method_verifier.cc revision 6dd35ccbfbb29201c84a54261d75977c598ef2e6
1/*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 *      http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "method_verifier-inl.h"
18
19#include <iostream>
20
21#include "base/logging.h"
22#include "base/mutex-inl.h"
23#include "class_linker.h"
24#include "compiler_callbacks.h"
25#include "dex_file-inl.h"
26#include "dex_instruction-inl.h"
27#include "dex_instruction_visitor.h"
28#include "field_helper.h"
29#include "gc/accounting/card_table-inl.h"
30#include "indenter.h"
31#include "intern_table.h"
32#include "leb128.h"
33#include "method_helper-inl.h"
34#include "mirror/art_field-inl.h"
35#include "mirror/art_method-inl.h"
36#include "mirror/class.h"
37#include "mirror/class-inl.h"
38#include "mirror/dex_cache-inl.h"
39#include "mirror/object-inl.h"
40#include "mirror/object_array-inl.h"
41#include "register_line-inl.h"
42#include "runtime.h"
43#include "scoped_thread_state_change.h"
44#include "handle_scope-inl.h"
45#include "verifier/dex_gc_map.h"
46
47namespace art {
48namespace verifier {
49
50static constexpr bool kTimeVerifyMethod = !kIsDebugBuild;
51static constexpr bool gDebugVerify = false;
52// TODO: Add a constant to method_verifier to turn on verbose logging?
53
54void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InstructionFlags* flags,
55                                 uint32_t insns_size, uint16_t registers_size,
56                                 MethodVerifier* verifier) {
57  DCHECK_GT(insns_size, 0U);
58  register_lines_.reset(new RegisterLine*[insns_size]());
59  size_ = insns_size;
60  for (uint32_t i = 0; i < insns_size; i++) {
61    bool interesting = false;
62    switch (mode) {
63      case kTrackRegsAll:
64        interesting = flags[i].IsOpcode();
65        break;
66      case kTrackCompilerInterestPoints:
67        interesting = flags[i].IsCompileTimeInfoPoint() || flags[i].IsBranchTarget();
68        break;
69      case kTrackRegsBranches:
70        interesting = flags[i].IsBranchTarget();
71        break;
72      default:
73        break;
74    }
75    if (interesting) {
76      register_lines_[i] = RegisterLine::Create(registers_size, verifier);
77    }
78  }
79}
80
81PcToRegisterLineTable::~PcToRegisterLineTable() {
82  for (size_t i = 0; i < size_; i++) {
83    delete register_lines_[i];
84    if (kIsDebugBuild) {
85      register_lines_[i] = nullptr;
86    }
87  }
88}
89
90MethodVerifier::FailureKind MethodVerifier::VerifyClass(mirror::Class* klass,
91                                                        bool allow_soft_failures,
92                                                        std::string* error) {
93  if (klass->IsVerified()) {
94    return kNoFailure;
95  }
96  bool early_failure = false;
97  std::string failure_message;
98  const DexFile& dex_file = klass->GetDexFile();
99  const DexFile::ClassDef* class_def = klass->GetClassDef();
100  mirror::Class* super = klass->GetSuperClass();
101  std::string temp;
102  if (super == NULL && strcmp("Ljava/lang/Object;", klass->GetDescriptor(&temp)) != 0) {
103    early_failure = true;
104    failure_message = " that has no super class";
105  } else if (super != NULL && super->IsFinal()) {
106    early_failure = true;
107    failure_message = " that attempts to sub-class final class " + PrettyDescriptor(super);
108  } else if (class_def == NULL) {
109    early_failure = true;
110    failure_message = " that isn't present in dex file " + dex_file.GetLocation();
111  }
112  if (early_failure) {
113    *error = "Verifier rejected class " + PrettyDescriptor(klass) + failure_message;
114    if (Runtime::Current()->IsCompiler()) {
115      ClassReference ref(&dex_file, klass->GetDexClassDefIndex());
116      Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
117    }
118    return kHardFailure;
119  }
120  StackHandleScope<2> hs(Thread::Current());
121  Handle<mirror::DexCache> dex_cache(hs.NewHandle(klass->GetDexCache()));
122  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(klass->GetClassLoader()));
123  return VerifyClass(&dex_file, dex_cache, class_loader, class_def, allow_soft_failures, error);
124}
125
126MethodVerifier::FailureKind MethodVerifier::VerifyClass(const DexFile* dex_file,
127                                                        Handle<mirror::DexCache> dex_cache,
128                                                        Handle<mirror::ClassLoader> class_loader,
129                                                        const DexFile::ClassDef* class_def,
130                                                        bool allow_soft_failures,
131                                                        std::string* error) {
132  DCHECK(class_def != nullptr);
133  const byte* class_data = dex_file->GetClassData(*class_def);
134  if (class_data == NULL) {
135    // empty class, probably a marker interface
136    return kNoFailure;
137  }
138  ClassDataItemIterator it(*dex_file, class_data);
139  while (it.HasNextStaticField() || it.HasNextInstanceField()) {
140    it.Next();
141  }
142  size_t error_count = 0;
143  bool hard_fail = false;
144  ClassLinker* linker = Runtime::Current()->GetClassLinker();
145  int64_t previous_direct_method_idx = -1;
146  while (it.HasNextDirectMethod()) {
147    uint32_t method_idx = it.GetMemberIndex();
148    if (method_idx == previous_direct_method_idx) {
149      // smali can create dex files with two encoded_methods sharing the same method_idx
150      // http://code.google.com/p/smali/issues/detail?id=119
151      it.Next();
152      continue;
153    }
154    previous_direct_method_idx = method_idx;
155    InvokeType type = it.GetMethodInvokeType(*class_def);
156    mirror::ArtMethod* method =
157        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
158                              NullHandle<mirror::ArtMethod>(), type);
159    if (method == NULL) {
160      DCHECK(Thread::Current()->IsExceptionPending());
161      // We couldn't resolve the method, but continue regardless.
162      Thread::Current()->ClearException();
163    }
164    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
165                                                      dex_file,
166                                                      dex_cache,
167                                                      class_loader,
168                                                      class_def,
169                                                      it.GetMethodCodeItem(),
170                                                      method,
171                                                      it.GetMemberAccessFlags(),
172                                                      allow_soft_failures,
173                                                      false);
174    if (result != kNoFailure) {
175      if (result == kHardFailure) {
176        hard_fail = true;
177        if (error_count > 0) {
178          *error += "\n";
179        }
180        *error = "Verifier rejected class ";
181        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
182        *error += " due to bad method ";
183        *error += PrettyMethod(method_idx, *dex_file);
184      }
185      ++error_count;
186    }
187    it.Next();
188  }
189  int64_t previous_virtual_method_idx = -1;
190  while (it.HasNextVirtualMethod()) {
191    uint32_t method_idx = it.GetMemberIndex();
192    if (method_idx == previous_virtual_method_idx) {
193      // smali can create dex files with two encoded_methods sharing the same method_idx
194      // http://code.google.com/p/smali/issues/detail?id=119
195      it.Next();
196      continue;
197    }
198    previous_virtual_method_idx = method_idx;
199    InvokeType type = it.GetMethodInvokeType(*class_def);
200    mirror::ArtMethod* method =
201        linker->ResolveMethod(*dex_file, method_idx, dex_cache, class_loader,
202                              NullHandle<mirror::ArtMethod>(), type);
203    if (method == NULL) {
204      DCHECK(Thread::Current()->IsExceptionPending());
205      // We couldn't resolve the method, but continue regardless.
206      Thread::Current()->ClearException();
207    }
208    MethodVerifier::FailureKind result = VerifyMethod(method_idx,
209                                                      dex_file,
210                                                      dex_cache,
211                                                      class_loader,
212                                                      class_def,
213                                                      it.GetMethodCodeItem(),
214                                                      method,
215                                                      it.GetMemberAccessFlags(),
216                                                      allow_soft_failures,
217                                                      false);
218    if (result != kNoFailure) {
219      if (result == kHardFailure) {
220        hard_fail = true;
221        if (error_count > 0) {
222          *error += "\n";
223        }
224        *error = "Verifier rejected class ";
225        *error += PrettyDescriptor(dex_file->GetClassDescriptor(*class_def));
226        *error += " due to bad method ";
227        *error += PrettyMethod(method_idx, *dex_file);
228      }
229      ++error_count;
230    }
231    it.Next();
232  }
233  if (error_count == 0) {
234    return kNoFailure;
235  } else {
236    return hard_fail ? kHardFailure : kSoftFailure;
237  }
238}
239
240MethodVerifier::FailureKind MethodVerifier::VerifyMethod(uint32_t method_idx,
241                                                         const DexFile* dex_file,
242                                                         Handle<mirror::DexCache> dex_cache,
243                                                         Handle<mirror::ClassLoader> class_loader,
244                                                         const DexFile::ClassDef* class_def,
245                                                         const DexFile::CodeItem* code_item,
246                                                         mirror::ArtMethod* method,
247                                                         uint32_t method_access_flags,
248                                                         bool allow_soft_failures,
249                                                         bool need_precise_constants) {
250  MethodVerifier::FailureKind result = kNoFailure;
251  uint64_t start_ns = kTimeVerifyMethod ? NanoTime() : 0;
252
253  MethodVerifier verifier(dex_file, &dex_cache, &class_loader, class_def, code_item,
254                           method_idx, method, method_access_flags, true, allow_soft_failures,
255                           need_precise_constants);
256  if (verifier.Verify()) {
257    // Verification completed, however failures may be pending that didn't cause the verification
258    // to hard fail.
