utils.h revision 307091dc306c34ce9e4ee6cc3b467807b3a3bd12
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#ifndef ART_RUNTIME_UTILS_H_
18#define ART_RUNTIME_UTILS_H_
19
20#include <pthread.h>
21
22#include <limits>
23#include <string>
24#include <vector>
25
26#include "base/logging.h"
27#include "globals.h"
28#include "instruction_set.h"
29#include "base/mutex.h"
30
31#ifdef HAVE_ANDROID_OS
32#include "cutils/properties.h"
33#endif
34
35namespace art {
36
37class DexFile;
38
39namespace mirror {
40class ArtField;
41class ArtMethod;
42class Class;
43class Object;
44class String;
45}  // namespace mirror
46
47enum TimeUnit {
48  kTimeUnitNanosecond,
49  kTimeUnitMicrosecond,
50  kTimeUnitMillisecond,
51  kTimeUnitSecond,
52};
53
54template <typename T>
55bool ParseUint(const char *in, T* out) {
56  char* end;
57  unsigned long long int result = strtoull(in, &end, 0);  // NOLINT(runtime/int)
58  if (in == end || *end != '\0') {
59    return false;
60  }
61  if (std::numeric_limits<T>::max() < result) {
62    return false;
63  }
64  *out = static_cast<T>(result);
65  return true;
66}
67
68template <typename T>
69bool ParseInt(const char* in, T* out) {
70  char* end;
71  long long int result = strtoll(in, &end, 0);  // NOLINT(runtime/int)
72  if (in == end || *end != '\0') {
73    return false;
74  }
75  if (result < std::numeric_limits<T>::min() || std::numeric_limits<T>::max() < result) {
76    return false;
77  }
78  *out = static_cast<T>(result);
79  return true;
80}
81
82template<typename T>
83static constexpr bool IsPowerOfTwo(T x) {
84  return (x & (x - 1)) == 0;
85}
86
87template<int n, typename T>
88static inline bool IsAligned(T x) {
89  COMPILE_ASSERT((n & (n - 1)) == 0, n_not_power_of_two);
90  return (x & (n - 1)) == 0;
91}
92
93template<int n, typename T>
94static inline bool IsAligned(T* x) {
95  return IsAligned<n>(reinterpret_cast<const uintptr_t>(x));
96}
97
98template<typename T>
99static inline bool IsAlignedParam(T x, int n) {
100  return (x & (n - 1)) == 0;
101}
102
103#define CHECK_ALIGNED(value, alignment) \
104  CHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
105
106#define DCHECK_ALIGNED(value, alignment) \
107  DCHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
108
109#define DCHECK_ALIGNED_PARAM(value, alignment) \
110  DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value)
111
112// Check whether an N-bit two's-complement representation can hold value.
113static inline bool IsInt(int N, word value) {
114  CHECK_LT(0, N);
115  CHECK_LT(N, kBitsPerWord);
116  word limit = static_cast<word>(1) << (N - 1);
117  return (-limit <= value) && (value < limit);
118}
119
120static inline bool IsUint(int N, word value) {
121  CHECK_LT(0, N);
122  CHECK_LT(N, kBitsPerWord);
123  word limit = static_cast<word>(1) << N;
124  return (0 <= value) && (value < limit);
125}
126
127static inline bool IsAbsoluteUint(int N, word value) {
128  CHECK_LT(0, N);
129  CHECK_LT(N, kBitsPerWord);
130  if (value < 0) value = -value;
131  return IsUint(N, value);
132}
133
134static inline uint16_t Low16Bits(uint32_t value) {
135  return static_cast<uint16_t>(value);
136}
137
138static inline uint16_t High16Bits(uint32_t value) {
139  return static_cast<uint16_t>(value >> 16);
140}
141
142static inline uint32_t Low32Bits(uint64_t value) {
143  return static_cast<uint32_t>(value);
144}
145
146static inline uint32_t High32Bits(uint64_t value) {
147  return static_cast<uint32_t>(value >> 32);
148}
149
150// A static if which determines whether to return type A or B based on the condition boolean.
151template <bool condition, typename A, typename B>
152struct TypeStaticIf {
153  typedef A type;
154};
155
156// Specialization to handle the false case.
157template <typename A, typename B>
158struct TypeStaticIf<false, A,  B> {
159  typedef B type;
160};
161
162// Type identity.
163template <typename T>
164struct TypeIdentity {
165  typedef T type;
166};
167
168// For rounding integers.
