), reg));
2109              mirror::Object* ref = ref_addr->AsMirrorPtr();
2110              if (ref != nullptr) {
2111                mirror::Object* new_ref = ref;
2112                visitor_(&new_ref, reg, this);
2113                if (ref != new_ref) {
2114                  ref_addr->Assign(new_ref);
2115                }
2116              }
2117            }
2118          }
2119        }
2120      }
2121    }
2122  }
2123
2124  static bool TestBitmap(size_t reg, const uint8_t* reg_vector) {
2125    return ((reg_vector[reg / kBitsPerByte] >> (reg % kBitsPerByte)) & 0x01) != 0;
2126  }
2127
2128  // Visitor for when we visit a root.
2129  const RootVisitor& visitor_;
2130};
2131
2132class RootCallbackVisitor {
2133 public:
2134  RootCallbackVisitor(RootCallback* callback, void* arg, uint32_t tid)
2135     : callback_(callback), arg_(arg), tid_(tid) {}
2136
2137  void operator()(mirror::Object** obj, size_t, const StackVisitor*) const {
2138    callback_(obj, arg_, tid_, kRootJavaFrame);
2139  }
2140
2141 private:
2142  RootCallback* const callback_;
2143  void* const arg_;
2144  const uint32_t tid_;
2145};
2146
2147void Thread::SetClassLoaderOverride(mirror::ClassLoader* class_loader_override) {
2148  VerifyObject(class_loader_override);
2149  tlsPtr_.class_loader_override = class_loader_override;
2150}
2151
2152void Thread::VisitRoots(RootCallback* visitor, void* arg) {
2153  uint32_t thread_id = GetThreadId();
2154  if (tlsPtr_.opeer != nullptr) {
2155    visitor(&tlsPtr_.opeer, arg, thread_id, kRootThreadObject);
2156  }
2157  if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
2158    visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception), arg, thread_id, kRootNativeStack);
2159  }
2160  tlsPtr_.throw_location.VisitRoots(visitor, arg);
2161  if (tlsPtr_.class_loader_override != nullptr) {
2162    visitor(reinterpret_cast<mirror::Object**>(&tlsPtr_.class_loader_override), arg, thread_id,
2163            kRootNativeStack);
2164  }
2165  if (tlsPtr_.monitor_enter_object != nullptr) {
2166    visitor(&tlsPtr_.monitor_enter_object, arg, thread_id, kRootNativeStack);
2167  }
2168  tlsPtr_.jni_env->locals.VisitRoots(visitor, arg, thread_id, kRootJNILocal);
2169  tlsPtr_.jni_env->monitors.VisitRoots(visitor, arg, thread_id, kRootJNIMonitor);
2170  HandleScopeVisitRoots(visitor, arg, thread_id);
2171  if (tlsPtr_.debug_invoke_req != nullptr) {
2172    tlsPtr_.debug_invoke_req->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2173  }
2174  if (tlsPtr_.single_step_control != nullptr) {
2175    tlsPtr_.single_step_control->VisitRoots(visitor, arg, thread_id, kRootDebugger);
2176  }
2177  if (tlsPtr_.deoptimization_shadow_frame != nullptr) {
2178    RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2179    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2180    for (ShadowFrame* shadow_frame = tlsPtr_.deoptimization_shadow_frame; shadow_frame != nullptr;
2181        shadow_frame = shadow_frame->GetLink()) {
2182      mapper.VisitShadowFrame(shadow_frame);
2183    }
2184  }
2185  if (tlsPtr_.shadow_frame_under_construction != nullptr) {
2186    RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2187    ReferenceMapVisitor<RootCallbackVisitor> mapper(this, nullptr, visitorToCallback);
2188    for (ShadowFrame* shadow_frame = tlsPtr_.shadow_frame_under_construction;
2189        shadow_frame != nullptr;
2190        shadow_frame = shadow_frame->GetLink()) {
2191      mapper.VisitShadowFrame(shadow_frame);
2192    }
2193  }
2194  // Visit roots on this thread's stack
2195  Context* context = GetLongJumpContext();
2196  RootCallbackVisitor visitorToCallback(visitor, arg, thread_id);
2197  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context, visitorToCallback);
2198  mapper.WalkStack();
2199  ReleaseLongJumpContext(context);
2200  for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
2201    if (frame.this_object_ != nullptr) {
2202      visitor(&frame.this_object_, arg, thread_id, kRootJavaFrame);
2203    }
2204    DCHECK(frame.method_ != nullptr);
2205    visitor(reinterpret_cast<mirror::Object**>(&frame.method_), arg, thread_id, kRootJavaFrame);
2206  }
2207}
2208
2209static void VerifyRoot(mirror::Object** root, void* /*arg*/, uint32_t /*thread_id*/,
2210                       RootType /*root_type*/) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
2211  VerifyObject(*root);
2212}
2213
2214void Thread::VerifyStackImpl() {
2215  std::unique_ptr<Context> context(Context::Create());
2216  RootCallbackVisitor visitorToCallback(VerifyRoot, Runtime::Current()->GetHeap(), GetThreadId());
2217  ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitorToCallback);
2218  mapper.WalkStack();
2219}
2220
2221// Set the stack end to that to be used during a stack overflow
2222void Thread::SetStackEndForStackOverflow() {
2223  // During stack overflow we allow use of the full stack.
2224  if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
2225    // However, we seem to have already extended to use the full stack.
2226    LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
2227               << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
2228    DumpStack(LOG(ERROR));
2229    LOG(FATAL) << "Recursive stack overflow.";
2230  }
2231
2232  tlsPtr_.stack_end = tlsPtr_.stack_begin;
2233
2234  // Remove the stack overflow protection if is it set up.
2235  bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
2236  if (implicit_stack_check) {
2237    if (!UnprotectStack()) {
2238      LOG(ERROR) << "Unable to remove stack protection for stack overflow";
2239    }
2240  }
2241}
2242
2243void Thread::SetTlab(byte* start, byte* end) {
2244  DCHECK_LE(start, end);
2245  tlsPtr_.thread_local_start = start;
2246  tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
2247  tlsPtr_.thread_local_end = end;
2248  tlsPtr_.thread_local_objects = 0;
2249}
2250
2251bool Thread::HasTlab() const {
2252  bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
2253  if (has_tlab) {
2254    DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
2255  } else {
2256    DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
2257  }
2258  return has_tlab;
2259}
2260
2261std::ostream& operator<<(std::ostream& os, const Thread& thread) {
2262  thread.ShortDump(os);
2263  return os;
2264}
2265
2266void Thread::ProtectStack() {
2267  void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2268  VLOG(threads) << "Protecting stack at " << pregion;
2269  if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
2270    LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
2271        "Reason: "
2272        << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
2273  }
2274}
2275
2276bool Thread::UnprotectStack() {
2277  void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
2278  VLOG(threads) << "Unprotecting stack at " << pregion;
2279  return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
2280}
2281
2282
2283}  // namespace art
2284