259    CHECK(!verifier.have_pending_hard_failure_);
260    if (verifier.failures_.size() != 0) {
261      if (VLOG_IS_ON(verifier)) {
262          verifier.DumpFailures(VLOG_STREAM(verifier) << "Soft verification failures in "
263                                << PrettyMethod(method_idx, *dex_file) << "\n");
264      }
265      result = kSoftFailure;
266    }
267  } else {
268    // Bad method data.
269    CHECK_NE(verifier.failures_.size(), 0U);
270    CHECK(verifier.have_pending_hard_failure_);
271    verifier.DumpFailures(LOG(INFO) << "Verification error in "
272                                    << PrettyMethod(method_idx, *dex_file) << "\n");
273    if (gDebugVerify) {
274      std::cout << "\n" << verifier.info_messages_.str();
275      verifier.Dump(std::cout);
276    }
277    result = kHardFailure;
278  }
279  if (kTimeVerifyMethod) {
280    uint64_t duration_ns = NanoTime() - start_ns;
281    if (duration_ns > MsToNs(100)) {
282      LOG(WARNING) << "Verification of " << PrettyMethod(method_idx, *dex_file)
283                   << " took " << PrettyDuration(duration_ns);
284    }
285  }
286  return result;
287}
288
289void MethodVerifier::VerifyMethodAndDump(std::ostream& os, uint32_t dex_method_idx,
290                                         const DexFile* dex_file,
291                                         Handle<mirror::DexCache> dex_cache,
292                                         Handle<mirror::ClassLoader> class_loader,
293                                         const DexFile::ClassDef* class_def,
294                                         const DexFile::CodeItem* code_item,
295                                         mirror::ArtMethod* method,
296                                         uint32_t method_access_flags) {
297  MethodVerifier verifier(dex_file, &dex_cache, &class_loader, class_def, code_item,
298                          dex_method_idx, method, method_access_flags, true, true, true);
299  verifier.Verify();
300  verifier.DumpFailures(os);
301  os << verifier.info_messages_.str();
302  verifier.Dump(os);
303}
304
305MethodVerifier::MethodVerifier(const DexFile* dex_file, Handle<mirror::DexCache>* dex_cache,
306                               Handle<mirror::ClassLoader>* class_loader,
307                               const DexFile::ClassDef* class_def,
308                               const DexFile::CodeItem* code_item, uint32_t dex_method_idx,
309                               mirror::ArtMethod* method, uint32_t method_access_flags,
310                               bool can_load_classes, bool allow_soft_failures,
311                               bool need_precise_constants)
312    : reg_types_(can_load_classes),
313      work_insn_idx_(-1),
314      dex_method_idx_(dex_method_idx),
315      mirror_method_(method),
316      method_access_flags_(method_access_flags),
317      return_type_(nullptr),
318      dex_file_(dex_file),
319      dex_cache_(dex_cache),
320      class_loader_(class_loader),
321      class_def_(class_def),
322      code_item_(code_item),
323      declaring_class_(NULL),
324      interesting_dex_pc_(-1),
325      monitor_enter_dex_pcs_(nullptr),
326      have_pending_hard_failure_(false),
327      have_pending_runtime_throw_failure_(false),
328      new_instance_count_(0),
329      monitor_enter_count_(0),
330      can_load_classes_(can_load_classes),
331      allow_soft_failures_(allow_soft_failures),
332      need_precise_constants_(need_precise_constants),
333      has_check_casts_(false),
334      has_virtual_or_interface_invokes_(false) {
335  Runtime::Current()->AddMethodVerifier(this);
336  DCHECK(class_def != nullptr);
337}
338
339MethodVerifier::~MethodVerifier() {
340  Runtime::Current()->RemoveMethodVerifier(this);
341  STLDeleteElements(&failure_messages_);
342}
343
344void MethodVerifier::FindLocksAtDexPc(mirror::ArtMethod* m, uint32_t dex_pc,
345                                      std::vector<uint32_t>* monitor_enter_dex_pcs) {
346  StackHandleScope<2> hs(Thread::Current());
347  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
348  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
349  MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
350                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), false,
351                          true, false);
352  verifier.interesting_dex_pc_ = dex_pc;
353  verifier.monitor_enter_dex_pcs_ = monitor_enter_dex_pcs;
354  verifier.FindLocksAtDexPc();
355}
356
357void MethodVerifier::FindLocksAtDexPc() {
358  CHECK(monitor_enter_dex_pcs_ != NULL);
359  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
360
361  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
362  // verification. In practice, the phase we want relies on data structures set up by all the
363  // earlier passes, so we just run the full method verification and bail out early when we've
364  // got what we wanted.
365  Verify();
366}
367
368mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(mirror::ArtMethod* m,
369                                                           uint32_t dex_pc) {
370  StackHandleScope<2> hs(Thread::Current());
371  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
372  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
373  MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
374                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
375                          true, false);
376  return verifier.FindAccessedFieldAtDexPc(dex_pc);
377}
378
379mirror::ArtField* MethodVerifier::FindAccessedFieldAtDexPc(uint32_t dex_pc) {
380  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
381
382  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
383  // verification. In practice, the phase we want relies on data structures set up by all the
384  // earlier passes, so we just run the full method verification and bail out early when we've
385  // got what we wanted.
386  bool success = Verify();
387  if (!success) {
388    return nullptr;
389  }
390  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
391  if (register_line == NULL) {
392    return nullptr;
393  }
394  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
395  return GetQuickFieldAccess(inst, register_line);
396}
397
398mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(mirror::ArtMethod* m,
399                                                            uint32_t dex_pc) {
400  StackHandleScope<2> hs(Thread::Current());
401  Handle<mirror::DexCache> dex_cache(hs.NewHandle(m->GetDexCache()));
402  Handle<mirror::ClassLoader> class_loader(hs.NewHandle(m->GetClassLoader()));
403  MethodVerifier verifier(m->GetDexFile(), &dex_cache, &class_loader, &m->GetClassDef(),
404                          m->GetCodeItem(), m->GetDexMethodIndex(), m, m->GetAccessFlags(), true,
405                          true, false);
406  return verifier.FindInvokedMethodAtDexPc(dex_pc);
407}
408
409mirror::ArtMethod* MethodVerifier::FindInvokedMethodAtDexPc(uint32_t dex_pc) {
410  CHECK(code_item_ != NULL);  // This only makes sense for methods with code.
411
412  // Strictly speaking, we ought to be able to get away with doing a subset of the full method
413  // verification. In practice, the phase we want relies on data structures set up by all the
414  // earlier passes, so we just run the full method verification and bail out early when we've
415  // got what we wanted.
416  bool success = Verify();
417  if (!success) {
418    return NULL;
419  }
420  RegisterLine* register_line = reg_table_.GetLine(dex_pc);
421  if (register_line == NULL) {
422    return NULL;
423  }
424  const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc);
425  const bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
426  return GetQuickInvokedMethod(inst, register_line, is_range);
427}
428
429bool MethodVerifier::Verify() {
430  // If there aren't any instructions, make sure that's expected, then exit successfully.
431  if (code_item_ == NULL) {
432    if ((method_access_flags_ & (kAccNative | kAccAbstract)) == 0) {
433      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method";
434      return false;
435    } else {
436      return true;
437    }
438  }
439  // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers.
440  if (code_item_->ins_size_ > code_item_->registers_size_) {
441    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_
442                                      << " regs=" << code_item_->registers_size_;
443    return false;
444  }
445  // Allocate and initialize an array to hold instruction data.
446  insn_flags_.reset(new InstructionFlags[code_item_->insns_size_in_code_units_]());
447  // Run through the instructions and see if the width checks out.
448  bool result = ComputeWidthsAndCountOps();
449  // Flag instructions guarded by a "try" block and check exception handlers.
450  result = result && ScanTryCatchBlocks();
451  // Perform static instruction verification.
452  result = result && VerifyInstructions();
453  // Perform code-flow analysis and return.
454  result = result && VerifyCodeFlow();
455  // Compute information for compiler.