169template<typename T>
170static constexpr T RoundDown(T x, typename TypeIdentity<T>::type n) WARN_UNUSED;
171
172template<typename T>
173static constexpr T RoundDown(T x, typename TypeIdentity<T>::type n) {
174  return
175      DCHECK_CONSTEXPR(IsPowerOfTwo(n), , T(0))
176      (x & -n);
177}
178
179template<typename T>
180static constexpr T RoundUp(T x, typename TypeIdentity<T>::type n) WARN_UNUSED;
181
182template<typename T>
183static constexpr T RoundUp(T x, typename TypeIdentity<T>::type n) {
184  return RoundDown(x + n - 1, n);
185}
186
187// For aligning pointers.
188template<typename T>
189static inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED;
190
191template<typename T>
192static inline T* AlignDown(T* x, uintptr_t n) {
193  return reinterpret_cast<T*>(RoundDown(reinterpret_cast<uintptr_t>(x), n));
194}
195
196template<typename T>
197static inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED;
198
199template<typename T>
200static inline T* AlignUp(T* x, uintptr_t n) {
201  return reinterpret_cast<T*>(RoundUp(reinterpret_cast<uintptr_t>(x), n));
202}
203
204// Implementation is from "Hacker's Delight" by Henry S. Warren, Jr.,
205// figure 3-3, page 48, where the function is called clp2.
206static inline uint32_t RoundUpToPowerOfTwo(uint32_t x) {
207  x = x - 1;
208  x = x | (x >> 1);
209  x = x | (x >> 2);
210  x = x | (x >> 4);
211  x = x | (x >> 8);
212  x = x | (x >> 16);
213  return x + 1;
214}
215
216template<typename T>
217static constexpr int CLZ(T x) {
218  return (sizeof(T) == sizeof(uint32_t))
219      ? __builtin_clz(x)
220      : __builtin_clzll(x);
221}
222
223template<typename T>
224static constexpr int CTZ(T x) {
225  return (sizeof(T) == sizeof(uint32_t))
226      ? __builtin_ctz(x)
227      : __builtin_ctzll(x);
228}
229
230template<typename T>
231static constexpr int POPCOUNT(T x) {
232  return (sizeof(T) == sizeof(uint32_t))
233      ? __builtin_popcount(x)
234      : __builtin_popcountll(x);
235}
236
237static inline uint32_t PointerToLowMemUInt32(const void* p) {
238  uintptr_t intp = reinterpret_cast<uintptr_t>(p);
239  DCHECK_LE(intp, 0xFFFFFFFFU);
240  return intp & 0xFFFFFFFFU;
241}
242
243static inline bool NeedsEscaping(uint16_t ch) {
244  return (ch < ' ' || ch > '~');
245}
246
247// Interpret the bit pattern of input (type U) as type V. Requires the size
248// of V >= size of U (compile-time checked).
249template<typename U, typename V>
250static inline V bit_cast(U in) {
251  COMPILE_ASSERT(sizeof(U) <= sizeof(V), size_of_u_not_le_size_of_v);
252  union {
253    U u;
254    V v;
255  } tmp;
256  tmp.u = in;
257  return tmp.v;
258}
259
260std::string PrintableChar(uint16_t ch);
261
262// Returns an ASCII string corresponding to the given UTF-8 string.
263// Java escapes are used for non-ASCII characters.
264std::string PrintableString(const std::string& utf8);
265
266// Tests whether 's' starts with 'prefix'.
267bool StartsWith(const std::string& s, const char* prefix);
268
269// Tests whether 's' starts with 'suffix'.
270bool EndsWith(const std::string& s, const char* suffix);
271
272// Used to implement PrettyClass, PrettyField, PrettyMethod, and PrettyTypeOf,
273// one of which is probably more useful to you.
274// Returns a human-readable equivalent of 'descriptor'. So "I" would be "int",
275// "[[I" would be "int[][]", "[Ljava/lang/String;" would be
276// "java.lang.String[]", and so forth.
277std::string PrettyDescriptor(mirror::String* descriptor)
278    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
279std::string PrettyDescriptor(const char* descriptor);
280std::string PrettyDescriptor(mirror::Class* klass)
281    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
282
283// Returns a human-readable signature for 'f'. Something like "a.b.C.f" or
284// "int a.b.C.f" (depending on the value of 'with_type').
