method_verifier.cc revision 35439baf287b291b67ee406308e17fc6194facbf
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "class_linker.h"
24#include "compiler_callbacks.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_visitor.h"
28#include "field_helper.h"
29#include "gc/accounting/card_table-inl.h"
30#include "indenter.h"
31#include "intern_table.h"
32#include "leb128.h"
33#include "method_helper-inl.h"
34#include "mirror/art_field-inl.h"
35#include "mirror/art_method-inl.h"
36#include "mirror/class.h"
37#include "mirror/class-inl.h"
38#include "mirror/dex_cache-inl.h"
39#include "mirror/object-inl.h"
40#include "mirror/object_array-inl.h"
41#include "register_line-inl.h"
42#include "runtime.h"
43#include "scoped_thread_state_change.h"
44#include "handle_scope-inl.h"
45#include "verifier/dex_gc_map.h"
46
47namespace art {
48namespace verifier {
49
50static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
51static constexpr bool gDebugVerify = false;
52// TODO: Add a constant to method_verifier to turn on verbose logging?
53
54void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
55                                 uint32_t insns_size, uint16_t registers_size,
56                                 MethodVerifier* verifier) {
57  DCHECK_GT(insns_size, 0U);
58  register_lines_.reset(new RegisterLine*[insns_size]());
59  size_ = insns_size;
60  for (uint32_t i = 0; i < insns_size; i++) {
61    bool interesting = false;
62    switch (mode) {
63      case kTrackRegsAll:
64        interesting = flags[i].IsOpcode();
65        break;
66      case kTrackCompilerInterestPoints:
67        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
68        break;
69      case kTrackRegsBranches:
70        interesting = flags[i].IsBranchTarget();
71        break;
72      default:
73        break;
74    }
75    if (interesting) {
76      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
77    }
78  }
79}
80
81PcToRegisterLineTable::~PcToRegisterLineTable() {
82  for (size_t i = 0; i < size_; i++) {
83    delete register_lines_[i];
84    if (kIsDebugBuild) {
85      register_lines_[i] = nullptr;
86    }
87  }
88}
89
90MethodVerifier::FailureKind MethodVerifier::VerifyClass(mirror::Class* klass,
91                                                        bool allow_soft_failures,
92                                                        std::string* error) {
93  if (klass->IsVerified()) {
94    return kNoFailure;
95  }
96  bool early_failure = false;
97  std::string failure_message;
98  const DexFile& dex_file = klass->GetDexFile();
99  const DexFile::ClassDef* class_def = klass->GetClassDef();
100  mirror::Class* super = klass->GetSuperClass();
101  std::string temp;
102  if (super == nullptr && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) {
103    early_failure = true;
104    failure_message = " that has no super class";
105  } else if (super != nullptr && super->IsFinal()) {
106    early_failure = true;
107    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
108  } else if (class_def == nullptr) {
109    early_failure = true;
110    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
111  }
112  if (early_failure) {
113    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
114    if (Runtime::Current()->IsCompiler()) {
115      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
116      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
117    }
118    return kHardFailure;
119  }
120  StackHandleScope<2> hs(Thread::Current());
121  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
122  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
123  return VerifyClass(&dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
124}
125
126MethodVerifier::FailureKind MethodVerifier::VerifyClass(const DexFile* dex_file,
127                                                        Handle<mirror::DexCache> dex_cache,
128                                                        Handle<mirror::ClassLoader> class_loader,
129                                                        const DexFile::ClassDef* class_def,
130                                                        bool allow_soft_failures,
131                                                        std::string* error) {
132  DCHECK(class_def != nullptr);
133  const byte* class_data = dex_file->GetClassData(*class_def);
134  if (class_data == nullptr) {
135    // empty class, probably a marker interface
136    return kNoFailure;
137  }
138  ClassDataItemIterator it(*dex_file, class_data);
139  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
140    it.Next();
141  }
142  size_t error_count = 0;
143  bool hard_fail = false;
144  ClassLinker* linker = Runtime::Current()->GetClassLinker();
145  int64_t previous_direct_method_idx = -1;
146  while (it.HasNextDirectMethod()) {
147    uint32_t method_idx = it.GetMemberIndex();
148    if (method_idx == previous_direct_method_idx) {
149      // smali can create dex files with two encoded_methods sharing the same method_idx
150      // http://code.google.com/p/smali/issues/detail?id=119
151      it.Next();
152      continue;
153    }
154    previous_direct_method_idx = method_idx;
155    InvokeType type = it.GetMethodInvokeType(*class_def);
156    mirror::ArtMethod* method =
157        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
158                              NullHandle<mirror::ArtMethod>(), type);
159    if (method == nullptr) {
160      DCHECK(Thread::Current()->IsExceptionPending());
161      // We couldn't resolve the method, but continue regardless.
162      Thread::Current()->ClearException();
163    }
164    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
165                                                      dex_file,
166                                                      dex_cache,
167                                                      class_loader,
168                                                      class_def,
169                                                      it.GetMethodCodeItem(),
170                                                      method,
171                                                      it.GetMemberAccessFlags(),
172                                                      allow_soft_failures,
173                                                      false);
174    if (result != kNoFailure) {
175      if (result == kHardFailure) {
176        hard_fail = true;
177        if (error_count > 0) {
178          *error += "\n";
179        }
180        *error = "Verifier rejected class ";
181        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
182        *error += " due to bad method ";
183        *error += PrettyMethod(method_idx, *dex_file);
184      }
185      ++error_count;
186    }
187    it.Next();
188  }
189  int64_t previous_virtual_method_idx = -1;
190  while (it.HasNextVirtualMethod()) {
191    uint32_t method_idx = it.GetMemberIndex();
192    if (method_idx == previous_virtual_method_idx) {
193      // smali can create dex files with two encoded_methods sharing the same method_idx
194      // http://code.google.com/p/smali/issues/detail?id=119
195      it.Next();
196      continue;
197    }
198    previous_virtual_method_idx = method_idx;
199    InvokeType type = it.GetMethodInvokeType(*class_def);
200    mirror::ArtMethod* method =
201        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
202                              NullHandle<mirror::ArtMethod>(), type);
203    if (method == nullptr) {
204      DCHECK(Thread::Current()->IsExceptionPending());
205      // We couldn't resolve the method, but continue regardless.
206      Thread::Current()->ClearException();
207    }
208    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
209                                                      dex_file,
210                                                      dex_cache,
211                                                      class_loader,
212                                                      class_def,
213                                                      it.GetMethodCodeItem(),
214                                                      method,
215                                                      it.GetMemberAccessFlags(),
216                                                      allow_soft_failures,
217                                                      false);
218    if (result != kNoFailure) {
219      if (result == kHardFailure) {
220        hard_fail = true;
221        if (error_count > 0) {
222          *error += "\n";
223        }
224        *error = "Verifier rejected class ";
225        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
226        *error += " due to bad method ";
227        *error += PrettyMethod(method_idx, *dex_file);
228      }
229      ++error_count;
230    }
231    it.Next();
232  }
233  if (error_count == 0) {
234    return kNoFailure;
235  } else {
236    return hard_fail ? kHardFailure : kSoftFailure;
237  }
238}
239
240MethodVerifier::FailureKind MethodVerifier::VerifyMethod(uint32_t method_idx,
241                                                         const DexFile* dex_file,
242                                                         Handle<mirror::DexCache> dex_cache,
243                                                         Handle<mirror::ClassLoader> class_loader,
244                                                         const DexFile::ClassDef* class_def,
245                                                         const DexFile::CodeItem* code_item,
246                                                         mirror::ArtMethod* method,
247                                                         uint32_t method_access_flags,
248                                                         bool allow_soft_failures,
249                                                         bool need_precise_constants) {
250  MethodVerifier::FailureKind result = kNoFailure;
251  uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
252
253  MethodVerifier verifier(dex_file, &dex_cache, &class_loader, class_def, code_item,
254                           method_idx, method, method_access_flags, true, allow_soft_failures,
255                           need_precise_constants);
256  if (verifier.Verify()) {
257    // Verification completed, however failures may be pending that didn't cause the verification
258    // to hard fail.
259    CHECK(!verifier.have_pending_hard_failure_);
260    if (verifier.failures_.size() != 0) {
261      if (VLOG_IS_ON(verifier)) {
262          verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
263                                << PrettyMethod(method_idx, *dex_file) << "\n");
264      }
265      result = kSoftFailure;
266    }
267  } else {
268    // Bad method data.
269    CHECK_NE(verifier.failures_.size(), 0U);
270    CHECK(verifier.have_pending_hard_failure_);
271    verifier.DumpFailures(LOG(INFO) << "Verification error in "
272                                    << PrettyMethod(method_idx, *dex_file) << "\n");
273    if (gDebugVerify) {
274      std::cout << "\n" << verifier.info_messages_.str();
275      verifier.Dump(std::cout);
276    }
277    result = kHardFailure;
278  }
279  if (kTimeVerifyMethod) {
280    uint64_t duration_ns = NanoTime() - start_ns;
281    if (duration_ns > MsToNs(100)) {
282      LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
283                   << " took " << PrettyDuration(duration_ns);
284    }
285  }
286  return result;
287}
288
289MethodVerifier* MethodVerifier::VerifyMethodAndDump(std::ostream& os, uint32_t dex_method_idx,
290                                                    const DexFile* dex_file,
291                                                    Handle<mirror::DexCache> dex_cache,
292                                                    Handle<mirror::ClassLoader> class_loader,
293                                                    const DexFile::ClassDef* class_def,
294                                                    const DexFile::CodeItem* code_item,
295                                                    mirror::ArtMethod* method,
296                                                    uint32_t method_access_flags) {
297  MethodVerifier* verifier = new MethodVerifier(dex_file, &dex_cache, &class_loader, class_def,
298                                                code_item, dex_method_idx, method,
299                                                method_access_flags, true, true, true, true);
300  verifier->Verify();
301  verifier->DumpFailures(os);
302  os << verifier->info_messages_.str();
303  verifier->Dump(os);
304
305  return verifier;
306}
307
308MethodVerifier::MethodVerifier(const DexFile* dex_file, Handle<mirror::DexCache>* dex_cache,
309                               Handle<mirror::ClassLoader>* class_loader,
310                               const DexFile::ClassDef* class_def,
311                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
312                               mirror::ArtMethod* method, uint32_t method_access_flags,
313                               bool can_load_classes, bool allow_soft_failures,
314                               bool need_precise_constants, bool verify_to_dump)
315    : reg_types_(can_load_classes),
316      work_insn_idx_(-1),
317      dex_method_idx_(dex_method_idx),
318      mirror_method_(method),
319      method_access_flags_(method_access_flags),
320      return_type_(nullptr),
321      dex_file_(dex_file),
322      dex_cache_(dex_cache),
323      class_loader_(class_loader),
324      class_def_(class_def),
325      code_item_(code_item),
326      declaring_class_(nullptr),
327      interesting_dex_pc_(-1),
328      monitor_enter_dex_pcs_(nullptr),
329      have_pending_hard_failure_(false),
330      have_pending_runtime_throw_failure_(false),
331      new_instance_count_(0),
332      monitor_enter_count_(0),
333      can_load_classes_(can_load_classes),
334      allow_soft_failures_(allow_soft_failures),
335      need_precise_constants_(need_precise_constants),
336      has_check_casts_(false),
337      has_virtual_or_interface_invokes_(false),
338      verify_to_dump_(verify_to_dump) {
339  Runtime::Current()->AddMethodVerifier(this);
340  DCHECK(class_def != nullptr);
341}
342
343MethodVerifier::~MethodVerifier() {
344  Runtime::Current()->RemoveMethodVerifier(this);
345  STLDeleteElements(&failure_messages_);
346}
347
348void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
349                                      std::vector<uint32_t>* monitor_enter_dex_pcs) {
350  StackHandleScope<2> hs(Thread::Current());
351  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
352  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
353  MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
354                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), false,
355                          true, false);
356  verifier.interesting_dex_pc_ = dex_pc;
357  verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
358  verifier.FindLocksAtDexPc();
359}
360
361void MethodVerifier::FindLocksAtDexPc() {
362  CHECK(monitor_enter_dex_pcs_ != nullptr);
363  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
364
365  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
366  // verification. In practice, the phase we want relies on data structures set up by all the
367  // earlier passes, so we just run the full method verification and bail out early when we've
368  // got what we wanted.
369  Verify();
370}
371
372mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
373                                                           uint32_t dex_pc) {
374  StackHandleScope<2> hs(Thread::Current());
375  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
376  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
377  MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
378                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
379                          true, false);
380  return verifier.FindAccessedFieldAtDexPc(dex_pc);
381}
382
383mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
384  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
385
386  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
387  // verification. In practice, the phase we want relies on data structures set up by all the
388  // earlier passes, so we just run the full method verification and bail out early when we've
389  // got what we wanted.
390  bool success = Verify();
391  if (!success) {
392    return nullptr;
393  }
394  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
395  if (register_line == nullptr) {
396    return nullptr;
397  }
398  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
399  return GetQuickFieldAccess(inst, register_line);
400}
401
402mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
403                                                            uint32_t dex_pc) {
404  StackHandleScope<2> hs(Thread::Current());
405  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
406  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
407  MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
408                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
409                          true, false);
410  return verifier.FindInvokedMethodAtDexPc(dex_pc);
411}
412
413mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
414  CHECK(code_item_ != nullptr);  // This only makes sense for methods with code.
415
416  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
417  // verification. In practice, the phase we want relies on data structures set up by all the
418  // earlier passes, so we just run the full method verification and bail out early when we've
419  // got what we wanted.
420  bool success = Verify();
421  if (!success) {
422    return nullptr;
423  }
424  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
425  if (register_line == nullptr) {
426    return nullptr;
427  }
428  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
429  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
430  return GetQuickInvokedMethod(inst, register_line, is_range);
431}
432
433bool MethodVerifier::Verify() {
434  // If there aren't any instructions, make sure that's expected, then exit successfully.
435  if (code_item_ == nullptr) {
436    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
437      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
438      return false;
439    } else {
440      return true;
441    }
442  }
443  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
444  if (code_item_->ins_size_ > code_item_->registers_size_) {
445    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
446                                      << " regs=" << code_item_->registers_size_;
447    return false;
448  }
449  // Allocate and initialize an array to hold instruction data.
450  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
451  // Run through the instructions and see if the width checks out.
452  bool result = ComputeWidthsAndCountOps();
453  // Flag instructions guarded by a "try" block and check exception handlers.
454  result = result && ScanTryCatchBlocks();
455  // Perform static instruction verification.
456  result = result && VerifyInstructions();
457  // Perform code-flow analysis and return.
458  result = result && VerifyCodeFlow();
459  // Compute information for compiler.
460  if (result && Runtime::Current()->IsCompiler()) {
461    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
462  }
463  return result;
464}
465
466std::ostream& MethodVerifier::Fail(VerifyError error) {
467  switch (error) {
468    case VERIFY_ERROR_NO_CLASS:
469    case VERIFY_ERROR_NO_FIELD:
470    case VERIFY_ERROR_NO_METHOD:
471    case VERIFY_ERROR_ACCESS_CLASS:
472    case VERIFY_ERROR_ACCESS_FIELD:
473    case VERIFY_ERROR_ACCESS_METHOD:
474    case VERIFY_ERROR_INSTANTIATION:
475    case VERIFY_ERROR_CLASS_CHANGE:
476      if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
477        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
478        // class change and instantiation errors into soft verification errors so that we re-verify
479        // at runtime. We may fail to find or to agree on access because of not yet available class
480        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
481        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
482        // paths" that dynamically perform the verification and cause the behavior to be that akin
483        // to an interpreter.
484        error = VERIFY_ERROR_BAD_CLASS_SOFT;
485      } else {
486        // If we fail again at runtime, mark that this instruction would throw and force this
487        // method to be executed using the interpreter with checks.
488        have_pending_runtime_throw_failure_ = true;
489      }
490      break;
491      // Indication that verification should be retried at runtime.
492    case VERIFY_ERROR_BAD_CLASS_SOFT:
493      if (!allow_soft_failures_) {
494        have_pending_hard_failure_ = true;
495      }
496      break;
497      // Hard verification failures at compile time will still fail at runtime, so the class is
498      // marked as rejected to prevent it from being compiled.