456  if (result && Runtime::Current()->IsCompiler()) {
457    result = Runtime::Current()->GetCompilerCallbacks()->MethodVerified(this);
458  }
459  return result;
460}
461
462std::ostream& MethodVerifier::Fail(VerifyError error) {
463  switch (error) {
464    case VERIFY_ERROR_NO_CLASS:
465    case VERIFY_ERROR_NO_FIELD:
466    case VERIFY_ERROR_NO_METHOD:
467    case VERIFY_ERROR_ACCESS_CLASS:
468    case VERIFY_ERROR_ACCESS_FIELD:
469    case VERIFY_ERROR_ACCESS_METHOD:
470    case VERIFY_ERROR_INSTANTIATION:
471    case VERIFY_ERROR_CLASS_CHANGE:
472      if (Runtime::Current()->IsCompiler() || !can_load_classes_) {
473        // If we're optimistically running verification at compile time, turn NO_xxx, ACCESS_xxx,
474        // class change and instantiation errors into soft verification errors so that we re-verify
475        // at runtime. We may fail to find or to agree on access because of not yet available class
476        // loaders, or class loaders that will differ at runtime. In these cases, we don't want to
477        // affect the soundness of the code being compiled. Instead, the generated code runs "slow
478        // paths" that dynamically perform the verification and cause the behavior to be that akin
479        // to an interpreter.
480        error = VERIFY_ERROR_BAD_CLASS_SOFT;
481      } else {
482        // If we fail again at runtime, mark that this instruction would throw and force this
483        // method to be executed using the interpreter with checks.
484        have_pending_runtime_throw_failure_ = true;
485      }
486      break;
487      // Indication that verification should be retried at runtime.
488    case VERIFY_ERROR_BAD_CLASS_SOFT:
489      if (!allow_soft_failures_) {
490        have_pending_hard_failure_ = true;
491      }
492      break;
493      // Hard verification failures at compile time will still fail at runtime, so the class is
494      // marked as rejected to prevent it from being compiled.
495    case VERIFY_ERROR_BAD_CLASS_HARD: {
496      if (Runtime::Current()->IsCompiler()) {
497        ClassReference ref(dex_file_, dex_file_->GetIndexForClassDef(*class_def_));
498        Runtime::Current()->GetCompilerCallbacks()->ClassRejected(ref);
499      }
500      have_pending_hard_failure_ = true;
501      break;
502    }
503  }
504  failures_.push_back(error);
505  std::string location(StringPrintf("%s: [0x%X]", PrettyMethod(dex_method_idx_, *dex_file_).c_str(),
506                                    work_insn_idx_));
507  std::ostringstream* failure_message = new std::ostringstream(location);
508  failure_messages_.push_back(failure_message);
509  return *failure_message;
510}
511
512std::ostream& MethodVerifier::LogVerifyInfo() {
513  return info_messages_ << "VFY: " << PrettyMethod(dex_method_idx_, *dex_file_)
514                        << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : ";
515}
516
517void MethodVerifier::PrependToLastFailMessage(std::string prepend) {
518  size_t failure_num = failure_messages_.size();
519  DCHECK_NE(failure_num, 0U);
520  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
521  prepend += last_fail_message->str();
522  failure_messages_[failure_num - 1] = new std::ostringstream(prepend);
523  delete last_fail_message;
524}
525
526void MethodVerifier::AppendToLastFailMessage(std::string append) {
527  size_t failure_num = failure_messages_.size();
528  DCHECK_NE(failure_num, 0U);
529  std::ostringstream* last_fail_message = failure_messages_[failure_num - 1];
530  (*last_fail_message) << append;
531}
532
533bool MethodVerifier::ComputeWidthsAndCountOps() {
534  const uint16_t* insns = code_item_->insns_;
535  size_t insns_size = code_item_->insns_size_in_code_units_;
536  const Instruction* inst = Instruction::At(insns);
537  size_t new_instance_count = 0;
538  size_t monitor_enter_count = 0;
539  size_t dex_pc = 0;
540
541  while (dex_pc < insns_size) {
542    Instruction::Code opcode = inst->Opcode();
543    switch (opcode) {
544      case Instruction::APUT_OBJECT:
545      case Instruction::CHECK_CAST:
546        has_check_casts_ = true;
547        break;
548      case Instruction::INVOKE_VIRTUAL:
549      case Instruction::INVOKE_VIRTUAL_RANGE:
550      case Instruction::INVOKE_INTERFACE:
551      case Instruction::INVOKE_INTERFACE_RANGE:
552        has_virtual_or_interface_invokes_ = true;
553        break;
554      case Instruction::MONITOR_ENTER:
555        monitor_enter_count++;
556        break;
557      case Instruction::NEW_INSTANCE:
558        new_instance_count++;
559        break;
560      default:
561        break;
562    }
563    size_t inst_size = inst->SizeInCodeUnits();
564    insn_flags_[dex_pc].SetLengthInCodeUnits(inst_size);
565    dex_pc += inst_size;
566    inst = inst->Next();
567  }
568
569  if (dex_pc != insns_size) {
570    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected ("
571                                      << dex_pc << " vs. " << insns_size << ")";
572    return false;
573  }
574
575  new_instance_count_ = new_instance_count;
576  monitor_enter_count_ = monitor_enter_count;
577  return true;
578}
579
580bool MethodVerifier::ScanTryCatchBlocks() {
581  uint32_t tries_size = code_item_->tries_size_;
582  if (tries_size == 0) {
583    return true;
584  }
585  uint32_t insns_size = code_item_->insns_size_in_code_units_;
586  const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0);
587
588  for (uint32_t idx = 0; idx < tries_size; idx++) {
589    const DexFile::TryItem* try_item = &tries[idx];
590    uint32_t start = try_item->start_addr_;
591    uint32_t end = start + try_item->insn_count_;
592    if ((start >= end) || (start >= insns_size) || (end > insns_size)) {
593      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start
594                                        << " endAddr=" << end << " (size=" << insns_size << ")";
595      return false;
596    }
597    if (!insn_flags_[start].IsOpcode()) {
598      Fail(VERIFY_ERROR_BAD_CLASS_HARD)
599          << "'try' block starts inside an instruction (" << start << ")";
600      return false;
601    }
602    for (uint32_t dex_pc = start; dex_pc < end;
603        dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
604      insn_flags_[dex_pc].SetInTry();
605    }
606  }
607  // Iterate over each of the handlers to verify target addresses.
608  const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
609  uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
610  ClassLinker* linker = Runtime::Current()->GetClassLinker();
611  for (uint32_t idx = 0; idx < handlers_size; idx++) {
612    CatchHandlerIterator iterator(handlers_ptr);
613    for (; iterator.HasNext(); iterator.Next()) {
614      uint32_t dex_pc= iterator.GetHandlerAddress();
615      if (!insn_flags_[dex_pc].IsOpcode()) {
616        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
617            << "exception handler starts at bad address (" << dex_pc << ")";
618        return false;
619      }
620      insn_flags_[dex_pc].SetBranchTarget();
621      // Ensure exception types are resolved so that they don't need resolution to be delivered,
622      // unresolved exception types will be ignored by exception delivery
623      if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) {
624        mirror::Class* exception_type = linker->ResolveType(*dex_file_,
625                                                            iterator.GetHandlerTypeIndex(),
626                                                            *dex_cache_, *class_loader_);
627        if (exception_type == NULL) {
628          DCHECK(Thread::Current()->IsExceptionPending());
629          Thread::Current()->ClearException();
630        }
631      }
632    }
633    handlers_ptr = iterator.EndDataPointer();
634  }
635  return true;
636}
637
638bool MethodVerifier::VerifyInstructions() {
639  const Instruction* inst = Instruction::At(code_item_->insns_);
640
641  /* Flag the start of the method as a branch target, and a GC point due to stack overflow errors */
642  insn_flags_[0].SetBranchTarget();
643  insn_flags_[0].SetCompileTimeInfoPoint();
644
645  uint32_t insns_size = code_item_->insns_size_in_code_units_;
646  for (uint32_t dex_pc = 0; dex_pc < insns_size;) {
647    if (!VerifyInstruction(inst, dex_pc)) {
648      DCHECK_NE(failures_.size(), 0U);
649      return false;
650    }
651    /* Flag instructions that are garbage collection points */
652    // All invoke points are marked as "Throw" points already.
653    // We are relying on this to also count all the invokes as interesting.