285std::string PrettyField(mirror::ArtField* f, bool with_type = true)
286    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
287std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type = true);
288
289// Returns a human-readable signature for 'm'. Something like "a.b.C.m" or
290// "a.b.C.m(II)V" (depending on the value of 'with_signature').
291std::string PrettyMethod(mirror::ArtMethod* m, bool with_signature = true)
292    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
293std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature = true);
294
295// Returns a human-readable form of the name of the *class* of the given object.
296// So given an instance of java.lang.String, the output would
297// be "java.lang.String". Given an array of int, the output would be "int[]".
298// Given String.class, the output would be "java.lang.Class<java.lang.String>".
299std::string PrettyTypeOf(mirror::Object* obj)
300    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
301
302// Returns a human-readable form of the type at an index in the specified dex file.
303// Example outputs: char[], java.lang.String.
304std::string PrettyType(uint32_t type_idx, const DexFile& dex_file);
305
306// Returns a human-readable form of the name of the given class.
307// Given String.class, the output would be "java.lang.Class<java.lang.String>".
308std::string PrettyClass(mirror::Class* c)
309    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
310
311// Returns a human-readable form of the name of the given class with its class loader.
312std::string PrettyClassAndClassLoader(mirror::Class* c)
313    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
314
315// Returns a human-readable size string such as "1MB".
316std::string PrettySize(int64_t size_in_bytes);
317
318// Returns a human-readable time string which prints every nanosecond while trying to limit the
319// number of trailing zeros. Prints using the largest human readable unit up to a second.
320// e.g. "1ms", "1.000000001s", "1.001us"
321std::string PrettyDuration(uint64_t nano_duration, size_t max_fraction_digits = 3);
322
323// Format a nanosecond time to specified units.
324std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit,
325                           size_t max_fraction_digits);
326
327// Get the appropriate unit for a nanosecond duration.
328TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration);
329
330// Get the divisor to convert from a nanoseconds to a time unit.
331uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit);
332
333// Performs JNI name mangling as described in section 11.3 "Linking Native Methods"
334// of the JNI spec.
335std::string MangleForJni(const std::string& s);
336
337// Turn "java.lang.String" into "Ljava/lang/String;".
338std::string DotToDescriptor(const char* class_name);
339
340// Turn "Ljava/lang/String;" into "java.lang.String" using the conventions of
341// java.lang.Class.getName().
342std::string DescriptorToDot(const char* descriptor);
343
344// Turn "Ljava/lang/String;" into "java/lang/String" using the opposite conventions of
345// java.lang.Class.getName().
346std::string DescriptorToName(const char* descriptor);
347
348// Tests for whether 's' is a valid class name in the three common forms:
349bool IsValidBinaryClassName(const char* s);  // "java.lang.String"
350bool IsValidJniClassName(const char* s);     // "java/lang/String"
351bool IsValidDescriptor(const char* s);       // "Ljava/lang/String;"
352
353// Returns whether the given string is a valid field or method name,
354// additionally allowing names that begin with '<' and end with '>'.
355bool IsValidMemberName(const char* s);
356
357// Returns the JNI native function name for the non-overloaded method 'm'.
358std::string JniShortName(mirror::ArtMethod* m)
359    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
360// Returns the JNI native function name for the overloaded method 'm'.
361std::string JniLongName(mirror::ArtMethod* m)
362    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
363
364bool ReadFileToString(const std::string& file_name, std::string* result);
365
366// Returns the current date in ISO yyyy-mm-dd hh:mm:ss format.
367std::string GetIsoDate();
368
369// Returns the monotonic time since some unspecified starting point in milliseconds.
370uint64_t MilliTime();
371
372// Returns the monotonic time since some unspecified starting point in microseconds.
373uint64_t MicroTime();
374
375// Returns the monotonic time since some unspecified starting point in nanoseconds.
376uint64_t NanoTime();
377
378// Returns the thread-specific CPU-time clock in nanoseconds or -1 if unavailable.
379uint64_t ThreadCpuNanoTime();
380
381// Converts the given number of nanoseconds to milliseconds.
382static constexpr inline uint64_t NsToMs(uint64_t ns) {
383  return ns / 1000 / 1000;
384}
385
386// Converts the given number of milliseconds to nanoseconds
387static constexpr inline uint64_t MsToNs(uint64_t ns) {
388  return ns * 1000 * 1000;
389}
390
391#if defined(__APPLE__)
392// No clocks to specify on OS/X, fake value to pass to routines that require a clock.
