method_verifier.cc revision 65c9db8dfbeea3f708f95f058f4fed7c2af71052
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "class_linker.h"
24#include "compiler_callbacks.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_visitor.h"
28#include "field_helper.h"
29#include "gc/accounting/card_table-inl.h"
30#include "indenter.h"
31#include "intern_table.h"
32#include "leb128.h"
33#include "method_helper-inl.h"
34#include "mirror/art_field-inl.h"
35#include "mirror/art_method-inl.h"
36#include "mirror/class.h"
37#include "mirror/class-inl.h"
38#include "mirror/dex_cache-inl.h"
39#include "mirror/object-inl.h"
40#include "mirror/object_array-inl.h"
41#include "register_line-inl.h"
42#include "runtime.h"
43#include "scoped_thread_state_change.h"
44#include "handle_scope-inl.h"
45#include "verifier/dex_gc_map.h"
46
47namespace art {
48namespace verifier {
49
50static constexpr bool gDebugVerify = false;
51// TODO: Add a constant to method_verifier to turn on verbose logging?
52
53void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
54                                 uint32_t insns_size, uint16_t registers_size,
55                                 MethodVerifier* verifier) {
56  DCHECK_GT(insns_size, 0U);
57  register_lines_.reset(new RegisterLine*[insns_size]());
58  size_ = insns_size;
59  for (uint32_t i = 0; i < insns_size; i++) {
60    bool interesting = false;
61    switch (mode) {
62      case kTrackRegsAll:
63        interesting = flags[i].IsOpcode();
64        break;
65      case kTrackCompilerInterestPoints:
66        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
67        break;
68      case kTrackRegsBranches:
69        interesting = flags[i].IsBranchTarget();
70        break;
71      default:
72        break;
73    }
74    if (interesting) {
75      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
76    }
77  }
78}
79
80PcToRegisterLineTable::~PcToRegisterLineTable() {
81  for (size_t i = 0; i < size_; i++) {
82    delete register_lines_[i];
83    if (kIsDebugBuild) {
84      register_lines_[i] = nullptr;
85    }
86  }
87}
88
89MethodVerifier::FailureKind MethodVerifier::VerifyClass(mirror::Class* klass,
90                                                        bool allow_soft_failures,
91                                                        std::string* error) {
92  if (klass->IsVerified()) {
93    return kNoFailure;
94  }
95  bool early_failure = false;
96  std::string failure_message;
97  const DexFile& dex_file = klass->GetDexFile();
98  const DexFile::ClassDef* class_def = klass->GetClassDef();
99  mirror::Class* super = klass->GetSuperClass();
100  if (super == NULL && "Ljava/lang/Object;" != klass->GetDescriptor()) {
101    early_failure = true;
102    failure_message = " that has no super class";
103  } else if (super != NULL && super->IsFinal()) {
104    early_failure = true;
105    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
106  } else if (class_def == NULL) {
107    early_failure = true;
108    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
109  }
110  if (early_failure) {
111    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
112    if (Runtime::Current()->IsCompiler()) {
113      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
114      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
115    }
116    return kHardFailure;
117  }
118  StackHandleScope<2> hs(Thread::Current());
119  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
120  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
121  return VerifyClass(&dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
122}
123
124MethodVerifier::FailureKind MethodVerifier::VerifyClass(const DexFile* dex_file,
125                                                        Handle<mirror::DexCache> dex_cache,
126                                                        Handle<mirror::ClassLoader> class_loader,
127                                                        const DexFile::ClassDef* class_def,
128                                                        bool allow_soft_failures,
129                                                        std::string* error) {
130  DCHECK(class_def != nullptr);
131  const byte* class_data = dex_file->GetClassData(*class_def);
132  if (class_data == NULL) {
133    // empty class, probably a marker interface
134    return kNoFailure;
135  }
136  ClassDataItemIterator it(*dex_file, class_data);
137  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
138    it.Next();
139  }
140  size_t error_count = 0;
141  bool hard_fail = false;
142  ClassLinker* linker = Runtime::Current()->GetClassLinker();
143  int64_t previous_direct_method_idx = -1;
144  while (it.HasNextDirectMethod()) {
145    uint32_t method_idx = it.GetMemberIndex();
146    if (method_idx == previous_direct_method_idx) {
147      // smali can create dex files with two encoded_methods sharing the same method_idx
148      // http://code.google.com/p/smali/issues/detail?id=119
149      it.Next();
150      continue;
151    }
152    previous_direct_method_idx = method_idx;
153    InvokeType type = it.GetMethodInvokeType(*class_def);
154    mirror::ArtMethod* method =
155        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
156                              NullHandle<mirror::ArtMethod>(), type);
157    if (method == NULL) {
158      DCHECK(Thread::Current()->IsExceptionPending());
159      // We couldn't resolve the method, but continue regardless.
160      Thread::Current()->ClearException();
161    }
162    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
163                                                      dex_file,
164                                                      dex_cache,
165                                                      class_loader,
166                                                      class_def,
167                                                      it.GetMethodCodeItem(),
168                                                      method,
169                                                      it.GetMemberAccessFlags(),
170                                                      allow_soft_failures,
171                                                      false);
172    if (result != kNoFailure) {
173      if (result == kHardFailure) {
174        hard_fail = true;
175        if (error_count > 0) {
176          *error += "\n";
177        }
178        *error = "Verifier rejected class ";
179        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
180        *error += " due to bad method ";
181        *error += PrettyMethod(method_idx, *dex_file);
182      }
183      ++error_count;
184    }
185    it.Next();
186  }
187  int64_t previous_virtual_method_idx = -1;
188  while (it.HasNextVirtualMethod()) {
189    uint32_t method_idx = it.GetMemberIndex();
190    if (method_idx == previous_virtual_method_idx) {
191      // smali can create dex files with two encoded_methods sharing the same method_idx
192      // http://code.google.com/p/smali/issues/detail?id=119
193      it.Next();
194      continue;
195    }
196    previous_virtual_method_idx = method_idx;
197    InvokeType type = it.GetMethodInvokeType(*class_def);
198    mirror::ArtMethod* method =
199        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
200                              NullHandle<mirror::ArtMethod>(), type);
201    if (method == NULL) {
202      DCHECK(Thread::Current()->IsExceptionPending());
203      // We couldn't resolve the method, but continue regardless.
204      Thread::Current()->ClearException();
205    }
206    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
207                                                      dex_file,
208                                                      dex_cache,
209                                                      class_loader,
210                                                      class_def,
211                                                      it.GetMethodCodeItem(),
212                                                      method,
213                                                      it.GetMemberAccessFlags(),
214                                                      allow_soft_failures,
215                                                      false);
216    if (result != kNoFailure) {
217      if (result == kHardFailure) {
218        hard_fail = true;
219        if (error_count > 0) {
220          *error += "\n";
221        }
222        *error = "Verifier rejected class ";
223        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
224        *error += " due to bad method ";
225        *error += PrettyMethod(method_idx, *dex_file);
226      }
227      ++error_count;
228    }
229    it.Next();
230  }
231  if (error_count == 0) {
232    return kNoFailure;
233  } else {
234    return hard_fail ? kHardFailure : kSoftFailure;
235  }
236}
237
238MethodVerifier::FailureKind MethodVerifier::VerifyMethod(uint32_t method_idx,
239                                                         const DexFile* dex_file,
240                                                         Handle<mirror::DexCache> dex_cache,
241                                                         Handle<mirror::ClassLoader> class_loader,
242                                                         const DexFile::ClassDef* class_def,
243                                                         const DexFile::CodeItem* code_item,
244                                                         mirror::ArtMethod* method,
245                                                         uint32_t method_access_flags,
246                                                         bool allow_soft_failures,
247                                                         bool need_precise_constants) {
248  MethodVerifier::FailureKind result = kNoFailure;
249  uint64_t start_ns = NanoTime();
250
251  MethodVerifier verifier(dex_file, &dex_cache, &class_loader, class_def, code_item,
252                           method_idx, method, method_access_flags, true, allow_soft_failures,
253                           need_precise_constants);
254  if (verifier.Verify()) {
255    // Verification completed, however failures may be pending that didn't cause the verification
256    // to hard fail.
257    CHECK(!verifier.have_pending_hard_failure_);
258    if (verifier.failures_.size() != 0) {
259      if (VLOG_IS_ON(verifier)) {
260          verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
261                                << PrettyMethod(method_idx, *dex_file) << "\n");
262      }
263      result = kSoftFailure;
264    }
265  } else {
266    // Bad method data.
267    CHECK_NE(verifier.failures_.size(), 0U);
268    CHECK(verifier.have_pending_hard_failure_);
269    verifier.DumpFailures(LOG(INFO) << "Verification error in "
270                                    << PrettyMethod(method_idx, *dex_file) << "\n");
271    if (gDebugVerify) {
272      std::cout << "\n" << verifier.info_messages_.str();
273      verifier.Dump(std::cout);
274    }
275    result = kHardFailure;
276  }
277  uint64_t duration_ns = NanoTime() - start_ns;
278  if (duration_ns > MsToNs(100) && !kIsDebugBuild) {
279    LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
280                 << " took " << PrettyDuration(duration_ns);
281  }
282  return result;
283}
284
285void MethodVerifier::VerifyMethodAndDump(std::ostream& os, uint32_t dex_method_idx,
286                                         const DexFile* dex_file,
287                                         Handle<mirror::DexCache> dex_cache,
288                                         Handle<mirror::ClassLoader> class_loader,
289                                         const DexFile::ClassDef* class_def,
290                                         const DexFile::CodeItem* code_item,
291                                         mirror::ArtMethod* method,
292                                         uint32_t method_access_flags) {
293  MethodVerifier verifier(dex_file, &dex_cache, &class_loader, class_def, code_item,
294                          dex_method_idx, method, method_access_flags, true, true, true);
295  verifier.Verify();
296  verifier.DumpFailures(os);
297  os << verifier.info_messages_.str();
298  verifier.Dump(os);
299}
300
301MethodVerifier::MethodVerifier(const DexFile* dex_file, Handle<mirror::DexCache>* dex_cache,
302                               Handle<mirror::ClassLoader>* class_loader,
303                               const DexFile::ClassDef* class_def,
304                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
305                               mirror::ArtMethod* method, uint32_t method_access_flags,
306                               bool can_load_classes, bool allow_soft_failures,
307                               bool need_precise_constants)
308    : reg_types_(can_load_classes),
309      work_insn_idx_(-1),
310      dex_method_idx_(dex_method_idx),
311      mirror_method_(method),
312      method_access_flags_(method_access_flags),
313      return_type_(nullptr),
314      dex_file_(dex_file),
315      dex_cache_(dex_cache),
316      class_loader_(class_loader),
317      class_def_(class_def),
318      code_item_(code_item),
319      declaring_class_(NULL),
320      interesting_dex_pc_(-1),
321      monitor_enter_dex_pcs_(nullptr),
322      have_pending_hard_failure_(false),
323      have_pending_runtime_throw_failure_(false),
324      new_instance_count_(0),
325      monitor_enter_count_(0),
326      can_load_classes_(can_load_classes),
327      allow_soft_failures_(allow_soft_failures),
328      need_precise_constants_(need_precise_constants),
329      has_check_casts_(false),
330      has_virtual_or_interface_invokes_(false) {
331  Runtime::Current()->AddMethodVerifier(this);
332  DCHECK(class_def != nullptr);
333}
334
335MethodVerifier::~MethodVerifier() {
336  Runtime::Current()->RemoveMethodVerifier(this);
337  STLDeleteElements(&failure_messages_);
338}
339
340void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
341                                      std::vector<uint32_t>* monitor_enter_dex_pcs) {
342  StackHandleScope<2> hs(Thread::Current());
343  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
344  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
345  MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
346                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), false,
347                          true, false);
348  verifier.interesting_dex_pc_ = dex_pc;
349  verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
350  verifier.FindLocksAtDexPc();
351}
352
353void MethodVerifier::FindLocksAtDexPc() {
354  CHECK(monitor_enter_dex_pcs_ != NULL);
355  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
356
357  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
358  // verification. In practice, the phase we want relies on data structures set up by all the
359  // earlier passes, so we just run the full method verification and bail out early when we've
360  // got what we wanted.
361  Verify();
362}
363
364mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
365                                                           uint32_t dex_pc) {
366  StackHandleScope<2> hs(Thread::Current());
367  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
368  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
369  MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
370                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
371                          true, false);
372  return verifier.FindAccessedFieldAtDexPc(dex_pc);
373}
374
375mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
376  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
377
378  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
379  // verification. In practice, the phase we want relies on data structures set up by all the
380  // earlier passes, so we just run the full method verification and bail out early when we've
381  // got what we wanted.
382  bool success = Verify();
383  if (!success) {
384    return nullptr;
385  }
386  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
387  if (register_line == NULL) {
388    return nullptr;
389  }
390  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
391  return GetQuickFieldAccess(inst, register_line);
392}
393
394mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
395                                                            uint32_t dex_pc) {
396  StackHandleScope<2> hs(Thread::Current());
397  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
398  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
399  MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
400                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
401                          true, false);
402  return verifier.FindInvokedMethodAtDexPc(dex_pc);
403}
404
405mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
406  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
407
408  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
409  // verification. In practice, the phase we want relies on data structures set up by all the
410  // earlier passes, so we just run the full method verification and bail out early when we've
411  // got what we wanted.
412  bool success = Verify();
413  if (!success) {
414    return NULL;
415  }
416  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
417  if (register_line == NULL) {
418    return NULL;
419  }
420  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
421  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
422  return GetQuickInvokedMethod(inst, register_line, is_range);
423}
424
425bool MethodVerifier::Verify() {
426  // If there aren't any instructions, make sure that's expected, then exit successfully.
427  if (code_item_ == NULL) {
428    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
429      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
430      return false;
431    } else {
432      return true;
433    }
434  }
435  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
436  if (code_item_->ins_size_ > code_item_->registers_size_) {
437    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
438                                      << " regs=" << code_item_->registers_size_;
439    return false;
440  }
441  // Allocate and initialize an array to hold instruction data.
442  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
443  // Run through the instructions and see if the width checks out.
444  bool result = ComputeWidthsAndCountOps();
445  // Flag instructions guarded by a "try" block and check exception handlers.
446  result = result && ScanTryCatchBlocks();
447  // Perform static instruction verification.
448  result = result && VerifyInstructions();
449  // Perform code-flow analysis and return.
450  result = result && VerifyCodeFlow();
451  // Compute information for compiler.
452  if (result && Runtime::Current()->IsCompiler()) {
453    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
454  }
455  return result;
456}
457
458std::ostream& MethodVerifier::Fail(VerifyError error) {
459  switch (error) {
460    case VERIFY_ERROR_NO_CLASS:
461    case VERIFY_ERROR_NO_FIELD:
462    case VERIFY_ERROR_NO_METHOD:
463    case VERIFY_ERROR_ACCESS_CLASS:
464    case VERIFY_ERROR_ACCESS_FIELD:
465    case VERIFY_ERROR_ACCESS_METHOD:
466    case VERIFY_ERROR_INSTANTIATION:
467    case VERIFY_ERROR_CLASS_CHANGE:
468      if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
469        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
470        // class change and instantiation errors into soft verification errors so that we re-verify
471        // at runtime. We may fail to find or to agree on access because of not yet available class
472        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
473        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
474        // paths" that dynamically perform the verification and cause the behavior to be that akin
475        // to an interpreter.
476        error = VERIFY_ERROR_BAD_CLASS_SOFT;
477      } else {
478        // If we fail again at runtime, mark that this instruction would throw and force this
479        // method to be executed using the interpreter with checks.
480        have_pending_runtime_throw_failure_ = true;
481      }
482      break;
483      // Indication that verification should be retried at runtime.
484    case VERIFY_ERROR_BAD_CLASS_SOFT:
485      if (!allow_soft_failures_) {
486        have_pending_hard_failure_ = true;
487      }
488      break;
489      // Hard verification failures at compile time will still fail at runtime, so the class is
490      // marked as rejected to prevent it from being compiled.