499    case VERIFY_ERROR_BAD_CLASS_HARD: {
500      if (Runtime::Current()->IsCompiler()) {
501        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
502        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
503      }
504      have_pending_hard_failure_ = true;
505      break;
506    }
507  }
508  failures_.push_back(error);
509  std::string location(StringPrintf("%s: [0x%X]", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
510                                    work_insn_idx_));
511  std::ostringstream* failure_message = new std::ostringstream(location);
512  failure_messages_.push_back(failure_message);
513  return *failure_message;
514}
515
516std::ostream& MethodVerifier::LogVerifyInfo() {
517  return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
518                        << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
519}
520
521void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
522  size_t failure_num = failure_messages_.size();
523  DCHECK_NE(failure_num, 0U);
524  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
525  prepend += last_fail_message->str();
526  failure_messages_[failure_num - 1] = new std::ostringstream(prepend);
527  delete last_fail_message;
528}
529
530void MethodVerifier::AppendToLastFailMessage(std::string append) {
531  size_t failure_num = failure_messages_.size();
532  DCHECK_NE(failure_num, 0U);
533  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
534  (*last_fail_message) << append;
535}
536
537bool MethodVerifier::ComputeWidthsAndCountOps() {
538  const uint16_t* insns = code_item_->insns_;
539  size_t insns_size = code_item_->insns_size_in_code_units_;
540  const Instruction* inst = Instruction::At(insns);
541  size_t new_instance_count = 0;
542  size_t monitor_enter_count = 0;
543  size_t dex_pc = 0;
544
545  while (dex_pc < insns_size) {
546    Instruction::Code opcode = inst->Opcode();
547    switch (opcode) {
548      case Instruction::APUT_OBJECT:
549      case Instruction::CHECK_CAST:
550        has_check_casts_ = true;
551        break;
552      case Instruction::INVOKE_VIRTUAL:
553      case Instruction::INVOKE_VIRTUAL_RANGE:
554      case Instruction::INVOKE_INTERFACE:
555      case Instruction::INVOKE_INTERFACE_RANGE:
556        has_virtual_or_interface_invokes_ = true;
557        break;
558      case Instruction::MONITOR_ENTER:
559        monitor_enter_count++;
560        break;
561      case Instruction::NEW_INSTANCE:
562        new_instance_count++;
563        break;
564      default:
565        break;
566    }
567    size_t inst_size = inst->SizeInCodeUnits();
568    insn_flags_[dex_pc].SetLengthInCodeUnits(inst_size);
569    dex_pc += inst_size;
570    inst = inst->Next();
571  }
572
573  if (dex_pc != insns_size) {
574    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
575                                      << dex_pc << " vs. " << insns_size << ")";
576    return false;
577  }
578
579  new_instance_count_ = new_instance_count;
580  monitor_enter_count_ = monitor_enter_count;
581  return true;
582}
583
584bool MethodVerifier::ScanTryCatchBlocks() {
585  uint32_t tries_size = code_item_->tries_size_;
586  if (tries_size == 0) {
587    return true;
588  }
589  uint32_t insns_size = code_item_->insns_size_in_code_units_;
590  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
591
592  for (uint32_t idx = 0; idx < tries_size; idx++) {
593    const DexFile::TryItem* try_item = &tries[idx];
594    uint32_t start = try_item->start_addr_;
595    uint32_t end = start + try_item->insn_count_;
596    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
597      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
598                                        << " endAddr=" << end << " (size=" << insns_size << ")";
599      return false;
600    }
601    if (!insn_flags_[start].IsOpcode()) {
602      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
603          << "'try' block starts inside an instruction (" << start << ")";
604      return false;
605    }
606    for (uint32_t dex_pc = start; dex_pc < end;
607        dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
608      insn_flags_[dex_pc].SetInTry();
609    }
610  }
611  // Iterate over each of the handlers to verify target addresses.
612  const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
613  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
614  ClassLinker* linker = Runtime::Current()->GetClassLinker();
615  for (uint32_t idx = 0; idx < handlers_size; idx++) {
616    CatchHandlerIterator iterator(handlers_ptr);
617    for (; iterator.HasNext(); iterator.Next()) {
618      uint32_t dex_pc= iterator.GetHandlerAddress();
619      if (!insn_flags_[dex_pc].IsOpcode()) {
620        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
621            << "exception handler starts at bad address (" << dex_pc << ")";
622        return false;
623      }
624      insn_flags_[dex_pc].SetBranchTarget();
625      // Ensure exception types are resolved so that they don't need resolution to be delivered,
626      // unresolved exception types will be ignored by exception delivery
627      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
628        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
629                                                            iterator.GetHandlerTypeIndex(),
630                                                            *dex_cache_, *class_loader_);
631        if (exception_type == nullptr) {
632          DCHECK(Thread::Current()->IsExceptionPending());
633          Thread::Current()->ClearException();
634        }
635      }
636    }
637    handlers_ptr = iterator.EndDataPointer();
638  }
639  return true;
640}
641
642bool MethodVerifier::VerifyInstructions() {
643  const Instruction* inst = Instruction::At(code_item_->insns_);
644
645  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
646  insn_flags_[0].SetBranchTarget();
647  insn_flags_[0].SetCompileTimeInfoPoint();
648
649  uint32_t insns_size = code_item_->insns_size_in_code_units_;
650  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
651    if (!VerifyInstruction(inst, dex_pc)) {
652      DCHECK_NE(failures_.size(), 0U);
653      return false;
654    }
655    /* Flag instructions that are garbage collection points */
656    // All invoke points are marked as "Throw" points already.
657    // We are relying on this to also count all the invokes as interesting.
658    if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) {
659      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
660    } else if (inst->IsReturn()) {
661      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
662    }
663    dex_pc += inst->SizeInCodeUnits();
664    inst = inst->Next();
665  }
666  return true;
667}
668
669bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
670  bool result = true;
671  switch (inst->GetVerifyTypeArgumentA()) {
672    case Instruction::kVerifyRegA:
673      result = result && CheckRegisterIndex(inst->VRegA());
674      break;
675    case Instruction::kVerifyRegAWide:
676      result = result && CheckWideRegisterIndex(inst->VRegA());
677      break;
678  }
679  switch (inst->GetVerifyTypeArgumentB()) {
680    case Instruction::kVerifyRegB:
681      result = result && CheckRegisterIndex(inst->VRegB());
682      break;
683    case Instruction::kVerifyRegBField:
684      result = result && CheckFieldIndex(inst->VRegB());
685      break;
686    case Instruction::kVerifyRegBMethod:
687      result = result && CheckMethodIndex(inst->VRegB());
688      break;
689    case Instruction::kVerifyRegBNewInstance:
690      result = result && CheckNewInstance(inst->VRegB());
691      break;
692    case Instruction::kVerifyRegBString:
693      result = result && CheckStringIndex(inst->VRegB());
694      break;
695    case Instruction::kVerifyRegBType:
696      result = result && CheckTypeIndex(inst->VRegB());
697      break;
698    case Instruction::kVerifyRegBWide:
699      result = result && CheckWideRegisterIndex(inst->VRegB());
700      break;
701  }
702  switch (inst->GetVerifyTypeArgumentC()) {
703    case Instruction::kVerifyRegC:
704      result = result && CheckRegisterIndex(inst->VRegC());
705      break;
706    case Instruction::kVerifyRegCField:
707      result = result && CheckFieldIndex(inst->VRegC());
708      break;
709    case Instruction::kVerifyRegCNewArray:
710      result = result && CheckNewArray(inst->VRegC());
711      break;
712    case Instruction::kVerifyRegCType:
713      result = result && CheckTypeIndex(inst->VRegC());
714      break;
715    case Instruction::kVerifyRegCWide:
716      result = result && CheckWideRegisterIndex(inst->VRegC());
717      break;
718  }
719  switch (inst->GetVerifyExtraFlags()) {
720    case Instruction::kVerifyArrayData:
721      result = result && CheckArrayData(code_offset);
722      break;
723    case Instruction::kVerifyBranchTarget:
724      result = result && CheckBranchTarget(code_offset);
725      break;
726    case Instruction::kVerifySwitchTargets:
727      result = result && CheckSwitchTargets(code_offset);
728      break;
729    case Instruction::kVerifyVarArgNonZero:
730      // Fall-through.
731    case Instruction::kVerifyVarArg: {
732      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && inst->VRegA() <= 0) {
733        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
734                                             "non-range invoke";
735        return false;
736      }
737      uint32_t args[Instruction::kMaxVarArgRegs];
738      inst->GetVarArgs(args);
739      result = result && CheckVarArgRegs(inst->VRegA(), args);
740      break;
741    }
742    case Instruction::kVerifyVarArgRangeNonZero:
743      // Fall-through.
744    case Instruction::kVerifyVarArgRange:
745      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
746          inst->VRegA() <= 0) {
747        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
748                                             "range invoke";
749        return false;
750      }
751      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
752      break;
753    case Instruction::kVerifyError:
754      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
755      result = false;
756      break;
757  }
758  if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsCompiler() && !verify_to_dump_) {
759    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
760    result = false;
761  }
762  return result;
763}
764
765bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
766  if (idx >= code_item_->registers_size_) {
767    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
768                                      << code_item_->registers_size_ << ")";
769    return false;
770  }
771  return true;
772}
773
774bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
775  if (idx + 1 >= code_item_->registers_size_) {
776    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
777                                      << "+1 >= " << code_item_->registers_size_ << ")";
778    return false;
779  }
780  return true;
781}
782
783bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
784  if (idx >= dex_file_->GetHeader().field_ids_size_) {
785    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
786                                      << dex_file_->GetHeader().field_ids_size_ << ")";
787    return false;
788  }
789  return true;
790}
791
792bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
793  if (idx >= dex_file_->GetHeader().method_ids_size_) {
794    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
795                                      << dex_file_->GetHeader().method_ids_size_ << ")";
796    return false;
797  }
798  return true;
799}
800
801bool MethodVerifier::CheckNewInstance(uint32_t idx) {
802  if (idx >= dex_file_->GetHeader().type_ids_size_) {
803    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
804                                      << dex_file_->GetHeader().type_ids_size_ << ")";
805    return false;
806  }
807  // We don't need the actual class, just a pointer to the class name.
808  const char* descriptor = dex_file_->StringByTypeIdx(idx);
809  if (descriptor[0] != 'L') {
810    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
811    return false;
812  }
813  return true;
814}
815
816bool MethodVerifier::CheckStringIndex(uint32_t idx) {
817  if (idx >= dex_file_->GetHeader().string_ids_size_) {
818    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
819                                      << dex_file_->GetHeader().string_ids_size_ << ")";
820    return false;
821  }
822  return true;
823}
824
825bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
826  if (idx >= dex_file_->GetHeader().type_ids_size_) {
827    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
828                                      << dex_file_->GetHeader().type_ids_size_ << ")";
829    return false;
830  }
831  return true;
832}
833
834bool MethodVerifier::CheckNewArray(uint32_t idx) {
835  if (idx >= dex_file_->GetHeader().type_ids_size_) {
836    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
837                                      << dex_file_->GetHeader().type_ids_size_ << ")";
838    return false;
839  }
840  int bracket_count = 0;
841  const char* descriptor = dex_file_->StringByTypeIdx(idx);
842  const char* cp = descriptor;
843  while (*cp++ == '[') {
844    bracket_count++;
845  }
846  if (bracket_count == 0) {
847    /* The given class must be an array type. */
848    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
849        << "can't new-array class '" << descriptor << "' (not an array)";
850    return false;
851  } else if (bracket_count > 255) {
852    /* It is illegal to create an array of more than 255 dimensions. */
853    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
854        << "can't new-array class '" << descriptor << "' (exceeds limit)";
855    return false;
856  }
857  return true;
858}
859
860bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
861  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
862  const uint16_t* insns = code_item_->insns_ + cur_offset;
863  const uint16_t* array_data;
864  int32_t array_data_offset;
865
866  DCHECK_LT(cur_offset, insn_count);
867  /* make sure the start of the array data table is in range */
868  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
869  if ((int32_t) cur_offset + array_data_offset < 0 ||
870      cur_offset + array_data_offset + 2 >= insn_count) {
871    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
872                                      << ", data offset " << array_data_offset
873                                      << ", count " << insn_count;
874    return false;
875  }
876  /* offset to array data table is a relative branch-style offset */
877  array_data = insns + array_data_offset;
878  /* make sure the table is 32-bit aligned */
879  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
880    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
881                                      << ", data offset " << array_data_offset;
882    return false;
883  }
884  uint32_t value_width = array_data[1];
885  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
886  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
887  /* make sure the end of the switch is in range */
888  if (cur_offset + array_data_offset + table_size > insn_count) {
889    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
890                                      << ", data offset " << array_data_offset << ", end "
891                                      << cur_offset + array_data_offset + table_size
892                                      << ", count " << insn_count;
893    return false;
894  }
895  return true;
896}
897
898bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
899  int32_t offset;
900  bool isConditional, selfOkay;
901  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
902    return false;
903  }
904  if (!selfOkay && offset == 0) {
905    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
906                                      << reinterpret_cast<void*>(cur_offset);
907    return false;
908  }
909  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
910  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
911  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
912    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
913                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
914    return false;
915  }
916  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
917  int32_t abs_offset = cur_offset + offset;
918  if (abs_offset < 0 ||
919      (uint32_t) abs_offset >= insn_count ||
920      !insn_flags_[abs_offset].IsOpcode()) {
921    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
922                                      << reinterpret_cast<void*>(abs_offset) << ") at "
923                                      << reinterpret_cast<void*>(cur_offset);
924    return false;
925  }
926  insn_flags_[abs_offset].SetBranchTarget();
927  return true;
928}
929
930bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
931                                  bool* selfOkay) {
932  const uint16_t* insns = code_item_->insns_ + cur_offset;
933  *pConditional = false;
934  *selfOkay = false;
935  switch (*insns & 0xff) {
936    case Instruction::GOTO:
937      *pOffset = ((int16_t) *insns) >> 8;
938      break;
939    case Instruction::GOTO_32:
940      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
941      *selfOkay = true;
942      break;
943    case Instruction::GOTO_16:
944      *pOffset = (int16_t) insns[1];
945      break;
946    case Instruction::IF_EQ:
947    case Instruction::IF_NE:
948    case Instruction::IF_LT:
949    case Instruction::IF_GE:
950    case Instruction::IF_GT:
951    case Instruction::IF_LE:
952    case Instruction::IF_EQZ:
953    case Instruction::IF_NEZ:
954    case Instruction::IF_LTZ:
955    case Instruction::IF_GEZ:
956    case Instruction::IF_GTZ:
957    case Instruction::IF_LEZ:
958      *pOffset = (int16_t) insns[1];
959      *pConditional = true;
960      break;
961    default:
962      return false;
963      break;
964  }
965  return true;
966}
967
968bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
969  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
970  DCHECK_LT(cur_offset, insn_count);
971  const uint16_t* insns = code_item_->insns_ + cur_offset;
972  /* make sure the start of the switch is in range */
973  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
974  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
975    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
976                                      << ", switch offset " << switch_offset
977                                      << ", count " << insn_count;
978    return false;
979  }
980  /* offset to switch table is a relative branch-style offset */
981  const uint16_t* switch_insns = insns + switch_offset;
982  /* make sure the table is 32-bit aligned */
983  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
984    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
985                                      << ", switch offset " << switch_offset;
986    return false;
987  }
988  uint32_t switch_count = switch_insns[1];
989  int32_t keys_offset, targets_offset;
990  uint16_t expected_signature;
991  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
992    /* 0=sig, 1=count, 2/3=firstKey */
993    targets_offset = 4;
994    keys_offset = -1;
995    expected_signature = Instruction::kPackedSwitchSignature;
996  } else {
997    /* 0=sig, 1=count, 2..count*2 = keys */
998    keys_offset = 2;
999    targets_offset = 2 + 2 * switch_count;
1000    expected_signature = Instruction::kSparseSwitchSignature;
1001  }
1002  uint32_t table_size = targets_offset + switch_count * 2;
1003  if (switch_insns[0] != expected_signature) {
1004    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1005        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1006                        switch_insns[0], expected_signature);
1007    return false;
1008  }
1009  /* make sure the end of the switch is in range */
1010  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
1011    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1012                                      << ", switch offset " << switch_offset
1013                                      << ", end " << (cur_offset + switch_offset + table_size)
1014                                      << ", count " << insn_count;
1015    return false;
1016  }
1017  /* for a sparse switch, verify the keys are in ascending order */
1018  if (keys_offset > 0 && switch_count > 1) {
1019    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1020    for (uint32_t targ = 1; targ < switch_count; targ++) {
1021      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
1022                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
1023      if (key <= last_key) {
1024        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
1025                                          << ", this=" << key;
1026        return false;
1027      }
1028      last_key = key;
1029    }
1030  }
1031  /* verify each switch target */
1032  for (uint32_t targ = 0; targ < switch_count; targ++) {
1033    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
1034                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
1035    int32_t abs_offset = cur_offset + offset;
1036    if (abs_offset < 0 ||
1037        abs_offset >= (int32_t) insn_count ||
1038        !insn_flags_[abs_offset].IsOpcode()) {
1039      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1040                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1041                                        << reinterpret_cast<void*>(cur_offset)
1042                                        << "[" << targ << "]";
1043      return false;
1044    }
1045    insn_flags_[abs_offset].SetBranchTarget();
1046  }
1047  return true;
1048}
1049
1050bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1051  if (vA > Instruction::kMaxVarArgRegs) {
1052    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
1053    return false;
1054  }
1055  uint16_t registers_size = code_item_->registers_size_;
1056  for (uint32_t idx = 0; idx < vA; idx++) {
1057    if (arg[idx] >= registers_size) {
1058      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1059                                        << ") in non-range invoke (>= " << registers_size << ")";
1060      return false;
1061    }
1062  }
1063
1064  return true;
1065}
1066
1067bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1068  uint16_t registers_size = code_item_->registers_size_;
1069  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1070  // integer overflow when adding them here.