393#define CLOCK_REALTIME 0xebadf00d
394#endif
395
396// Sleep for the given number of nanoseconds, a bad way to handle contention.
397void NanoSleep(uint64_t ns);
398
399// Initialize a timespec to either an absolute or relative time.
400void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts);
401
402// Splits a string using the given separator character into a vector of
403// strings. Empty strings will be omitted.
404void Split(const std::string& s, char separator, std::vector<std::string>& result);
405
406// Trims whitespace off both ends of the given string.
407std::string Trim(std::string s);
408
409// Joins a vector of strings into a single string, using the given separator.
410template <typename StringT> std::string Join(std::vector<StringT>& strings, char separator);
411
412// Returns the calling thread's tid. (The C libraries don't expose this.)
413pid_t GetTid();
414
415// Returns the given thread's name.
416std::string GetThreadName(pid_t tid);
417
418// Returns details of the given thread's stack.
419void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size, size_t* guard_size);
420
421// Reads data from "/proc/self/task/${tid}/stat".
422void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu);
423
424// Returns the name of the scheduler group for the given thread the current process, or the empty string.
425std::string GetSchedulerGroupName(pid_t tid);
426
427// Sets the name of the current thread. The name may be truncated to an
428// implementation-defined limit.
429void SetThreadName(const char* thread_name);
430
431// Dumps the native stack for thread 'tid' to 'os'.
432void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix = "",
433    mirror::ArtMethod* current_method = nullptr)
434    NO_THREAD_SAFETY_ANALYSIS;
435
436// Dumps the kernel stack for thread 'tid' to 'os'. Note that this is only available on linux-x86.
437void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix = "", bool include_count = true);
438
439// Find $ANDROID_ROOT, /system, or abort.
440const char* GetAndroidRoot();
441
442// Find $ANDROID_DATA, /data, or abort.
443const char* GetAndroidData();
444// Find $ANDROID_DATA, /data, or return nullptr.
445const char* GetAndroidDataSafe(std::string* error_msg);
446
447// Returns the dalvik-cache location, or dies trying. subdir will be
448// appended to the cache location.
449std::string GetDalvikCacheOrDie(const char* subdir, bool create_if_absent = true);
450// Return true if we found the dalvik cache and stored it in the dalvik_cache argument.
451// have_android_data will be set to true if we have an ANDROID_DATA that exists,
452// dalvik_cache_exists will be true if there is a dalvik-cache directory that is present.
453void GetDalvikCache(const char* subdir, bool create_if_absent, std::string* dalvik_cache,
454                    bool* have_android_data, bool* dalvik_cache_exists);
455
456// Returns the absolute dalvik-cache path for a DexFile or OatFile. The path returned will be
457// rooted at cache_location.
458bool GetDalvikCacheFilename(const char* file_location, const char* cache_location,
459                            std::string* filename, std::string* error_msg);
460// Returns the absolute dalvik-cache path for a DexFile or OatFile, or
461// dies trying. The path returned will be rooted at cache_location.
462std::string GetDalvikCacheFilenameOrDie(const char* file_location,
463                                        const char* cache_location);
464
465// Returns the system location for an image
466std::string GetSystemImageFilename(const char* location, InstructionSet isa);
467
468// Returns an .odex file name next adjacent to the dex location.
469// For example, for "/foo/bar/baz.jar", return "/foo/bar/<isa>/baz.odex".
470// Note: does not support multidex location strings.
471std::string DexFilenameToOdexFilename(const std::string& location, InstructionSet isa);
472
473// Check whether the given magic matches a known file type.
474bool IsZipMagic(uint32_t magic);
475bool IsDexMagic(uint32_t magic);
476bool IsOatMagic(uint32_t magic);
477
478// Wrapper on fork/execv to run a command in a subprocess.
479bool Exec(std::vector<std::string>& arg_vector, std::string* error_msg);
480
481class VoidFunctor {
482 public:
483  template <typename A>
484  inline void operator() (A a) const {
485    UNUSED(a);
486  }
487
488  template <typename A, typename B>
489  inline void operator() (A a, B b) const {
490    UNUSED(a);
491    UNUSED(b);
492  }
493
494  template <typename A, typename B, typename C>
495  inline void operator() (A a, B b, C c) const {
496    UNUSED(a);
497    UNUSED(b);
498    UNUSED(c);
499  }
500};
501
502}  // namespace art
503
504#endif  // ART_RUNTIME_UTILS_H_
505