491    case VERIFY_ERROR_BAD_CLASS_HARD: {
492      if (Runtime::Current()->IsCompiler()) {
493        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
494        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
495      }
496      have_pending_hard_failure_ = true;
497      break;
498    }
499  }
500  failures_.push_back(error);
501  std::string location(StringPrintf("%s: [0x%X]", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
502                                    work_insn_idx_));
503  std::ostringstream* failure_message = new std::ostringstream(location);
504  failure_messages_.push_back(failure_message);
505  return *failure_message;
506}
507
508std::ostream& MethodVerifier::LogVerifyInfo() {
509  return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
510                        << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
511}
512
513void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
514  size_t failure_num = failure_messages_.size();
515  DCHECK_NE(failure_num, 0U);
516  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
517  prepend += last_fail_message->str();
518  failure_messages_[failure_num - 1] = new std::ostringstream(prepend);
519  delete last_fail_message;
520}
521
522void MethodVerifier::AppendToLastFailMessage(std::string append) {
523  size_t failure_num = failure_messages_.size();
524  DCHECK_NE(failure_num, 0U);
525  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
526  (*last_fail_message) << append;
527}
528
529bool MethodVerifier::ComputeWidthsAndCountOps() {
530  const uint16_t* insns = code_item_->insns_;
531  size_t insns_size = code_item_->insns_size_in_code_units_;
532  const Instruction* inst = Instruction::At(insns);
533  size_t new_instance_count = 0;
534  size_t monitor_enter_count = 0;
535  size_t dex_pc = 0;
536
537  while (dex_pc < insns_size) {
538    Instruction::Code opcode = inst->Opcode();
539    switch (opcode) {
540      case Instruction::APUT_OBJECT:
541      case Instruction::CHECK_CAST:
542        has_check_casts_ = true;
543        break;
544      case Instruction::INVOKE_VIRTUAL:
545      case Instruction::INVOKE_VIRTUAL_RANGE:
546      case Instruction::INVOKE_INTERFACE:
547      case Instruction::INVOKE_INTERFACE_RANGE:
548        has_virtual_or_interface_invokes_ = true;
549        break;
550      case Instruction::MONITOR_ENTER:
551        monitor_enter_count++;
552        break;
553      case Instruction::NEW_INSTANCE:
554        new_instance_count++;
555        break;
556      default:
557        break;
558    }
559    size_t inst_size = inst->SizeInCodeUnits();
560    insn_flags_[dex_pc].SetLengthInCodeUnits(inst_size);
561    dex_pc += inst_size;
562    inst = inst->Next();
563  }
564
565  if (dex_pc != insns_size) {
566    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
567                                      << dex_pc << " vs. " << insns_size << ")";
568    return false;
569  }
570
571  new_instance_count_ = new_instance_count;
572  monitor_enter_count_ = monitor_enter_count;
573  return true;
574}
575
576bool MethodVerifier::ScanTryCatchBlocks() {
577  uint32_t tries_size = code_item_->tries_size_;
578  if (tries_size == 0) {
579    return true;
580  }
581  uint32_t insns_size = code_item_->insns_size_in_code_units_;
582  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
583
584  for (uint32_t idx = 0; idx < tries_size; idx++) {
585    const DexFile::TryItem* try_item = &tries[idx];
586    uint32_t start = try_item->start_addr_;
587    uint32_t end = start + try_item->insn_count_;
588    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
589      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
590                                        << " endAddr=" << end << " (size=" << insns_size << ")";
591      return false;
592    }
593    if (!insn_flags_[start].IsOpcode()) {
594      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
595          << "'try' block starts inside an instruction (" << start << ")";
596      return false;
597    }
598    for (uint32_t dex_pc = start; dex_pc < end;
599        dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
600      insn_flags_[dex_pc].SetInTry();
601    }
602  }
603  // Iterate over each of the handlers to verify target addresses.
604  const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
605  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
606  ClassLinker* linker = Runtime::Current()->GetClassLinker();
607  for (uint32_t idx = 0; idx < handlers_size; idx++) {
608    CatchHandlerIterator iterator(handlers_ptr);
609    for (; iterator.HasNext(); iterator.Next()) {
610      uint32_t dex_pc= iterator.GetHandlerAddress();
611      if (!insn_flags_[dex_pc].IsOpcode()) {
612        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
613            << "exception handler starts at bad address (" << dex_pc << ")";
614        return false;
615      }
616      insn_flags_[dex_pc].SetBranchTarget();
617      // Ensure exception types are resolved so that they don't need resolution to be delivered,
618      // unresolved exception types will be ignored by exception delivery
619      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
620        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
621                                                            iterator.GetHandlerTypeIndex(),
622                                                            *dex_cache_, *class_loader_);
623        if (exception_type == NULL) {
624          DCHECK(Thread::Current()->IsExceptionPending());
625          Thread::Current()->ClearException();
626        }
627      }
628    }
629    handlers_ptr = iterator.EndDataPointer();
630  }
631  return true;
632}
633
634bool MethodVerifier::VerifyInstructions() {
635  const Instruction* inst = Instruction::At(code_item_->insns_);
636
637  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
638  insn_flags_[0].SetBranchTarget();
639  insn_flags_[0].SetCompileTimeInfoPoint();
640
641  uint32_t insns_size = code_item_->insns_size_in_code_units_;
642  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
643    if (!VerifyInstruction(inst, dex_pc)) {
644      DCHECK_NE(failures_.size(), 0U);
645      return false;
646    }
647    /* Flag instructions that are garbage collection points */
648    // All invoke points are marked as "Throw" points already.
649    // We are relying on this to also count all the invokes as interesting.
650    if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) {
651      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
652    } else if (inst->IsReturn()) {
653      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
654    }
655    dex_pc += inst->SizeInCodeUnits();
656    inst = inst->Next();
657  }
658  return true;
659}
660
661bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
662  bool result = true;
663  switch (inst->GetVerifyTypeArgumentA()) {
664    case Instruction::kVerifyRegA:
665      result = result && CheckRegisterIndex(inst->VRegA());
666      break;
667    case Instruction::kVerifyRegAWide:
668      result = result && CheckWideRegisterIndex(inst->VRegA());
669      break;
670  }
671  switch (inst->GetVerifyTypeArgumentB()) {
672    case Instruction::kVerifyRegB:
673      result = result && CheckRegisterIndex(inst->VRegB());
674      break;
675    case Instruction::kVerifyRegBField:
676      result = result && CheckFieldIndex(inst->VRegB());
677      break;
678    case Instruction::kVerifyRegBMethod:
679      result = result && CheckMethodIndex(inst->VRegB());
680      break;
681    case Instruction::kVerifyRegBNewInstance:
682      result = result && CheckNewInstance(inst->VRegB());
683      break;
684    case Instruction::kVerifyRegBString:
685      result = result && CheckStringIndex(inst->VRegB());
686      break;
687    case Instruction::kVerifyRegBType:
688      result = result && CheckTypeIndex(inst->VRegB());
689      break;
690    case Instruction::kVerifyRegBWide:
691      result = result && CheckWideRegisterIndex(inst->VRegB());
692      break;
693  }
694  switch (inst->GetVerifyTypeArgumentC()) {
695    case Instruction::kVerifyRegC:
696      result = result && CheckRegisterIndex(inst->VRegC());
697      break;
698    case Instruction::kVerifyRegCField:
699      result = result && CheckFieldIndex(inst->VRegC());
700      break;
701    case Instruction::kVerifyRegCNewArray:
702      result = result && CheckNewArray(inst->VRegC());
703      break;
704    case Instruction::kVerifyRegCType:
705      result = result && CheckTypeIndex(inst->VRegC());
706      break;
707    case Instruction::kVerifyRegCWide:
708      result = result && CheckWideRegisterIndex(inst->VRegC());
709      break;
710  }
711  switch (inst->GetVerifyExtraFlags()) {
712    case Instruction::kVerifyArrayData:
713      result = result && CheckArrayData(code_offset);
714      break;
715    case Instruction::kVerifyBranchTarget:
716      result = result && CheckBranchTarget(code_offset);
717      break;
718    case Instruction::kVerifySwitchTargets:
719      result = result && CheckSwitchTargets(code_offset);
720      break;
721    case Instruction::kVerifyVarArgNonZero:
722      // Fall-through.
723    case Instruction::kVerifyVarArg: {
724      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && inst->VRegA() <= 0) {
725        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
726                                             "non-range invoke";
727        return false;
728      }
729      uint32_t args[Instruction::kMaxVarArgRegs];
730      inst->GetVarArgs(args);
731      result = result && CheckVarArgRegs(inst->VRegA(), args);
732      break;
733    }
734    case Instruction::kVerifyVarArgRangeNonZero:
735      // Fall-through.
736    case Instruction::kVerifyVarArgRange:
737      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
738          inst->VRegA() <= 0) {
739        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
740                                             "range invoke";
741        return false;
742      }
743      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
744      break;
745    case Instruction::kVerifyError:
746      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
747      result = false;
748      break;
749  }
750  if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsCompiler()) {
751    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
752    result = false;
753  }
754  return result;
755}
756
757bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
758  if (idx >= code_item_->registers_size_) {
759    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
760                                      << code_item_->registers_size_ << ")";
761    return false;
762  }
763  return true;
764}
765
766bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
767  if (idx + 1 >= code_item_->registers_size_) {
768    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
769                                      << "+1 >= " << code_item_->registers_size_ << ")";
770    return false;
771  }
772  return true;
773}
774
775bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
776  if (idx >= dex_file_->GetHeader().field_ids_size_) {
777    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
778                                      << dex_file_->GetHeader().field_ids_size_ << ")";
779    return false;
780  }
781  return true;
782}
783
784bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
785  if (idx >= dex_file_->GetHeader().method_ids_size_) {
786    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
787                                      << dex_file_->GetHeader().method_ids_size_ << ")";
788    return false;
789  }
790  return true;
791}
792
793bool MethodVerifier::CheckNewInstance(uint32_t idx) {
794  if (idx >= dex_file_->GetHeader().type_ids_size_) {
795    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
796                                      << dex_file_->GetHeader().type_ids_size_ << ")";
797    return false;
798  }
799  // We don't need the actual class, just a pointer to the class name.
800  const char* descriptor = dex_file_->StringByTypeIdx(idx);
801  if (descriptor[0] != 'L') {
802    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
803    return false;
804  }
805  return true;
806}
807
808bool MethodVerifier::CheckStringIndex(uint32_t idx) {
809  if (idx >= dex_file_->GetHeader().string_ids_size_) {
810    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
811                                      << dex_file_->GetHeader().string_ids_size_ << ")";
812    return false;
813  }
814  return true;
815}
816
817bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
818  if (idx >= dex_file_->GetHeader().type_ids_size_) {
819    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
820                                      << dex_file_->GetHeader().type_ids_size_ << ")";
821    return false;
822  }
823  return true;
824}
825
826bool MethodVerifier::CheckNewArray(uint32_t idx) {
827  if (idx >= dex_file_->GetHeader().type_ids_size_) {
828    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
829                                      << dex_file_->GetHeader().type_ids_size_ << ")";
830    return false;
831  }
832  int bracket_count = 0;
833  const char* descriptor = dex_file_->StringByTypeIdx(idx);
834  const char* cp = descriptor;
835  while (*cp++ == '[') {
836    bracket_count++;
837  }
838  if (bracket_count == 0) {
839    /* The given class must be an array type. */
840    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
841        << "can't new-array class '" << descriptor << "' (not an array)";
842    return false;
843  } else if (bracket_count > 255) {
844    /* It is illegal to create an array of more than 255 dimensions. */
845    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
846        << "can't new-array class '" << descriptor << "' (exceeds limit)";
847    return false;
848  }
849  return true;
850}
851
852bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
853  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
854  const uint16_t* insns = code_item_->insns_ + cur_offset;
855  const uint16_t* array_data;
856  int32_t array_data_offset;
857
858  DCHECK_LT(cur_offset, insn_count);
859  /* make sure the start of the array data table is in range */
860  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
861  if ((int32_t) cur_offset + array_data_offset < 0 ||
862      cur_offset + array_data_offset + 2 >= insn_count) {
863    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
864                                      << ", data offset " << array_data_offset
865                                      << ", count " << insn_count;
866    return false;
867  }
868  /* offset to array data table is a relative branch-style offset */
869  array_data = insns + array_data_offset;
870  /* make sure the table is 32-bit aligned */
871  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
872    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
873                                      << ", data offset " << array_data_offset;
874    return false;
875  }
876  uint32_t value_width = array_data[1];
877  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
878  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
879  /* make sure the end of the switch is in range */
880  if (cur_offset + array_data_offset + table_size > insn_count) {
881    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
882                                      << ", data offset " << array_data_offset << ", end "
883                                      << cur_offset + array_data_offset + table_size
884                                      << ", count " << insn_count;
885    return false;
886  }
887  return true;
888}
889
890bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
891  int32_t offset;
892  bool isConditional, selfOkay;
893  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
894    return false;
895  }
896  if (!selfOkay && offset == 0) {
897    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
898                                      << reinterpret_cast<void*>(cur_offset);
899    return false;
900  }
901  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
902  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
903  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
904    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
905                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
906    return false;
907  }
908  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
909  int32_t abs_offset = cur_offset + offset;
910  if (abs_offset < 0 ||
911      (uint32_t) abs_offset >= insn_count ||
912      !insn_flags_[abs_offset].IsOpcode()) {
913    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
914                                      << reinterpret_cast<void*>(abs_offset) << ") at "
915                                      << reinterpret_cast<void*>(cur_offset);
916    return false;
917  }
918  insn_flags_[abs_offset].SetBranchTarget();
919  return true;
920}
921
922bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
923                                  bool* selfOkay) {
924  const uint16_t* insns = code_item_->insns_ + cur_offset;
925  *pConditional = false;
926  *selfOkay = false;
927  switch (*insns & 0xff) {
928    case Instruction::GOTO:
929      *pOffset = ((int16_t) *insns) >> 8;
930      break;
931    case Instruction::GOTO_32:
932      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
933      *selfOkay = true;
934      break;
935    case Instruction::GOTO_16:
936      *pOffset = (int16_t) insns[1];
937      break;
938    case Instruction::IF_EQ:
939    case Instruction::IF_NE:
940    case Instruction::IF_LT:
941    case Instruction::IF_GE:
942    case Instruction::IF_GT:
943    case Instruction::IF_LE:
944    case Instruction::IF_EQZ:
945    case Instruction::IF_NEZ:
946    case Instruction::IF_LTZ:
947    case Instruction::IF_GEZ:
948    case Instruction::IF_GTZ:
949    case Instruction::IF_LEZ:
950      *pOffset = (int16_t) insns[1];
951      *pConditional = true;
952      break;
953    default:
954      return false;
955      break;
956  }
957  return true;
958}
959
960bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
961  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
962  DCHECK_LT(cur_offset, insn_count);
963  const uint16_t* insns = code_item_->insns_ + cur_offset;
964  /* make sure the start of the switch is in range */
965  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
966  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
967    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
968                                      << ", switch offset " << switch_offset
969                                      << ", count " << insn_count;
970    return false;
971  }
972  /* offset to switch table is a relative branch-style offset */
973  const uint16_t* switch_insns = insns + switch_offset;
974  /* make sure the table is 32-bit aligned */
975  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
976    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
977                                      << ", switch offset " << switch_offset;
978    return false;
979  }
980  uint32_t switch_count = switch_insns[1];
981  int32_t keys_offset, targets_offset;
982  uint16_t expected_signature;
983  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
984    /* 0=sig, 1=count, 2/3=firstKey */
985    targets_offset = 4;
986    keys_offset = -1;
987    expected_signature = Instruction::kPackedSwitchSignature;
988  } else {
989    /* 0=sig, 1=count, 2..count*2 = keys */
990    keys_offset = 2;
991    targets_offset = 2 + 2 * switch_count;
992    expected_signature = Instruction::kSparseSwitchSignature;
993  }
994  uint32_t table_size = targets_offset + switch_count * 2;
995  if (switch_insns[0] != expected_signature) {
996    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
997        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
998                        switch_insns[0], expected_signature);
999    return false;
1000  }
1001  /* make sure the end of the switch is in range */
1002  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
1003    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1004                                      << ", switch offset " << switch_offset
1005                                      << ", end " << (cur_offset + switch_offset + table_size)
1006                                      << ", count " << insn_count;
1007    return false;
1008  }
1009  /* for a sparse switch, verify the keys are in ascending order */
1010  if (keys_offset > 0 && switch_count > 1) {
1011    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1012    for (uint32_t targ = 1; targ < switch_count; targ++) {
1013      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
1014                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
1015      if (key <= last_key) {
1016        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
1017                                          << ", this=" << key;
1018        return false;
1019      }
1020      last_key = key;
1021    }
1022  }
1023  /* verify each switch target */
1024  for (uint32_t targ = 0; targ < switch_count; targ++) {
1025    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
1026                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
1027    int32_t abs_offset = cur_offset + offset;
1028    if (abs_offset < 0 ||
1029        abs_offset >= (int32_t) insn_count ||
1030        !insn_flags_[abs_offset].IsOpcode()) {
1031      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1032                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1033                                        << reinterpret_cast<void*>(cur_offset)
1034                                        << "[" << targ << "]";
1035      return false;
1036    }
1037    insn_flags_[abs_offset].SetBranchTarget();
1038  }
1039  return true;
1040}
1041
1042bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1043  if (vA > Instruction::kMaxVarArgRegs) {
1044    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
1045    return false;
1046  }
1047  uint16_t registers_size = code_item_->registers_size_;
1048  for (uint32_t idx = 0; idx < vA; idx++) {
1049    if (arg[idx] >= registers_size) {
1050      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1051                                        << ") in non-range invoke (>= " << registers_size << ")";
1052      return false;
1053    }
1054  }
1055
1056  return true;
1057}
1058
1059bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1060  uint16_t registers_size = code_item_->registers_size_;
1061  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1062  // integer overflow when adding them here.