1071  if (vA + vC > registers_size) {
1072    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1073                                      << " in range invoke (> " << registers_size << ")";
1074    return false;
1075  }
1076  return true;
1077}
1078
1079bool MethodVerifier::VerifyCodeFlow() {
1080  uint16_t registers_size = code_item_->registers_size_;
1081  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1082
1083  if (registers_size * insns_size > 4*1024*1024) {
1084    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1085                 << " insns_size=" << insns_size << ")";
1086  }
1087  /* Create and initialize table holding register status */
1088  reg_table_.Init(kTrackCompilerInterestPoints,
1089                  insn_flags_.get(),
1090                  insns_size,
1091                  registers_size,
1092                  this);
1093
1094
1095  work_line_.reset(RegisterLine::Create(registers_size, this));
1096  saved_line_.reset(RegisterLine::Create(registers_size, this));
1097
1098  /* Initialize register types of method arguments. */
1099  if (!SetTypesFromSignature()) {
1100    DCHECK_NE(failures_.size(), 0U);
1101    std::string prepend("Bad signature in ");
1102    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1103    PrependToLastFailMessage(prepend);
1104    return false;
1105  }
1106  /* Perform code flow verification. */
1107  if (!CodeFlowVerifyMethod()) {
1108    DCHECK_NE(failures_.size(), 0U);
1109    return false;
1110  }
1111  return true;
1112}
1113
1114std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1115  DCHECK_EQ(failures_.size(), failure_messages_.size());
1116  for (size_t i = 0; i < failures_.size(); ++i) {
1117      os << failure_messages_[i]->str() << "\n";
1118  }
1119  return os;
1120}
1121
1122extern "C" void MethodVerifierGdbDump(MethodVerifier* v)
1123    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1124  v->Dump(std::cerr);
1125}
1126
1127void MethodVerifier::Dump(std::ostream& os) {
1128  if (code_item_ == nullptr) {
1129    os << "Native method\n";
1130    return;
1131  }
1132  {
1133    os << "Register Types:\n";
1134    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1135    std::ostream indent_os(&indent_filter);
1136    reg_types_.Dump(indent_os);
1137  }
1138  os << "Dumping instructions and register lines:\n";
1139  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1140  std::ostream indent_os(&indent_filter);
1141  const Instruction* inst = Instruction::At(code_item_->insns_);
1142  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1143      dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
1144    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1145    if (reg_line != nullptr) {
1146      indent_os << reg_line->Dump() << "\n";
1147    }
1148    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1149    const bool kDumpHexOfInstruction = false;
1150    if (kDumpHexOfInstruction) {
1151      indent_os << inst->DumpHex(5) << " ";
1152    }
1153    indent_os << inst->DumpString(dex_file_) << "\n";
1154    inst = inst->Next();
1155  }
1156}
1157
1158static bool IsPrimitiveDescriptor(char descriptor) {
1159  switch (descriptor) {
1160    case 'I':
1161    case 'C':
1162    case 'S':
1163    case 'B':
1164    case 'Z':
1165    case 'F':
1166    case 'D':
1167    case 'J':
1168      return true;
1169    default:
1170      return false;
1171  }
1172}
1173
1174bool MethodVerifier::SetTypesFromSignature() {
1175  RegisterLine* reg_line = reg_table_.GetLine(0);
1176  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1177  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1178
1179  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1180  // Include the "this" pointer.
1181  size_t cur_arg = 0;
1182  if (!IsStatic()) {
1183    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1184    // argument as uninitialized. This restricts field access until the superclass constructor is
1185    // called.
1186    RegType& declaring_class = GetDeclaringClass();
1187    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1188      reg_line->SetRegisterType(arg_start + cur_arg,
1189                                reg_types_.UninitializedThisArgument(declaring_class));
1190    } else {
1191      reg_line->SetRegisterType(arg_start + cur_arg, declaring_class);
1192    }
1193    cur_arg++;
1194  }
1195
1196  const DexFile::ProtoId& proto_id =
1197      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1198  DexFileParameterIterator iterator(*dex_file_, proto_id);
1199
1200  for (; iterator.HasNext(); iterator.Next()) {
1201    const char* descriptor = iterator.GetDescriptor();
1202    if (descriptor == nullptr) {
1203      LOG(FATAL) << "Null descriptor";
1204    }
1205    if (cur_arg >= expected_args) {
1206      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1207                                        << " args, found more (" << descriptor << ")";
1208      return false;
1209    }
1210    switch (descriptor[0]) {
1211      case 'L':
1212      case '[':
1213        // We assume that reference arguments are initialized. The only way it could be otherwise
1214        // (assuming the caller was verified) is if the current method is <init>, but in that case
1215        // it's effectively considered initialized the instant we reach here (in the sense that we
1216        // can return without doing anything or call virtual methods).
1217        {
1218          RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1219          if (!reg_type.IsNonZeroReferenceTypes()) {
1220            DCHECK(HasFailures());
1221            return false;
1222          }
1223          reg_line->SetRegisterType(arg_start + cur_arg, reg_type);
1224        }
1225        break;
1226      case 'Z':
1227        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Boolean());
1228        break;
1229      case 'C':
1230        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Char());
1231        break;
1232      case 'B':
1233        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Byte());
1234        break;
1235      case 'I':
1236        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Integer());
1237        break;
1238      case 'S':
1239        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Short());
1240        break;
1241      case 'F':
1242        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Float());
1243        break;
1244      case 'J':
1245      case 'D': {
1246        if (cur_arg + 1 >= expected_args) {
1247          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1248              << " args, found more (" << descriptor << ")";
1249          return false;
1250        }
1251
1252        RegType& lo_half = descriptor[0] == 'J' ? reg_types_.LongLo() : reg_types_.DoubleLo();
1253        RegType& hi_half = descriptor[0] == 'J' ? reg_types_.LongHi() : reg_types_.DoubleHi();
1254        reg_line->SetRegisterTypeWide(arg_start + cur_arg, lo_half, hi_half);
1255        cur_arg++;
1256        break;
1257      }
1258      default:
1259        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1260                                          << descriptor << "'";
1261        return false;
1262    }
1263    cur_arg++;
1264  }
1265  if (cur_arg != expected_args) {
1266    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1267                                      << " arguments, found " << cur_arg;
1268    return false;
1269  }
1270  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1271  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1272  // format. Only major difference from the method argument format is that 'V' is supported.
1273  bool result;
1274  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1275    result = descriptor[1] == '\0';
1276  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1277    size_t i = 0;
1278    do {
1279      i++;
1280    } while (descriptor[i] == '[');  // process leading [
1281    if (descriptor[i] == 'L') {  // object array
1282      do {
1283        i++;  // find closing ;
1284      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1285      result = descriptor[i] == ';';
1286    } else {  // primitive array
1287      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1288    }
1289  } else if (descriptor[0] == 'L') {
1290    // could be more thorough here, but shouldn't be required
1291    size_t i = 0;
1292    do {
1293      i++;
1294    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1295    result = descriptor[i] == ';';
1296  } else {
1297    result = false;
1298  }
1299  if (!result) {
1300    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1301                                      << descriptor << "'";
1302  }
1303  return result;
1304}
1305
1306bool MethodVerifier::CodeFlowVerifyMethod() {
1307  const uint16_t* insns = code_item_->insns_;
1308  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1309
1310  /* Begin by marking the first instruction as "changed". */
1311  insn_flags_[0].SetChanged();
1312  uint32_t start_guess = 0;
1313
1314  /* Continue until no instructions are marked "changed". */
1315  while (true) {
1316    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1317    uint32_t insn_idx = start_guess;
1318    for (; insn_idx < insns_size; insn_idx++) {
1319      if (insn_flags_[insn_idx].IsChanged())
1320        break;
1321    }
1322    if (insn_idx == insns_size) {
1323      if (start_guess != 0) {
1324        /* try again, starting from the top */
1325        start_guess = 0;
1326        continue;
1327      } else {
1328        /* all flags are clear */
1329        break;
1330      }
1331    }
1332    // We carry the working set of registers from instruction to instruction. If this address can
1333    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1334    // "changed" flags, we need to load the set of registers from the table.
1335    // Because we always prefer to continue on to the next instruction, we should never have a
1336    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1337    // target.
1338    work_insn_idx_ = insn_idx;
1339    if (insn_flags_[insn_idx].IsBranchTarget()) {
1340      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1341    } else if (kIsDebugBuild) {
1342      /*
1343       * Sanity check: retrieve the stored register line (assuming
1344       * a full table) and make sure it actually matches.
1345       */
1346      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1347      if (register_line != nullptr) {
1348        if (work_line_->CompareLine(register_line) != 0) {
1349          Dump(std::cout);
1350          std::cout << info_messages_.str();
1351          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1352                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1353                     << " work_line=" << *work_line_ << "\n"
1354                     << "  expected=" << *register_line;
1355        }
1356      }
1357    }
1358    if (!CodeFlowVerifyInstruction(&start_guess)) {
1359      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1360      prepend += " failed to verify: ";
1361      PrependToLastFailMessage(prepend);
1362      return false;
1363    }
1364    /* Clear "changed" and mark as visited. */
1365    insn_flags_[insn_idx].SetVisited();
1366    insn_flags_[insn_idx].ClearChanged();
1367  }
1368
1369  if (gDebugVerify) {
1370    /*
1371     * Scan for dead code. There's nothing "evil" about dead code
1372     * (besides the wasted space), but it indicates a flaw somewhere
1373     * down the line, possibly in the verifier.
1374     *
1375     * If we've substituted "always throw" instructions into the stream,
1376     * we are almost certainly going to have some dead code.
1377     */
1378    int dead_start = -1;
1379    uint32_t insn_idx = 0;
1380    for (; insn_idx < insns_size; insn_idx += insn_flags_[insn_idx].GetLengthInCodeUnits()) {
1381      /*
1382       * Switch-statement data doesn't get "visited" by scanner. It
1383       * may or may not be preceded by a padding NOP (for alignment).
1384       */
1385      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1386          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1387          insns[insn_idx] == Instruction::kArrayDataSignature ||
1388          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1389           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1390            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1391            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1392        insn_flags_[insn_idx].SetVisited();
1393      }
1394
1395      if (!insn_flags_[insn_idx].IsVisited()) {
1396        if (dead_start < 0)
1397          dead_start = insn_idx;
1398      } else if (dead_start >= 0) {
1399        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1400                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1401        dead_start = -1;
1402      }
1403    }
1404    if (dead_start >= 0) {
1405      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1406                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1407    }
1408    // To dump the state of the verify after a method, do something like:
1409    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1410    //     "boolean java.lang.String.equals(java.lang.Object)") {
1411    //   LOG(INFO) << info_messages_.str();
1412    // }
1413  }
1414  return true;
1415}
1416
1417bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1418  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1419  // We want the state _before_ the instruction, for the case where the dex pc we're
1420  // interested in is itself a monitor-enter instruction (which is a likely place
1421  // for a thread to be suspended).
1422  if (monitor_enter_dex_pcs_ != nullptr && work_insn_idx_ == interesting_dex_pc_) {
1423    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1424    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1425      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1426    }
1427  }
1428
1429  /*
1430   * Once we finish decoding the instruction, we need to figure out where
1431   * we can go from here. There are three possible ways to transfer
1432   * control to another statement:
1433   *
1434   * (1) Continue to the next instruction. Applies to all but
1435   *     unconditional branches, method returns, and exception throws.
1436   * (2) Branch to one or more possible locations. Applies to branches
1437   *     and switch statements.
1438   * (3) Exception handlers. Applies to any instruction that can
1439   *     throw an exception that is handled by an encompassing "try"
1440   *     block.
1441   *
1442   * We can also return, in which case there is no successor instruction
1443   * from this point.
1444   *
1445   * The behavior can be determined from the opcode flags.
1446   */
1447  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1448  const Instruction* inst = Instruction::At(insns);
1449  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1450
1451  int32_t branch_target = 0;
1452  bool just_set_result = false;
1453  if (gDebugVerify) {
1454    // Generate processing back trace to debug verifier
1455    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1456                    << *work_line_.get() << "\n";
1457  }
1458
1459  /*
1460   * Make a copy of the previous register state. If the instruction
1461   * can throw an exception, we will copy/merge this into the "catch"
1462   * address rather than work_line, because we don't want the result
1463   * from the "successful" code path (e.g. a check-cast that "improves"
1464   * a type) to be visible to the exception handler.
1465   */
1466  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1467    saved_line_->CopyFromLine(work_line_.get());
1468  } else if (kIsDebugBuild) {
1469    saved_line_->FillWithGarbage();
1470  }
1471
1472
1473  // We need to ensure the work line is consistent while performing validation. When we spot a
1474  // peephole pattern we compute a new line for either the fallthrough instruction or the
1475  // branch target.
1476  std::unique_ptr<RegisterLine> branch_line;
1477  std::unique_ptr<RegisterLine> fallthrough_line;
1478
1479  switch (inst->Opcode()) {
1480    case Instruction::NOP:
1481      /*
1482       * A "pure" NOP has no effect on anything. Data tables start with
1483       * a signature that looks like a NOP; if we see one of these in
1484       * the course of executing code then we have a problem.
1485       */
1486      if (inst->VRegA_10x() != 0) {
1487        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1488      }
1489      break;
1490
1491    case Instruction::MOVE:
1492      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1493      break;
1494    case Instruction::MOVE_FROM16:
1495      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1496      break;
1497    case Instruction::MOVE_16:
1498      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1499      break;
1500    case Instruction::MOVE_WIDE:
1501      work_line_->CopyRegister2(inst->VRegA_12x(), inst->VRegB_12x());
1502      break;
1503    case Instruction::MOVE_WIDE_FROM16:
1504      work_line_->CopyRegister2(inst->VRegA_22x(), inst->VRegB_22x());
1505      break;
1506    case Instruction::MOVE_WIDE_16:
1507      work_line_->CopyRegister2(inst->VRegA_32x(), inst->VRegB_32x());
1508      break;
1509    case Instruction::MOVE_OBJECT:
1510      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1511      break;
1512    case Instruction::MOVE_OBJECT_FROM16:
1513      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1514      break;
1515    case Instruction::MOVE_OBJECT_16:
1516      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1517      break;
1518
1519    /*
1520     * The move-result instructions copy data out of a "pseudo-register"
1521     * with the results from the last method invocation. In practice we
1522     * might want to hold the result in an actual CPU register, so the
1523     * Dalvik spec requires that these only appear immediately after an
1524     * invoke or filled-new-array.
1525     *
1526     * These calls invalidate the "result" register. (This is now
1527     * redundant with the reset done below, but it can make the debug info
1528     * easier to read in some cases.)
1529     */
1530    case Instruction::MOVE_RESULT:
1531      work_line_->CopyResultRegister1(inst->VRegA_11x(), false);
1532      break;
1533    case Instruction::MOVE_RESULT_WIDE:
1534      work_line_->CopyResultRegister2(inst->VRegA_11x());
1535      break;
1536    case Instruction::MOVE_RESULT_OBJECT:
1537      work_line_->CopyResultRegister1(inst->VRegA_11x(), true);
1538      break;
1539
1540    case Instruction::MOVE_EXCEPTION: {
1541      /*
1542       * This statement can only appear as the first instruction in an exception handler. We verify
1543       * that as part of extracting the exception type from the catch block list.
1544       */
1545      RegType& res_type = GetCaughtExceptionType();
1546      work_line_->SetRegisterType(inst->VRegA_11x(), res_type);
1547      break;
1548    }
1549    case Instruction::RETURN_VOID:
1550      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1551        if (!GetMethodReturnType().IsConflict()) {
1552          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1553        }
1554      }
1555      break;
1556    case Instruction::RETURN:
1557      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1558        /* check the method signature */
1559        RegType& return_type = GetMethodReturnType();
1560        if (!return_type.IsCategory1Types()) {
1561          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1562                                            << return_type;
1563        } else {
1564          // Compilers may generate synthetic functions that write byte values into boolean fields.
1565          // Also, it may use integer values for boolean, byte, short, and character return types.