654    if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow()) {
655      insn_flags_[dex_pc].SetCompileTimeInfoPoint();
656    } else if (inst->IsReturn()) {
657      insn_flags_[dex_pc].SetCompileTimeInfoPointAndReturn();
658    }
659    dex_pc += inst->SizeInCodeUnits();
660    inst = inst->Next();
661  }
662  return true;
663}
664
665bool MethodVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) {
666  bool result = true;
667  switch (inst->GetVerifyTypeArgumentA()) {
668    case Instruction::kVerifyRegA:
669      result = result && CheckRegisterIndex(inst->VRegA());
670      break;
671    case Instruction::kVerifyRegAWide:
672      result = result && CheckWideRegisterIndex(inst->VRegA());
673      break;
674  }
675  switch (inst->GetVerifyTypeArgumentB()) {
676    case Instruction::kVerifyRegB:
677      result = result && CheckRegisterIndex(inst->VRegB());
678      break;
679    case Instruction::kVerifyRegBField:
680      result = result && CheckFieldIndex(inst->VRegB());
681      break;
682    case Instruction::kVerifyRegBMethod:
683      result = result && CheckMethodIndex(inst->VRegB());
684      break;
685    case Instruction::kVerifyRegBNewInstance:
686      result = result && CheckNewInstance(inst->VRegB());
687      break;
688    case Instruction::kVerifyRegBString:
689      result = result && CheckStringIndex(inst->VRegB());
690      break;
691    case Instruction::kVerifyRegBType:
692      result = result && CheckTypeIndex(inst->VRegB());
693      break;
694    case Instruction::kVerifyRegBWide:
695      result = result && CheckWideRegisterIndex(inst->VRegB());
696      break;
697  }
698  switch (inst->GetVerifyTypeArgumentC()) {
699    case Instruction::kVerifyRegC:
700      result = result && CheckRegisterIndex(inst->VRegC());
701      break;
702    case Instruction::kVerifyRegCField:
703      result = result && CheckFieldIndex(inst->VRegC());
704      break;
705    case Instruction::kVerifyRegCNewArray:
706      result = result && CheckNewArray(inst->VRegC());
707      break;
708    case Instruction::kVerifyRegCType:
709      result = result && CheckTypeIndex(inst->VRegC());
710      break;
711    case Instruction::kVerifyRegCWide:
712      result = result && CheckWideRegisterIndex(inst->VRegC());
713      break;
714  }
715  switch (inst->GetVerifyExtraFlags()) {
716    case Instruction::kVerifyArrayData:
717      result = result && CheckArrayData(code_offset);
718      break;
719    case Instruction::kVerifyBranchTarget:
720      result = result && CheckBranchTarget(code_offset);
721      break;
722    case Instruction::kVerifySwitchTargets:
723      result = result && CheckSwitchTargets(code_offset);
724      break;
725    case Instruction::kVerifyVarArgNonZero:
726      // Fall-through.
727    case Instruction::kVerifyVarArg: {
728      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgNonZero && inst->VRegA() <= 0) {
729        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
730                                             "non-range invoke";
731        return false;
732      }
733      uint32_t args[Instruction::kMaxVarArgRegs];
734      inst->GetVarArgs(args);
735      result = result && CheckVarArgRegs(inst->VRegA(), args);
736      break;
737    }
738    case Instruction::kVerifyVarArgRangeNonZero:
739      // Fall-through.
740    case Instruction::kVerifyVarArgRange:
741      if (inst->GetVerifyExtraFlags() == Instruction::kVerifyVarArgRangeNonZero &&
742          inst->VRegA() <= 0) {
743        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << inst->VRegA() << ") in "
744                                             "range invoke";
745        return false;
746      }
747      result = result && CheckVarArgRangeRegs(inst->VRegA(), inst->VRegC());
748      break;
749    case Instruction::kVerifyError:
750      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name();
751      result = false;
752      break;
753  }
754  if (inst->GetVerifyIsRuntimeOnly() && Runtime::Current()->IsCompiler()) {
755    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "opcode only expected at runtime " << inst->Name();
756    result = false;
757  }
758  return result;
759}
760
761bool MethodVerifier::CheckRegisterIndex(uint32_t idx) {
762  if (idx >= code_item_->registers_size_) {
763    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= "
764                                      << code_item_->registers_size_ << ")";
765    return false;
766  }
767  return true;
768}
769
770bool MethodVerifier::CheckWideRegisterIndex(uint32_t idx) {
771  if (idx + 1 >= code_item_->registers_size_) {
772    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx
773                                      << "+1 >= " << code_item_->registers_size_ << ")";
774    return false;
775  }
776  return true;
777}
778
779bool MethodVerifier::CheckFieldIndex(uint32_t idx) {
780  if (idx >= dex_file_->GetHeader().field_ids_size_) {
781    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max "
782                                      << dex_file_->GetHeader().field_ids_size_ << ")";
783    return false;
784  }
785  return true;
786}
787
788bool MethodVerifier::CheckMethodIndex(uint32_t idx) {
789  if (idx >= dex_file_->GetHeader().method_ids_size_) {
790    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max "
791                                      << dex_file_->GetHeader().method_ids_size_ << ")";
792    return false;
793  }
794  return true;
795}
796
797bool MethodVerifier::CheckNewInstance(uint32_t idx) {
798  if (idx >= dex_file_->GetHeader().type_ids_size_) {
799    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
800                                      << dex_file_->GetHeader().type_ids_size_ << ")";
801    return false;
802  }
803  // We don't need the actual class, just a pointer to the class name.
804  const char* descriptor = dex_file_->StringByTypeIdx(idx);
805  if (descriptor[0] != 'L') {
806    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'";
807    return false;
808  }
809  return true;
810}
811
812bool MethodVerifier::CheckStringIndex(uint32_t idx) {
813  if (idx >= dex_file_->GetHeader().string_ids_size_) {
814    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max "
815                                      << dex_file_->GetHeader().string_ids_size_ << ")";
816    return false;
817  }
818  return true;
819}
820
821bool MethodVerifier::CheckTypeIndex(uint32_t idx) {
822  if (idx >= dex_file_->GetHeader().type_ids_size_) {
823    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
824                                      << dex_file_->GetHeader().type_ids_size_ << ")";
825    return false;
826  }
827  return true;
828}
829
830bool MethodVerifier::CheckNewArray(uint32_t idx) {
831  if (idx >= dex_file_->GetHeader().type_ids_size_) {
832    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max "
833                                      << dex_file_->GetHeader().type_ids_size_ << ")";
834    return false;
835  }
836  int bracket_count = 0;
837  const char* descriptor = dex_file_->StringByTypeIdx(idx);
838  const char* cp = descriptor;
839  while (*cp++ == '[') {
840    bracket_count++;
841  }
842  if (bracket_count == 0) {
843    /* The given class must be an array type. */
844    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
845        << "can't new-array class '" << descriptor << "' (not an array)";
846    return false;
847  } else if (bracket_count > 255) {
848    /* It is illegal to create an array of more than 255 dimensions. */
849    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
850        << "can't new-array class '" << descriptor << "' (exceeds limit)";
851    return false;
852  }
853  return true;
854}
855
856bool MethodVerifier::CheckArrayData(uint32_t cur_offset) {
857  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
858  const uint16_t* insns = code_item_->insns_ + cur_offset;
859  const uint16_t* array_data;
860  int32_t array_data_offset;
861
862  DCHECK_LT(cur_offset, insn_count);
863  /* make sure the start of the array data table is in range */
864  array_data_offset = insns[1] | (((int32_t) insns[2]) << 16);
865  if ((int32_t) cur_offset + array_data_offset < 0 ||
866      cur_offset + array_data_offset + 2 >= insn_count) {
867    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset
868                                      << ", data offset " << array_data_offset
869                                      << ", count " << insn_count;
870    return false;
871  }
872  /* offset to array data table is a relative branch-style offset */
873  array_data = insns + array_data_offset;
874  /* make sure the table is 32-bit aligned */
875  if ((reinterpret_cast<uintptr_t>(array_data) & 0x03) != 0) {
876    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset
877                                      << ", data offset " << array_data_offset;
878    return false;
879  }
880  uint32_t value_width = array_data[1];
881  uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]);
882  uint32_t table_size = 4 + (value_width * value_count + 1) / 2;
883  /* make sure the end of the switch is in range */
884  if (cur_offset + array_data_offset + table_size > insn_count) {
885    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset
886                                      << ", data offset " << array_data_offset << ", end "
887                                      << cur_offset + array_data_offset + table_size
888                                      << ", count " << insn_count;
889    return false;
890  }
891  return true;
892}
893
894bool MethodVerifier::CheckBranchTarget(uint32_t cur_offset) {
895  int32_t offset;
896  bool isConditional, selfOkay;
897  if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) {
898    return false;
899  }
900  if (!selfOkay && offset == 0) {
901    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at"
902                                      << reinterpret_cast<void*>(cur_offset);
903    return false;
904  }
905  // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime
906  // to have identical "wrap-around" behavior, but it's unwise to depend on that.