1063  if (vA + vC > registers_size) {
1064    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1065                                      << " in range invoke (> " << registers_size << ")";
1066    return false;
1067  }
1068  return true;
1069}
1070
1071bool MethodVerifier::VerifyCodeFlow() {
1072  uint16_t registers_size = code_item_->registers_size_;
1073  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1074
1075  if (registers_size * insns_size > 4*1024*1024) {
1076    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1077                 << " insns_size=" << insns_size << ")";
1078  }
1079  /* Create and initialize table holding register status */
1080  reg_table_.Init(kTrackCompilerInterestPoints,
1081                  insn_flags_.get(),
1082                  insns_size,
1083                  registers_size,
1084                  this);
1085
1086
1087  work_line_.reset(RegisterLine::Create(registers_size, this));
1088  saved_line_.reset(RegisterLine::Create(registers_size, this));
1089
1090  /* Initialize register types of method arguments. */
1091  if (!SetTypesFromSignature()) {
1092    DCHECK_NE(failures_.size(), 0U);
1093    std::string prepend("Bad signature in ");
1094    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1095    PrependToLastFailMessage(prepend);
1096    return false;
1097  }
1098  /* Perform code flow verification. */
1099  if (!CodeFlowVerifyMethod()) {
1100    DCHECK_NE(failures_.size(), 0U);
1101    return false;
1102  }
1103  return true;
1104}
1105
1106std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1107  DCHECK_EQ(failures_.size(), failure_messages_.size());
1108  for (size_t i = 0; i < failures_.size(); ++i) {
1109      os << failure_messages_[i]->str() << "\n";
1110  }
1111  return os;
1112}
1113
1114extern "C" void MethodVerifierGdbDump(MethodVerifier* v)
1115    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1116  v->Dump(std::cerr);
1117}
1118
1119void MethodVerifier::Dump(std::ostream& os) {
1120  if (code_item_ == NULL) {
1121    os << "Native method\n";
1122    return;
1123  }
1124  {
1125    os << "Register Types:\n";
1126    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1127    std::ostream indent_os(&indent_filter);
1128    reg_types_.Dump(indent_os);
1129  }
1130  os << "Dumping instructions and register lines:\n";
1131  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1132  std::ostream indent_os(&indent_filter);
1133  const Instruction* inst = Instruction::At(code_item_->insns_);
1134  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1135      dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
1136    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1137    if (reg_line != NULL) {
1138      indent_os << reg_line->Dump() << "\n";
1139    }
1140    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1141    const bool kDumpHexOfInstruction = false;
1142    if (kDumpHexOfInstruction) {
1143      indent_os << inst->DumpHex(5) << " ";
1144    }
1145    indent_os << inst->DumpString(dex_file_) << "\n";
1146    inst = inst->Next();
1147  }
1148}
1149
1150static bool IsPrimitiveDescriptor(char descriptor) {
1151  switch (descriptor) {
1152    case 'I':
1153    case 'C':
1154    case 'S':
1155    case 'B':
1156    case 'Z':
1157    case 'F':
1158    case 'D':
1159    case 'J':
1160      return true;
1161    default:
1162      return false;
1163  }
1164}
1165
1166bool MethodVerifier::SetTypesFromSignature() {
1167  RegisterLine* reg_line = reg_table_.GetLine(0);
1168  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1169  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1170
1171  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1172  // Include the "this" pointer.
1173  size_t cur_arg = 0;
1174  if (!IsStatic()) {
1175    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1176    // argument as uninitialized. This restricts field access until the superclass constructor is
1177    // called.
1178    const RegType& declaring_class = GetDeclaringClass();
1179    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1180      reg_line->SetRegisterType(arg_start + cur_arg,
1181                                reg_types_.UninitializedThisArgument(declaring_class));
1182    } else {
1183      reg_line->SetRegisterType(arg_start + cur_arg, declaring_class);
1184    }
1185    cur_arg++;
1186  }
1187
1188  const DexFile::ProtoId& proto_id =
1189      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1190  DexFileParameterIterator iterator(*dex_file_, proto_id);
1191
1192  for (; iterator.HasNext(); iterator.Next()) {
1193    const char* descriptor = iterator.GetDescriptor();
1194    if (descriptor == NULL) {
1195      LOG(FATAL) << "Null descriptor";
1196    }
1197    if (cur_arg >= expected_args) {
1198      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1199                                        << " args, found more (" << descriptor << ")";
1200      return false;
1201    }
1202    switch (descriptor[0]) {
1203      case 'L':
1204      case '[':
1205        // We assume that reference arguments are initialized. The only way it could be otherwise
1206        // (assuming the caller was verified) is if the current method is <init>, but in that case
1207        // it's effectively considered initialized the instant we reach here (in the sense that we
1208        // can return without doing anything or call virtual methods).
1209        {
1210          const RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1211          if (!reg_type.IsNonZeroReferenceTypes()) {
1212            DCHECK(HasFailures());
1213            return false;
1214          }
1215          reg_line->SetRegisterType(arg_start + cur_arg, reg_type);
1216        }
1217        break;
1218      case 'Z':
1219        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Boolean());
1220        break;
1221      case 'C':
1222        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Char());
1223        break;
1224      case 'B':
1225        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Byte());
1226        break;
1227      case 'I':
1228        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Integer());
1229        break;
1230      case 'S':
1231        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Short());
1232        break;
1233      case 'F':
1234        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Float());
1235        break;
1236      case 'J':
1237      case 'D': {
1238        if (cur_arg + 1 >= expected_args) {
1239          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1240              << " args, found more (" << descriptor << ")";
1241          return false;
1242        }
1243
1244        const RegType& lo_half = descriptor[0] == 'J' ? reg_types_.LongLo() : reg_types_.DoubleLo();
1245        const RegType& hi_half = descriptor[0] == 'J' ? reg_types_.LongHi() : reg_types_.DoubleHi();
1246        reg_line->SetRegisterTypeWide(arg_start + cur_arg, lo_half, hi_half);
1247        cur_arg++;
1248        break;
1249      }
1250      default:
1251        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1252                                          << descriptor << "'";
1253        return false;
1254    }
1255    cur_arg++;
1256  }
1257  if (cur_arg != expected_args) {
1258    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1259                                      << " arguments, found " << cur_arg;
1260    return false;
1261  }
1262  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1263  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1264  // format. Only major difference from the method argument format is that 'V' is supported.
1265  bool result;
1266  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1267    result = descriptor[1] == '\0';
1268  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1269    size_t i = 0;
1270    do {
1271      i++;
1272    } while (descriptor[i] == '[');  // process leading [
1273    if (descriptor[i] == 'L') {  // object array
1274      do {
1275        i++;  // find closing ;
1276      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1277      result = descriptor[i] == ';';
1278    } else {  // primitive array
1279      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1280    }
1281  } else if (descriptor[0] == 'L') {
1282    // could be more thorough here, but shouldn't be required
1283    size_t i = 0;
1284    do {
1285      i++;
1286    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1287    result = descriptor[i] == ';';
1288  } else {
1289    result = false;
1290  }
1291  if (!result) {
1292    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1293                                      << descriptor << "'";
1294  }
1295  return result;
1296}
1297
1298bool MethodVerifier::CodeFlowVerifyMethod() {
1299  const uint16_t* insns = code_item_->insns_;
1300  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1301
1302  /* Begin by marking the first instruction as "changed". */
1303  insn_flags_[0].SetChanged();
1304  uint32_t start_guess = 0;
1305
1306  /* Continue until no instructions are marked "changed". */
1307  while (true) {
1308    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1309    uint32_t insn_idx = start_guess;
1310    for (; insn_idx < insns_size; insn_idx++) {
1311      if (insn_flags_[insn_idx].IsChanged())
1312        break;
1313    }
1314    if (insn_idx == insns_size) {
1315      if (start_guess != 0) {
1316        /* try again, starting from the top */
1317        start_guess = 0;
1318        continue;
1319      } else {
1320        /* all flags are clear */
1321        break;
1322      }
1323    }
1324    // We carry the working set of registers from instruction to instruction. If this address can
1325    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1326    // "changed" flags, we need to load the set of registers from the table.
1327    // Because we always prefer to continue on to the next instruction, we should never have a
1328    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1329    // target.
1330    work_insn_idx_ = insn_idx;
1331    if (insn_flags_[insn_idx].IsBranchTarget()) {
1332      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1333    } else if (kIsDebugBuild) {
1334      /*
1335       * Sanity check: retrieve the stored register line (assuming
1336       * a full table) and make sure it actually matches.
1337       */
1338      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1339      if (register_line != NULL) {
1340        if (work_line_->CompareLine(register_line) != 0) {
1341          Dump(std::cout);
1342          std::cout << info_messages_.str();
1343          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1344                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1345                     << " work_line=" << *work_line_ << "\n"
1346                     << "  expected=" << *register_line;
1347        }
1348      }
1349    }
1350    if (!CodeFlowVerifyInstruction(&start_guess)) {
1351      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1352      prepend += " failed to verify: ";
1353      PrependToLastFailMessage(prepend);
1354      return false;
1355    }
1356    /* Clear "changed" and mark as visited. */
1357    insn_flags_[insn_idx].SetVisited();
1358    insn_flags_[insn_idx].ClearChanged();
1359  }
1360
1361  if (gDebugVerify) {
1362    /*
1363     * Scan for dead code. There's nothing "evil" about dead code
1364     * (besides the wasted space), but it indicates a flaw somewhere
1365     * down the line, possibly in the verifier.
1366     *
1367     * If we've substituted "always throw" instructions into the stream,
1368     * we are almost certainly going to have some dead code.
1369     */
1370    int dead_start = -1;
1371    uint32_t insn_idx = 0;
1372    for (; insn_idx < insns_size; insn_idx += insn_flags_[insn_idx].GetLengthInCodeUnits()) {
1373      /*
1374       * Switch-statement data doesn't get "visited" by scanner. It
1375       * may or may not be preceded by a padding NOP (for alignment).
1376       */
1377      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1378          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1379          insns[insn_idx] == Instruction::kArrayDataSignature ||
1380          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1381           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1382            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1383            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1384        insn_flags_[insn_idx].SetVisited();
1385      }
1386
1387      if (!insn_flags_[insn_idx].IsVisited()) {
1388        if (dead_start < 0)
1389          dead_start = insn_idx;
1390      } else if (dead_start >= 0) {
1391        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1392                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1393        dead_start = -1;
1394      }
1395    }
1396    if (dead_start >= 0) {
1397      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1398                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1399    }
1400    // To dump the state of the verify after a method, do something like:
1401    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1402    //     "boolean java.lang.String.equals(java.lang.Object)") {
1403    //   LOG(INFO) << info_messages_.str();
1404    // }
1405  }
1406  return true;
1407}
1408
1409bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1410  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1411  // We want the state _before_ the instruction, for the case where the dex pc we're
1412  // interested in is itself a monitor-enter instruction (which is a likely place
1413  // for a thread to be suspended).
1414  if (monitor_enter_dex_pcs_ != NULL && work_insn_idx_ == interesting_dex_pc_) {
1415    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1416    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1417      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1418    }
1419  }
1420
1421  /*
1422   * Once we finish decoding the instruction, we need to figure out where
1423   * we can go from here. There are three possible ways to transfer
1424   * control to another statement:
1425   *
1426   * (1) Continue to the next instruction. Applies to all but
1427   *     unconditional branches, method returns, and exception throws.
1428   * (2) Branch to one or more possible locations. Applies to branches
1429   *     and switch statements.
1430   * (3) Exception handlers. Applies to any instruction that can
1431   *     throw an exception that is handled by an encompassing "try"
1432   *     block.
1433   *
1434   * We can also return, in which case there is no successor instruction
1435   * from this point.
1436   *
1437   * The behavior can be determined from the opcode flags.
1438   */
1439  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1440  const Instruction* inst = Instruction::At(insns);
1441  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1442
1443  int32_t branch_target = 0;
1444  bool just_set_result = false;
1445  if (gDebugVerify) {
1446    // Generate processing back trace to debug verifier
1447    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1448                    << *work_line_.get() << "\n";
1449  }
1450
1451  /*
1452   * Make a copy of the previous register state. If the instruction
1453   * can throw an exception, we will copy/merge this into the "catch"
1454   * address rather than work_line, because we don't want the result
1455   * from the "successful" code path (e.g. a check-cast that "improves"
1456   * a type) to be visible to the exception handler.
1457   */
1458  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1459    saved_line_->CopyFromLine(work_line_.get());
1460  } else {
1461#ifndef NDEBUG
1462    saved_line_->FillWithGarbage();
1463#endif
1464  }
1465
1466
1467  // We need to ensure the work line is consistent while performing validation. When we spot a
1468  // peephole pattern we compute a new line for either the fallthrough instruction or the
1469  // branch target.
1470  std::unique_ptr<RegisterLine> branch_line;
1471  std::unique_ptr<RegisterLine> fallthrough_line;
1472
1473  switch (inst->Opcode()) {
1474    case Instruction::NOP:
1475      /*
1476       * A "pure" NOP has no effect on anything. Data tables start with
1477       * a signature that looks like a NOP; if we see one of these in
1478       * the course of executing code then we have a problem.
1479       */
1480      if (inst->VRegA_10x() != 0) {
1481        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1482      }
1483      break;
1484
1485    case Instruction::MOVE:
1486      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1487      break;
1488    case Instruction::MOVE_FROM16:
1489      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1490      break;
1491    case Instruction::MOVE_16:
1492      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1493      break;
1494    case Instruction::MOVE_WIDE:
1495      work_line_->CopyRegister2(inst->VRegA_12x(), inst->VRegB_12x());
1496      break;
1497    case Instruction::MOVE_WIDE_FROM16:
1498      work_line_->CopyRegister2(inst->VRegA_22x(), inst->VRegB_22x());
1499      break;
1500    case Instruction::MOVE_WIDE_16:
1501      work_line_->CopyRegister2(inst->VRegA_32x(), inst->VRegB_32x());
1502      break;
1503    case Instruction::MOVE_OBJECT:
1504      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1505      break;
1506    case Instruction::MOVE_OBJECT_FROM16:
1507      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1508      break;
1509    case Instruction::MOVE_OBJECT_16:
1510      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1511      break;
1512
1513    /*
1514     * The move-result instructions copy data out of a "pseudo-register"
1515     * with the results from the last method invocation. In practice we
1516     * might want to hold the result in an actual CPU register, so the
1517     * Dalvik spec requires that these only appear immediately after an
1518     * invoke or filled-new-array.
1519     *
1520     * These calls invalidate the "result" register. (This is now
1521     * redundant with the reset done below, but it can make the debug info
1522     * easier to read in some cases.)
1523     */
1524    case Instruction::MOVE_RESULT:
1525      work_line_->CopyResultRegister1(inst->VRegA_11x(), false);
1526      break;
1527    case Instruction::MOVE_RESULT_WIDE:
1528      work_line_->CopyResultRegister2(inst->VRegA_11x());
1529      break;
1530    case Instruction::MOVE_RESULT_OBJECT:
1531      work_line_->CopyResultRegister1(inst->VRegA_11x(), true);
1532      break;
1533
1534    case Instruction::MOVE_EXCEPTION: {
1535      /*
1536       * This statement can only appear as the first instruction in an exception handler. We verify
1537       * that as part of extracting the exception type from the catch block list.
1538       */
1539      const RegType& res_type = GetCaughtExceptionType();
1540      work_line_->SetRegisterType(inst->VRegA_11x(), res_type);
1541      break;
1542    }
1543    case Instruction::RETURN_VOID:
1544      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1545        if (!GetMethodReturnType().IsConflict()) {
1546          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1547        }
1548      }
1549      break;
1550    case Instruction::RETURN:
1551      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1552        /* check the method signature */
1553        const RegType& return_type = GetMethodReturnType();
1554        if (!return_type.IsCategory1Types()) {
1555          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1556                                            << return_type;
1557        } else {
1558          // Compilers may generate synthetic functions that write byte values into boolean fields.
1559          // Also, it may use integer values for boolean, byte, short, and character return types.