1566          const uint32_t vregA = inst->VRegA_11x();
1567          RegType& src_type = work_line_->GetRegisterType(vregA);
1568          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1569                          ((return_type.IsBoolean() || return_type.IsByte() ||
1570                           return_type.IsShort() || return_type.IsChar()) &&
1571                           src_type.IsInteger()));
1572          /* check the register contents */
1573          bool success =
1574              work_line_->VerifyRegisterType(vregA, use_src ? src_type : return_type);
1575          if (!success) {
1576            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1577          }
1578        }
1579      }
1580      break;
1581    case Instruction::RETURN_WIDE:
1582      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1583        /* check the method signature */
1584        RegType& return_type = GetMethodReturnType();
1585        if (!return_type.IsCategory2Types()) {
1586          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1587        } else {
1588          /* check the register contents */
1589          const uint32_t vregA = inst->VRegA_11x();
1590          bool success = work_line_->VerifyRegisterType(vregA, return_type);
1591          if (!success) {
1592            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1593          }
1594        }
1595      }
1596      break;
1597    case Instruction::RETURN_OBJECT:
1598      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1599        RegType& return_type = GetMethodReturnType();
1600        if (!return_type.IsReferenceTypes()) {
1601          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1602        } else {
1603          /* return_type is the *expected* return type, not register value */
1604          DCHECK(!return_type.IsZero());
1605          DCHECK(!return_type.IsUninitializedReference());
1606          const uint32_t vregA = inst->VRegA_11x();
1607          RegType& reg_type = work_line_->GetRegisterType(vregA);
1608          // Disallow returning uninitialized values and verify that the reference in vAA is an
1609          // instance of the "return_type"
1610          if (reg_type.IsUninitializedTypes()) {
1611            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1612                                              << reg_type << "'";
1613          } else if (!return_type.IsAssignableFrom(reg_type)) {
1614            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1615              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1616                  << "' or '" << reg_type << "'";
1617            } else {
1618              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1619                  << "', but expected from declaration '" << return_type << "'";
1620            }
1621          }
1622        }
1623      }
1624      break;
1625
1626      /* could be boolean, int, float, or a null reference */
1627    case Instruction::CONST_4: {
1628      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1629      work_line_->SetRegisterType(inst->VRegA_11n(),
1630                                  DetermineCat1Constant(val, need_precise_constants_));
1631      break;
1632    }
1633    case Instruction::CONST_16: {
1634      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1635      work_line_->SetRegisterType(inst->VRegA_21s(),
1636                                  DetermineCat1Constant(val, need_precise_constants_));
1637      break;
1638    }
1639    case Instruction::CONST: {
1640      int32_t val = inst->VRegB_31i();
1641      work_line_->SetRegisterType(inst->VRegA_31i(),
1642                                  DetermineCat1Constant(val, need_precise_constants_));
1643      break;
1644    }
1645    case Instruction::CONST_HIGH16: {
1646      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1647      work_line_->SetRegisterType(inst->VRegA_21h(),
1648                                  DetermineCat1Constant(val, need_precise_constants_));
1649      break;
1650    }
1651      /* could be long or double; resolved upon use */
1652    case Instruction::CONST_WIDE_16: {
1653      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1654      RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1655      RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1656      work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi);
1657      break;
1658    }
1659    case Instruction::CONST_WIDE_32: {
1660      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1661      RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1662      RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1663      work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi);
1664      break;
1665    }
1666    case Instruction::CONST_WIDE: {
1667      int64_t val = inst->VRegB_51l();
1668      RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1669      RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1670      work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi);
1671      break;
1672    }
1673    case Instruction::CONST_WIDE_HIGH16: {
1674      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1675      RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1676      RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1677      work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi);
1678      break;
1679    }
1680    case Instruction::CONST_STRING:
1681      work_line_->SetRegisterType(inst->VRegA_21c(), reg_types_.JavaLangString());
1682      break;
1683    case Instruction::CONST_STRING_JUMBO:
1684      work_line_->SetRegisterType(inst->VRegA_31c(), reg_types_.JavaLangString());
1685      break;
1686    case Instruction::CONST_CLASS: {
1687      // Get type from instruction if unresolved then we need an access check
1688      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1689      RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1690      // Register holds class, ie its type is class, on error it will hold Conflict.
1691      work_line_->SetRegisterType(inst->VRegA_21c(),
1692                                  res_type.IsConflict() ? res_type
1693                                                        : reg_types_.JavaLangClass(true));
1694      break;
1695    }
1696    case Instruction::MONITOR_ENTER:
1697      work_line_->PushMonitor(inst->VRegA_11x(), work_insn_idx_);
1698      break;
1699    case Instruction::MONITOR_EXIT:
1700      /*
1701       * monitor-exit instructions are odd. They can throw exceptions,
1702       * but when they do they act as if they succeeded and the PC is
1703       * pointing to the following instruction. (This behavior goes back
1704       * to the need to handle asynchronous exceptions, a now-deprecated
1705       * feature that Dalvik doesn't support.)
1706       *
1707       * In practice we don't need to worry about this. The only
1708       * exceptions that can be thrown from monitor-exit are for a
1709       * null reference and -exit without a matching -enter. If the
1710       * structured locking checks are working, the former would have
1711       * failed on the -enter instruction, and the latter is impossible.
1712       *
1713       * This is fortunate, because issue 3221411 prevents us from
1714       * chasing the "can throw" path when monitor verification is
1715       * enabled. If we can fully verify the locking we can ignore
1716       * some catch blocks (which will show up as "dead" code when
1717       * we skip them here); if we can't, then the code path could be
1718       * "live" so we still need to check it.
1719       */
1720      opcode_flags &= ~Instruction::kThrow;
1721      work_line_->PopMonitor(inst->VRegA_11x());
1722      break;
1723
1724    case Instruction::CHECK_CAST:
1725    case Instruction::INSTANCE_OF: {
1726      /*
1727       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1728       * could be a "upcast" -- not expected, so we don't try to address it.)
1729       *
1730       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1731       * dec_insn.vA when branching to a handler.
1732       */
1733      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1734      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1735      RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1736      if (res_type.IsConflict()) {
1737        // If this is a primitive type, fail HARD.
1738        mirror::Class* klass = (*dex_cache_)->GetResolvedType(type_idx);
1739        if (klass != nullptr && klass->IsPrimitive()) {
1740          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
1741              << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
1742              << GetDeclaringClass();
1743          break;
1744        }
1745
1746        DCHECK_NE(failures_.size(), 0U);
1747        if (!is_checkcast) {
1748          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1749        }
1750        break;  // bad class
1751      }
1752      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1753      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1754      RegType& orig_type = work_line_->GetRegisterType(orig_type_reg);
1755      if (!res_type.IsNonZeroReferenceTypes()) {
1756        if (is_checkcast) {
1757          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1758        } else {
1759          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1760        }
1761      } else if (!orig_type.IsReferenceTypes()) {
1762        if (is_checkcast) {
1763          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1764        } else {
1765          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1766        }
1767      } else {
1768        if (is_checkcast) {
1769          work_line_->SetRegisterType(inst->VRegA_21c(), res_type);
1770        } else {
1771          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1772        }
1773      }
1774      break;
1775    }
1776    case Instruction::ARRAY_LENGTH: {
1777      RegType& res_type = work_line_->GetRegisterType(inst->VRegB_12x());
1778      if (res_type.IsReferenceTypes()) {
1779        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1780          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1781        } else {
1782          work_line_->SetRegisterType(inst->VRegA_12x(), reg_types_.Integer());
1783        }
1784      } else {
1785        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1786      }
1787      break;
1788    }
1789    case Instruction::NEW_INSTANCE: {
1790      RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1791      if (res_type.IsConflict()) {
1792        DCHECK_NE(failures_.size(), 0U);
1793        break;  // bad class
1794      }
1795      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1796      // can't create an instance of an interface or abstract class */
1797      if (!res_type.IsInstantiableTypes()) {
1798        Fail(VERIFY_ERROR_INSTANTIATION)
1799            << "new-instance on primitive, interface or abstract class" << res_type;
1800        // Soft failure so carry on to set register type.
1801      }
1802      RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1803      // Any registers holding previous allocations from this address that have not yet been
1804      // initialized must be marked invalid.
1805      work_line_->MarkUninitRefsAsInvalid(uninit_type);
1806      // add the new uninitialized reference to the register state
1807      work_line_->SetRegisterType(inst->VRegA_21c(), uninit_type);
1808      break;
1809    }
1810    case Instruction::NEW_ARRAY:
1811      VerifyNewArray(inst, false, false);
1812      break;
1813    case Instruction::FILLED_NEW_ARRAY:
1814      VerifyNewArray(inst, true, false);
1815      just_set_result = true;  // Filled new array sets result register
1816      break;
1817    case Instruction::FILLED_NEW_ARRAY_RANGE:
1818      VerifyNewArray(inst, true, true);
1819      just_set_result = true;  // Filled new array range sets result register
1820      break;
1821    case Instruction::CMPL_FLOAT:
1822    case Instruction::CMPG_FLOAT:
1823      if (!work_line_->VerifyRegisterType(inst->VRegB_23x(), reg_types_.Float())) {
1824        break;
1825      }
1826      if (!work_line_->VerifyRegisterType(inst->VRegC_23x(), reg_types_.Float())) {
1827        break;
1828      }
1829      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1830      break;
1831    case Instruction::CMPL_DOUBLE:
1832    case Instruction::CMPG_DOUBLE:
1833      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.DoubleLo(),
1834                                              reg_types_.DoubleHi())) {
1835        break;
1836      }
1837      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.DoubleLo(),
1838                                              reg_types_.DoubleHi())) {
1839        break;
1840      }
1841      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1842      break;
1843    case Instruction::CMP_LONG:
1844      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.LongLo(),
1845                                              reg_types_.LongHi())) {
1846        break;
1847      }
1848      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.LongLo(),
1849                                              reg_types_.LongHi())) {
1850        break;
1851      }
1852      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1853      break;
1854    case Instruction::THROW: {
1855      RegType& res_type = work_line_->GetRegisterType(inst->VRegA_11x());
1856      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1857        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
1858            << "thrown class " << res_type << " not instanceof Throwable";
1859      }
1860      break;
1861    }
1862    case Instruction::GOTO:
1863    case Instruction::GOTO_16:
1864    case Instruction::GOTO_32:
1865      /* no effect on or use of registers */
1866      break;
1867
1868    case Instruction::PACKED_SWITCH:
1869    case Instruction::SPARSE_SWITCH:
1870      /* verify that vAA is an integer, or can be converted to one */
1871      work_line_->VerifyRegisterType(inst->VRegA_31t(), reg_types_.Integer());
1872      break;
1873
1874    case Instruction::FILL_ARRAY_DATA: {
1875      /* Similar to the verification done for APUT */
1876      RegType& array_type = work_line_->GetRegisterType(inst->VRegA_31t());
1877      /* array_type can be null if the reg type is Zero */
1878      if (!array_type.IsZero()) {
1879        if (!array_type.IsArrayTypes()) {
1880          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
1881                                            << array_type;
1882        } else {
1883          RegType& component_type = reg_types_.GetComponentType(array_type,
1884                                                                      class_loader_->Get());
1885          DCHECK(!component_type.IsConflict());
1886          if (component_type.IsNonZeroReferenceTypes()) {
1887            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1888                                              << component_type;
1889          } else {
1890            // Now verify if the element width in the table matches the element width declared in
1891            // the array
1892            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1893            if (array_data[0] != Instruction::kArrayDataSignature) {
1894              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1895            } else {
1896              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1897              // Since we don't compress the data in Dex, expect to see equal width of data stored
1898              // in the table and expected from the array class.
1899              if (array_data[1] != elem_width) {
1900                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1901                                                  << " vs " << elem_width << ")";
1902              }
1903            }
1904          }
1905        }
1906      }
1907      break;
1908    }
1909    case Instruction::IF_EQ:
1910    case Instruction::IF_NE: {
1911      RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1912      RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1913      bool mismatch = false;
1914      if (reg_type1.IsZero()) {  // zero then integral or reference expected
1915        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1916      } else if (reg_type1.IsReferenceTypes()) {  // both references?
1917        mismatch = !reg_type2.IsReferenceTypes();
1918      } else {  // both integral?
1919        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
1920      }
1921      if (mismatch) {
1922        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
1923                                          << reg_type2 << ") must both be references or integral";
1924      }
1925      break;
1926    }
1927    case Instruction::IF_LT:
1928    case Instruction::IF_GE:
1929    case Instruction::IF_GT:
1930    case Instruction::IF_LE: {
1931      RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1932      RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1933      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
1934        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
1935                                          << reg_type2 << ") must be integral";
1936      }
1937      break;
1938    }
1939    case Instruction::IF_EQZ:
1940    case Instruction::IF_NEZ: {
1941      RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1942      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
1943        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1944                                          << " unexpected as arg to if-eqz/if-nez";
1945      }
1946
1947      // Find previous instruction - its existence is a precondition to peephole optimization.
1948      uint32_t instance_of_idx = 0;
1949      if (0 != work_insn_idx_) {
1950        instance_of_idx = work_insn_idx_ - 1;
1951        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
1952          instance_of_idx--;
1953        }
1954        CHECK(insn_flags_[instance_of_idx].IsOpcode());
1955      } else {
1956        break;
1957      }
1958
1959      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
1960
1961      /* Check for peep-hole pattern of:
1962       *    ...;
1963       *    instance-of vX, vY, T;
1964       *    ifXXX vX, label ;
1965       *    ...;
1966       * label:
1967       *    ...;
1968       * and sharpen the type of vY to be type T.
1969       * Note, this pattern can't be if:
1970       *  - if there are other branches to this branch,
1971       *  - when vX == vY.
1972       */
1973      if (!CurrentInsnFlags()->IsBranchTarget() &&
1974          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
1975          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
1976          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
1977        // Check the type of the instance-of is different than that of registers type, as if they
1978        // are the same there is no work to be done here. Check that the conversion is not to or
1979        // from an unresolved type as type information is imprecise. If the instance-of is to an
1980        // interface then ignore the type information as interfaces can only be treated as Objects
1981        // and we don't want to disallow field and other operations on the object. If the value
1982        // being instance-of checked against is known null (zero) then allow the optimization as
1983        // we didn't have type information. If the merge of the instance-of type with the original
1984        // type is assignable to the original then allow optimization. This check is performed to
1985        // ensure that subsequent merges don't lose type information - such as becoming an
1986        // interface from a class that would lose information relevant to field checks.
1987        RegType& orig_type = work_line_->GetRegisterType(instance_of_inst->VRegB_22c());
1988        RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
1989
1990        if (!orig_type.Equals(cast_type) &&
1991            !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
1992            cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
1993            !cast_type.GetClass()->IsInterface() &&
1994            (orig_type.IsZero() ||
1995                orig_type.IsStrictlyAssignableFrom(cast_type.Merge(orig_type, &reg_types_)))) {
1996          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
1997          if (inst->Opcode() == Instruction::IF_EQZ) {
1998            fallthrough_line.reset(update_line);
1999          } else {
2000            branch_line.reset(update_line);
2001          }
2002          update_line->CopyFromLine(work_line_.get());
2003          update_line->SetRegisterType(instance_of_inst->VRegB_22c(), cast_type);
2004          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
2005            // See if instance-of was preceded by a move-object operation, common due to the small
2006            // register encoding space of instance-of, and propagate type information to the source
2007            // of the move-object.