907  if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) {
908    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow "
909                                      << reinterpret_cast<void*>(cur_offset) << " +" << offset;
910    return false;
911  }
912  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
913  int32_t abs_offset = cur_offset + offset;
914  if (abs_offset < 0 ||
915      (uint32_t) abs_offset >= insn_count ||
916      !insn_flags_[abs_offset].IsOpcode()) {
917    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> "
918                                      << reinterpret_cast<void*>(abs_offset) << ") at "
919                                      << reinterpret_cast<void*>(cur_offset);
920    return false;
921  }
922  insn_flags_[abs_offset].SetBranchTarget();
923  return true;
924}
925
926bool MethodVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional,
927                                  bool* selfOkay) {
928  const uint16_t* insns = code_item_->insns_ + cur_offset;
929  *pConditional = false;
930  *selfOkay = false;
931  switch (*insns & 0xff) {
932    case Instruction::GOTO:
933      *pOffset = ((int16_t) *insns) >> 8;
934      break;
935    case Instruction::GOTO_32:
936      *pOffset = insns[1] | (((uint32_t) insns[2]) << 16);
937      *selfOkay = true;
938      break;
939    case Instruction::GOTO_16:
940      *pOffset = (int16_t) insns[1];
941      break;
942    case Instruction::IF_EQ:
943    case Instruction::IF_NE:
944    case Instruction::IF_LT:
945    case Instruction::IF_GE:
946    case Instruction::IF_GT:
947    case Instruction::IF_LE:
948    case Instruction::IF_EQZ:
949    case Instruction::IF_NEZ:
950    case Instruction::IF_LTZ:
951    case Instruction::IF_GEZ:
952    case Instruction::IF_GTZ:
953    case Instruction::IF_LEZ:
954      *pOffset = (int16_t) insns[1];
955      *pConditional = true;
956      break;
957    default:
958      return false;
959      break;
960  }
961  return true;
962}
963
964bool MethodVerifier::CheckSwitchTargets(uint32_t cur_offset) {
965  const uint32_t insn_count = code_item_->insns_size_in_code_units_;
966  DCHECK_LT(cur_offset, insn_count);
967  const uint16_t* insns = code_item_->insns_ + cur_offset;
968  /* make sure the start of the switch is in range */
969  int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16;
970  if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) {
971    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset
972                                      << ", switch offset " << switch_offset
973                                      << ", count " << insn_count;
974    return false;
975  }
976  /* offset to switch table is a relative branch-style offset */
977  const uint16_t* switch_insns = insns + switch_offset;
978  /* make sure the table is 32-bit aligned */
979  if ((reinterpret_cast<uintptr_t>(switch_insns) & 0x03) != 0) {
980    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset
981                                      << ", switch offset " << switch_offset;
982    return false;
983  }
984  uint32_t switch_count = switch_insns[1];
985  int32_t keys_offset, targets_offset;
986  uint16_t expected_signature;
987  if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
988    /* 0=sig, 1=count, 2/3=firstKey */
989    targets_offset = 4;
990    keys_offset = -1;
991    expected_signature = Instruction::kPackedSwitchSignature;
992  } else {
993    /* 0=sig, 1=count, 2..count*2 = keys */
994    keys_offset = 2;
995    targets_offset = 2 + 2 * switch_count;
996    expected_signature = Instruction::kSparseSwitchSignature;
997  }
998  uint32_t table_size = targets_offset + switch_count * 2;
999  if (switch_insns[0] != expected_signature) {
1000    Fail(VERIFY_ERROR_BAD_CLASS_HARD)
1001        << StringPrintf("wrong signature for switch table (%x, wanted %x)",
1002                        switch_insns[0], expected_signature);
1003    return false;
1004  }
1005  /* make sure the end of the switch is in range */
1006  if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) {
1007    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset
1008                                      << ", switch offset " << switch_offset
1009                                      << ", end " << (cur_offset + switch_offset + table_size)
1010                                      << ", count " << insn_count;
1011    return false;
1012  }
1013  /* for a sparse switch, verify the keys are in ascending order */
1014  if (keys_offset > 0 && switch_count > 1) {
1015    int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16);
1016    for (uint32_t targ = 1; targ < switch_count; targ++) {
1017      int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] |
1018                    (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16);
1019      if (key <= last_key) {
1020        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key
1021                                          << ", this=" << key;
1022        return false;
1023      }
1024      last_key = key;
1025    }
1026  }
1027  /* verify each switch target */
1028  for (uint32_t targ = 0; targ < switch_count; targ++) {
1029    int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] |
1030                     (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16);
1031    int32_t abs_offset = cur_offset + offset;
1032    if (abs_offset < 0 ||
1033        abs_offset >= (int32_t) insn_count ||
1034        !insn_flags_[abs_offset].IsOpcode()) {
1035      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset
1036                                        << " (-> " << reinterpret_cast<void*>(abs_offset) << ") at "
1037                                        << reinterpret_cast<void*>(cur_offset)
1038                                        << "[" << targ << "]";
1039      return false;
1040    }
1041    insn_flags_[abs_offset].SetBranchTarget();
1042  }
1043  return true;
1044}
1045
1046bool MethodVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) {
1047  if (vA > Instruction::kMaxVarArgRegs) {
1048    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)";
1049    return false;
1050  }
1051  uint16_t registers_size = code_item_->registers_size_;
1052  for (uint32_t idx = 0; idx < vA; idx++) {
1053    if (arg[idx] >= registers_size) {
1054      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx]
1055                                        << ") in non-range invoke (>= " << registers_size << ")";
1056      return false;
1057    }
1058  }
1059
1060  return true;
1061}
1062
1063bool MethodVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) {
1064  uint16_t registers_size = code_item_->registers_size_;
1065  // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of
1066  // integer overflow when adding them here.
1067  if (vA + vC > registers_size) {
1068    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC
1069                                      << " in range invoke (> " << registers_size << ")";
1070    return false;
1071  }
1072  return true;
1073}
1074
1075bool MethodVerifier::VerifyCodeFlow() {
1076  uint16_t registers_size = code_item_->registers_size_;
1077  uint32_t insns_size = code_item_->insns_size_in_code_units_;
1078
1079  if (registers_size * insns_size > 4*1024*1024) {
1080    LOG(WARNING) << "warning: method is huge (regs=" << registers_size
1081                 << " insns_size=" << insns_size << ")";
1082  }
1083  /* Create and initialize table holding register status */
1084  reg_table_.Init(kTrackCompilerInterestPoints,
1085                  insn_flags_.get(),
1086                  insns_size,
1087                  registers_size,
1088                  this);
1089
1090
1091  work_line_.reset(RegisterLine::Create(registers_size, this));
1092  saved_line_.reset(RegisterLine::Create(registers_size, this));
1093
1094  /* Initialize register types of method arguments. */
1095  if (!SetTypesFromSignature()) {
1096    DCHECK_NE(failures_.size(), 0U);
1097    std::string prepend("Bad signature in ");
1098    prepend += PrettyMethod(dex_method_idx_, *dex_file_);
1099    PrependToLastFailMessage(prepend);
1100    return false;
1101  }
1102  /* Perform code flow verification. */
1103  if (!CodeFlowVerifyMethod()) {
1104    DCHECK_NE(failures_.size(), 0U);
1105    return false;
1106  }
1107  return true;
1108}
1109
1110std::ostream& MethodVerifier::DumpFailures(std::ostream& os) {
1111  DCHECK_EQ(failures_.size(), failure_messages_.size());
1112  for (size_t i = 0; i < failures_.size(); ++i) {
1113      os << failure_messages_[i]->str() << "\n";
1114  }
1115  return os;
1116}
1117
1118extern "C" void MethodVerifierGdbDump(MethodVerifier* v)
1119    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
1120  v->Dump(std::cerr);
1121}
1122
1123void MethodVerifier::Dump(std::ostream& os) {
1124  if (code_item_ == NULL) {
1125    os << "Native method\n";
1126    return;
1127  }
1128  {
1129    os << "Register Types:\n";
1130    Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1131    std::ostream indent_os(&indent_filter);
1132    reg_types_.Dump(indent_os);
1133  }
1134  os << "Dumping instructions and register lines:\n";
1135  Indenter indent_filter(os.rdbuf(), kIndentChar, kIndentBy1Count);
1136  std::ostream indent_os(&indent_filter);
1137  const Instruction* inst = Instruction::At(code_item_->insns_);
1138  for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_;
1139      dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) {
1140    RegisterLine* reg_line = reg_table_.GetLine(dex_pc);
1141    if (reg_line != NULL) {
1142      indent_os << reg_line->Dump() << "\n";
1143    }
1144    indent_os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].ToString() << " ";
1145    const bool kDumpHexOfInstruction = false;
1146    if (kDumpHexOfInstruction) {
1147      indent_os << inst->DumpHex(5) << " ";
1148    }
1149    indent_os << inst->DumpString(dex_file_) << "\n";
1150    inst = inst->Next();
1151  }
1152}
1153
1154static bool IsPrimitiveDescriptor(char descriptor) {
1155  switch (descriptor) {
1156    case 'I':
1157    case 'C':
1158    case 'S':
1159    case 'B':
1160    case 'Z':
1161    case 'F':
1162    case 'D':
1163    case 'J':
1164      return true;
1165    default:
1166      return false;
1167  }
1168}
1169
1170bool MethodVerifier::SetTypesFromSignature() {
1171  RegisterLine* reg_line = reg_table_.GetLine(0);
1172  int arg_start = code_item_->registers_size_ - code_item_->ins_size_;
1173  size_t expected_args = code_item_->ins_size_;   /* long/double count as two */
1174
1175  DCHECK_GE(arg_start, 0);      /* should have been verified earlier */
1176  // Include the "this" pointer.