1560          const uint32_t vregA = inst->VRegA_11x();
1561          const RegType& src_type = work_line_->GetRegisterType(vregA);
1562          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1563                          ((return_type.IsBoolean() || return_type.IsByte() ||
1564                           return_type.IsShort() || return_type.IsChar()) &&
1565                           src_type.IsInteger()));
1566          /* check the register contents */
1567          bool success =
1568              work_line_->VerifyRegisterType(vregA, use_src ? src_type : return_type);
1569          if (!success) {
1570            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1571          }
1572        }
1573      }
1574      break;
1575    case Instruction::RETURN_WIDE:
1576      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1577        /* check the method signature */
1578        const RegType& return_type = GetMethodReturnType();
1579        if (!return_type.IsCategory2Types()) {
1580          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1581        } else {
1582          /* check the register contents */
1583          const uint32_t vregA = inst->VRegA_11x();
1584          bool success = work_line_->VerifyRegisterType(vregA, return_type);
1585          if (!success) {
1586            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1587          }
1588        }
1589      }
1590      break;
1591    case Instruction::RETURN_OBJECT:
1592      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1593        const RegType& return_type = GetMethodReturnType();
1594        if (!return_type.IsReferenceTypes()) {
1595          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1596        } else {
1597          /* return_type is the *expected* return type, not register value */
1598          DCHECK(!return_type.IsZero());
1599          DCHECK(!return_type.IsUninitializedReference());
1600          const uint32_t vregA = inst->VRegA_11x();
1601          const RegType& reg_type = work_line_->GetRegisterType(vregA);
1602          // Disallow returning uninitialized values and verify that the reference in vAA is an
1603          // instance of the "return_type"
1604          if (reg_type.IsUninitializedTypes()) {
1605            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1606                                              << reg_type << "'";
1607          } else if (!return_type.IsAssignableFrom(reg_type)) {
1608            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1609              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1610                  << "' or '" << reg_type << "'";
1611            } else {
1612              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1613                  << "', but expected from declaration '" << return_type << "'";
1614            }
1615          }
1616        }
1617      }
1618      break;
1619
1620      /* could be boolean, int, float, or a null reference */
1621    case Instruction::CONST_4: {
1622      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1623      work_line_->SetRegisterType(inst->VRegA_11n(),
1624                                  DetermineCat1Constant(val, need_precise_constants_));
1625      break;
1626    }
1627    case Instruction::CONST_16: {
1628      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1629      work_line_->SetRegisterType(inst->VRegA_21s(),
1630                                  DetermineCat1Constant(val, need_precise_constants_));
1631      break;
1632    }
1633    case Instruction::CONST: {
1634      int32_t val = inst->VRegB_31i();
1635      work_line_->SetRegisterType(inst->VRegA_31i(),
1636                                  DetermineCat1Constant(val, need_precise_constants_));
1637      break;
1638    }
1639    case Instruction::CONST_HIGH16: {
1640      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1641      work_line_->SetRegisterType(inst->VRegA_21h(),
1642                                  DetermineCat1Constant(val, need_precise_constants_));
1643      break;
1644    }
1645      /* could be long or double; resolved upon use */
1646    case Instruction::CONST_WIDE_16: {
1647      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1648      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1649      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1650      work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi);
1651      break;
1652    }
1653    case Instruction::CONST_WIDE_32: {
1654      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1655      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1656      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1657      work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi);
1658      break;
1659    }
1660    case Instruction::CONST_WIDE: {
1661      int64_t val = inst->VRegB_51l();
1662      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1663      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1664      work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi);
1665      break;
1666    }
1667    case Instruction::CONST_WIDE_HIGH16: {
1668      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1669      const RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1670      const RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1671      work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi);
1672      break;
1673    }
1674    case Instruction::CONST_STRING:
1675      work_line_->SetRegisterType(inst->VRegA_21c(), reg_types_.JavaLangString());
1676      break;
1677    case Instruction::CONST_STRING_JUMBO:
1678      work_line_->SetRegisterType(inst->VRegA_31c(), reg_types_.JavaLangString());
1679      break;
1680    case Instruction::CONST_CLASS: {
1681      // Get type from instruction if unresolved then we need an access check
1682      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1683      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1684      // Register holds class, ie its type is class, on error it will hold Conflict.
1685      work_line_->SetRegisterType(inst->VRegA_21c(),
1686                                  res_type.IsConflict() ? res_type
1687                                                        : reg_types_.JavaLangClass(true));
1688      break;
1689    }
1690    case Instruction::MONITOR_ENTER:
1691      work_line_->PushMonitor(inst->VRegA_11x(), work_insn_idx_);
1692      break;
1693    case Instruction::MONITOR_EXIT:
1694      /*
1695       * monitor-exit instructions are odd. They can throw exceptions,
1696       * but when they do they act as if they succeeded and the PC is
1697       * pointing to the following instruction. (This behavior goes back
1698       * to the need to handle asynchronous exceptions, a now-deprecated
1699       * feature that Dalvik doesn't support.)
1700       *
1701       * In practice we don't need to worry about this. The only
1702       * exceptions that can be thrown from monitor-exit are for a
1703       * null reference and -exit without a matching -enter. If the
1704       * structured locking checks are working, the former would have
1705       * failed on the -enter instruction, and the latter is impossible.
1706       *
1707       * This is fortunate, because issue 3221411 prevents us from
1708       * chasing the "can throw" path when monitor verification is
1709       * enabled. If we can fully verify the locking we can ignore
1710       * some catch blocks (which will show up as "dead" code when
1711       * we skip them here); if we can't, then the code path could be
1712       * "live" so we still need to check it.
1713       */
1714      opcode_flags &= ~Instruction::kThrow;
1715      work_line_->PopMonitor(inst->VRegA_11x());
1716      break;
1717
1718    case Instruction::CHECK_CAST:
1719    case Instruction::INSTANCE_OF: {
1720      /*
1721       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1722       * could be a "upcast" -- not expected, so we don't try to address it.)
1723       *
1724       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1725       * dec_insn.vA when branching to a handler.
1726       */
1727      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1728      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1729      const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1730      if (res_type.IsConflict()) {
1731        // If this is a primitive type, fail HARD.
1732        mirror::Class* klass = (*dex_cache_)->GetResolvedType(type_idx);
1733        if (klass != nullptr && klass->IsPrimitive()) {
1734          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
1735              << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
1736              << GetDeclaringClass();
1737          break;
1738        }
1739
1740        DCHECK_NE(failures_.size(), 0U);
1741        if (!is_checkcast) {
1742          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1743        }
1744        break;  // bad class
1745      }
1746      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1747      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1748      const RegType& orig_type = work_line_->GetRegisterType(orig_type_reg);
1749      if (!res_type.IsNonZeroReferenceTypes()) {
1750        if (is_checkcast) {
1751          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1752        } else {
1753          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1754        }
1755      } else if (!orig_type.IsReferenceTypes()) {
1756        if (is_checkcast) {
1757          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1758        } else {
1759          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1760        }
1761      } else {
1762        if (is_checkcast) {
1763          work_line_->SetRegisterType(inst->VRegA_21c(), res_type);
1764        } else {
1765          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1766        }
1767      }
1768      break;
1769    }
1770    case Instruction::ARRAY_LENGTH: {
1771      const RegType& res_type = work_line_->GetRegisterType(inst->VRegB_12x());
1772      if (res_type.IsReferenceTypes()) {
1773        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1774          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1775        } else {
1776          work_line_->SetRegisterType(inst->VRegA_12x(), reg_types_.Integer());
1777        }
1778      } else {
1779        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1780      }
1781      break;
1782    }
1783    case Instruction::NEW_INSTANCE: {
1784      const RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1785      if (res_type.IsConflict()) {
1786        DCHECK_NE(failures_.size(), 0U);
1787        break;  // bad class
1788      }
1789      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1790      // can't create an instance of an interface or abstract class */
1791      if (!res_type.IsInstantiableTypes()) {
1792        Fail(VERIFY_ERROR_INSTANTIATION)
1793            << "new-instance on primitive, interface or abstract class" << res_type;
1794        // Soft failure so carry on to set register type.
1795      }
1796      const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1797      // Any registers holding previous allocations from this address that have not yet been
1798      // initialized must be marked invalid.
1799      work_line_->MarkUninitRefsAsInvalid(uninit_type);
1800      // add the new uninitialized reference to the register state
1801      work_line_->SetRegisterType(inst->VRegA_21c(), uninit_type);
1802      break;
1803    }
1804    case Instruction::NEW_ARRAY:
1805      VerifyNewArray(inst, false, false);
1806      break;
1807    case Instruction::FILLED_NEW_ARRAY:
1808      VerifyNewArray(inst, true, false);
1809      just_set_result = true;  // Filled new array sets result register
1810      break;
1811    case Instruction::FILLED_NEW_ARRAY_RANGE:
1812      VerifyNewArray(inst, true, true);
1813      just_set_result = true;  // Filled new array range sets result register
1814      break;
1815    case Instruction::CMPL_FLOAT:
1816    case Instruction::CMPG_FLOAT:
1817      if (!work_line_->VerifyRegisterType(inst->VRegB_23x(), reg_types_.Float())) {
1818        break;
1819      }
1820      if (!work_line_->VerifyRegisterType(inst->VRegC_23x(), reg_types_.Float())) {
1821        break;
1822      }
1823      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1824      break;
1825    case Instruction::CMPL_DOUBLE:
1826    case Instruction::CMPG_DOUBLE:
1827      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.DoubleLo(),
1828                                              reg_types_.DoubleHi())) {
1829        break;
1830      }
1831      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.DoubleLo(),
1832                                              reg_types_.DoubleHi())) {
1833        break;
1834      }
1835      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1836      break;
1837    case Instruction::CMP_LONG:
1838      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.LongLo(),
1839                                              reg_types_.LongHi())) {
1840        break;
1841      }
1842      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.LongLo(),
1843                                              reg_types_.LongHi())) {
1844        break;
1845      }
1846      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1847      break;
1848    case Instruction::THROW: {
1849      const RegType& res_type = work_line_->GetRegisterType(inst->VRegA_11x());
1850      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1851        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
1852            << "thrown class " << res_type << " not instanceof Throwable";
1853      }
1854      break;
1855    }
1856    case Instruction::GOTO:
1857    case Instruction::GOTO_16:
1858    case Instruction::GOTO_32:
1859      /* no effect on or use of registers */
1860      break;
1861
1862    case Instruction::PACKED_SWITCH:
1863    case Instruction::SPARSE_SWITCH:
1864      /* verify that vAA is an integer, or can be converted to one */
1865      work_line_->VerifyRegisterType(inst->VRegA_31t(), reg_types_.Integer());
1866      break;
1867
1868    case Instruction::FILL_ARRAY_DATA: {
1869      /* Similar to the verification done for APUT */
1870      const RegType& array_type = work_line_->GetRegisterType(inst->VRegA_31t());
1871      /* array_type can be null if the reg type is Zero */
1872      if (!array_type.IsZero()) {
1873        if (!array_type.IsArrayTypes()) {
1874          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
1875                                            << array_type;
1876        } else {
1877          const RegType& component_type = reg_types_.GetComponentType(array_type,
1878                                                                      class_loader_->Get());
1879          DCHECK(!component_type.IsConflict());
1880          if (component_type.IsNonZeroReferenceTypes()) {
1881            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1882                                              << component_type;
1883          } else {
1884            // Now verify if the element width in the table matches the element width declared in
1885            // the array
1886            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1887            if (array_data[0] != Instruction::kArrayDataSignature) {
1888              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1889            } else {
1890              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1891              // Since we don't compress the data in Dex, expect to see equal width of data stored
1892              // in the table and expected from the array class.
1893              if (array_data[1] != elem_width) {
1894                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1895                                                  << " vs " << elem_width << ")";
1896              }
1897            }
1898          }
1899        }
1900      }
1901      break;
1902    }
1903    case Instruction::IF_EQ:
1904    case Instruction::IF_NE: {
1905      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1906      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1907      bool mismatch = false;
1908      if (reg_type1.IsZero()) {  // zero then integral or reference expected
1909        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1910      } else if (reg_type1.IsReferenceTypes()) {  // both references?
1911        mismatch = !reg_type2.IsReferenceTypes();
1912      } else {  // both integral?
1913        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
1914      }
1915      if (mismatch) {
1916        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
1917                                          << reg_type2 << ") must both be references or integral";
1918      }
1919      break;
1920    }
1921    case Instruction::IF_LT:
1922    case Instruction::IF_GE:
1923    case Instruction::IF_GT:
1924    case Instruction::IF_LE: {
1925      const RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1926      const RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1927      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
1928        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
1929                                          << reg_type2 << ") must be integral";
1930      }
1931      break;
1932    }
1933    case Instruction::IF_EQZ:
1934    case Instruction::IF_NEZ: {
1935      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1936      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
1937        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1938                                          << " unexpected as arg to if-eqz/if-nez";
1939      }
1940
1941      // Find previous instruction - its existence is a precondition to peephole optimization.
1942      uint32_t instance_of_idx = 0;
1943      if (0 != work_insn_idx_) {
1944        instance_of_idx = work_insn_idx_ - 1;
1945        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
1946          instance_of_idx--;
1947        }
1948        CHECK(insn_flags_[instance_of_idx].IsOpcode());
1949      } else {
1950        break;
1951      }
1952
1953      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
1954
1955      /* Check for peep-hole pattern of:
1956       *    ...;
1957       *    instance-of vX, vY, T;
1958       *    ifXXX vX, label ;
1959       *    ...;
1960       * label:
1961       *    ...;
1962       * and sharpen the type of vY to be type T.
1963       * Note, this pattern can't be if:
1964       *  - if there are other branches to this branch,
1965       *  - when vX == vY.
1966       */
1967      if (!CurrentInsnFlags()->IsBranchTarget() &&
1968          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
1969          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
1970          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
1971        // Check the type of the instance-of is different than that of registers type, as if they
1972        // are the same there is no work to be done here. Check that the conversion is not to or
1973        // from an unresolved type as type information is imprecise. If the instance-of is to an
1974        // interface then ignore the type information as interfaces can only be treated as Objects
1975        // and we don't want to disallow field and other operations on the object. If the value
1976        // being instance-of checked against is known null (zero) then allow the optimization as
1977        // we didn't have type information. If the merge of the instance-of type with the original
1978        // type is assignable to the original then allow optimization. This check is performed to
1979        // ensure that subsequent merges don't lose type information - such as becoming an
1980        // interface from a class that would lose information relevant to field checks.
1981        const RegType& orig_type = work_line_->GetRegisterType(instance_of_inst->VRegB_22c());
1982        const RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
1983
1984        if (!orig_type.Equals(cast_type) &&
1985            !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
1986            cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
1987            !cast_type.GetClass()->IsInterface() &&
1988            (orig_type.IsZero() ||
1989                orig_type.IsStrictlyAssignableFrom(cast_type.Merge(orig_type, &reg_types_)))) {
1990          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
1991          if (inst->Opcode() == Instruction::IF_EQZ) {
1992            fallthrough_line.reset(update_line);
1993          } else {
1994            branch_line.reset(update_line);
1995          }
1996          update_line->CopyFromLine(work_line_.get());
1997          update_line->SetRegisterType(instance_of_inst->VRegB_22c(), cast_type);
1998          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
1999            // See if instance-of was preceded by a move-object operation, common due to the small
2000            // register encoding space of instance-of, and propagate type information to the source
2001            // of the move-object.