2008            uint32_t move_idx = instance_of_idx - 1;
2009            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
2010              move_idx--;
2011            }
2012            CHECK(insn_flags_[move_idx].IsOpcode());
2013            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
2014            switch (move_inst->Opcode()) {
2015              case Instruction::MOVE_OBJECT:
2016                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
2017                  update_line->SetRegisterType(move_inst->VRegB_12x(), cast_type);
2018                }
2019                break;
2020              case Instruction::MOVE_OBJECT_FROM16:
2021                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
2022                  update_line->SetRegisterType(move_inst->VRegB_22x(), cast_type);
2023                }
2024                break;
2025              case Instruction::MOVE_OBJECT_16:
2026                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
2027                  update_line->SetRegisterType(move_inst->VRegB_32x(), cast_type);
2028                }
2029                break;
2030              default:
2031                break;
2032            }
2033          }
2034        }
2035      }
2036
2037      break;
2038    }
2039    case Instruction::IF_LTZ:
2040    case Instruction::IF_GEZ:
2041    case Instruction::IF_GTZ:
2042    case Instruction::IF_LEZ: {
2043      RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
2044      if (!reg_type.IsIntegralTypes()) {
2045        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2046                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2047      }
2048      break;
2049    }
2050    case Instruction::AGET_BOOLEAN:
2051      VerifyAGet(inst, reg_types_.Boolean(), true);
2052      break;
2053    case Instruction::AGET_BYTE:
2054      VerifyAGet(inst, reg_types_.Byte(), true);
2055      break;
2056    case Instruction::AGET_CHAR:
2057      VerifyAGet(inst, reg_types_.Char(), true);
2058      break;
2059    case Instruction::AGET_SHORT:
2060      VerifyAGet(inst, reg_types_.Short(), true);
2061      break;
2062    case Instruction::AGET:
2063      VerifyAGet(inst, reg_types_.Integer(), true);
2064      break;
2065    case Instruction::AGET_WIDE:
2066      VerifyAGet(inst, reg_types_.LongLo(), true);
2067      break;
2068    case Instruction::AGET_OBJECT:
2069      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2070      break;
2071
2072    case Instruction::APUT_BOOLEAN:
2073      VerifyAPut(inst, reg_types_.Boolean(), true);
2074      break;
2075    case Instruction::APUT_BYTE:
2076      VerifyAPut(inst, reg_types_.Byte(), true);
2077      break;
2078    case Instruction::APUT_CHAR:
2079      VerifyAPut(inst, reg_types_.Char(), true);
2080      break;
2081    case Instruction::APUT_SHORT:
2082      VerifyAPut(inst, reg_types_.Short(), true);
2083      break;
2084    case Instruction::APUT:
2085      VerifyAPut(inst, reg_types_.Integer(), true);
2086      break;
2087    case Instruction::APUT_WIDE:
2088      VerifyAPut(inst, reg_types_.LongLo(), true);
2089      break;
2090    case Instruction::APUT_OBJECT:
2091      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2092      break;
2093
2094    case Instruction::IGET_BOOLEAN:
2095      VerifyISGet(inst, reg_types_.Boolean(), true, false);
2096      break;
2097    case Instruction::IGET_BYTE:
2098      VerifyISGet(inst, reg_types_.Byte(), true, false);
2099      break;
2100    case Instruction::IGET_CHAR:
2101      VerifyISGet(inst, reg_types_.Char(), true, false);
2102      break;
2103    case Instruction::IGET_SHORT:
2104      VerifyISGet(inst, reg_types_.Short(), true, false);
2105      break;
2106    case Instruction::IGET:
2107      VerifyISGet(inst, reg_types_.Integer(), true, false);
2108      break;
2109    case Instruction::IGET_WIDE:
2110      VerifyISGet(inst, reg_types_.LongLo(), true, false);
2111      break;
2112    case Instruction::IGET_OBJECT:
2113      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, false);
2114      break;
2115
2116    case Instruction::IPUT_BOOLEAN:
2117      VerifyISPut(inst, reg_types_.Boolean(), true, false);
2118      break;
2119    case Instruction::IPUT_BYTE:
2120      VerifyISPut(inst, reg_types_.Byte(), true, false);
2121      break;
2122    case Instruction::IPUT_CHAR:
2123      VerifyISPut(inst, reg_types_.Char(), true, false);
2124      break;
2125    case Instruction::IPUT_SHORT:
2126      VerifyISPut(inst, reg_types_.Short(), true, false);
2127      break;
2128    case Instruction::IPUT:
2129      VerifyISPut(inst, reg_types_.Integer(), true, false);
2130      break;
2131    case Instruction::IPUT_WIDE:
2132      VerifyISPut(inst, reg_types_.LongLo(), true, false);
2133      break;
2134    case Instruction::IPUT_OBJECT:
2135      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, false);
2136      break;
2137
2138    case Instruction::SGET_BOOLEAN:
2139      VerifyISGet(inst, reg_types_.Boolean(), true, true);
2140      break;
2141    case Instruction::SGET_BYTE:
2142      VerifyISGet(inst, reg_types_.Byte(), true, true);
2143      break;
2144    case Instruction::SGET_CHAR:
2145      VerifyISGet(inst, reg_types_.Char(), true, true);
2146      break;
2147    case Instruction::SGET_SHORT:
2148      VerifyISGet(inst, reg_types_.Short(), true, true);
2149      break;
2150    case Instruction::SGET:
2151      VerifyISGet(inst, reg_types_.Integer(), true, true);
2152      break;
2153    case Instruction::SGET_WIDE:
2154      VerifyISGet(inst, reg_types_.LongLo(), true, true);
2155      break;
2156    case Instruction::SGET_OBJECT:
2157      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, true);
2158      break;
2159
2160    case Instruction::SPUT_BOOLEAN:
2161      VerifyISPut(inst, reg_types_.Boolean(), true, true);
2162      break;
2163    case Instruction::SPUT_BYTE:
2164      VerifyISPut(inst, reg_types_.Byte(), true, true);
2165      break;
2166    case Instruction::SPUT_CHAR:
2167      VerifyISPut(inst, reg_types_.Char(), true, true);
2168      break;
2169    case Instruction::SPUT_SHORT:
2170      VerifyISPut(inst, reg_types_.Short(), true, true);
2171      break;
2172    case Instruction::SPUT:
2173      VerifyISPut(inst, reg_types_.Integer(), true, true);
2174      break;
2175    case Instruction::SPUT_WIDE:
2176      VerifyISPut(inst, reg_types_.LongLo(), true, true);
2177      break;
2178    case Instruction::SPUT_OBJECT:
2179      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, true);
2180      break;
2181
2182    case Instruction::INVOKE_VIRTUAL:
2183    case Instruction::INVOKE_VIRTUAL_RANGE:
2184    case Instruction::INVOKE_SUPER:
2185    case Instruction::INVOKE_SUPER_RANGE: {
2186      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2187                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2188      bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2189                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2190      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range,
2191                                                              is_super);
2192      RegType* return_type = nullptr;
2193      if (called_method != nullptr) {
2194        Thread* self = Thread::Current();
2195        StackHandleScope<1> hs(self);
2196        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2197        MethodHelper mh(h_called_method);
2198        mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
2199        if (return_type_class != nullptr) {
2200          return_type = &reg_types_.FromClass(h_called_method->GetReturnTypeDescriptor(),
2201                                              return_type_class,
2202                                              return_type_class->CannotBeAssignedFromOtherTypes());
2203        } else {
2204          DCHECK(!can_load_classes_ || self->IsExceptionPending());
2205          self->ClearException();
2206        }
2207      }
2208      if (return_type == nullptr) {
2209        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2210        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2211        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2212        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2213        return_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
2214      }
2215      if (!return_type->IsLowHalf()) {
2216        work_line_->SetResultRegisterType(*return_type);
2217      } else {
2218        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2219      }
2220      just_set_result = true;
2221      break;
2222    }
2223    case Instruction::INVOKE_DIRECT:
2224    case Instruction::INVOKE_DIRECT_RANGE: {
2225      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2226      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2227                                                                   is_range, false);
2228      const char* return_type_descriptor;
2229      bool is_constructor;
2230      RegType* return_type = nullptr;
2231      if (called_method == nullptr) {
2232        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2233        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2234        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2235        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2236        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2237      } else {
2238        is_constructor = called_method->IsConstructor();
2239        return_type_descriptor = called_method->GetReturnTypeDescriptor();
2240        Thread* self = Thread::Current();
2241        StackHandleScope<1> hs(self);
2242        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2243        MethodHelper mh(h_called_method);
2244        mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
2245        if (return_type_class != nullptr) {
2246          return_type = &reg_types_.FromClass(return_type_descriptor,
2247                                              return_type_class,
2248                                              return_type_class->CannotBeAssignedFromOtherTypes());
2249        } else {
2250          DCHECK(!can_load_classes_ || self->IsExceptionPending());
2251          self->ClearException();
2252        }
2253      }
2254      if (is_constructor) {
2255        /*
2256         * Some additional checks when calling a constructor. We know from the invocation arg check
2257         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2258         * that to require that called_method->klass is the same as this->klass or this->super,
2259         * allowing the latter only if the "this" argument is the same as the "this" argument to
2260         * this method (which implies that we're in a constructor ourselves).
2261         */
2262        RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2263        if (this_type.IsConflict())  // failure.
2264          break;
2265
2266        /* no null refs allowed (?) */
2267        if (this_type.IsZero()) {
2268          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2269          break;
2270        }
2271
2272        /* must be in same class or in superclass */
2273        // RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2274        // TODO: re-enable constructor type verification
2275        // if (this_super_klass.IsConflict()) {
2276          // Unknown super class, fail so we re-check at runtime.
2277          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2278          // break;
2279        // }
2280
2281        /* arg must be an uninitialized reference */
2282        if (!this_type.IsUninitializedTypes()) {
2283          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2284              << this_type;
2285          break;
2286        }
2287
2288        /*
2289         * Replace the uninitialized reference with an initialized one. We need to do this for all
2290         * registers that have the same object instance in them, not just the "this" register.
2291         */
2292        work_line_->MarkRefsAsInitialized(this_type);
2293      }
2294      if (return_type == nullptr) {
2295        return_type = &reg_types_.FromDescriptor(class_loader_->Get(),
2296                                                 return_type_descriptor, false);
2297      }
2298      if (!return_type->IsLowHalf()) {
2299        work_line_->SetResultRegisterType(*return_type);
2300      } else {
2301        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2302      }
2303      just_set_result = true;
2304      break;
2305    }
2306    case Instruction::INVOKE_STATIC:
2307    case Instruction::INVOKE_STATIC_RANGE: {
2308        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2309        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2310                                                                     METHOD_STATIC,
2311                                                                     is_range,
2312                                                                     false);
2313        const char* descriptor;
2314        if (called_method == nullptr) {
2315          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2316          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2317          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2318          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2319        } else {
2320          descriptor = called_method->GetReturnTypeDescriptor();
2321        }
2322        RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2323                                                               false);
2324        if (!return_type.IsLowHalf()) {
2325          work_line_->SetResultRegisterType(return_type);
2326        } else {
2327          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2328        }
2329        just_set_result = true;
2330      }
2331      break;
2332    case Instruction::INVOKE_INTERFACE:
2333    case Instruction::INVOKE_INTERFACE_RANGE: {
2334      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2335      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2336                                                                METHOD_INTERFACE,
2337                                                                is_range,
2338                                                                false);
2339      if (abs_method != nullptr) {
2340        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2341        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2342          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2343              << PrettyMethod(abs_method) << "'";
2344          break;
2345        }
2346      }
2347      /* Get the type of the "this" arg, which should either be a sub-interface of called
2348       * interface or Object (see comments in RegType::JoinClass).
2349       */
2350      RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2351      if (this_type.IsZero()) {
2352        /* null pointer always passes (and always fails at runtime) */
2353      } else {
2354        if (this_type.IsUninitializedTypes()) {
2355          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2356              << this_type;
2357          break;
2358        }
2359        // In the past we have tried to assert that "called_interface" is assignable
2360        // from "this_type.GetClass()", however, as we do an imprecise Join
2361        // (RegType::JoinClass) we don't have full information on what interfaces are
2362        // implemented by "this_type". For example, two classes may implement the same
2363        // interfaces and have a common parent that doesn't implement the interface. The
2364        // join will set "this_type" to the parent class and a test that this implements
2365        // the interface will incorrectly fail.
2366      }
2367      /*
2368       * We don't have an object instance, so we can't find the concrete method. However, all of
2369       * the type information is in the abstract method, so we're good.
2370       */
2371      const char* descriptor;
2372      if (abs_method == nullptr) {
2373        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2374        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2375        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2376        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2377      } else {
2378        descriptor = abs_method->GetReturnTypeDescriptor();
2379      }
2380      RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2381                                                             false);
2382      if (!return_type.IsLowHalf()) {
2383        work_line_->SetResultRegisterType(return_type);
2384      } else {
2385        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2386      }
2387      just_set_result = true;
2388      break;
2389    }
2390    case Instruction::NEG_INT:
2391    case Instruction::NOT_INT:
2392      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Integer());
2393      break;
2394    case Instruction::NEG_LONG:
2395    case Instruction::NOT_LONG:
2396      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2397                                   reg_types_.LongLo(), reg_types_.LongHi());
2398      break;
2399    case Instruction::NEG_FLOAT:
2400      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Float());
2401      break;
2402    case Instruction::NEG_DOUBLE:
2403      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2404                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2405      break;
2406    case Instruction::INT_TO_LONG:
2407      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2408                                     reg_types_.Integer());
2409      break;
2410    case Instruction::INT_TO_FLOAT:
2411      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Integer());
2412      break;
2413    case Instruction::INT_TO_DOUBLE:
2414      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2415                                     reg_types_.Integer());
2416      break;
2417    case Instruction::LONG_TO_INT:
2418      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2419                                       reg_types_.LongLo(), reg_types_.LongHi());
2420      break;
2421    case Instruction::LONG_TO_FLOAT:
2422      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2423                                       reg_types_.LongLo(), reg_types_.LongHi());
2424      break;
2425    case Instruction::LONG_TO_DOUBLE:
2426      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2427                                   reg_types_.LongLo(), reg_types_.LongHi());
2428      break;
2429    case Instruction::FLOAT_TO_INT:
2430      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Float());
2431      break;
2432    case Instruction::FLOAT_TO_LONG:
2433      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2434                                     reg_types_.Float());
2435      break;
2436    case Instruction::FLOAT_TO_DOUBLE:
2437      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2438                                     reg_types_.Float());
2439      break;
2440    case Instruction::DOUBLE_TO_INT:
2441      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2442                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2443      break;
2444    case Instruction::DOUBLE_TO_LONG:
2445      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2446                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2447      break;
2448    case Instruction::DOUBLE_TO_FLOAT:
2449      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2450                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2451      break;
2452    case Instruction::INT_TO_BYTE:
2453      work_line_->CheckUnaryOp(inst, reg_types_.Byte(), reg_types_.Integer());
2454      break;
2455    case Instruction::INT_TO_CHAR:
2456      work_line_->CheckUnaryOp(inst, reg_types_.Char(), reg_types_.Integer());
2457      break;
2458    case Instruction::INT_TO_SHORT:
2459      work_line_->CheckUnaryOp(inst, reg_types_.Short(), reg_types_.Integer());
2460      break;
2461
2462    case Instruction::ADD_INT:
2463    case Instruction::SUB_INT:
2464    case Instruction::MUL_INT:
2465    case Instruction::REM_INT:
2466    case Instruction::DIV_INT:
2467    case Instruction::SHL_INT:
2468    case Instruction::SHR_INT:
2469    case Instruction::USHR_INT:
2470      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2471                                reg_types_.Integer(), false);
2472      break;
2473    case Instruction::AND_INT:
2474    case Instruction::OR_INT:
2475    case Instruction::XOR_INT:
2476      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2477                                reg_types_.Integer(), true);
2478      break;
2479    case Instruction::ADD_LONG:
2480    case Instruction::SUB_LONG:
2481    case Instruction::MUL_LONG:
2482    case Instruction::DIV_LONG:
2483    case Instruction::REM_LONG:
2484    case Instruction::AND_LONG:
2485    case Instruction::OR_LONG:
2486    case Instruction::XOR_LONG:
2487      work_line_->CheckBinaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2488                                    reg_types_.LongLo(), reg_types_.LongHi(),
2489                                    reg_types_.LongLo(), reg_types_.LongHi());
2490      break;
2491    case Instruction::SHL_LONG:
2492    case Instruction::SHR_LONG:
2493    case Instruction::USHR_LONG:
2494      /* shift distance is Int, making these different from other binary operations */
2495      work_line_->CheckBinaryOpWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2496                                         reg_types_.Integer());
2497      break;
2498    case Instruction::ADD_FLOAT:
2499    case Instruction::SUB_FLOAT:
2500    case Instruction::MUL_FLOAT:
2501    case Instruction::DIV_FLOAT:
2502    case Instruction::REM_FLOAT:
2503      work_line_->CheckBinaryOp(inst,
2504                                reg_types_.Float(),
2505                                reg_types_.Float(),
2506                                reg_types_.Float(),
2507                                false);
2508      break;
2509    case Instruction::ADD_DOUBLE:
2510    case Instruction::SUB_DOUBLE:
2511    case Instruction::MUL_DOUBLE:
2512    case Instruction::DIV_DOUBLE:
2513    case Instruction::REM_DOUBLE:
2514      work_line_->CheckBinaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2515                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2516                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2517      break;
2518    case Instruction::ADD_INT_2ADDR:
2519    case Instruction::SUB_INT_2ADDR:
2520    case Instruction::MUL_INT_2ADDR:
2521    case Instruction::REM_INT_2ADDR:
2522    case Instruction::SHL_INT_2ADDR:
2523    case Instruction::SHR_INT_2ADDR:
2524    case Instruction::USHR_INT_2ADDR:
2525      work_line_->CheckBinaryOp2addr(inst,
2526                                     reg_types_.Integer(),
2527                                     reg_types_.Integer(),
2528                                     reg_types_.Integer(),
2529                                     false);
2530      break;
2531    case Instruction::AND_INT_2ADDR:
2532    case Instruction::OR_INT_2ADDR:
2533    case Instruction::XOR_INT_2ADDR:
2534      work_line_->CheckBinaryOp2addr(inst,
2535                                     reg_types_.Integer(),
2536                                     reg_types_.Integer(),
2537                                     reg_types_.Integer(),
2538                                     true);
2539      break;
2540    case Instruction::DIV_INT_2ADDR:
2541      work_line_->CheckBinaryOp2addr(inst,
2542                                     reg_types_.Integer(),
2543                                     reg_types_.Integer(),
2544                                     reg_types_.Integer(),
2545                                     false);
2546      break;
2547    case Instruction::ADD_LONG_2ADDR:
2548    case Instruction::SUB_LONG_2ADDR:
2549    case Instruction::MUL_LONG_2ADDR:
2550    case Instruction::DIV_LONG_2ADDR:
2551    case Instruction::REM_LONG_2ADDR:
2552    case Instruction::AND_LONG_2ADDR:
2553    case Instruction::OR_LONG_2ADDR:
2554    case Instruction::XOR_LONG_2ADDR:
2555      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2556                                         reg_types_.LongLo(), reg_types_.LongHi(),
2557                                         reg_types_.LongLo(), reg_types_.LongHi());
2558      break;
2559    case Instruction::SHL_LONG_2ADDR:
2560    case Instruction::SHR_LONG_2ADDR:
2561    case Instruction::USHR_LONG_2ADDR:
2562      work_line_->CheckBinaryOp2addrWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2563                                              reg_types_.Integer());
2564      break;
2565    case Instruction::ADD_FLOAT_2ADDR:
2566    case Instruction::SUB_FLOAT_2ADDR:
2567    case Instruction::MUL_FLOAT_2ADDR:
2568    case Instruction::DIV_FLOAT_2ADDR:
2569    case Instruction::REM_FLOAT_2ADDR:
2570      work_line_->CheckBinaryOp2addr(inst,
2571                                     reg_types_.Float(),
2572                                     reg_types_.Float(),
2573                                     reg_types_.Float(),
2574                                     false);
2575      break;
2576    case Instruction::ADD_DOUBLE_2ADDR:
2577    case Instruction::SUB_DOUBLE_2ADDR:
2578    case Instruction::MUL_DOUBLE_2ADDR:
2579    case Instruction::DIV_DOUBLE_2ADDR:
2580    case Instruction::REM_DOUBLE_2ADDR:
2581      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2582                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2583                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2584      break;
2585    case Instruction::ADD_INT_LIT16:
2586    case Instruction::RSUB_INT:
2587    case Instruction::MUL_INT_LIT16:
2588    case Instruction::DIV_INT_LIT16:
2589    case Instruction::REM_INT_LIT16:
2590      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, true);
2591      break;
2592    case Instruction::AND_INT_LIT16:
2593    case Instruction::OR_INT_LIT16:
2594    case Instruction::XOR_INT_LIT16:
2595      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, true);
2596      break;
2597    case Instruction::ADD_INT_LIT8:
2598    case Instruction::RSUB_INT_LIT8:
2599    case Instruction::MUL_INT_LIT8:
2600    case Instruction::DIV_INT_LIT8:
2601    case Instruction::REM_INT_LIT8:
2602    case Instruction::SHL_INT_LIT8:
2603    case Instruction::SHR_INT_LIT8:
2604    case Instruction::USHR_INT_LIT8:
2605      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, false);
2606      break;
2607    case Instruction::AND_INT_LIT8:
2608    case Instruction::OR_INT_LIT8:
2609    case Instruction::XOR_INT_LIT8:
2610      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, false);
2611      break;
2612
2613    // Special instructions.