1177  size_t cur_arg = 0;
1178  if (!IsStatic()) {
1179    // If this is a constructor for a class other than java.lang.Object, mark the first ("this")
1180    // argument as uninitialized. This restricts field access until the superclass constructor is
1181    // called.
1182    RegType& declaring_class = GetDeclaringClass();
1183    if (IsConstructor() && !declaring_class.IsJavaLangObject()) {
1184      reg_line->SetRegisterType(arg_start + cur_arg,
1185                                reg_types_.UninitializedThisArgument(declaring_class));
1186    } else {
1187      reg_line->SetRegisterType(arg_start + cur_arg, declaring_class);
1188    }
1189    cur_arg++;
1190  }
1191
1192  const DexFile::ProtoId& proto_id =
1193      dex_file_->GetMethodPrototype(dex_file_->GetMethodId(dex_method_idx_));
1194  DexFileParameterIterator iterator(*dex_file_, proto_id);
1195
1196  for (; iterator.HasNext(); iterator.Next()) {
1197    const char* descriptor = iterator.GetDescriptor();
1198    if (descriptor == NULL) {
1199      LOG(FATAL) << "Null descriptor";
1200    }
1201    if (cur_arg >= expected_args) {
1202      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1203                                        << " args, found more (" << descriptor << ")";
1204      return false;
1205    }
1206    switch (descriptor[0]) {
1207      case 'L':
1208      case '[':
1209        // We assume that reference arguments are initialized. The only way it could be otherwise
1210        // (assuming the caller was verified) is if the current method is <init>, but in that case
1211        // it's effectively considered initialized the instant we reach here (in the sense that we
1212        // can return without doing anything or call virtual methods).
1213        {
1214          RegType& reg_type = ResolveClassAndCheckAccess(iterator.GetTypeIdx());
1215          if (!reg_type.IsNonZeroReferenceTypes()) {
1216            DCHECK(HasFailures());
1217            return false;
1218          }
1219          reg_line->SetRegisterType(arg_start + cur_arg, reg_type);
1220        }
1221        break;
1222      case 'Z':
1223        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Boolean());
1224        break;
1225      case 'C':
1226        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Char());
1227        break;
1228      case 'B':
1229        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Byte());
1230        break;
1231      case 'I':
1232        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Integer());
1233        break;
1234      case 'S':
1235        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Short());
1236        break;
1237      case 'F':
1238        reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Float());
1239        break;
1240      case 'J':
1241      case 'D': {
1242        if (cur_arg + 1 >= expected_args) {
1243          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1244              << " args, found more (" << descriptor << ")";
1245          return false;
1246        }
1247
1248        RegType& lo_half = descriptor[0] == 'J' ? reg_types_.LongLo() : reg_types_.DoubleLo();
1249        RegType& hi_half = descriptor[0] == 'J' ? reg_types_.LongHi() : reg_types_.DoubleHi();
1250        reg_line->SetRegisterTypeWide(arg_start + cur_arg, lo_half, hi_half);
1251        cur_arg++;
1252        break;
1253      }
1254      default:
1255        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '"
1256                                          << descriptor << "'";
1257        return false;
1258    }
1259    cur_arg++;
1260  }
1261  if (cur_arg != expected_args) {
1262    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args
1263                                      << " arguments, found " << cur_arg;
1264    return false;
1265  }
1266  const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id);
1267  // Validate return type. We don't do the type lookup; just want to make sure that it has the right
1268  // format. Only major difference from the method argument format is that 'V' is supported.
1269  bool result;
1270  if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') {
1271    result = descriptor[1] == '\0';
1272  } else if (descriptor[0] == '[') {  // single/multi-dimensional array of object/primitive
1273    size_t i = 0;
1274    do {
1275      i++;
1276    } while (descriptor[i] == '[');  // process leading [
1277    if (descriptor[i] == 'L') {  // object array
1278      do {
1279        i++;  // find closing ;
1280      } while (descriptor[i] != ';' && descriptor[i] != '\0');
1281      result = descriptor[i] == ';';
1282    } else {  // primitive array
1283      result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0';
1284    }
1285  } else if (descriptor[0] == 'L') {
1286    // could be more thorough here, but shouldn't be required
1287    size_t i = 0;
1288    do {
1289      i++;
1290    } while (descriptor[i] != ';' && descriptor[i] != '\0');
1291    result = descriptor[i] == ';';
1292  } else {
1293    result = false;
1294  }
1295  if (!result) {
1296    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '"
1297                                      << descriptor << "'";
1298  }
1299  return result;
1300}
1301
1302bool MethodVerifier::CodeFlowVerifyMethod() {
1303  const uint16_t* insns = code_item_->insns_;
1304  const uint32_t insns_size = code_item_->insns_size_in_code_units_;
1305
1306  /* Begin by marking the first instruction as "changed". */
1307  insn_flags_[0].SetChanged();
1308  uint32_t start_guess = 0;
1309
1310  /* Continue until no instructions are marked "changed". */
1311  while (true) {
1312    // Find the first marked one. Use "start_guess" as a way to find one quickly.
1313    uint32_t insn_idx = start_guess;
1314    for (; insn_idx < insns_size; insn_idx++) {
1315      if (insn_flags_[insn_idx].IsChanged())
1316        break;
1317    }
1318    if (insn_idx == insns_size) {
1319      if (start_guess != 0) {
1320        /* try again, starting from the top */
1321        start_guess = 0;
1322        continue;
1323      } else {
1324        /* all flags are clear */
1325        break;
1326      }
1327    }
1328    // We carry the working set of registers from instruction to instruction. If this address can
1329    // be the target of a branch (or throw) instruction, or if we're skipping around chasing
1330    // "changed" flags, we need to load the set of registers from the table.
1331    // Because we always prefer to continue on to the next instruction, we should never have a
1332    // situation where we have a stray "changed" flag set on an instruction that isn't a branch
1333    // target.
1334    work_insn_idx_ = insn_idx;
1335    if (insn_flags_[insn_idx].IsBranchTarget()) {
1336      work_line_->CopyFromLine(reg_table_.GetLine(insn_idx));
1337    } else if (kIsDebugBuild) {
1338      /*
1339       * Sanity check: retrieve the stored register line (assuming
1340       * a full table) and make sure it actually matches.
1341       */
1342      RegisterLine* register_line = reg_table_.GetLine(insn_idx);
1343      if (register_line != NULL) {
1344        if (work_line_->CompareLine(register_line) != 0) {
1345          Dump(std::cout);
1346          std::cout << info_messages_.str();
1347          LOG(FATAL) << "work_line diverged in " << PrettyMethod(dex_method_idx_, *dex_file_)
1348                     << "@" << reinterpret_cast<void*>(work_insn_idx_) << "\n"
1349                     << " work_line=" << *work_line_ << "\n"
1350                     << "  expected=" << *register_line;
1351        }
1352      }
1353    }
1354    if (!CodeFlowVerifyInstruction(&start_guess)) {
1355      std::string prepend(PrettyMethod(dex_method_idx_, *dex_file_));
1356      prepend += " failed to verify: ";
1357      PrependToLastFailMessage(prepend);
1358      return false;
1359    }
1360    /* Clear "changed" and mark as visited. */
1361    insn_flags_[insn_idx].SetVisited();
1362    insn_flags_[insn_idx].ClearChanged();
1363  }
1364
1365  if (gDebugVerify) {
1366    /*
1367     * Scan for dead code. There's nothing "evil" about dead code
1368     * (besides the wasted space), but it indicates a flaw somewhere
1369     * down the line, possibly in the verifier.
1370     *
1371     * If we've substituted "always throw" instructions into the stream,
1372     * we are almost certainly going to have some dead code.
1373     */
1374    int dead_start = -1;
1375    uint32_t insn_idx = 0;
1376    for (; insn_idx < insns_size; insn_idx += insn_flags_[insn_idx].GetLengthInCodeUnits()) {
1377      /*
1378       * Switch-statement data doesn't get "visited" by scanner. It
1379       * may or may not be preceded by a padding NOP (for alignment).