2002            uint32_t move_idx = instance_of_idx - 1;
2003            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
2004              move_idx--;
2005            }
2006            CHECK(insn_flags_[move_idx].IsOpcode());
2007            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
2008            switch (move_inst->Opcode()) {
2009              case Instruction::MOVE_OBJECT:
2010                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
2011                  update_line->SetRegisterType(move_inst->VRegB_12x(), cast_type);
2012                }
2013                break;
2014              case Instruction::MOVE_OBJECT_FROM16:
2015                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
2016                  update_line->SetRegisterType(move_inst->VRegB_22x(), cast_type);
2017                }
2018                break;
2019              case Instruction::MOVE_OBJECT_16:
2020                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
2021                  update_line->SetRegisterType(move_inst->VRegB_32x(), cast_type);
2022                }
2023                break;
2024              default:
2025                break;
2026            }
2027          }
2028        }
2029      }
2030
2031      break;
2032    }
2033    case Instruction::IF_LTZ:
2034    case Instruction::IF_GEZ:
2035    case Instruction::IF_GTZ:
2036    case Instruction::IF_LEZ: {
2037      const RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
2038      if (!reg_type.IsIntegralTypes()) {
2039        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2040                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2041      }
2042      break;
2043    }
2044    case Instruction::AGET_BOOLEAN:
2045      VerifyAGet(inst, reg_types_.Boolean(), true);
2046      break;
2047    case Instruction::AGET_BYTE:
2048      VerifyAGet(inst, reg_types_.Byte(), true);
2049      break;
2050    case Instruction::AGET_CHAR:
2051      VerifyAGet(inst, reg_types_.Char(), true);
2052      break;
2053    case Instruction::AGET_SHORT:
2054      VerifyAGet(inst, reg_types_.Short(), true);
2055      break;
2056    case Instruction::AGET:
2057      VerifyAGet(inst, reg_types_.Integer(), true);
2058      break;
2059    case Instruction::AGET_WIDE:
2060      VerifyAGet(inst, reg_types_.LongLo(), true);
2061      break;
2062    case Instruction::AGET_OBJECT:
2063      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2064      break;
2065
2066    case Instruction::APUT_BOOLEAN:
2067      VerifyAPut(inst, reg_types_.Boolean(), true);
2068      break;
2069    case Instruction::APUT_BYTE:
2070      VerifyAPut(inst, reg_types_.Byte(), true);
2071      break;
2072    case Instruction::APUT_CHAR:
2073      VerifyAPut(inst, reg_types_.Char(), true);
2074      break;
2075    case Instruction::APUT_SHORT:
2076      VerifyAPut(inst, reg_types_.Short(), true);
2077      break;
2078    case Instruction::APUT:
2079      VerifyAPut(inst, reg_types_.Integer(), true);
2080      break;
2081    case Instruction::APUT_WIDE:
2082      VerifyAPut(inst, reg_types_.LongLo(), true);
2083      break;
2084    case Instruction::APUT_OBJECT:
2085      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2086      break;
2087
2088    case Instruction::IGET_BOOLEAN:
2089      VerifyISGet(inst, reg_types_.Boolean(), true, false);
2090      break;
2091    case Instruction::IGET_BYTE:
2092      VerifyISGet(inst, reg_types_.Byte(), true, false);
2093      break;
2094    case Instruction::IGET_CHAR:
2095      VerifyISGet(inst, reg_types_.Char(), true, false);
2096      break;
2097    case Instruction::IGET_SHORT:
2098      VerifyISGet(inst, reg_types_.Short(), true, false);
2099      break;
2100    case Instruction::IGET:
2101      VerifyISGet(inst, reg_types_.Integer(), true, false);
2102      break;
2103    case Instruction::IGET_WIDE:
2104      VerifyISGet(inst, reg_types_.LongLo(), true, false);
2105      break;
2106    case Instruction::IGET_OBJECT:
2107      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, false);
2108      break;
2109
2110    case Instruction::IPUT_BOOLEAN:
2111      VerifyISPut(inst, reg_types_.Boolean(), true, false);
2112      break;
2113    case Instruction::IPUT_BYTE:
2114      VerifyISPut(inst, reg_types_.Byte(), true, false);
2115      break;
2116    case Instruction::IPUT_CHAR:
2117      VerifyISPut(inst, reg_types_.Char(), true, false);
2118      break;
2119    case Instruction::IPUT_SHORT:
2120      VerifyISPut(inst, reg_types_.Short(), true, false);
2121      break;
2122    case Instruction::IPUT:
2123      VerifyISPut(inst, reg_types_.Integer(), true, false);
2124      break;
2125    case Instruction::IPUT_WIDE:
2126      VerifyISPut(inst, reg_types_.LongLo(), true, false);
2127      break;
2128    case Instruction::IPUT_OBJECT:
2129      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, false);
2130      break;
2131
2132    case Instruction::SGET_BOOLEAN:
2133      VerifyISGet(inst, reg_types_.Boolean(), true, true);
2134      break;
2135    case Instruction::SGET_BYTE:
2136      VerifyISGet(inst, reg_types_.Byte(), true, true);
2137      break;
2138    case Instruction::SGET_CHAR:
2139      VerifyISGet(inst, reg_types_.Char(), true, true);
2140      break;
2141    case Instruction::SGET_SHORT:
2142      VerifyISGet(inst, reg_types_.Short(), true, true);
2143      break;
2144    case Instruction::SGET:
2145      VerifyISGet(inst, reg_types_.Integer(), true, true);
2146      break;
2147    case Instruction::SGET_WIDE:
2148      VerifyISGet(inst, reg_types_.LongLo(), true, true);
2149      break;
2150    case Instruction::SGET_OBJECT:
2151      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, true);
2152      break;
2153
2154    case Instruction::SPUT_BOOLEAN:
2155      VerifyISPut(inst, reg_types_.Boolean(), true, true);
2156      break;
2157    case Instruction::SPUT_BYTE:
2158      VerifyISPut(inst, reg_types_.Byte(), true, true);
2159      break;
2160    case Instruction::SPUT_CHAR:
2161      VerifyISPut(inst, reg_types_.Char(), true, true);
2162      break;
2163    case Instruction::SPUT_SHORT:
2164      VerifyISPut(inst, reg_types_.Short(), true, true);
2165      break;
2166    case Instruction::SPUT:
2167      VerifyISPut(inst, reg_types_.Integer(), true, true);
2168      break;
2169    case Instruction::SPUT_WIDE:
2170      VerifyISPut(inst, reg_types_.LongLo(), true, true);
2171      break;
2172    case Instruction::SPUT_OBJECT:
2173      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, true);
2174      break;
2175
2176    case Instruction::INVOKE_VIRTUAL:
2177    case Instruction::INVOKE_VIRTUAL_RANGE:
2178    case Instruction::INVOKE_SUPER:
2179    case Instruction::INVOKE_SUPER_RANGE: {
2180      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2181                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2182      bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2183                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2184      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range,
2185                                                              is_super);
2186      const RegType* return_type = nullptr;
2187      if (called_method != nullptr) {
2188        Thread* self = Thread::Current();
2189        StackHandleScope<1> hs(self);
2190        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2191        MethodHelper mh(h_called_method);
2192        mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
2193        if (return_type_class != nullptr) {
2194          return_type = &reg_types_.FromClass(h_called_method->GetReturnTypeDescriptor(),
2195                                              return_type_class,
2196                                              return_type_class->CannotBeAssignedFromOtherTypes());
2197        } else {
2198          DCHECK(!can_load_classes_ || self->IsExceptionPending());
2199          self->ClearException();
2200        }
2201      }
2202      if (return_type == nullptr) {
2203        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2204        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2205        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2206        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2207        return_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
2208      }
2209      if (!return_type->IsLowHalf()) {
2210        work_line_->SetResultRegisterType(*return_type);
2211      } else {
2212        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2213      }
2214      just_set_result = true;
2215      break;
2216    }
2217    case Instruction::INVOKE_DIRECT:
2218    case Instruction::INVOKE_DIRECT_RANGE: {
2219      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2220      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2221                                                                   is_range, false);
2222      const char* return_type_descriptor;
2223      bool is_constructor;
2224      if (called_method == NULL) {
2225        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2226        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2227        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2228        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2229        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2230      } else {
2231        is_constructor = called_method->IsConstructor();
2232        return_type_descriptor = called_method->GetReturnTypeDescriptor();
2233      }
2234      if (is_constructor) {
2235        /*
2236         * Some additional checks when calling a constructor. We know from the invocation arg check
2237         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2238         * that to require that called_method->klass is the same as this->klass or this->super,
2239         * allowing the latter only if the "this" argument is the same as the "this" argument to
2240         * this method (which implies that we're in a constructor ourselves).
2241         */
2242        const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2243        if (this_type.IsConflict())  // failure.
2244          break;
2245
2246        /* no null refs allowed (?) */
2247        if (this_type.IsZero()) {
2248          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2249          break;
2250        }
2251
2252        /* must be in same class or in superclass */
2253        // const RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2254        // TODO: re-enable constructor type verification
2255        // if (this_super_klass.IsConflict()) {
2256          // Unknown super class, fail so we re-check at runtime.
2257          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2258          // break;
2259        // }
2260
2261        /* arg must be an uninitialized reference */
2262        if (!this_type.IsUninitializedTypes()) {
2263          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2264              << this_type;
2265          break;
2266        }
2267
2268        /*
2269         * Replace the uninitialized reference with an initialized one. We need to do this for all
2270         * registers that have the same object instance in them, not just the "this" register.
2271         */
2272        work_line_->MarkRefsAsInitialized(this_type);
2273      }
2274      const RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(),
2275                                                             return_type_descriptor, false);
2276      if (!return_type.IsLowHalf()) {
2277        work_line_->SetResultRegisterType(return_type);
2278      } else {
2279        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2280      }
2281      just_set_result = true;
2282      break;
2283    }
2284    case Instruction::INVOKE_STATIC:
2285    case Instruction::INVOKE_STATIC_RANGE: {
2286        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2287        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2288                                                                     METHOD_STATIC,
2289                                                                     is_range,
2290                                                                     false);
2291        const char* descriptor;
2292        if (called_method == NULL) {
2293          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2294          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2295          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2296          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2297        } else {
2298          descriptor = called_method->GetReturnTypeDescriptor();
2299        }
2300        const RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2301                                                               false);
2302        if (!return_type.IsLowHalf()) {
2303          work_line_->SetResultRegisterType(return_type);
2304        } else {
2305          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2306        }
2307        just_set_result = true;
2308      }
2309      break;
2310    case Instruction::INVOKE_INTERFACE:
2311    case Instruction::INVOKE_INTERFACE_RANGE: {
2312      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2313      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2314                                                                METHOD_INTERFACE,
2315                                                                is_range,
2316                                                                false);
2317      if (abs_method != NULL) {
2318        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2319        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2320          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2321              << PrettyMethod(abs_method) << "'";
2322          break;
2323        }
2324      }
2325      /* Get the type of the "this" arg, which should either be a sub-interface of called
2326       * interface or Object (see comments in RegType::JoinClass).
2327       */
2328      const RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2329      if (this_type.IsZero()) {
2330        /* null pointer always passes (and always fails at runtime) */
2331      } else {
2332        if (this_type.IsUninitializedTypes()) {
2333          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2334              << this_type;
2335          break;
2336        }
2337        // In the past we have tried to assert that "called_interface" is assignable
2338        // from "this_type.GetClass()", however, as we do an imprecise Join
2339        // (RegType::JoinClass) we don't have full information on what interfaces are
2340        // implemented by "this_type". For example, two classes may implement the same
2341        // interfaces and have a common parent that doesn't implement the interface. The
2342        // join will set "this_type" to the parent class and a test that this implements
2343        // the interface will incorrectly fail.
2344      }
2345      /*
2346       * We don't have an object instance, so we can't find the concrete method. However, all of
2347       * the type information is in the abstract method, so we're good.
2348       */
2349      const char* descriptor;
2350      if (abs_method == NULL) {
2351        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2352        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2353        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2354        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2355      } else {
2356        descriptor = abs_method->GetReturnTypeDescriptor();
2357      }
2358      const RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2359                                                             false);
2360      if (!return_type.IsLowHalf()) {
2361        work_line_->SetResultRegisterType(return_type);
2362      } else {
2363        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2364      }
2365      just_set_result = true;
2366      break;
2367    }
2368    case Instruction::NEG_INT:
2369    case Instruction::NOT_INT:
2370      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Integer());
2371      break;
2372    case Instruction::NEG_LONG:
2373    case Instruction::NOT_LONG:
2374      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2375                                   reg_types_.LongLo(), reg_types_.LongHi());
2376      break;
2377    case Instruction::NEG_FLOAT:
2378      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Float());
2379      break;
2380    case Instruction::NEG_DOUBLE:
2381      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2382                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2383      break;
2384    case Instruction::INT_TO_LONG:
2385      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2386                                     reg_types_.Integer());
2387      break;
2388    case Instruction::INT_TO_FLOAT:
2389      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Integer());
2390      break;
2391    case Instruction::INT_TO_DOUBLE:
2392      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2393                                     reg_types_.Integer());
2394      break;
2395    case Instruction::LONG_TO_INT:
2396      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2397                                       reg_types_.LongLo(), reg_types_.LongHi());
2398      break;
2399    case Instruction::LONG_TO_FLOAT:
2400      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2401                                       reg_types_.LongLo(), reg_types_.LongHi());
2402      break;
2403    case Instruction::LONG_TO_DOUBLE:
2404      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2405                                   reg_types_.LongLo(), reg_types_.LongHi());
2406      break;
2407    case Instruction::FLOAT_TO_INT:
2408      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Float());
2409      break;
2410    case Instruction::FLOAT_TO_LONG:
2411      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2412                                     reg_types_.Float());
2413      break;
2414    case Instruction::FLOAT_TO_DOUBLE:
2415      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2416                                     reg_types_.Float());
2417      break;
2418    case Instruction::DOUBLE_TO_INT:
2419      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2420                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2421      break;
2422    case Instruction::DOUBLE_TO_LONG:
2423      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2424                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2425      break;
2426    case Instruction::DOUBLE_TO_FLOAT:
2427      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2428                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2429      break;
2430    case Instruction::INT_TO_BYTE:
2431      work_line_->CheckUnaryOp(inst, reg_types_.Byte(), reg_types_.Integer());
2432      break;
2433    case Instruction::INT_TO_CHAR:
2434      work_line_->CheckUnaryOp(inst, reg_types_.Char(), reg_types_.Integer());
2435      break;
2436    case Instruction::INT_TO_SHORT:
2437      work_line_->CheckUnaryOp(inst, reg_types_.Short(), reg_types_.Integer());
2438      break;
2439
2440    case Instruction::ADD_INT:
2441    case Instruction::SUB_INT:
2442    case Instruction::MUL_INT:
2443    case Instruction::REM_INT:
2444    case Instruction::DIV_INT:
2445    case Instruction::SHL_INT:
2446    case Instruction::SHR_INT:
2447    case Instruction::USHR_INT:
2448      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2449                                reg_types_.Integer(), false);
2450      break;
2451    case Instruction::AND_INT:
2452    case Instruction::OR_INT:
2453    case Instruction::XOR_INT:
2454      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2455                                reg_types_.Integer(), true);
2456      break;
2457    case Instruction::ADD_LONG:
2458    case Instruction::SUB_LONG:
2459    case Instruction::MUL_LONG:
2460    case Instruction::DIV_LONG:
2461    case Instruction::REM_LONG:
2462    case Instruction::AND_LONG:
2463    case Instruction::OR_LONG:
2464    case Instruction::XOR_LONG:
2465      work_line_->CheckBinaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2466                                    reg_types_.LongLo(), reg_types_.LongHi(),
2467                                    reg_types_.LongLo(), reg_types_.LongHi());
2468      break;
2469    case Instruction::SHL_LONG:
2470    case Instruction::SHR_LONG:
2471    case Instruction::USHR_LONG:
2472      /* shift distance is Int, making these different from other binary operations */
2473      work_line_->CheckBinaryOpWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2474                                         reg_types_.Integer());
2475      break;
2476    case Instruction::ADD_FLOAT:
2477    case Instruction::SUB_FLOAT:
2478    case Instruction::MUL_FLOAT:
2479    case Instruction::DIV_FLOAT:
2480    case Instruction::REM_FLOAT:
2481      work_line_->CheckBinaryOp(inst,
2482                                reg_types_.Float(),
2483                                reg_types_.Float(),
2484                                reg_types_.Float(),
2485                                false);
2486      break;
2487    case Instruction::ADD_DOUBLE:
2488    case Instruction::SUB_DOUBLE:
2489    case Instruction::MUL_DOUBLE:
2490    case Instruction::DIV_DOUBLE:
2491    case Instruction::REM_DOUBLE:
2492      work_line_->CheckBinaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2493                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2494                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2495      break;
2496    case Instruction::ADD_INT_2ADDR:
2497    case Instruction::SUB_INT_2ADDR:
2498    case Instruction::MUL_INT_2ADDR:
2499    case Instruction::REM_INT_2ADDR:
2500    case Instruction::SHL_INT_2ADDR:
2501    case Instruction::SHR_INT_2ADDR:
2502    case Instruction::USHR_INT_2ADDR:
2503      work_line_->CheckBinaryOp2addr(inst,
2504                                     reg_types_.Integer(),
2505                                     reg_types_.Integer(),
2506                                     reg_types_.Integer(),
2507                                     false);
2508      break;
2509    case Instruction::AND_INT_2ADDR:
2510    case Instruction::OR_INT_2ADDR:
2511    case Instruction::XOR_INT_2ADDR:
2512      work_line_->CheckBinaryOp2addr(inst,
2513                                     reg_types_.Integer(),
2514                                     reg_types_.Integer(),
2515                                     reg_types_.Integer(),
2516                                     true);
2517      break;
2518    case Instruction::DIV_INT_2ADDR:
2519      work_line_->CheckBinaryOp2addr(inst,
2520                                     reg_types_.Integer(),
2521                                     reg_types_.Integer(),
2522                                     reg_types_.Integer(),
2523                                     false);
2524      break;
2525    case Instruction::ADD_LONG_2ADDR:
2526    case Instruction::SUB_LONG_2ADDR:
2527    case Instruction::MUL_LONG_2ADDR:
2528    case Instruction::DIV_LONG_2ADDR:
2529    case Instruction::REM_LONG_2ADDR:
2530    case Instruction::AND_LONG_2ADDR:
2531    case Instruction::OR_LONG_2ADDR:
2532    case Instruction::XOR_LONG_2ADDR:
2533      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2534                                         reg_types_.LongLo(), reg_types_.LongHi(),
2535                                         reg_types_.LongLo(), reg_types_.LongHi());
2536      break;
2537    case Instruction::SHL_LONG_2ADDR:
2538    case Instruction::SHR_LONG_2ADDR:
2539    case Instruction::USHR_LONG_2ADDR:
2540      work_line_->CheckBinaryOp2addrWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2541                                              reg_types_.Integer());
2542      break;
2543    case Instruction::ADD_FLOAT_2ADDR:
2544    case Instruction::SUB_FLOAT_2ADDR:
2545    case Instruction::MUL_FLOAT_2ADDR:
2546    case Instruction::DIV_FLOAT_2ADDR:
2547    case Instruction::REM_FLOAT_2ADDR:
2548      work_line_->CheckBinaryOp2addr(inst,
2549                                     reg_types_.Float(),
2550                                     reg_types_.Float(),
2551                                     reg_types_.Float(),
2552                                     false);
2553      break;
2554    case Instruction::ADD_DOUBLE_2ADDR:
2555    case Instruction::SUB_DOUBLE_2ADDR:
2556    case Instruction::MUL_DOUBLE_2ADDR:
2557    case Instruction::DIV_DOUBLE_2ADDR:
2558    case Instruction::REM_DOUBLE_2ADDR:
2559      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2560                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2561                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2562      break;
2563    case Instruction::ADD_INT_LIT16:
2564    case Instruction::RSUB_INT:
2565    case Instruction::MUL_INT_LIT16:
2566    case Instruction::DIV_INT_LIT16:
2567    case Instruction::REM_INT_LIT16:
2568      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, true);
2569      break;
2570    case Instruction::AND_INT_LIT16:
2571    case Instruction::OR_INT_LIT16:
2572    case Instruction::XOR_INT_LIT16:
2573      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, true);
2574      break;
2575    case Instruction::ADD_INT_LIT8:
2576    case Instruction::RSUB_INT_LIT8:
2577    case Instruction::MUL_INT_LIT8:
2578    case Instruction::DIV_INT_LIT8:
2579    case Instruction::REM_INT_LIT8:
2580    case Instruction::SHL_INT_LIT8:
2581    case Instruction::SHR_INT_LIT8:
2582    case Instruction::USHR_INT_LIT8:
2583      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, false);
2584      break;
2585    case Instruction::AND_INT_LIT8:
2586    case Instruction::OR_INT_LIT8:
2587    case Instruction::XOR_INT_LIT8:
2588      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, false);
2589      break;
2590
2591    // Special instructions.