2614    case Instruction::RETURN_VOID_BARRIER:
2615      if (!IsConstructor() || IsStatic()) {
2616          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2617      }
2618      break;
2619    // Note: the following instructions encode offsets derived from class linking.
2620    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2621    // meaning if the class linking and resolution were successful.
2622    case Instruction::IGET_QUICK:
2623      VerifyIGetQuick(inst, reg_types_.Integer(), true);
2624      break;
2625    case Instruction::IGET_WIDE_QUICK:
2626      VerifyIGetQuick(inst, reg_types_.LongLo(), true);
2627      break;
2628    case Instruction::IGET_OBJECT_QUICK:
2629      VerifyIGetQuick(inst, reg_types_.JavaLangObject(false), false);
2630      break;
2631    case Instruction::IPUT_QUICK:
2632      VerifyIPutQuick(inst, reg_types_.Integer(), true);
2633      break;
2634    case Instruction::IPUT_WIDE_QUICK:
2635      VerifyIPutQuick(inst, reg_types_.LongLo(), true);
2636      break;
2637    case Instruction::IPUT_OBJECT_QUICK:
2638      VerifyIPutQuick(inst, reg_types_.JavaLangObject(false), false);
2639      break;
2640    case Instruction::INVOKE_VIRTUAL_QUICK:
2641    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2642      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2643      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2644      if (called_method != nullptr) {
2645        const char* descriptor = called_method->GetReturnTypeDescriptor();
2646        RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2647                                                               false);
2648        if (!return_type.IsLowHalf()) {
2649          work_line_->SetResultRegisterType(return_type);
2650        } else {
2651          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2652        }
2653        just_set_result = true;
2654      }
2655      break;
2656    }
2657
2658    /* These should never appear during verification. */
2659    case Instruction::UNUSED_3E:
2660    case Instruction::UNUSED_3F:
2661    case Instruction::UNUSED_40:
2662    case Instruction::UNUSED_41:
2663    case Instruction::UNUSED_42:
2664    case Instruction::UNUSED_43:
2665    case Instruction::UNUSED_79:
2666    case Instruction::UNUSED_7A:
2667    case Instruction::UNUSED_EB:
2668    case Instruction::UNUSED_EC:
2669    case Instruction::UNUSED_ED:
2670    case Instruction::UNUSED_EE:
2671    case Instruction::UNUSED_EF:
2672    case Instruction::UNUSED_F0:
2673    case Instruction::UNUSED_F1:
2674    case Instruction::UNUSED_F2:
2675    case Instruction::UNUSED_F3:
2676    case Instruction::UNUSED_F4:
2677    case Instruction::UNUSED_F5:
2678    case Instruction::UNUSED_F6:
2679    case Instruction::UNUSED_F7:
2680    case Instruction::UNUSED_F8:
2681    case Instruction::UNUSED_F9:
2682    case Instruction::UNUSED_FA:
2683    case Instruction::UNUSED_FB:
2684    case Instruction::UNUSED_FC:
2685    case Instruction::UNUSED_FD:
2686    case Instruction::UNUSED_FE:
2687    case Instruction::UNUSED_FF:
2688      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2689      break;
2690
2691    /*
2692     * DO NOT add a "default" clause here. Without it the compiler will
2693     * complain if an instruction is missing (which is desirable).
2694     */
2695  }  // end - switch (dec_insn.opcode)
2696
2697  if (have_pending_hard_failure_) {
2698    if (Runtime::Current()->IsCompiler()) {
2699      /* When compiling, check that the last failure is a hard failure */
2700      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2701    }
2702    /* immediate failure, reject class */
2703    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2704    return false;
2705  } else if (have_pending_runtime_throw_failure_) {
2706    /* checking interpreter will throw, mark following code as unreachable */
2707    opcode_flags = Instruction::kThrow;
2708  }
2709  /*
2710   * If we didn't just set the result register, clear it out. This ensures that you can only use
2711   * "move-result" immediately after the result is set. (We could check this statically, but it's
2712   * not expensive and it makes our debugging output cleaner.)
2713   */
2714  if (!just_set_result) {
2715    work_line_->SetResultTypeToUnknown();
2716  }
2717
2718
2719
2720  /*
2721   * Handle "branch". Tag the branch target.
2722   *
2723   * NOTE: instructions like Instruction::EQZ provide information about the
2724   * state of the register when the branch is taken or not taken. For example,
2725   * somebody could get a reference field, check it for zero, and if the
2726   * branch is taken immediately store that register in a boolean field
2727   * since the value is known to be zero. We do not currently account for
2728   * that, and will reject the code.
2729   *
2730   * TODO: avoid re-fetching the branch target
2731   */
2732  if ((opcode_flags & Instruction::kBranch) != 0) {
2733    bool isConditional, selfOkay;
2734    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2735      /* should never happen after static verification */
2736      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2737      return false;
2738    }
2739    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2740    if (!CheckNotMoveException(code_item_->insns_, work_insn_idx_ + branch_target)) {
2741      return false;
2742    }
2743    /* update branch target, set "changed" if appropriate */
2744    if (nullptr != branch_line.get()) {
2745      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
2746        return false;
2747      }
2748    } else {
2749      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
2750        return false;
2751      }
2752    }
2753  }
2754
2755  /*
2756   * Handle "switch". Tag all possible branch targets.
2757   *
2758   * We've already verified that the table is structurally sound, so we
2759   * just need to walk through and tag the targets.
2760   */
2761  if ((opcode_flags & Instruction::kSwitch) != 0) {
2762    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2763    const uint16_t* switch_insns = insns + offset_to_switch;
2764    int switch_count = switch_insns[1];
2765    int offset_to_targets, targ;
2766
2767    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2768      /* 0 = sig, 1 = count, 2/3 = first key */
2769      offset_to_targets = 4;
2770    } else {
2771      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2772      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2773      offset_to_targets = 2 + 2 * switch_count;
2774    }
2775
2776    /* verify each switch target */
2777    for (targ = 0; targ < switch_count; targ++) {
2778      int offset;
2779      uint32_t abs_offset;
2780
2781      /* offsets are 32-bit, and only partly endian-swapped */
2782      offset = switch_insns[offset_to_targets + targ * 2] |
2783         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2784      abs_offset = work_insn_idx_ + offset;
2785      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2786      if (!CheckNotMoveException(code_item_->insns_, abs_offset)) {
2787        return false;
2788      }
2789      if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
2790        return false;
2791      }
2792    }
2793  }
2794
2795  /*
2796   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2797   * "try" block when they throw, control transfers out of the method.)
2798   */
2799  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2800    bool has_catch_all_handler = false;
2801    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2802
2803    // Need the linker to try and resolve the handled class to check if it's Throwable.
2804    ClassLinker* linker = Runtime::Current()->GetClassLinker();
2805
2806    for (; iterator.HasNext(); iterator.Next()) {
2807      uint16_t handler_type_idx = iterator.GetHandlerTypeIndex();
2808      if (handler_type_idx == DexFile::kDexNoIndex16) {
2809        has_catch_all_handler = true;
2810      } else {
2811        // It is also a catch-all if it is java.lang.Throwable.
2812        mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, *dex_cache_,
2813                                                   *class_loader_);
2814        if (klass != nullptr) {
2815          if (klass == mirror::Throwable::GetJavaLangThrowable()) {
2816            has_catch_all_handler = true;
2817          }
2818        } else {
2819          // Clear exception.
2820          Thread* self = Thread::Current();
2821          DCHECK(self->IsExceptionPending());
2822          self->ClearException();
2823        }
2824      }
2825      /*
2826       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2827       * "work_regs", because at runtime the exception will be thrown before the instruction
2828       * modifies any registers.
2829       */
2830      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
2831        return false;
2832      }
2833    }
2834
2835    /*
2836     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2837     * instruction. This does apply to monitor-exit because of async exception handling.
2838     */
2839    if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
2840      /*
2841       * The state in work_line reflects the post-execution state. If the current instruction is a
2842       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2843       * it will do so before grabbing the lock).
2844       */
2845      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2846        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2847            << "expected to be within a catch-all for an instruction where a monitor is held";
2848        return false;
2849      }
2850    }
2851  }
2852
2853  /* Handle "continue". Tag the next consecutive instruction.
2854   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2855   *        because it changes work_line_ when performing peephole optimization
2856   *        and this change should not be used in those cases.
2857   */
2858  if ((opcode_flags & Instruction::kContinue) != 0) {
2859    uint32_t next_insn_idx = work_insn_idx_ + CurrentInsnFlags()->GetLengthInCodeUnits();
2860    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2861      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2862      return false;
2863    }
2864    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2865    // next instruction isn't one.
2866    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2867      return false;
2868    }
2869    if (nullptr != fallthrough_line.get()) {
2870      // Make workline consistent with fallthrough computed from peephole optimization.
2871      work_line_->CopyFromLine(fallthrough_line.get());
2872    }
2873    if (insn_flags_[next_insn_idx].IsReturn()) {
2874      // For returns we only care about the operand to the return, all other registers are dead.
2875      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
2876      Instruction::Code opcode = ret_inst->Opcode();
2877      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
2878        work_line_->MarkAllRegistersAsConflicts();
2879      } else {
2880        if (opcode == Instruction::RETURN_WIDE) {
2881          work_line_->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
2882        } else {
2883          work_line_->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
2884        }
2885      }
2886    }
2887    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2888    if (next_line != nullptr) {
2889      // Merge registers into what we have for the next instruction, and set the "changed" flag if
2890      // needed. If the merge changes the state of the registers then the work line will be
2891      // updated.
2892      if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
2893        return false;
2894      }
2895    } else {
2896      /*
2897       * We're not recording register data for the next instruction, so we don't know what the
2898       * prior state was. We have to assume that something has changed and re-evaluate it.
2899       */
2900      insn_flags_[next_insn_idx].SetChanged();
2901    }
2902  }
2903
2904  /* If we're returning from the method, make sure monitor stack is empty. */
2905  if ((opcode_flags & Instruction::kReturn) != 0) {
2906    if (!work_line_->VerifyMonitorStackEmpty()) {
2907      return false;
2908    }
2909  }
2910
2911  /*
2912   * Update start_guess. Advance to the next instruction of that's
2913   * possible, otherwise use the branch target if one was found. If
2914   * neither of those exists we're in a return or throw; leave start_guess
2915   * alone and let the caller sort it out.
2916   */
2917  if ((opcode_flags & Instruction::kContinue) != 0) {
2918    *start_guess = work_insn_idx_ + insn_flags_[work_insn_idx_].GetLengthInCodeUnits();
2919  } else if ((opcode_flags & Instruction::kBranch) != 0) {
2920    /* we're still okay if branch_target is zero */
2921    *start_guess = work_insn_idx_ + branch_target;
2922  }
2923
2924  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
2925  DCHECK(insn_flags_[*start_guess].IsOpcode());
2926
2927  return true;
2928}  // NOLINT(readability/fn_size)
2929
2930RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
2931  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
2932  RegType& referrer = GetDeclaringClass();
2933  mirror::Class* klass = (*dex_cache_)->GetResolvedType(class_idx);
2934  RegType& result =
2935      klass != nullptr ? reg_types_.FromClass(descriptor, klass,
2936                                           klass->CannotBeAssignedFromOtherTypes())
2937                    : reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
2938  if (result.IsConflict()) {
2939    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
2940        << "' in " << referrer;
2941    return result;
2942  }
2943  if (klass == nullptr && !result.IsUnresolvedTypes()) {
2944    (*dex_cache_)->SetResolvedType(class_idx, result.GetClass());
2945  }
2946  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
2947  // check at runtime if access is allowed and so pass here. If result is
2948  // primitive, skip the access check.
2949  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
2950      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
2951    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
2952                                    << referrer << "' -> '" << result << "'";
2953  }
2954  return result;
2955}
2956
2957RegType& MethodVerifier::GetCaughtExceptionType() {
2958  RegType* common_super = nullptr;
2959  if (code_item_->tries_size_ != 0) {
2960    const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
2961    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
2962    for (uint32_t i = 0; i < handlers_size; i++) {
2963      CatchHandlerIterator iterator(handlers_ptr);
2964      for (; iterator.HasNext(); iterator.Next()) {
2965        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
2966          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2967            common_super = &reg_types_.JavaLangThrowable(false);
2968          } else {
2969            RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
2970            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
2971              if (exception.IsUnresolvedTypes()) {
2972                // We don't know enough about the type. Fail here and let runtime handle it.
2973                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
2974                return exception;
2975              } else {
2976                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
2977                return reg_types_.Conflict();
2978              }
2979            } else if (common_super == nullptr) {
2980              common_super = &exception;
2981            } else if (common_super->Equals(exception)) {
2982              // odd case, but nothing to do
2983            } else {
2984              common_super = &common_super->Merge(exception, &reg_types_);
2985              CHECK(reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super));
2986            }
2987          }
2988        }
2989      }
2990      handlers_ptr = iterator.EndDataPointer();
2991    }
2992  }
2993  if (common_super == nullptr) {
2994    /* no catch blocks, or no catches with classes we can find */
2995    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
2996    return reg_types_.Conflict();
2997  }
2998  return *common_super;
2999}
3000
3001mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
3002                                                               MethodType method_type) {
3003  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3004  RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
3005  if (klass_type.IsConflict()) {
3006    std::string append(" in attempt to access method ");
3007    append += dex_file_->GetMethodName(method_id);
3008    AppendToLastFailMessage(append);
3009    return nullptr;
3010  }
3011  if (klass_type.IsUnresolvedTypes()) {
3012    return nullptr;  // Can't resolve Class so no more to do here
3013  }
3014  mirror::Class* klass = klass_type.GetClass();
3015  RegType& referrer = GetDeclaringClass();
3016  mirror::ArtMethod* res_method = (*dex_cache_)->GetResolvedMethod(dex_method_idx);
3017  if (res_method == nullptr) {
3018    const char* name = dex_file_->GetMethodName(method_id);
3019    const Signature signature = dex_file_->GetMethodSignature(method_id);
3020
3021    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
3022      res_method = klass->FindDirectMethod(name, signature);
3023    } else if (method_type == METHOD_INTERFACE) {
3024      res_method = klass->FindInterfaceMethod(name, signature);
3025    } else {
3026      res_method = klass->FindVirtualMethod(name, signature);
3027    }
3028    if (res_method != nullptr) {
3029      (*dex_cache_)->SetResolvedMethod(dex_method_idx, res_method);
3030    } else {
3031      // If a virtual or interface method wasn't found with the expected type, look in
3032      // the direct methods. This can happen when the wrong invoke type is used or when
3033      // a class has changed, and will be flagged as an error in later checks.
3034      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
3035        res_method = klass->FindDirectMethod(name, signature);
3036      }
3037      if (res_method == nullptr) {
3038        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3039                                     << PrettyDescriptor(klass) << "." << name
3040                                     << " " << signature;
3041        return nullptr;
3042      }
3043    }
3044  }
3045  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3046  // enforce them here.
3047  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3048    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3049                                      << PrettyMethod(res_method);
3050    return nullptr;
3051  }
3052  // Disallow any calls to class initializers.
3053  if (res_method->IsClassInitializer()) {
3054    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3055                                      << PrettyMethod(res_method);
3056    return nullptr;
3057  }
3058  // Check if access is allowed.
3059  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3060    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
3061                                     << " from " << referrer << ")";
3062    return res_method;
3063  }
3064  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3065  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
3066    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3067                                      << PrettyMethod(res_method);
3068    return nullptr;
3069  }
3070  // Check that interface methods match interface classes.
3071  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
3072    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
3073                                    << " is in an interface class " << PrettyClass(klass);
3074    return nullptr;
3075  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
3076    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
3077                                    << " is in a non-interface class " << PrettyClass(klass);
3078    return nullptr;
3079  }
3080  // See if the method type implied by the invoke instruction matches the access flags for the
3081  // target method.
3082  if ((method_type == METHOD_DIRECT && !res_method->IsDirect()) ||
3083      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3084      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3085      ) {
3086    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3087                                       " type of " << PrettyMethod(res_method);
3088    return nullptr;
3089  }
3090  return res_method;
3091}
3092
3093template <class T>
3094mirror::ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(T* it, const Instruction* inst,
3095                                                                    MethodType method_type,
3096                                                                    bool is_range,
3097                                                                    mirror::ArtMethod* res_method) {
3098  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3099  // match the call to the signature. Also, we might be calling through an abstract method
3100  // definition (which doesn't have register count values).