1380       */
1381      if (insns[insn_idx] == Instruction::kPackedSwitchSignature ||
1382          insns[insn_idx] == Instruction::kSparseSwitchSignature ||
1383          insns[insn_idx] == Instruction::kArrayDataSignature ||
1384          (insns[insn_idx] == Instruction::NOP && (insn_idx + 1 < insns_size) &&
1385           (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature ||
1386            insns[insn_idx + 1] == Instruction::kSparseSwitchSignature ||
1387            insns[insn_idx + 1] == Instruction::kArrayDataSignature))) {
1388        insn_flags_[insn_idx].SetVisited();
1389      }
1390
1391      if (!insn_flags_[insn_idx].IsVisited()) {
1392        if (dead_start < 0)
1393          dead_start = insn_idx;
1394      } else if (dead_start >= 0) {
1395        LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1396                        << "-" << reinterpret_cast<void*>(insn_idx - 1);
1397        dead_start = -1;
1398      }
1399    }
1400    if (dead_start >= 0) {
1401      LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start)
1402                      << "-" << reinterpret_cast<void*>(insn_idx - 1);
1403    }
1404    // To dump the state of the verify after a method, do something like:
1405    // if (PrettyMethod(dex_method_idx_, *dex_file_) ==
1406    //     "boolean java.lang.String.equals(java.lang.Object)") {
1407    //   LOG(INFO) << info_messages_.str();
1408    // }
1409  }
1410  return true;
1411}
1412
1413bool MethodVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) {
1414  // If we're doing FindLocksAtDexPc, check whether we're at the dex pc we care about.
1415  // We want the state _before_ the instruction, for the case where the dex pc we're
1416  // interested in is itself a monitor-enter instruction (which is a likely place
1417  // for a thread to be suspended).
1418  if (monitor_enter_dex_pcs_ != NULL && work_insn_idx_ == interesting_dex_pc_) {
1419    monitor_enter_dex_pcs_->clear();  // The new work line is more accurate than the previous one.
1420    for (size_t i = 0; i < work_line_->GetMonitorEnterCount(); ++i) {
1421      monitor_enter_dex_pcs_->push_back(work_line_->GetMonitorEnterDexPc(i));
1422    }
1423  }
1424
1425  /*
1426   * Once we finish decoding the instruction, we need to figure out where
1427   * we can go from here. There are three possible ways to transfer
1428   * control to another statement:
1429   *
1430   * (1) Continue to the next instruction. Applies to all but
1431   *     unconditional branches, method returns, and exception throws.
1432   * (2) Branch to one or more possible locations. Applies to branches
1433   *     and switch statements.
1434   * (3) Exception handlers. Applies to any instruction that can
1435   *     throw an exception that is handled by an encompassing "try"
1436   *     block.
1437   *
1438   * We can also return, in which case there is no successor instruction
1439   * from this point.
1440   *
1441   * The behavior can be determined from the opcode flags.
1442   */
1443  const uint16_t* insns = code_item_->insns_ + work_insn_idx_;
1444  const Instruction* inst = Instruction::At(insns);
1445  int opcode_flags = Instruction::FlagsOf(inst->Opcode());
1446
1447  int32_t branch_target = 0;
1448  bool just_set_result = false;
1449  if (gDebugVerify) {
1450    // Generate processing back trace to debug verifier
1451    LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << "\n"
1452                    << *work_line_.get() << "\n";
1453  }
1454
1455  /*
1456   * Make a copy of the previous register state. If the instruction
1457   * can throw an exception, we will copy/merge this into the "catch"
1458   * address rather than work_line, because we don't want the result
1459   * from the "successful" code path (e.g. a check-cast that "improves"
1460   * a type) to be visible to the exception handler.
1461   */
1462  if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags()->IsInTry()) {
1463    saved_line_->CopyFromLine(work_line_.get());
1464  } else if (kIsDebugBuild) {
1465    saved_line_->FillWithGarbage();
1466  }
1467
1468
1469  // We need to ensure the work line is consistent while performing validation. When we spot a
1470  // peephole pattern we compute a new line for either the fallthrough instruction or the
1471  // branch target.
1472  std::unique_ptr<RegisterLine> branch_line;
1473  std::unique_ptr<RegisterLine> fallthrough_line;
1474
1475  switch (inst->Opcode()) {
1476    case Instruction::NOP:
1477      /*
1478       * A "pure" NOP has no effect on anything. Data tables start with
1479       * a signature that looks like a NOP; if we see one of these in
1480       * the course of executing code then we have a problem.
1481       */
1482      if (inst->VRegA_10x() != 0) {
1483        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream";
1484      }
1485      break;
1486
1487    case Instruction::MOVE:
1488      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategory1nr);
1489      break;
1490    case Instruction::MOVE_FROM16:
1491      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategory1nr);
1492      break;
1493    case Instruction::MOVE_16:
1494      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategory1nr);
1495      break;
1496    case Instruction::MOVE_WIDE:
1497      work_line_->CopyRegister2(inst->VRegA_12x(), inst->VRegB_12x());
1498      break;
1499    case Instruction::MOVE_WIDE_FROM16:
1500      work_line_->CopyRegister2(inst->VRegA_22x(), inst->VRegB_22x());
1501      break;
1502    case Instruction::MOVE_WIDE_16:
1503      work_line_->CopyRegister2(inst->VRegA_32x(), inst->VRegB_32x());
1504      break;
1505    case Instruction::MOVE_OBJECT:
1506      work_line_->CopyRegister1(inst->VRegA_12x(), inst->VRegB_12x(), kTypeCategoryRef);
1507      break;
1508    case Instruction::MOVE_OBJECT_FROM16:
1509      work_line_->CopyRegister1(inst->VRegA_22x(), inst->VRegB_22x(), kTypeCategoryRef);
1510      break;
1511    case Instruction::MOVE_OBJECT_16:
1512      work_line_->CopyRegister1(inst->VRegA_32x(), inst->VRegB_32x(), kTypeCategoryRef);
1513      break;
1514
1515    /*
1516     * The move-result instructions copy data out of a "pseudo-register"
1517     * with the results from the last method invocation. In practice we
1518     * might want to hold the result in an actual CPU register, so the
1519     * Dalvik spec requires that these only appear immediately after an
1520     * invoke or filled-new-array.
1521     *
1522     * These calls invalidate the "result" register. (This is now
1523     * redundant with the reset done below, but it can make the debug info
1524     * easier to read in some cases.)
1525     */
1526    case Instruction::MOVE_RESULT:
1527      work_line_->CopyResultRegister1(inst->VRegA_11x(), false);
1528      break;
1529    case Instruction::MOVE_RESULT_WIDE:
1530      work_line_->CopyResultRegister2(inst->VRegA_11x());
1531      break;
1532    case Instruction::MOVE_RESULT_OBJECT:
1533      work_line_->CopyResultRegister1(inst->VRegA_11x(), true);
1534      break;
1535
1536    case Instruction::MOVE_EXCEPTION: {
1537      /*
1538       * This statement can only appear as the first instruction in an exception handler. We verify
1539       * that as part of extracting the exception type from the catch block list.
1540       */
1541      RegType& res_type = GetCaughtExceptionType();
1542      work_line_->SetRegisterType(inst->VRegA_11x(), res_type);
1543      break;
1544    }
1545    case Instruction::RETURN_VOID:
1546      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1547        if (!GetMethodReturnType().IsConflict()) {
1548          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected";
1549        }
1550      }
1551      break;
1552    case Instruction::RETURN:
1553      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1554        /* check the method signature */
1555        RegType& return_type = GetMethodReturnType();
1556        if (!return_type.IsCategory1Types()) {
1557          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type "
1558                                            << return_type;
1559        } else {
1560          // Compilers may generate synthetic functions that write byte values into boolean fields.
1561          // Also, it may use integer values for boolean, byte, short, and character return types.