2592    case Instruction::RETURN_VOID_BARRIER:
2593      if (!IsConstructor() || IsStatic()) {
2594          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2595      }
2596      break;
2597    // Note: the following instructions encode offsets derived from class linking.
2598    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2599    // meaning if the class linking and resolution were successful.
2600    case Instruction::IGET_QUICK:
2601      VerifyIGetQuick(inst, reg_types_.Integer(), true);
2602      break;
2603    case Instruction::IGET_WIDE_QUICK:
2604      VerifyIGetQuick(inst, reg_types_.LongLo(), true);
2605      break;
2606    case Instruction::IGET_OBJECT_QUICK:
2607      VerifyIGetQuick(inst, reg_types_.JavaLangObject(false), false);
2608      break;
2609    case Instruction::IPUT_QUICK:
2610      VerifyIPutQuick(inst, reg_types_.Integer(), true);
2611      break;
2612    case Instruction::IPUT_WIDE_QUICK:
2613      VerifyIPutQuick(inst, reg_types_.LongLo(), true);
2614      break;
2615    case Instruction::IPUT_OBJECT_QUICK:
2616      VerifyIPutQuick(inst, reg_types_.JavaLangObject(false), false);
2617      break;
2618    case Instruction::INVOKE_VIRTUAL_QUICK:
2619    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2620      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2621      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2622      if (called_method != NULL) {
2623        const char* descriptor = called_method->GetReturnTypeDescriptor();
2624        const RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2625                                                               false);
2626        if (!return_type.IsLowHalf()) {
2627          work_line_->SetResultRegisterType(return_type);
2628        } else {
2629          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2630        }
2631        just_set_result = true;
2632      }
2633      break;
2634    }
2635
2636    /* These should never appear during verification. */
2637    case Instruction::UNUSED_3E:
2638    case Instruction::UNUSED_3F:
2639    case Instruction::UNUSED_40:
2640    case Instruction::UNUSED_41:
2641    case Instruction::UNUSED_42:
2642    case Instruction::UNUSED_43:
2643    case Instruction::UNUSED_79:
2644    case Instruction::UNUSED_7A:
2645    case Instruction::UNUSED_EB:
2646    case Instruction::UNUSED_EC:
2647    case Instruction::UNUSED_ED:
2648    case Instruction::UNUSED_EE:
2649    case Instruction::UNUSED_EF:
2650    case Instruction::UNUSED_F0:
2651    case Instruction::UNUSED_F1:
2652    case Instruction::UNUSED_F2:
2653    case Instruction::UNUSED_F3:
2654    case Instruction::UNUSED_F4:
2655    case Instruction::UNUSED_F5:
2656    case Instruction::UNUSED_F6:
2657    case Instruction::UNUSED_F7:
2658    case Instruction::UNUSED_F8:
2659    case Instruction::UNUSED_F9:
2660    case Instruction::UNUSED_FA:
2661    case Instruction::UNUSED_FB:
2662    case Instruction::UNUSED_FC:
2663    case Instruction::UNUSED_FD:
2664    case Instruction::UNUSED_FE:
2665    case Instruction::UNUSED_FF:
2666      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2667      break;
2668
2669    /*
2670     * DO NOT add a "default" clause here. Without it the compiler will
2671     * complain if an instruction is missing (which is desirable).
2672     */
2673  }  // end - switch (dec_insn.opcode)
2674
2675  if (have_pending_hard_failure_) {
2676    if (Runtime::Current()->IsCompiler()) {
2677      /* When compiling, check that the last failure is a hard failure */
2678      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2679    }
2680    /* immediate failure, reject class */
2681    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2682    return false;
2683  } else if (have_pending_runtime_throw_failure_) {
2684    /* checking interpreter will throw, mark following code as unreachable */
2685    opcode_flags = Instruction::kThrow;
2686  }
2687  /*
2688   * If we didn't just set the result register, clear it out. This ensures that you can only use
2689   * "move-result" immediately after the result is set. (We could check this statically, but it's
2690   * not expensive and it makes our debugging output cleaner.)
2691   */
2692  if (!just_set_result) {
2693    work_line_->SetResultTypeToUnknown();
2694  }
2695
2696
2697
2698  /*
2699   * Handle "branch". Tag the branch target.
2700   *
2701   * NOTE: instructions like Instruction::EQZ provide information about the
2702   * state of the register when the branch is taken or not taken. For example,
2703   * somebody could get a reference field, check it for zero, and if the
2704   * branch is taken immediately store that register in a boolean field
2705   * since the value is known to be zero. We do not currently account for
2706   * that, and will reject the code.
2707   *
2708   * TODO: avoid re-fetching the branch target
2709   */
2710  if ((opcode_flags & Instruction::kBranch) != 0) {
2711    bool isConditional, selfOkay;
2712    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2713      /* should never happen after static verification */
2714      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2715      return false;
2716    }
2717    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2718    if (!CheckNotMoveException(code_item_->insns_, work_insn_idx_ + branch_target)) {
2719      return false;
2720    }
2721    /* update branch target, set "changed" if appropriate */
2722    if (NULL != branch_line.get()) {
2723      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
2724        return false;
2725      }
2726    } else {
2727      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
2728        return false;
2729      }
2730    }
2731  }
2732
2733  /*
2734   * Handle "switch". Tag all possible branch targets.
2735   *
2736   * We've already verified that the table is structurally sound, so we
2737   * just need to walk through and tag the targets.
2738   */
2739  if ((opcode_flags & Instruction::kSwitch) != 0) {
2740    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2741    const uint16_t* switch_insns = insns + offset_to_switch;
2742    int switch_count = switch_insns[1];
2743    int offset_to_targets, targ;
2744
2745    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2746      /* 0 = sig, 1 = count, 2/3 = first key */
2747      offset_to_targets = 4;
2748    } else {
2749      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2750      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2751      offset_to_targets = 2 + 2 * switch_count;
2752    }
2753
2754    /* verify each switch target */
2755    for (targ = 0; targ < switch_count; targ++) {
2756      int offset;
2757      uint32_t abs_offset;
2758
2759      /* offsets are 32-bit, and only partly endian-swapped */
2760      offset = switch_insns[offset_to_targets + targ * 2] |
2761         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2762      abs_offset = work_insn_idx_ + offset;
2763      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2764      if (!CheckNotMoveException(code_item_->insns_, abs_offset)) {
2765        return false;
2766      }
2767      if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
2768        return false;
2769      }
2770    }
2771  }
2772
2773  /*
2774   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2775   * "try" block when they throw, control transfers out of the method.)
2776   */
2777  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2778    bool has_catch_all_handler = false;
2779    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2780
2781    // Need the linker to try and resolve the handled class to check if it's Throwable.
2782    ClassLinker* linker = Runtime::Current()->GetClassLinker();
2783
2784    for (; iterator.HasNext(); iterator.Next()) {
2785      uint16_t handler_type_idx = iterator.GetHandlerTypeIndex();
2786      if (handler_type_idx == DexFile::kDexNoIndex16) {
2787        has_catch_all_handler = true;
2788      } else {
2789        // It is also a catch-all if it is java.lang.Throwable.
2790        mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, *dex_cache_,
2791                                                   *class_loader_);
2792        if (klass != nullptr) {
2793          if (klass == mirror::Throwable::GetJavaLangThrowable()) {
2794            has_catch_all_handler = true;
2795          }
2796        } else {
2797          // Clear exception.
2798          Thread* self = Thread::Current();
2799          DCHECK(self->IsExceptionPending());
2800          self->ClearException();
2801        }
2802      }
2803      /*
2804       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2805       * "work_regs", because at runtime the exception will be thrown before the instruction
2806       * modifies any registers.
2807       */
2808      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
2809        return false;
2810      }
2811    }
2812
2813    /*
2814     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2815     * instruction. This does apply to monitor-exit because of async exception handling.
2816     */
2817    if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
2818      /*
2819       * The state in work_line reflects the post-execution state. If the current instruction is a
2820       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2821       * it will do so before grabbing the lock).
2822       */
2823      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2824        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2825            << "expected to be within a catch-all for an instruction where a monitor is held";
2826        return false;
2827      }
2828    }
2829  }
2830
2831  /* Handle "continue". Tag the next consecutive instruction.
2832   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2833   *        because it changes work_line_ when performing peephole optimization
2834   *        and this change should not be used in those cases.
2835   */
2836  if ((opcode_flags & Instruction::kContinue) != 0) {
2837    uint32_t next_insn_idx = work_insn_idx_ + CurrentInsnFlags()->GetLengthInCodeUnits();
2838    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2839      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2840      return false;
2841    }
2842    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2843    // next instruction isn't one.
2844    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2845      return false;
2846    }
2847    if (NULL != fallthrough_line.get()) {
2848      // Make workline consistent with fallthrough computed from peephole optimization.
2849      work_line_->CopyFromLine(fallthrough_line.get());
2850    }
2851    if (insn_flags_[next_insn_idx].IsReturn()) {
2852      // For returns we only care about the operand to the return, all other registers are dead.
2853      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
2854      Instruction::Code opcode = ret_inst->Opcode();
2855      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
2856        work_line_->MarkAllRegistersAsConflicts();
2857      } else {
2858        if (opcode == Instruction::RETURN_WIDE) {
2859          work_line_->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
2860        } else {
2861          work_line_->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
2862        }
2863      }
2864    }
2865    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2866    if (next_line != NULL) {
2867      // Merge registers into what we have for the next instruction, and set the "changed" flag if
2868      // needed. If the merge changes the state of the registers then the work line will be
2869      // updated.
2870      if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
2871        return false;
2872      }
2873    } else {
2874      /*
2875       * We're not recording register data for the next instruction, so we don't know what the
2876       * prior state was. We have to assume that something has changed and re-evaluate it.
2877       */
2878      insn_flags_[next_insn_idx].SetChanged();
2879    }
2880  }
2881
2882  /* If we're returning from the method, make sure monitor stack is empty. */
2883  if ((opcode_flags & Instruction::kReturn) != 0) {
2884    if (!work_line_->VerifyMonitorStackEmpty()) {
2885      return false;
2886    }
2887  }
2888
2889  /*
2890   * Update start_guess. Advance to the next instruction of that's
2891   * possible, otherwise use the branch target if one was found. If
2892   * neither of those exists we're in a return or throw; leave start_guess
2893   * alone and let the caller sort it out.
2894   */
2895  if ((opcode_flags & Instruction::kContinue) != 0) {
2896    *start_guess = work_insn_idx_ + insn_flags_[work_insn_idx_].GetLengthInCodeUnits();
2897  } else if ((opcode_flags & Instruction::kBranch) != 0) {
2898    /* we're still okay if branch_target is zero */
2899    *start_guess = work_insn_idx_ + branch_target;
2900  }
2901
2902  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
2903  DCHECK(insn_flags_[*start_guess].IsOpcode());
2904
2905  return true;
2906}  // NOLINT(readability/fn_size)
2907
2908const RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
2909  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
2910  const RegType& referrer = GetDeclaringClass();
2911  mirror::Class* klass = (*dex_cache_)->GetResolvedType(class_idx);
2912  const RegType& result =
2913      klass != NULL ? reg_types_.FromClass(descriptor, klass,
2914                                           klass->CannotBeAssignedFromOtherTypes())
2915                    : reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
2916  if (result.IsConflict()) {
2917    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
2918        << "' in " << referrer;
2919    return result;
2920  }
2921  if (klass == NULL && !result.IsUnresolvedTypes()) {
2922    (*dex_cache_)->SetResolvedType(class_idx, result.GetClass());
2923  }
2924  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
2925  // check at runtime if access is allowed and so pass here. If result is
2926  // primitive, skip the access check.
2927  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
2928      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
2929    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
2930                                    << referrer << "' -> '" << result << "'";
2931  }
2932  return result;
2933}
2934
2935const RegType& MethodVerifier::GetCaughtExceptionType() {
2936  const RegType* common_super = NULL;
2937  if (code_item_->tries_size_ != 0) {
2938    const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
2939    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
2940    for (uint32_t i = 0; i < handlers_size; i++) {
2941      CatchHandlerIterator iterator(handlers_ptr);
2942      for (; iterator.HasNext(); iterator.Next()) {
2943        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
2944          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2945            common_super = &reg_types_.JavaLangThrowable(false);
2946          } else {
2947            const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
2948            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
2949              if (exception.IsUnresolvedTypes()) {
2950                // We don't know enough about the type. Fail here and let runtime handle it.
2951                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
2952                return exception;
2953              } else {
2954                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
2955                return reg_types_.Conflict();
2956              }
2957            } else if (common_super == nullptr) {
2958              common_super = &exception;
2959            } else if (common_super->Equals(exception)) {
2960              // odd case, but nothing to do
2961            } else {
2962              common_super = &common_super->Merge(exception, &reg_types_);
2963              CHECK(reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super));
2964            }
2965          }
2966        }
2967      }
2968      handlers_ptr = iterator.EndDataPointer();
2969    }
2970  }
2971  if (common_super == NULL) {
2972    /* no catch blocks, or no catches with classes we can find */
2973    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
2974    return reg_types_.Conflict();
2975  }
2976  return *common_super;
2977}
2978
2979mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
2980                                                               MethodType method_type) {
2981  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
2982  const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
2983  if (klass_type.IsConflict()) {
2984    std::string append(" in attempt to access method ");
2985    append += dex_file_->GetMethodName(method_id);
2986    AppendToLastFailMessage(append);
2987    return NULL;
2988  }
2989  if (klass_type.IsUnresolvedTypes()) {
2990    return NULL;  // Can't resolve Class so no more to do here
2991  }
2992  mirror::Class* klass = klass_type.GetClass();
2993  const RegType& referrer = GetDeclaringClass();
2994  mirror::ArtMethod* res_method = (*dex_cache_)->GetResolvedMethod(dex_method_idx);
2995  if (res_method == NULL) {
2996    const char* name = dex_file_->GetMethodName(method_id);
2997    const Signature signature = dex_file_->GetMethodSignature(method_id);
2998
2999    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
3000      res_method = klass->FindDirectMethod(name, signature);
3001    } else if (method_type == METHOD_INTERFACE) {
3002      res_method = klass->FindInterfaceMethod(name, signature);
3003    } else {
3004      res_method = klass->FindVirtualMethod(name, signature);
3005    }
3006    if (res_method != NULL) {
3007      (*dex_cache_)->SetResolvedMethod(dex_method_idx, res_method);
3008    } else {
3009      // If a virtual or interface method wasn't found with the expected type, look in
3010      // the direct methods. This can happen when the wrong invoke type is used or when
3011      // a class has changed, and will be flagged as an error in later checks.
3012      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
3013        res_method = klass->FindDirectMethod(name, signature);
3014      }
3015      if (res_method == NULL) {
3016        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3017                                     << PrettyDescriptor(klass) << "." << name
3018                                     << " " << signature;
3019        return NULL;
3020      }
3021    }
3022  }
3023  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3024  // enforce them here.
3025  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3026    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3027                                      << PrettyMethod(res_method);
3028    return NULL;
3029  }
3030  // Disallow any calls to class initializers.
3031  if (res_method->IsClassInitializer()) {
3032    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3033                                      << PrettyMethod(res_method);
3034    return NULL;
3035  }
3036  // Check if access is allowed.
3037  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3038    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
3039                                     << " from " << referrer << ")";
3040    return res_method;
3041  }
3042  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3043  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
3044    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3045                                      << PrettyMethod(res_method);
3046    return NULL;
3047  }
3048  // Check that interface methods match interface classes.
3049  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
3050    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
3051                                    << " is in an interface class " << PrettyClass(klass);
3052    return NULL;
3053  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
3054    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
3055                                    << " is in a non-interface class " << PrettyClass(klass);
3056    return NULL;
3057  }
3058  // See if the method type implied by the invoke instruction matches the access flags for the
3059  // target method.