3101  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3102  /* caught by static verifier */
3103  DCHECK(is_range || expected_args <= 5);
3104  if (expected_args > code_item_->outs_size_) {
3105    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3106        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3107    return nullptr;
3108  }
3109
3110  uint32_t arg[5];
3111  if (!is_range) {
3112    inst->GetVarArgs(arg);
3113  }
3114  uint32_t sig_registers = 0;
3115
3116  /*
3117   * Check the "this" argument, which must be an instance of the class that declared the method.
3118   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3119   * rigorous check here (which is okay since we have to do it at runtime).
3120   */
3121  if (method_type != METHOD_STATIC) {
3122    RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3123    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3124      CHECK(have_pending_hard_failure_);
3125      return nullptr;
3126    }
3127    if (actual_arg_type.IsUninitializedReference()) {
3128      if (res_method) {
3129        if (!res_method->IsConstructor()) {
3130          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3131          return nullptr;
3132        }
3133      } else {
3134        // Check whether the name of the called method is "<init>"
3135        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3136        if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
3137          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3138          return nullptr;
3139        }
3140      }
3141    }
3142    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3143      RegType* res_method_class;
3144      if (res_method != nullptr) {
3145        mirror::Class* klass = res_method->GetDeclaringClass();
3146        std::string temp;
3147        res_method_class = &reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3148                                                 klass->CannotBeAssignedFromOtherTypes());
3149      } else {
3150        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3151        const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
3152        res_method_class = &reg_types_.FromDescriptor(class_loader_->Get(),
3153                                                      dex_file_->StringByTypeIdx(class_idx),
3154                                                      false);
3155      }
3156      if (!res_method_class->IsAssignableFrom(actual_arg_type)) {
3157        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3158            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3159                << "' not instance of '" << *res_method_class << "'";
3160        // Continue on soft failures. We need to find possible hard failures to avoid problems in
3161        // the compiler.
3162        if (have_pending_hard_failure_) {
3163          return nullptr;
3164        }
3165      }
3166    }
3167    sig_registers = 1;
3168  }
3169
3170  for ( ; it->HasNext(); it->Next()) {
3171    if (sig_registers >= expected_args) {
3172      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3173          " arguments, found " << sig_registers << " or more.";
3174      return nullptr;
3175    }
3176
3177    const char* param_descriptor = it->GetDescriptor();
3178
3179    if (param_descriptor == nullptr) {
3180      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
3181          "component";
3182      return nullptr;
3183    }
3184
3185    RegType& reg_type = reg_types_.FromDescriptor(class_loader_->Get(), param_descriptor,
3186                                                        false);
3187    uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) :
3188        arg[sig_registers];
3189    if (reg_type.IsIntegralTypes()) {
3190      RegType& src_type = work_line_->GetRegisterType(get_reg);
3191      if (!src_type.IsIntegralTypes()) {
3192        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3193            << " but expected " << reg_type;
3194        return res_method;
3195      }
3196    } else if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3197      // Continue on soft failures. We need to find possible hard failures to avoid problems in the
3198      // compiler.
3199      if (have_pending_hard_failure_) {
3200        return res_method;
3201      }
3202    }
3203    sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
3204  }
3205  if (expected_args != sig_registers) {
3206    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
3207        " arguments, found " << sig_registers;
3208    return nullptr;
3209  }
3210  return res_method;
3211}
3212
3213void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
3214                                                          MethodType method_type,
3215                                                          bool is_range) {
3216  // As the method may not have been resolved, make this static check against what we expect.
3217  // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
3218  // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
3219  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3220  DexFileParameterIterator it(*dex_file_,
3221                              dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
3222  VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range,
3223                                                             nullptr);
3224}
3225
3226class MethodParamListDescriptorIterator {
3227 public:
3228  explicit MethodParamListDescriptorIterator(mirror::ArtMethod* res_method) :
3229      res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
3230      params_size_(params_ == nullptr ? 0 : params_->Size()) {
3231  }
3232
3233  bool HasNext() {
3234    return pos_ < params_size_;
3235  }
3236
3237  void Next() {
3238    ++pos_;
3239  }
3240
3241  const char* GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3242    return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
3243  }
3244
3245 private:
3246  mirror::ArtMethod* res_method_;
3247  size_t pos_;
3248  const DexFile::TypeList* params_;
3249  const size_t params_size_;
3250};
3251
3252mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
3253                                                             MethodType method_type,
3254                                                             bool is_range,
3255                                                             bool is_super) {
3256  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3257  // we're making.
3258  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3259
3260  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3261  if (res_method == nullptr) {  // error or class is unresolved
3262    // Check what we can statically.
3263    if (!have_pending_hard_failure_) {
3264      VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
3265    }
3266    return nullptr;
3267  }
3268
3269  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3270  // has a vtable entry for the target method.
3271  if (is_super) {
3272    DCHECK(method_type == METHOD_VIRTUAL);
3273    RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3274    if (super.IsUnresolvedTypes()) {
3275      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3276                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3277                                   << " to super " << PrettyMethod(res_method);
3278      return nullptr;
3279    }
3280    mirror::Class* super_klass = super.GetClass();
3281    if (res_method->GetMethodIndex() >= super_klass->GetVTableLength()) {
3282      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3283                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3284                                   << " to super " << super
3285                                   << "." << res_method->GetName()
3286                                   << res_method->GetSignature();
3287      return nullptr;
3288    }
3289  }
3290
3291  // Process the target method's signature. This signature may or may not
3292  MethodParamListDescriptorIterator it(res_method);
3293  return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type,
3294                                                                             is_range, res_method);
3295}
3296
3297mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3298                                                         RegisterLine* reg_line, bool is_range) {
3299  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3300         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3301  RegType& actual_arg_type = reg_line->GetInvocationThis(inst, is_range);
3302  if (!actual_arg_type.HasClass()) {
3303    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3304    return nullptr;
3305  }
3306  mirror::Class* klass = actual_arg_type.GetClass();
3307  mirror::Class* dispatch_class;
3308  if (klass->IsInterface()) {
3309    // Derive Object.class from Class.class.getSuperclass().
3310    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3311    CHECK(object_klass->IsObjectClass());
3312    dispatch_class = object_klass;
3313  } else {
3314    dispatch_class = klass;
3315  }
3316  CHECK(dispatch_class->HasVTable()) << PrettyDescriptor(dispatch_class);
3317  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3318  CHECK_LT(static_cast<int32_t>(vtable_index), dispatch_class->GetVTableLength())
3319      << PrettyDescriptor(klass);
3320  mirror::ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index);
3321  CHECK(!Thread::Current()->IsExceptionPending());
3322  return res_method;
3323}
3324
3325mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3326                                                                     bool is_range) {
3327  DCHECK(Runtime::Current()->IsStarted());
3328  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3329                                                             is_range);
3330  if (res_method == nullptr) {
3331    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3332    return nullptr;
3333  }
3334  CHECK(!res_method->IsDirect() && !res_method->IsStatic());
3335
3336  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3337  // match the call to the signature. Also, we might be calling through an abstract method
3338  // definition (which doesn't have register count values).
3339  RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3340  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3341    return nullptr;
3342  }
3343  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3344  /* caught by static verifier */
3345  DCHECK(is_range || expected_args <= 5);
3346  if (expected_args > code_item_->outs_size_) {
3347    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3348        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3349    return nullptr;
3350  }
3351
3352  /*
3353   * Check the "this" argument, which must be an instance of the class that declared the method.
3354   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3355   * rigorous check here (which is okay since we have to do it at runtime).
3356   */
3357  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3358    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3359    return nullptr;
3360  }
3361  if (!actual_arg_type.IsZero()) {
3362    mirror::Class* klass = res_method->GetDeclaringClass();
3363    std::string temp;
3364    RegType& res_method_class =
3365        reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3366                             klass->CannotBeAssignedFromOtherTypes());
3367    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3368      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3369          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3370          << "' not instance of '" << res_method_class << "'";
3371      return nullptr;
3372    }
3373  }
3374  /*
3375   * Process the target method's signature. This signature may or may not
3376   * have been verified, so we can't assume it's properly formed.
3377   */
3378  const DexFile::TypeList* params = res_method->GetParameterTypeList();
3379  size_t params_size = params == nullptr ? 0 : params->Size();
3380  uint32_t arg[5];
3381  if (!is_range) {
3382    inst->GetVarArgs(arg);
3383  }
3384  size_t actual_args = 1;
3385  for (size_t param_index = 0; param_index < params_size; param_index++) {
3386    if (actual_args >= expected_args) {
3387      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3388                                        << "'. Expected " << expected_args
3389                                         << " arguments, processing argument " << actual_args
3390                                        << " (where longs/doubles count twice).";
3391      return nullptr;
3392    }
3393    const char* descriptor =
3394        res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3395    if (descriptor == nullptr) {
3396      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3397                                        << " missing signature component";
3398      return nullptr;
3399    }
3400    RegType& reg_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3401    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3402    if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3403      return res_method;
3404    }
3405    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3406  }
3407  if (actual_args != expected_args) {
3408    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3409              << " expected " << expected_args << " arguments, found " << actual_args;
3410    return nullptr;
3411  } else {
3412    return res_method;
3413  }
3414}
3415
3416void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3417  uint32_t type_idx;
3418  if (!is_filled) {
3419    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3420    type_idx = inst->VRegC_22c();
3421  } else if (!is_range) {
3422    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3423    type_idx = inst->VRegB_35c();
3424  } else {
3425    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3426    type_idx = inst->VRegB_3rc();
3427  }
3428  RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3429  if (res_type.IsConflict()) {  // bad class
3430    DCHECK_NE(failures_.size(), 0U);
3431  } else {
3432    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3433    if (!res_type.IsArrayTypes()) {
3434      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3435    } else if (!is_filled) {
3436      /* make sure "size" register is valid type */
3437      work_line_->VerifyRegisterType(inst->VRegB_22c(), reg_types_.Integer());
3438      /* set register type to array class */
3439      RegType& precise_type = reg_types_.FromUninitialized(res_type);
3440      work_line_->SetRegisterType(inst->VRegA_22c(), precise_type);
3441    } else {
3442      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3443      // the list and fail. It's legal, if silly, for arg_count to be zero.
3444      RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_->Get());
3445      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3446      uint32_t arg[5];
3447      if (!is_range) {
3448        inst->GetVarArgs(arg);
3449      }
3450      for (size_t ui = 0; ui < arg_count; ui++) {
3451        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3452        if (!work_line_->VerifyRegisterType(get_reg, expected_type)) {
3453          work_line_->SetResultRegisterType(reg_types_.Conflict());
3454          return;
3455        }
3456      }
3457      // filled-array result goes into "result" register
3458      RegType& precise_type = reg_types_.FromUninitialized(res_type);
3459      work_line_->SetResultRegisterType(precise_type);
3460    }
3461  }
3462}
3463
3464void MethodVerifier::VerifyAGet(const Instruction* inst,
3465                                RegType& insn_type, bool is_primitive) {
3466  RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3467  if (!index_type.IsArrayIndexTypes()) {
3468    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3469  } else {
3470    RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3471    if (array_type.IsZero()) {
3472      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3473      // instruction type. TODO: have a proper notion of bottom here.
3474      if (!is_primitive || insn_type.IsCategory1Types()) {
3475        // Reference or category 1
3476        work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Zero());
3477      } else {
3478        // Category 2
3479        work_line_->SetRegisterTypeWide(inst->VRegA_23x(), reg_types_.FromCat2ConstLo(0, false),
3480                                        reg_types_.FromCat2ConstHi(0, false));
3481      }
3482    } else if (!array_type.IsArrayTypes()) {
3483      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3484    } else {
3485      /* verify the class */
3486      RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->Get());
3487      if (!component_type.IsReferenceTypes() && !is_primitive) {
3488        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3489            << " source for aget-object";
3490      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3491        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3492            << " source for category 1 aget";
3493      } else if (is_primitive && !insn_type.Equals(component_type) &&
3494                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3495                 (insn_type.IsLong() && component_type.IsDouble()))) {
3496        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3497            << " incompatible with aget of type " << insn_type;
3498      } else {
3499        // Use knowledge of the field type which is stronger than the type inferred from the
3500        // instruction, which can't differentiate object types and ints from floats, longs from
3501        // doubles.
3502        if (!component_type.IsLowHalf()) {
3503          work_line_->SetRegisterType(inst->VRegA_23x(), component_type);
3504        } else {
3505          work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type,
3506                                          component_type.HighHalf(&reg_types_));
3507        }
3508      }
3509    }
3510  }
3511}
3512
3513void MethodVerifier::VerifyPrimitivePut(RegType& target_type, RegType& insn_type,
3514                                        const uint32_t vregA) {
3515  // Primitive assignability rules are weaker than regular assignability rules.
3516  bool instruction_compatible;
3517  bool value_compatible;
3518  RegType& value_type = work_line_->GetRegisterType(vregA);
3519  if (target_type.IsIntegralTypes()) {
3520    instruction_compatible = target_type.Equals(insn_type);
3521    value_compatible = value_type.IsIntegralTypes();
3522  } else if (target_type.IsFloat()) {
3523    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3524    value_compatible = value_type.IsFloatTypes();
3525  } else if (target_type.IsLong()) {
3526    instruction_compatible = insn_type.IsLong();
3527    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3528    // as target_type depends on the resolved type of the field.
3529    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3530      RegType& value_type_hi = work_line_->GetRegisterType(vregA + 1);
3531      value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
3532    } else {
3533      value_compatible = false;
3534    }
3535  } else if (target_type.IsDouble()) {
3536    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3537    // Additional register check: this is not checked statically (as part of VerifyInstructions),
3538    // as target_type depends on the resolved type of the field.
3539    if (instruction_compatible && work_line_->NumRegs() > vregA + 1) {
3540      RegType& value_type_hi = work_line_->GetRegisterType(vregA + 1);
3541      value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
3542    } else {
3543      value_compatible = false;
3544    }
3545  } else {
3546    instruction_compatible = false;  // reference with primitive store
3547    value_compatible = false;  // unused
3548  }
3549  if (!instruction_compatible) {
3550    // This is a global failure rather than a class change failure as the instructions and
3551    // the descriptors for the type should have been consistent within the same file at
3552    // compile time.
3553    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3554        << "' but expected type '" << target_type << "'";
3555    return;
3556  }
3557  if (!value_compatible) {
3558    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3559        << " of type " << value_type << " but expected " << target_type << " for put";
3560    return;
3561  }
3562}
3563
3564void MethodVerifier::VerifyAPut(const Instruction* inst,
3565                                RegType& insn_type, bool is_primitive) {
3566  RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3567  if (!index_type.IsArrayIndexTypes()) {
3568    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3569  } else {
3570    RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3571    if (array_type.IsZero()) {
3572      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3573      // instruction type.
3574    } else if (!array_type.IsArrayTypes()) {
3575      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3576    } else {
3577      RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->Get());
3578      const uint32_t vregA = inst->VRegA_23x();
3579      if (is_primitive) {
3580        VerifyPrimitivePut(component_type, insn_type, vregA);
3581      } else {
3582        if (!component_type.IsReferenceTypes()) {
3583          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3584              << " source for aput-object";
3585        } else {
3586          // The instruction agrees with the type of array, confirm the value to be stored does too
3587          // Note: we use the instruction type (rather than the component type) for aput-object as
3588          // incompatible classes will be caught at runtime as an array store exception
3589          work_line_->VerifyRegisterType(vregA, insn_type);
3590        }
3591      }
3592    }
3593  }
3594}
3595
3596mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3597  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3598  // Check access to class
3599  RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3600  if (klass_type.IsConflict()) {  // bad class
3601    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3602                                         field_idx, dex_file_->GetFieldName(field_id),
3603                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3604    return nullptr;
3605  }
3606  if (klass_type.IsUnresolvedTypes()) {
3607    return nullptr;  // Can't resolve Class so no more to do here, will do checking at runtime.
3608  }
3609  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3610  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3611                                                          *class_loader_);
3612  if (field == nullptr) {
3613    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3614              << dex_file_->GetFieldName(field_id) << ") in "
3615              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3616    DCHECK(Thread::Current()->IsExceptionPending());
3617    Thread::Current()->ClearException();
3618    return nullptr;
3619  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3620                                                  field->GetAccessFlags())) {
3621    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3622                                    << " from " << GetDeclaringClass();
3623    return nullptr;
3624  } else if (!field->IsStatic()) {
3625    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3626    return nullptr;
3627  }
3628  return field;
3629}
3630
3631mirror::ArtField* MethodVerifier::GetInstanceField(RegType& obj_type, int field_idx) {
3632  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3633  // Check access to class
3634  RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3635  if (klass_type.IsConflict()) {
3636    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3637                                         field_idx, dex_file_->GetFieldName(field_id),
3638                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3639    return nullptr;
3640  }
3641  if (klass_type.IsUnresolvedTypes()) {
3642    return nullptr;  // Can't resolve Class so no more to do here
3643  }
3644  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3645  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3646                                                          *class_loader_);
3647  if (field == nullptr) {
3648    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3649              << dex_file_->GetFieldName(field_id) << ") in "
3650              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3651    DCHECK(Thread::Current()->IsExceptionPending());
3652    Thread::Current()->ClearException();
3653    return nullptr;
3654  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3655                                                  field->GetAccessFlags())) {
3656    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3657                                    << " from " << GetDeclaringClass();
3658    return nullptr;
3659  } else if (field->IsStatic()) {
3660    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3661                                    << " to not be static";
3662    return nullptr;
3663  } else if (obj_type.IsZero()) {
3664    // Cannot infer and check type, however, access will cause null pointer exception
3665    return field;
3666  } else if (!obj_type.IsReferenceTypes()) {
3667    // Trying to read a field from something that isn't a reference
3668    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
3669                                      << "non-reference type " << obj_type;
3670    return nullptr;
3671  } else {
3672    mirror::Class* klass = field->GetDeclaringClass();
3673    RegType& field_klass =
3674        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3675                             klass, klass->CannotBeAssignedFromOtherTypes());
3676    if (obj_type.IsUninitializedTypes() &&
3677        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3678            !field_klass.Equals(GetDeclaringClass()))) {
3679      // Field accesses through uninitialized references are only allowable for constructors where
3680      // the field is declared in this class
3681      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3682                                        << " of a not fully initialized object within the context"
3683                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3684      return nullptr;
3685    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3686      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3687      // of C1. For resolution to occur the declared class of the field must be compatible with
3688      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3689      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3690                                  << " from object of type " << obj_type;
3691      return nullptr;
3692    } else {
3693      return field;
3694    }
3695  }
3696}
3697
3698void MethodVerifier::VerifyISGet(const Instruction* inst, RegType& insn_type,
3699                                 bool is_primitive, bool is_static) {
3700  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3701  mirror::ArtField* field;
3702  if (is_static) {
3703    field = GetStaticField(field_idx);
3704  } else {
3705    RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3706    field = GetInstanceField(object_type, field_idx);
3707  }
3708  RegType* field_type = nullptr;
3709  if (field != nullptr) {
3710    Thread* self = Thread::Current();
3711    mirror::Class* field_type_class;
3712    {
3713      StackHandleScope<1> hs(self);
3714      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3715      field_type_class = FieldHelper(h_field).GetType(can_load_classes_);
3716    }
3717    if (field_type_class != nullptr) {
3718      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3719                                         field_type_class->CannotBeAssignedFromOtherTypes());
3720    } else {
3721      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3722      self->ClearException();
3723    }
3724  }
3725  if (field_type == nullptr) {
3726    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3727    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3728    field_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3729  }
3730  DCHECK(field_type != nullptr);
3731  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3732  if (is_primitive) {
3733    if (field_type->Equals(insn_type) ||
3734        (field_type->IsFloat() && insn_type.IsInteger()) ||
3735        (field_type->IsDouble() && insn_type.IsLong())) {
3736      // expected that read is of the correct primitive type or that int reads are reading
3737      // floats or long reads are reading doubles
3738    } else {
3739      // This is a global failure rather than a class change failure as the instructions and
3740      // the descriptors for the type should have been consistent within the same file at
3741      // compile time
3742      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3743                                        << " to be of type '" << insn_type
3744                                        << "' but found type '" << *field_type << "' in get";
3745      return;
3746    }
3747  } else {
3748    if (!insn_type.IsAssignableFrom(*field_type)) {
3749      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3750                                        << " to be compatible with type '" << insn_type
3751                                        << "' but found type '" << *field_type
3752                                        << "' in Get-object";
3753      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3754      return;
3755    }
3756  }
3757  if (!field_type->IsLowHalf()) {
3758    work_line_->SetRegisterType(vregA, *field_type);
3759  } else {
3760    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3761  }
3762}
3763
3764void MethodVerifier::VerifyISPut(const Instruction* inst, RegType& insn_type,
3765                                 bool is_primitive, bool is_static) {
3766  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3767  mirror::ArtField* field;
3768  if (is_static) {
3769    field = GetStaticField(field_idx);
3770  } else {
3771    RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3772    field = GetInstanceField(object_type, field_idx);
3773  }
3774  RegType* field_type = nullptr;
3775  if (field != nullptr) {
3776    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3777      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3778                                      << " from other class " << GetDeclaringClass();
3779      return;
3780    }
3781    mirror::Class* field_type_class;
3782    {
3783      StackHandleScope<1> hs(Thread::Current());
3784      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3785      FieldHelper fh(h_field);
3786      field_type_class = fh.GetType(can_load_classes_);
3787    }
3788    if (field_type_class != nullptr) {
3789      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3790                                         field_type_class->CannotBeAssignedFromOtherTypes());
3791    } else {
3792      Thread* self = Thread::Current();
3793      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3794      self->ClearException();
3795    }
3796  }
3797  if (field_type == nullptr) {
3798    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3799    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3800    field_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3801  }
3802  DCHECK(field_type != nullptr);
3803  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3804  if (is_primitive) {
3805    VerifyPrimitivePut(*field_type, insn_type, vregA);
3806  } else {
3807    if (!insn_type.IsAssignableFrom(*field_type)) {
3808      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3809                                        << " to be compatible with type '" << insn_type
3810                                        << "' but found type '" << *field_type
3811                                        << "' in put-object";
3812      return;
3813    }
3814    work_line_->VerifyRegisterType(vregA, *field_type);
3815  }
3816}
3817
3818mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3819                                                      RegisterLine* reg_line) {
3820  DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3821         inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3822         inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3823         inst->Opcode() == Instruction::IPUT_QUICK ||
3824         inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3825         inst->Opcode() == Instruction::IPUT_OBJECT_QUICK);
3826  RegType& object_type = reg_line->GetRegisterType(inst->VRegB_22c());
3827  if (!object_type.HasClass()) {
3828    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
3829    return nullptr;
3830  }
3831  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3832  mirror::ArtField* f = mirror::ArtField::FindInstanceFieldWithOffset(object_type.GetClass(),
3833                                                                      field_offset);
3834  if (f == nullptr) {
3835    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
3836                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
3837  }
3838  return f;
3839}
3840
3841void MethodVerifier::VerifyIGetQuick(const Instruction* inst, RegType& insn_type,
3842                                     bool is_primitive) {
3843  DCHECK(Runtime::Current()->IsStarted());
3844  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3845  if (field == nullptr) {
3846    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3847    return;
3848  }
3849  mirror::Class* field_type_class;
3850  {
3851    StackHandleScope<1> hs(Thread::Current());
3852    HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3853    FieldHelper fh(h_field);
3854    field_type_class = fh.GetType(can_load_classes_);
3855  }
3856  RegType* field_type;
3857  if (field_type_class != nullptr) {
3858    field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3859                                       field_type_class->CannotBeAssignedFromOtherTypes());
3860  } else {
3861    Thread* self = Thread::Current();
3862    DCHECK(!can_load_classes_ || self->IsExceptionPending());
3863    self->ClearException();
3864    field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
3865                                            field->GetTypeDescriptor(), false);
3866  }
3867  DCHECK(field_type != nullptr);
3868  const uint32_t vregA = inst->VRegA_22c();
3869  if (is_primitive) {
3870    if (field_type->Equals(insn_type) ||
3871        (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
3872        (field_type->IsDouble() && insn_type.IsLongTypes())) {
3873      // expected that read is of the correct primitive type or that int reads are reading
3874      // floats or long reads are reading doubles
3875    } else {
3876      // This is a global failure rather than a class change failure as the instructions and
3877      // the descriptors for the type should have been consistent within the same file at
3878      // compile time
3879      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3880                                        << " to be of type '" << insn_type
3881                                        << "' but found type '" << *field_type << "' in Get";
3882      return;
3883    }
3884  } else {
3885    if (!insn_type.IsAssignableFrom(*field_type)) {
3886      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3887                                        << " to be compatible with type '" << insn_type
3888                                        << "' but found type '" << *field_type
3889                                        << "' in get-object";
3890      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3891      return;
3892    }
3893  }
3894  if (!field_type->IsLowHalf()) {
3895    work_line_->SetRegisterType(vregA, *field_type);
3896  } else {
3897    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3898  }
3899}
3900
3901void MethodVerifier::VerifyIPutQuick(const Instruction* inst, RegType& insn_type,
3902                                     bool is_primitive) {
3903  DCHECK(Runtime::Current()->IsStarted());
3904  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3905  if (field == nullptr) {
3906    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3907    return;
3908  }
3909  const char* descriptor = field->GetTypeDescriptor();
3910  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
3911  RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3912  if (field != nullptr) {
3913    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3914      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3915                                      << " from other class " << GetDeclaringClass();
3916      return;
3917    }
3918  }
3919  const uint32_t vregA = inst->VRegA_22c();
3920  if (is_primitive) {
3921    // Primitive field assignability rules are weaker than regular assignability rules
3922    bool instruction_compatible;
3923    bool value_compatible;
3924    RegType& value_type = work_line_->GetRegisterType(vregA);
3925    if (field_type.IsIntegralTypes()) {
3926      instruction_compatible = insn_type.IsIntegralTypes();
3927      value_compatible = value_type.IsIntegralTypes();
3928    } else if (field_type.IsFloat()) {
3929      instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
3930      value_compatible = value_type.IsFloatTypes();
3931    } else if (field_type.IsLong()) {
3932      instruction_compatible = insn_type.IsLong();
3933      value_compatible = value_type.IsLongTypes();
3934    } else if (field_type.IsDouble()) {
3935      instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
3936      value_compatible = value_type.IsDoubleTypes();
3937    } else {
3938      instruction_compatible = false;  // reference field with primitive store
3939      value_compatible = false;  // unused
3940    }
3941    if (!instruction_compatible) {
3942      // This is a global failure rather than a class change failure as the instructions and
3943      // the descriptors for the type should have been consistent within the same file at
3944      // compile time
3945      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3946                                        << " to be of type '" << insn_type
3947                                        << "' but found type '" << field_type
3948                                        << "' in put";
3949      return;
3950    }
3951    if (!value_compatible) {
3952      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3953          << " of type " << value_type
3954          << " but expected " << field_type
3955          << " for store to " << PrettyField(field) << " in put";
3956      return;
3957    }
3958  } else {
3959    if (!insn_type.IsAssignableFrom(field_type)) {
3960      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3961                                        << " to be compatible with type '" << insn_type
3962                                        << "' but found type '" << field_type
3963                                        << "' in put-object";
3964      return;
3965    }
3966    work_line_->VerifyRegisterType(vregA, field_type);
3967  }
3968}
3969
3970bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
3971  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
3972    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
3973    return false;
3974  }
3975  return true;
3976}
3977
3978bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
3979                                     bool update_merge_line) {
3980  bool changed = true;
3981  RegisterLine* target_line = reg_table_.GetLine(next_insn);
3982  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
3983    /*
3984     * We haven't processed this instruction before, and we haven't touched the registers here, so
3985     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
3986     * only way a register can transition out of "unknown", so this is not just an optimization.)
3987     */
3988    if (!insn_flags_[next_insn].IsReturn()) {
3989      target_line->CopyFromLine(merge_line);
3990    } else {
3991      // Verify that the monitor stack is empty on return.
3992      if (!merge_line->VerifyMonitorStackEmpty()) {
3993        return false;
3994      }
3995      // For returns we only care about the operand to the return, all other registers are dead.
3996      // Initialize them as conflicts so they don't add to GC and deoptimization information.
3997      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
3998      Instruction::Code opcode = ret_inst->Opcode();
3999      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
4000        target_line->MarkAllRegistersAsConflicts();
4001      } else {
4002        target_line->CopyFromLine(merge_line);
4003        if (opcode == Instruction::RETURN_WIDE) {
4004          target_line->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
4005        } else {
4006          target_line->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
4007        }
4008      }
4009    }
4010  } else {
4011    std::unique_ptr<RegisterLine> copy(gDebugVerify ?
4012                                           RegisterLine::Create(target_line->NumRegs(), this) :
4013                                           nullptr);
4014    if (gDebugVerify) {
4015      copy->CopyFromLine(target_line);
4016    }
4017    changed = target_line->MergeRegisters(merge_line);
4018    if (have_pending_hard_failure_) {
4019      return false;
4020    }
4021    if (gDebugVerify && changed) {
4022      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4023                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4024                      << *copy.get() << "  MERGE\n"
4025                      << *merge_line << "  ==\n"
4026                      << *target_line << "\n";
4027    }
4028    if (update_merge_line && changed) {
4029      merge_line->CopyFromLine(target_line);
4030    }
4031  }
4032  if (changed) {
4033    insn_flags_[next_insn].SetChanged();
4034  }
4035  return true;
4036}
4037
4038InstructionFlags* MethodVerifier::CurrentInsnFlags() {
4039  return &insn_flags_[work_insn_idx_];
4040}
4041
4042RegType& MethodVerifier::GetMethodReturnType() {
4043  if (return_type_ == nullptr) {
4044    if (mirror_method_ != nullptr) {
4045      Thread* self = Thread::Current();
4046      StackHandleScope<1> hs(self);
4047      mirror::Class* return_type_class;
4048      {
4049        HandleWrapper<mirror::ArtMethod> h_mirror_method(hs.NewHandleWrapper(&mirror_method_));
4050        return_type_class = MethodHelper(h_mirror_method).GetReturnType(can_load_classes_);
4051      }
4052      if (return_type_class != nullptr) {
4053        return_type_ = &reg_types_.FromClass(mirror_method_->GetReturnTypeDescriptor(),
4054                                             return_type_class,
4055                                             return_type_class->CannotBeAssignedFromOtherTypes());
4056      } else {
4057        DCHECK(!can_load_classes_ || self->IsExceptionPending());
4058        self->ClearException();
4059      }
4060    }
4061    if (return_type_ == nullptr) {
4062      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4063      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
4064      uint16_t return_type_idx = proto_id.return_type_idx_;
4065      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
4066      return_type_ = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
4067    }
4068  }
4069  return *return_type_;
4070}
4071
4072RegType& MethodVerifier::GetDeclaringClass() {
4073  if (declaring_class_ == nullptr) {
4074    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4075    const char* descriptor
4076        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
4077    if (mirror_method_ != nullptr) {
4078      mirror::Class* klass = mirror_method_->GetDeclaringClass();
4079      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
4080                                               klass->CannotBeAssignedFromOtherTypes());
4081    } else {
4082      declaring_class_ = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
4083    }
4084  }
4085  return *declaring_class_;
4086}
4087
4088std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4089  RegisterLine* line = reg_table_.GetLine(dex_pc);
4090  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
4091  std::vector<int32_t> result;
4092  for (size_t i = 0; i < line->NumRegs(); ++i) {
4093    RegType& type = line->GetRegisterType(i);
4094    if (type.IsConstant()) {
4095      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4096      result.push_back(type.ConstantValue());
4097    } else if (type.IsConstantLo()) {
4098      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4099      result.push_back(type.ConstantValueLo());
4100    } else if (type.IsConstantHi()) {
4101      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4102      result.push_back(type.ConstantValueHi());
4103    } else if (type.IsIntegralTypes()) {
4104      result.push_back(kIntVReg);
4105      result.push_back(0);
4106    } else if (type.IsFloat()) {
4107      result.push_back(kFloatVReg);
4108      result.push_back(0);
4109    } else if (type.IsLong()) {
4110      result.push_back(kLongLoVReg);
4111      result.push_back(0);
4112      result.push_back(kLongHiVReg);
4113      result.push_back(0);
4114      ++i;
4115    } else if (type.IsDouble()) {
4116      result.push_back(kDoubleLoVReg);
4117      result.push_back(0);
4118      result.push_back(kDoubleHiVReg);
4119      result.push_back(0);
4120      ++i;
4121    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4122      result.push_back(kUndefined);
4123      result.push_back(0);
4124    } else {
4125      CHECK(type.IsNonZeroReferenceTypes());
4126      result.push_back(kReferenceVReg);
4127      result.push_back(0);
4128    }
4129  }
4130  return result;
4131}
4132
4133RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
4134  if (precise) {
4135    // Precise constant type.
4136    return reg_types_.FromCat1Const(value, true);
4137  } else {
4138    // Imprecise constant type.
4139    if (value < -32768) {
4140      return reg_types_.IntConstant();
4141    } else if (value < -128) {
4142      return reg_types_.ShortConstant();
4143    } else if (value < 0) {
4144      return reg_types_.ByteConstant();
4145    } else if (value == 0) {
4146      return reg_types_.Zero();
4147    } else if (value == 1) {
4148      return reg_types_.One();
4149    } else if (value < 128) {
4150      return reg_types_.PosByteConstant();
4151    } else if (value < 32768) {
4152      return reg_types_.PosShortConstant();
4153    } else if (value < 65536) {
4154      return reg_types_.CharConstant();
4155    } else {
4156      return reg_types_.IntConstant();
4157    }
4158  }
4159}
4160
4161void MethodVerifier::Init() {
4162  art::verifier::RegTypeCache::Init();
4163}
4164
4165void MethodVerifier::Shutdown() {
4166  verifier::RegTypeCache::ShutDown();
4167}
4168
4169void MethodVerifier::VisitRoots(RootCallback* callback, void* arg) {
4170  reg_types_.VisitRoots(callback, arg);
4171}
4172
4173}  // namespace verifier
4174}  // namespace art
4175