3060  if ((method_type == METHOD_DIRECT && !res_method->IsDirect()) ||
3061      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3062      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3063      ) {
3064    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3065                                       " type of " << PrettyMethod(res_method);
3066    return NULL;
3067  }
3068  return res_method;
3069}
3070
3071template <class T>
3072mirror::ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(T* it, const Instruction* inst,
3073                                                                    MethodType method_type,
3074                                                                    bool is_range,
3075                                                                    mirror::ArtMethod* res_method) {
3076  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3077  // match the call to the signature. Also, we might be calling through an abstract method
3078  // definition (which doesn't have register count values).
3079  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3080  /* caught by static verifier */
3081  DCHECK(is_range || expected_args <= 5);
3082  if (expected_args > code_item_->outs_size_) {
3083    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3084        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3085    return nullptr;
3086  }
3087
3088  uint32_t arg[5];
3089  if (!is_range) {
3090    inst->GetVarArgs(arg);
3091  }
3092  uint32_t sig_registers = 0;
3093
3094  /*
3095   * Check the "this" argument, which must be an instance of the class that declared the method.
3096   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3097   * rigorous check here (which is okay since we have to do it at runtime).
3098   */
3099  if (method_type != METHOD_STATIC) {
3100    const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3101    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3102      CHECK(have_pending_hard_failure_);
3103      return nullptr;
3104    }
3105    if (actual_arg_type.IsUninitializedReference()) {
3106      if (res_method) {
3107        if (!res_method->IsConstructor()) {
3108          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3109          return nullptr;
3110        }
3111      } else {
3112        // Check whether the name of the called method is "<init>"
3113        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3114        if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "init") != 0) {
3115          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3116          return nullptr;
3117        }
3118      }
3119    }
3120    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3121      const RegType* res_method_class;
3122      if (res_method != nullptr) {
3123        mirror::Class* klass = res_method->GetDeclaringClass();
3124        res_method_class = &reg_types_.FromClass(klass->GetDescriptor().c_str(), klass,
3125                                                 klass->CannotBeAssignedFromOtherTypes());
3126      } else {
3127        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3128        const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
3129        res_method_class = &reg_types_.FromDescriptor(class_loader_->Get(),
3130                                                      dex_file_->StringByTypeIdx(class_idx),
3131                                                      false);
3132      }
3133      if (!res_method_class->IsAssignableFrom(actual_arg_type)) {
3134        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3135            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3136                << "' not instance of '" << *res_method_class << "'";
3137        // Continue on soft failures. We need to find possible hard failures to avoid problems in
3138        // the compiler.
3139        if (have_pending_hard_failure_) {
3140          return nullptr;
3141        }
3142      }
3143    }
3144    sig_registers = 1;
3145  }
3146
3147  for ( ; it->HasNext(); it->Next()) {
3148    if (sig_registers >= expected_args) {
3149      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3150          " arguments, found " << sig_registers << " or more.";
3151      return nullptr;
3152    }
3153
3154    const char* param_descriptor = it->GetDescriptor();
3155
3156    if (param_descriptor == nullptr) {
3157      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
3158          "component";
3159      return nullptr;
3160    }
3161
3162    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_->Get(), param_descriptor,
3163                                                        false);
3164    uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) :
3165        arg[sig_registers];
3166    if (reg_type.IsIntegralTypes()) {
3167      const RegType& src_type = work_line_->GetRegisterType(get_reg);
3168      if (!src_type.IsIntegralTypes()) {
3169        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3170            << " but expected " << reg_type;
3171        return res_method;
3172      }
3173    } else if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3174      // Continue on soft failures. We need to find possible hard failures to avoid problems in the
3175      // compiler.
3176      if (have_pending_hard_failure_) {
3177        return res_method;
3178      }
3179    }
3180    sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
3181  }
3182  if (expected_args != sig_registers) {
3183    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
3184        " arguments, found " << sig_registers;
3185    return nullptr;
3186  }
3187  return res_method;
3188}
3189
3190void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
3191                                                          MethodType method_type,
3192                                                          bool is_range) {
3193  // As the method may not have been resolved, make this static check against what we expect.
3194  // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
3195  // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
3196  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3197  DexFileParameterIterator it(*dex_file_,
3198                              dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
3199  VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range,
3200                                                             nullptr);
3201}
3202
3203class MethodParamListDescriptorIterator {
3204 public:
3205  explicit MethodParamListDescriptorIterator(mirror::ArtMethod* res_method) :
3206      res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
3207      params_size_(params_ == nullptr ? 0 : params_->Size()) {
3208  }
3209
3210  bool HasNext() {
3211    return pos_ < params_size_;
3212  }
3213
3214  void Next() {
3215    ++pos_;
3216  }
3217
3218  const char* GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3219    return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
3220  }
3221
3222 private:
3223  mirror::ArtMethod* res_method_;
3224  size_t pos_;
3225  const DexFile::TypeList* params_;
3226  const size_t params_size_;
3227};
3228
3229mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
3230                                                             MethodType method_type,
3231                                                             bool is_range,
3232                                                             bool is_super) {
3233  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3234  // we're making.
3235  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3236
3237  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3238  if (res_method == NULL) {  // error or class is unresolved
3239    // Check what we can statically.
3240    if (!have_pending_hard_failure_) {
3241      VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
3242    }
3243    return nullptr;
3244  }
3245
3246  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3247  // has a vtable entry for the target method.
3248  if (is_super) {
3249    DCHECK(method_type == METHOD_VIRTUAL);
3250    const RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3251    if (super.IsUnresolvedTypes()) {
3252      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3253                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3254                                   << " to super " << PrettyMethod(res_method);
3255      return nullptr;
3256    }
3257    mirror::Class* super_klass = super.GetClass();
3258    if (res_method->GetMethodIndex() >= super_klass->GetVTableLength()) {
3259      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3260                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3261                                   << " to super " << super
3262                                   << "." << res_method->GetName()
3263                                   << res_method->GetSignature();
3264      return nullptr;
3265    }
3266  }
3267
3268  // Process the target method's signature. This signature may or may not
3269  MethodParamListDescriptorIterator it(res_method);
3270  return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type,
3271                                                                             is_range, res_method);
3272}
3273
3274mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3275                                                         RegisterLine* reg_line, bool is_range) {
3276  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3277         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3278  const RegType& actual_arg_type = reg_line->GetInvocationThis(inst, is_range);
3279  if (!actual_arg_type.HasClass()) {
3280    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3281    return nullptr;
3282  }
3283  mirror::Class* klass = actual_arg_type.GetClass();
3284  mirror::Class* dispatch_class;
3285  if (klass->IsInterface()) {
3286    // Derive Object.class from Class.class.getSuperclass().
3287    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3288    CHECK(object_klass->IsObjectClass());
3289    dispatch_class = object_klass;
3290  } else {
3291    dispatch_class = klass;
3292  }
3293  CHECK(dispatch_class->HasVTable()) << PrettyDescriptor(dispatch_class);
3294  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3295  CHECK_LT(static_cast<int32_t>(vtable_index), dispatch_class->GetVTableLength())
3296      << PrettyDescriptor(klass);
3297  mirror::ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index);
3298  CHECK(!Thread::Current()->IsExceptionPending());
3299  return res_method;
3300}
3301
3302mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3303                                                                     bool is_range) {
3304  DCHECK(Runtime::Current()->IsStarted());
3305  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3306                                                             is_range);
3307  if (res_method == NULL) {
3308    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3309    return NULL;
3310  }
3311  CHECK(!res_method->IsDirect() && !res_method->IsStatic());
3312
3313  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3314  // match the call to the signature. Also, we might be calling through an abstract method
3315  // definition (which doesn't have register count values).
3316  const RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3317  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3318    return NULL;
3319  }
3320  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3321  /* caught by static verifier */
3322  DCHECK(is_range || expected_args <= 5);
3323  if (expected_args > code_item_->outs_size_) {
3324    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3325        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3326    return NULL;
3327  }
3328
3329  /*
3330   * Check the "this" argument, which must be an instance of the class that declared the method.
3331   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3332   * rigorous check here (which is okay since we have to do it at runtime).
3333   */
3334  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3335    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3336    return NULL;
3337  }
3338  if (!actual_arg_type.IsZero()) {
3339    mirror::Class* klass = res_method->GetDeclaringClass();
3340    const RegType& res_method_class =
3341        reg_types_.FromClass(klass->GetDescriptor().c_str(), klass,
3342                             klass->CannotBeAssignedFromOtherTypes());
3343    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3344      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3345          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3346          << "' not instance of '" << res_method_class << "'";
3347      return NULL;
3348    }
3349  }
3350  /*
3351   * Process the target method's signature. This signature may or may not
3352   * have been verified, so we can't assume it's properly formed.
3353   */
3354  const DexFile::TypeList* params = res_method->GetParameterTypeList();
3355  size_t params_size = params == NULL ? 0 : params->Size();
3356  uint32_t arg[5];
3357  if (!is_range) {
3358    inst->GetVarArgs(arg);
3359  }
3360  size_t actual_args = 1;
3361  for (size_t param_index = 0; param_index < params_size; param_index++) {
3362    if (actual_args >= expected_args) {
3363      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3364                                        << "'. Expected " << expected_args
3365                                         << " arguments, processing argument " << actual_args
3366                                        << " (where longs/doubles count twice).";
3367      return NULL;
3368    }
3369    const char* descriptor =
3370        res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3371    if (descriptor == NULL) {
3372      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3373                                        << " missing signature component";
3374      return NULL;
3375    }
3376    const RegType& reg_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3377    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3378    if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3379      return res_method;
3380    }
3381    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3382  }
3383  if (actual_args != expected_args) {
3384    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3385              << " expected " << expected_args << " arguments, found " << actual_args;
3386    return NULL;
3387  } else {
3388    return res_method;
3389  }
3390}
3391
3392void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3393  uint32_t type_idx;
3394  if (!is_filled) {
3395    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3396    type_idx = inst->VRegC_22c();
3397  } else if (!is_range) {
3398    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3399    type_idx = inst->VRegB_35c();
3400  } else {
3401    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3402    type_idx = inst->VRegB_3rc();
3403  }
3404  const RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3405  if (res_type.IsConflict()) {  // bad class
3406    DCHECK_NE(failures_.size(), 0U);
3407  } else {
3408    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3409    if (!res_type.IsArrayTypes()) {
3410      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3411    } else if (!is_filled) {
3412      /* make sure "size" register is valid type */
3413      work_line_->VerifyRegisterType(inst->VRegB_22c(), reg_types_.Integer());
3414      /* set register type to array class */
3415      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3416      work_line_->SetRegisterType(inst->VRegA_22c(), precise_type);
3417    } else {
3418      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3419      // the list and fail. It's legal, if silly, for arg_count to be zero.
3420      const RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_->Get());
3421      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3422      uint32_t arg[5];
3423      if (!is_range) {
3424        inst->GetVarArgs(arg);
3425      }
3426      for (size_t ui = 0; ui < arg_count; ui++) {
3427        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3428        if (!work_line_->VerifyRegisterType(get_reg, expected_type)) {
3429          work_line_->SetResultRegisterType(reg_types_.Conflict());
3430          return;
3431        }
3432      }
3433      // filled-array result goes into "result" register
3434      const RegType& precise_type = reg_types_.FromUninitialized(res_type);
3435      work_line_->SetResultRegisterType(precise_type);
3436    }
3437  }
3438}
3439
3440void MethodVerifier::VerifyAGet(const Instruction* inst,
3441                                const RegType& insn_type, bool is_primitive) {
3442  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3443  if (!index_type.IsArrayIndexTypes()) {
3444    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3445  } else {
3446    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3447    if (array_type.IsZero()) {
3448      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3449      // instruction type. TODO: have a proper notion of bottom here.
3450      if (!is_primitive || insn_type.IsCategory1Types()) {
3451        // Reference or category 1
3452        work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Zero());
3453      } else {
3454        // Category 2
3455        work_line_->SetRegisterTypeWide(inst->VRegA_23x(), reg_types_.FromCat2ConstLo(0, false),
3456                                        reg_types_.FromCat2ConstHi(0, false));
3457      }
3458    } else if (!array_type.IsArrayTypes()) {
3459      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3460    } else {
3461      /* verify the class */
3462      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->Get());
3463      if (!component_type.IsReferenceTypes() && !is_primitive) {
3464        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3465            << " source for aget-object";
3466      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3467        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3468            << " source for category 1 aget";
3469      } else if (is_primitive && !insn_type.Equals(component_type) &&
3470                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3471                 (insn_type.IsLong() && component_type.IsDouble()))) {
3472        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3473            << " incompatible with aget of type " << insn_type;
3474      } else {
3475        // Use knowledge of the field type which is stronger than the type inferred from the
3476        // instruction, which can't differentiate object types and ints from floats, longs from
3477        // doubles.
3478        if (!component_type.IsLowHalf()) {
3479          work_line_->SetRegisterType(inst->VRegA_23x(), component_type);
3480        } else {
3481          work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type,
3482                                          component_type.HighHalf(&reg_types_));
3483        }
3484      }
3485    }
3486  }
3487}
3488
3489void MethodVerifier::VerifyPrimitivePut(const RegType& target_type, const RegType& insn_type,
3490                                        const uint32_t vregA) {
3491  // Primitive assignability rules are weaker than regular assignability rules.
3492  bool instruction_compatible;
3493  bool value_compatible;
3494  const RegType& value_type = work_line_->GetRegisterType(vregA);
3495  if (target_type.IsIntegralTypes()) {
3496    instruction_compatible = target_type.Equals(insn_type);
3497    value_compatible = value_type.IsIntegralTypes();
3498  } else if (target_type.IsFloat()) {
3499    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3500    value_compatible = value_type.IsFloatTypes();
3501  } else if (target_type.IsLong()) {
3502    instruction_compatible = insn_type.IsLong();
3503    const RegType& value_type_hi = work_line_->GetRegisterType(vregA + 1);
3504    value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
3505  } else if (target_type.IsDouble()) {
3506    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3507    const RegType& value_type_hi = work_line_->GetRegisterType(vregA + 1);
3508    value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
3509  } else {
3510    instruction_compatible = false;  // reference with primitive store
3511    value_compatible = false;  // unused
3512  }
3513  if (!instruction_compatible) {
3514    // This is a global failure rather than a class change failure as the instructions and
3515    // the descriptors for the type should have been consistent within the same file at
3516    // compile time.
3517    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3518        << "' but expected type '" << target_type << "'";
3519    return;
3520  }
3521  if (!value_compatible) {
3522    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3523        << " of type " << value_type << " but expected " << target_type << " for put";
3524    return;
3525  }
3526}
3527
3528void MethodVerifier::VerifyAPut(const Instruction* inst,
3529                                const RegType& insn_type, bool is_primitive) {
3530  const RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3531  if (!index_type.IsArrayIndexTypes()) {
3532    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3533  } else {
3534    const RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3535    if (array_type.IsZero()) {
3536      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3537      // instruction type.
3538    } else if (!array_type.IsArrayTypes()) {
3539      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3540    } else {
3541      const RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->Get());
3542      const uint32_t vregA = inst->VRegA_23x();
3543      if (is_primitive) {
3544        VerifyPrimitivePut(component_type, insn_type, vregA);
3545      } else {
3546        if (!component_type.IsReferenceTypes()) {
3547          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3548              << " source for aput-object";
3549        } else {
3550          // The instruction agrees with the type of array, confirm the value to be stored does too
3551          // Note: we use the instruction type (rather than the component type) for aput-object as
3552          // incompatible classes will be caught at runtime as an array store exception
3553          work_line_->VerifyRegisterType(vregA, insn_type);
3554        }
3555      }
3556    }
3557  }
3558}
3559
3560mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3561  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3562  // Check access to class
3563  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3564  if (klass_type.IsConflict()) {  // bad class
3565    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3566                                         field_idx, dex_file_->GetFieldName(field_id),
3567                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3568    return NULL;
3569  }
3570  if (klass_type.IsUnresolvedTypes()) {
3571    return NULL;  // Can't resolve Class so no more to do here, will do checking at runtime.
3572  }
3573  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3574  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3575                                                          *class_loader_);
3576  if (field == NULL) {
3577    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3578              << dex_file_->GetFieldName(field_id) << ") in "
3579              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3580    DCHECK(Thread::Current()->IsExceptionPending());
3581    Thread::Current()->ClearException();
3582    return NULL;
3583  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3584                                                  field->GetAccessFlags())) {
3585    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3586                                    << " from " << GetDeclaringClass();
3587    return NULL;
3588  } else if (!field->IsStatic()) {
3589    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3590    return NULL;
3591  }
3592  return field;
3593}
3594
3595mirror::ArtField* MethodVerifier::GetInstanceField(const RegType& obj_type, int field_idx) {
3596  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3597  // Check access to class
3598  const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3599  if (klass_type.IsConflict()) {
3600    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3601                                         field_idx, dex_file_->GetFieldName(field_id),
3602                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3603    return NULL;
3604  }
3605  if (klass_type.IsUnresolvedTypes()) {
3606    return NULL;  // Can't resolve Class so no more to do here
3607  }
3608  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3609  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3610                                                          *class_loader_);
3611  if (field == NULL) {
3612    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3613              << dex_file_->GetFieldName(field_id) << ") in "
3614              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3615    DCHECK(Thread::Current()->IsExceptionPending());
3616    Thread::Current()->ClearException();
3617    return NULL;
3618  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3619                                                  field->GetAccessFlags())) {
3620    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3621                                    << " from " << GetDeclaringClass();
3622    return NULL;
3623  } else if (field->IsStatic()) {
3624    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3625                                    << " to not be static";
3626    return NULL;
3627  } else if (obj_type.IsZero()) {
3628    // Cannot infer and check type, however, access will cause null pointer exception
3629    return field;
3630  } else {
3631    mirror::Class* klass = field->GetDeclaringClass();
3632    const RegType& field_klass =
3633        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3634                             klass, klass->CannotBeAssignedFromOtherTypes());
3635    if (obj_type.IsUninitializedTypes() &&
3636        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3637            !field_klass.Equals(GetDeclaringClass()))) {
3638      // Field accesses through uninitialized references are only allowable for constructors where
3639      // the field is declared in this class
3640      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3641                                        << " of a not fully initialized object within the context"
3642                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3643      return NULL;
3644    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3645      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3646      // of C1. For resolution to occur the declared class of the field must be compatible with
3647      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3648      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3649                                  << " from object of type " << obj_type;
3650      return NULL;
3651    } else {
3652      return field;
3653    }
3654  }
3655}
3656
3657void MethodVerifier::VerifyISGet(const Instruction* inst, const RegType& insn_type,
3658                                 bool is_primitive, bool is_static) {
3659  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3660  mirror::ArtField* field;
3661  if (is_static) {
3662    field = GetStaticField(field_idx);
3663  } else {
3664    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3665    field = GetInstanceField(object_type, field_idx);
3666  }
3667  const RegType* field_type = nullptr;
3668  if (field != NULL) {
3669    Thread* self = Thread::Current();
3670    mirror::Class* field_type_class;
3671    {
3672      StackHandleScope<1> hs(self);
3673      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3674      field_type_class = FieldHelper(h_field).GetType(can_load_classes_);
3675    }
3676    if (field_type_class != nullptr) {
3677      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3678                                         field_type_class->CannotBeAssignedFromOtherTypes());
3679    } else {
3680      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3681      self->ClearException();
3682    }
3683  }
3684  if (field_type == nullptr) {
3685    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3686    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3687    field_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3688  }
3689  DCHECK(field_type != nullptr);
3690  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3691  if (is_primitive) {
3692    if (field_type->Equals(insn_type) ||
3693        (field_type->IsFloat() && insn_type.IsInteger()) ||
3694        (field_type->IsDouble() && insn_type.IsLong())) {
3695      // expected that read is of the correct primitive type or that int reads are reading
3696      // floats or long reads are reading doubles
3697    } else {
3698      // This is a global failure rather than a class change failure as the instructions and
3699      // the descriptors for the type should have been consistent within the same file at
3700      // compile time
3701      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3702                                        << " to be of type '" << insn_type
3703                                        << "' but found type '" << *field_type << "' in get";
3704      return;
3705    }
3706  } else {
3707    if (!insn_type.IsAssignableFrom(*field_type)) {
3708      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3709                                        << " to be compatible with type '" << insn_type
3710                                        << "' but found type '" << *field_type
3711                                        << "' in Get-object";
3712      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3713      return;
3714    }
3715  }
3716  if (!field_type->IsLowHalf()) {
3717    work_line_->SetRegisterType(vregA, *field_type);
3718  } else {
3719    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3720  }
3721}
3722
3723void MethodVerifier::VerifyISPut(const Instruction* inst, const RegType& insn_type,
3724                                 bool is_primitive, bool is_static) {
3725  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3726  mirror::ArtField* field;
3727  if (is_static) {
3728    field = GetStaticField(field_idx);
3729  } else {
3730    const RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3731    field = GetInstanceField(object_type, field_idx);
3732  }
3733  const RegType* field_type = nullptr;
3734  if (field != NULL) {
3735    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3736      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3737                                      << " from other class " << GetDeclaringClass();
3738      return;
3739    }
3740    mirror::Class* field_type_class;
3741    {
3742      StackHandleScope<1> hs(Thread::Current());
3743      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3744      FieldHelper fh(h_field);
3745      field_type_class = fh.GetType(can_load_classes_);
3746    }
3747    if (field_type_class != nullptr) {
3748      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3749                                         field_type_class->CannotBeAssignedFromOtherTypes());
3750    } else {
3751      Thread* self = Thread::Current();
3752      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3753      self->ClearException();
3754    }
3755  }
3756  if (field_type == nullptr) {
3757    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3758    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3759    field_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3760  }
3761  DCHECK(field_type != nullptr);
3762  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3763  if (is_primitive) {
3764    VerifyPrimitivePut(*field_type, insn_type, vregA);
3765  } else {
3766    if (!insn_type.IsAssignableFrom(*field_type)) {
3767      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3768                                        << " to be compatible with type '" << insn_type
3769                                        << "' but found type '" << *field_type
3770                                        << "' in put-object";
3771      return;
3772    }
3773    work_line_->VerifyRegisterType(vregA, *field_type);
3774  }
3775}
3776
3777mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3778                                                      RegisterLine* reg_line) {
3779  DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3780         inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3781         inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3782         inst->Opcode() == Instruction::IPUT_QUICK ||
3783         inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3784         inst->Opcode() == Instruction::IPUT_OBJECT_QUICK);
3785  const RegType& object_type = reg_line->GetRegisterType(inst->VRegB_22c());
3786  if (!object_type.HasClass()) {
3787    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
3788    return nullptr;
3789  }
3790  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3791  mirror::ArtField* f = mirror::ArtField::FindInstanceFieldWithOffset(object_type.GetClass(),
3792                                                                      field_offset);
3793  if (f == nullptr) {
3794    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
3795                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
3796  }
3797  return f;
3798}
3799
3800void MethodVerifier::VerifyIGetQuick(const Instruction* inst, const RegType& insn_type,
3801                                     bool is_primitive) {
3802  DCHECK(Runtime::Current()->IsStarted());
3803  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3804  if (field == NULL) {
3805    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3806    return;
3807  }
3808  mirror::Class* field_type_class;
3809  {
3810    StackHandleScope<1> hs(Thread::Current());
3811    HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3812    FieldHelper fh(h_field);
3813    field_type_class = fh.GetType(can_load_classes_);
3814  }
3815  const RegType* field_type;
3816  if (field_type_class != nullptr) {
3817    field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3818                                       field_type_class->CannotBeAssignedFromOtherTypes());
3819  } else {
3820    Thread* self = Thread::Current();
3821    DCHECK(!can_load_classes_ || self->IsExceptionPending());
3822    self->ClearException();
3823    field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
3824                                            field->GetTypeDescriptor(), false);
3825  }
3826  DCHECK(field_type != nullptr);
3827  const uint32_t vregA = inst->VRegA_22c();
3828  if (is_primitive) {
3829    if (field_type->Equals(insn_type) ||
3830        (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
3831        (field_type->IsDouble() && insn_type.IsLongTypes())) {
3832      // expected that read is of the correct primitive type or that int reads are reading
3833      // floats or long reads are reading doubles
3834    } else {
3835      // This is a global failure rather than a class change failure as the instructions and
3836      // the descriptors for the type should have been consistent within the same file at
3837      // compile time
3838      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3839                                        << " to be of type '" << insn_type
3840                                        << "' but found type '" << *field_type << "' in Get";
3841      return;
3842    }
3843  } else {
3844    if (!insn_type.IsAssignableFrom(*field_type)) {
3845      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3846                                        << " to be compatible with type '" << insn_type
3847                                        << "' but found type '" << *field_type
3848                                        << "' in get-object";
3849      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3850      return;
3851    }
3852  }
3853  if (!field_type->IsLowHalf()) {
3854    work_line_->SetRegisterType(vregA, *field_type);
3855  } else {
3856    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3857  }
3858}
3859
3860void MethodVerifier::VerifyIPutQuick(const Instruction* inst, const RegType& insn_type,
3861                                     bool is_primitive) {
3862  DCHECK(Runtime::Current()->IsStarted());
3863  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3864  if (field == NULL) {
3865    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3866    return;
3867  }
3868  const char* descriptor = field->GetTypeDescriptor();
3869  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
3870  const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3871  if (field != NULL) {
3872    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3873      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3874                                      << " from other class " << GetDeclaringClass();
3875      return;
3876    }
3877  }
3878  const uint32_t vregA = inst->VRegA_22c();
3879  if (is_primitive) {
3880    // Primitive field assignability rules are weaker than regular assignability rules
3881    bool instruction_compatible;
3882    bool value_compatible;
3883    const RegType& value_type = work_line_->GetRegisterType(vregA);
3884    if (field_type.IsIntegralTypes()) {
3885      instruction_compatible = insn_type.IsIntegralTypes();
3886      value_compatible = value_type.IsIntegralTypes();
3887    } else if (field_type.IsFloat()) {
3888      instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
3889      value_compatible = value_type.IsFloatTypes();
3890    } else if (field_type.IsLong()) {
3891      instruction_compatible = insn_type.IsLong();
3892      value_compatible = value_type.IsLongTypes();
3893    } else if (field_type.IsDouble()) {
3894      instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
3895      value_compatible = value_type.IsDoubleTypes();
3896    } else {
3897      instruction_compatible = false;  // reference field with primitive store
3898      value_compatible = false;  // unused
3899    }
3900    if (!instruction_compatible) {
3901      // This is a global failure rather than a class change failure as the instructions and
3902      // the descriptors for the type should have been consistent within the same file at
3903      // compile time
3904      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3905                                        << " to be of type '" << insn_type
3906                                        << "' but found type '" << field_type
3907                                        << "' in put";
3908      return;
3909    }
3910    if (!value_compatible) {
3911      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3912          << " of type " << value_type
3913          << " but expected " << field_type
3914          << " for store to " << PrettyField(field) << " in put";
3915      return;
3916    }
3917  } else {
3918    if (!insn_type.IsAssignableFrom(field_type)) {
3919      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3920                                        << " to be compatible with type '" << insn_type
3921                                        << "' but found type '" << field_type
3922                                        << "' in put-object";
3923      return;
3924    }
3925    work_line_->VerifyRegisterType(vregA, field_type);
3926  }
3927}
3928
3929bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
3930  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
3931    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
3932    return false;
3933  }
3934  return true;
3935}
3936
3937bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
3938                                     bool update_merge_line) {
3939  bool changed = true;
3940  RegisterLine* target_line = reg_table_.GetLine(next_insn);
3941  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
3942    /*
3943     * We haven't processed this instruction before, and we haven't touched the registers here, so
3944     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
3945     * only way a register can transition out of "unknown", so this is not just an optimization.)
3946     */
3947    if (!insn_flags_[next_insn].IsReturn()) {
3948      target_line->CopyFromLine(merge_line);
3949    } else {
3950      // Verify that the monitor stack is empty on return.
3951      if (!merge_line->VerifyMonitorStackEmpty()) {
3952        return false;
3953      }
3954      // For returns we only care about the operand to the return, all other registers are dead.
3955      // Initialize them as conflicts so they don't add to GC and deoptimization information.
3956      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
3957      Instruction::Code opcode = ret_inst->Opcode();
3958      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
3959        target_line->MarkAllRegistersAsConflicts();
3960      } else {
3961        target_line->CopyFromLine(merge_line);
3962        if (opcode == Instruction::RETURN_WIDE) {
3963          target_line->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
3964        } else {
3965          target_line->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
3966        }
3967      }
3968    }
3969  } else {
3970    std::unique_ptr<RegisterLine> copy(gDebugVerify ?
3971                                 RegisterLine::Create(target_line->NumRegs(), this) :
3972                                 NULL);
3973    if (gDebugVerify) {
3974      copy->CopyFromLine(target_line);
3975    }
3976    changed = target_line->MergeRegisters(merge_line);
3977    if (have_pending_hard_failure_) {
3978      return false;
3979    }
3980    if (gDebugVerify && changed) {
3981      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
3982                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
3983                      << *copy.get() << "  MERGE\n"
3984                      << *merge_line << "  ==\n"
3985                      << *target_line << "\n";
3986    }
3987    if (update_merge_line && changed) {
3988      merge_line->CopyFromLine(target_line);
3989    }
3990  }
3991  if (changed) {
3992    insn_flags_[next_insn].SetChanged();
3993  }
3994  return true;
3995}
3996
3997InstructionFlags* MethodVerifier::CurrentInsnFlags() {
3998  return &insn_flags_[work_insn_idx_];
3999}
4000
4001const RegType& MethodVerifier::GetMethodReturnType() {
4002  if (return_type_ == nullptr) {
4003    if (mirror_method_ != NULL) {
4004      Thread* self = Thread::Current();
4005      StackHandleScope<1> hs(self);
4006      mirror::Class* return_type_class;
4007      {
4008        HandleWrapper<mirror::ArtMethod> h_mirror_method(hs.NewHandleWrapper(&mirror_method_));
4009        return_type_class = MethodHelper(h_mirror_method).GetReturnType(can_load_classes_);
4010      }
4011      if (return_type_class != nullptr) {
4012        return_type_ = &reg_types_.FromClass(mirror_method_->GetReturnTypeDescriptor(),
4013                                             return_type_class,
4014                                             return_type_class->CannotBeAssignedFromOtherTypes());
4015      } else {
4016        DCHECK(!can_load_classes_ || self->IsExceptionPending());
4017        self->ClearException();
4018      }
4019    }
4020    if (return_type_ == nullptr) {
4021      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4022      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
4023      uint16_t return_type_idx = proto_id.return_type_idx_;
4024      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
4025      return_type_ = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
4026    }
4027  }
4028  return *return_type_;
4029}
4030
4031const RegType& MethodVerifier::GetDeclaringClass() {
4032  if (declaring_class_ == NULL) {
4033    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4034    const char* descriptor
4035        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
4036    if (mirror_method_ != NULL) {
4037      mirror::Class* klass = mirror_method_->GetDeclaringClass();
4038      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
4039                                               klass->CannotBeAssignedFromOtherTypes());
4040    } else {
4041      declaring_class_ = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
4042    }
4043  }
4044  return *declaring_class_;
4045}
4046
4047std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4048  RegisterLine* line = reg_table_.GetLine(dex_pc);
4049  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
4050  std::vector<int32_t> result;
4051  for (size_t i = 0; i < line->NumRegs(); ++i) {
4052    const RegType& type = line->GetRegisterType(i);
4053    if (type.IsConstant()) {
4054      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4055      result.push_back(type.ConstantValue());
4056    } else if (type.IsConstantLo()) {
4057      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4058      result.push_back(type.ConstantValueLo());
4059    } else if (type.IsConstantHi()) {
4060      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4061      result.push_back(type.ConstantValueHi());
4062    } else if (type.IsIntegralTypes()) {
4063      result.push_back(kIntVReg);
4064      result.push_back(0);
4065    } else if (type.IsFloat()) {
4066      result.push_back(kFloatVReg);
4067      result.push_back(0);
4068    } else if (type.IsLong()) {
4069      result.push_back(kLongLoVReg);
4070      result.push_back(0);
4071      result.push_back(kLongHiVReg);
4072      result.push_back(0);
4073      ++i;
4074    } else if (type.IsDouble()) {
4075      result.push_back(kDoubleLoVReg);
4076      result.push_back(0);
4077      result.push_back(kDoubleHiVReg);
4078      result.push_back(0);
4079      ++i;
4080    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4081      result.push_back(kUndefined);
4082      result.push_back(0);
4083    } else {
4084      CHECK(type.IsNonZeroReferenceTypes());
4085      result.push_back(kReferenceVReg);
4086      result.push_back(0);
4087    }
4088  }
4089  return result;
4090}
4091
4092const RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
4093  if (precise) {
4094    // Precise constant type.
4095    return reg_types_.FromCat1Const(value, true);
4096  } else {
4097    // Imprecise constant type.
4098    if (value < -32768) {
4099      return reg_types_.IntConstant();
4100    } else if (value < -128) {
4101      return reg_types_.ShortConstant();
4102    } else if (value < 0) {
4103      return reg_types_.ByteConstant();
4104    } else if (value == 0) {
4105      return reg_types_.Zero();
4106    } else if (value == 1) {
4107      return reg_types_.One();
4108    } else if (value < 128) {
4109      return reg_types_.PosByteConstant();
4110    } else if (value < 32768) {
4111      return reg_types_.PosShortConstant();
4112    } else if (value < 65536) {
4113      return reg_types_.CharConstant();
4114    } else {
4115      return reg_types_.IntConstant();
4116    }
4117  }
4118}
4119
4120void MethodVerifier::Init() {
4121  art::verifier::RegTypeCache::Init();
4122}
4123
4124void MethodVerifier::Shutdown() {
4125  verifier::RegTypeCache::ShutDown();
4126}
4127
4128void MethodVerifier::VisitRoots(RootCallback* callback, void* arg) {
4129  reg_types_.VisitRoots(callback, arg);
4130}
4131
4132}  // namespace verifier
4133}  // namespace art
4134