1562          const uint32_t vregA = inst->VRegA_11x();
1563          RegType& src_type = work_line_->GetRegisterType(vregA);
1564          bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) ||
1565                          ((return_type.IsBoolean() || return_type.IsByte() ||
1566                           return_type.IsShort() || return_type.IsChar()) &&
1567                           src_type.IsInteger()));
1568          /* check the register contents */
1569          bool success =
1570              work_line_->VerifyRegisterType(vregA, use_src ? src_type : return_type);
1571          if (!success) {
1572            AppendToLastFailMessage(StringPrintf(" return-1nr on invalid register v%d", vregA));
1573          }
1574        }
1575      }
1576      break;
1577    case Instruction::RETURN_WIDE:
1578      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1579        /* check the method signature */
1580        RegType& return_type = GetMethodReturnType();
1581        if (!return_type.IsCategory2Types()) {
1582          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected";
1583        } else {
1584          /* check the register contents */
1585          const uint32_t vregA = inst->VRegA_11x();
1586          bool success = work_line_->VerifyRegisterType(vregA, return_type);
1587          if (!success) {
1588            AppendToLastFailMessage(StringPrintf(" return-wide on invalid register v%d", vregA));
1589          }
1590        }
1591      }
1592      break;
1593    case Instruction::RETURN_OBJECT:
1594      if (!IsConstructor() || work_line_->CheckConstructorReturn()) {
1595        RegType& return_type = GetMethodReturnType();
1596        if (!return_type.IsReferenceTypes()) {
1597          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected";
1598        } else {
1599          /* return_type is the *expected* return type, not register value */
1600          DCHECK(!return_type.IsZero());
1601          DCHECK(!return_type.IsUninitializedReference());
1602          const uint32_t vregA = inst->VRegA_11x();
1603          RegType& reg_type = work_line_->GetRegisterType(vregA);
1604          // Disallow returning uninitialized values and verify that the reference in vAA is an
1605          // instance of the "return_type"
1606          if (reg_type.IsUninitializedTypes()) {
1607            Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '"
1608                                              << reg_type << "'";
1609          } else if (!return_type.IsAssignableFrom(reg_type)) {
1610            if (reg_type.IsUnresolvedTypes() || return_type.IsUnresolvedTypes()) {
1611              Fail(VERIFY_ERROR_NO_CLASS) << " can't resolve returned type '" << return_type
1612                  << "' or '" << reg_type << "'";
1613            } else {
1614              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type
1615                  << "', but expected from declaration '" << return_type << "'";
1616            }
1617          }
1618        }
1619      }
1620      break;
1621
1622      /* could be boolean, int, float, or a null reference */
1623    case Instruction::CONST_4: {
1624      int32_t val = static_cast<int32_t>(inst->VRegB_11n() << 28) >> 28;
1625      work_line_->SetRegisterType(inst->VRegA_11n(),
1626                                  DetermineCat1Constant(val, need_precise_constants_));
1627      break;
1628    }
1629    case Instruction::CONST_16: {
1630      int16_t val = static_cast<int16_t>(inst->VRegB_21s());
1631      work_line_->SetRegisterType(inst->VRegA_21s(),
1632                                  DetermineCat1Constant(val, need_precise_constants_));
1633      break;
1634    }
1635    case Instruction::CONST: {
1636      int32_t val = inst->VRegB_31i();
1637      work_line_->SetRegisterType(inst->VRegA_31i(),
1638                                  DetermineCat1Constant(val, need_precise_constants_));
1639      break;
1640    }
1641    case Instruction::CONST_HIGH16: {
1642      int32_t val = static_cast<int32_t>(inst->VRegB_21h() << 16);
1643      work_line_->SetRegisterType(inst->VRegA_21h(),
1644                                  DetermineCat1Constant(val, need_precise_constants_));
1645      break;
1646    }
1647      /* could be long or double; resolved upon use */
1648    case Instruction::CONST_WIDE_16: {
1649      int64_t val = static_cast<int16_t>(inst->VRegB_21s());
1650      RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1651      RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1652      work_line_->SetRegisterTypeWide(inst->VRegA_21s(), lo, hi);
1653      break;
1654    }
1655    case Instruction::CONST_WIDE_32: {
1656      int64_t val = static_cast<int32_t>(inst->VRegB_31i());
1657      RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1658      RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1659      work_line_->SetRegisterTypeWide(inst->VRegA_31i(), lo, hi);
1660      break;
1661    }
1662    case Instruction::CONST_WIDE: {
1663      int64_t val = inst->VRegB_51l();
1664      RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1665      RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1666      work_line_->SetRegisterTypeWide(inst->VRegA_51l(), lo, hi);
1667      break;
1668    }
1669    case Instruction::CONST_WIDE_HIGH16: {
1670      int64_t val = static_cast<uint64_t>(inst->VRegB_21h()) << 48;
1671      RegType& lo = reg_types_.FromCat2ConstLo(static_cast<int32_t>(val), true);
1672      RegType& hi = reg_types_.FromCat2ConstHi(static_cast<int32_t>(val >> 32), true);
1673      work_line_->SetRegisterTypeWide(inst->VRegA_21h(), lo, hi);
1674      break;
1675    }
1676    case Instruction::CONST_STRING:
1677      work_line_->SetRegisterType(inst->VRegA_21c(), reg_types_.JavaLangString());
1678      break;
1679    case Instruction::CONST_STRING_JUMBO:
1680      work_line_->SetRegisterType(inst->VRegA_31c(), reg_types_.JavaLangString());
1681      break;
1682    case Instruction::CONST_CLASS: {
1683      // Get type from instruction if unresolved then we need an access check
1684      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1685      RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1686      // Register holds class, ie its type is class, on error it will hold Conflict.
1687      work_line_->SetRegisterType(inst->VRegA_21c(),
1688                                  res_type.IsConflict() ? res_type
1689                                                        : reg_types_.JavaLangClass(true));
1690      break;
1691    }
1692    case Instruction::MONITOR_ENTER:
1693      work_line_->PushMonitor(inst->VRegA_11x(), work_insn_idx_);
1694      break;
1695    case Instruction::MONITOR_EXIT:
1696      /*
1697       * monitor-exit instructions are odd. They can throw exceptions,
1698       * but when they do they act as if they succeeded and the PC is
1699       * pointing to the following instruction. (This behavior goes back
1700       * to the need to handle asynchronous exceptions, a now-deprecated
1701       * feature that Dalvik doesn't support.)
1702       *
1703       * In practice we don't need to worry about this. The only
1704       * exceptions that can be thrown from monitor-exit are for a
1705       * null reference and -exit without a matching -enter. If the
1706       * structured locking checks are working, the former would have
1707       * failed on the -enter instruction, and the latter is impossible.
1708       *
1709       * This is fortunate, because issue 3221411 prevents us from
1710       * chasing the "can throw" path when monitor verification is
1711       * enabled. If we can fully verify the locking we can ignore
1712       * some catch blocks (which will show up as "dead" code when
1713       * we skip them here); if we can't, then the code path could be
1714       * "live" so we still need to check it.
1715       */
1716      opcode_flags &= ~Instruction::kThrow;
1717      work_line_->PopMonitor(inst->VRegA_11x());
1718      break;
1719
1720    case Instruction::CHECK_CAST:
1721    case Instruction::INSTANCE_OF: {
1722      /*
1723       * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This
1724       * could be a "upcast" -- not expected, so we don't try to address it.)
1725       *
1726       * If it fails, an exception is thrown, which we deal with later by ignoring the update to
1727       * dec_insn.vA when branching to a handler.
1728       */
1729      const bool is_checkcast = (inst->Opcode() == Instruction::CHECK_CAST);
1730      const uint32_t type_idx = (is_checkcast) ? inst->VRegB_21c() : inst->VRegC_22c();
1731      RegType& res_type = ResolveClassAndCheckAccess(type_idx);
1732      if (res_type.IsConflict()) {
1733        // If this is a primitive type, fail HARD.
1734        mirror::Class* klass = (*dex_cache_)->GetResolvedType(type_idx);
1735        if (klass != nullptr && klass->IsPrimitive()) {
1736          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "using primitive type "
1737              << dex_file_->StringByTypeIdx(type_idx) << " in instanceof in "
1738              << GetDeclaringClass();
1739          break;
1740        }
1741
1742        DCHECK_NE(failures_.size(), 0U);
1743        if (!is_checkcast) {
1744          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1745        }
1746        break;  // bad class
1747      }
1748      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1749      uint32_t orig_type_reg = (is_checkcast) ? inst->VRegA_21c() : inst->VRegB_22c();
1750      RegType& orig_type = work_line_->GetRegisterType(orig_type_reg);
1751      if (!res_type.IsNonZeroReferenceTypes()) {
1752        if (is_checkcast) {
1753          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type;
1754        } else {
1755          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on unexpected class " << res_type;
1756        }
1757      } else if (!orig_type.IsReferenceTypes()) {
1758        if (is_checkcast) {
1759          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << orig_type_reg;
1760        } else {
1761          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance-of on non-reference in v" << orig_type_reg;
1762        }
1763      } else {
1764        if (is_checkcast) {
1765          work_line_->SetRegisterType(inst->VRegA_21c(), res_type);
1766        } else {
1767          work_line_->SetRegisterType(inst->VRegA_22c(), reg_types_.Boolean());
1768        }
1769      }
1770      break;
1771    }
1772    case Instruction::ARRAY_LENGTH: {
1773      RegType& res_type = work_line_->GetRegisterType(inst->VRegB_12x());
1774      if (res_type.IsReferenceTypes()) {
1775        if (!res_type.IsArrayTypes() && !res_type.IsZero()) {  // ie not an array or null
1776          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1777        } else {
1778          work_line_->SetRegisterType(inst->VRegA_12x(), reg_types_.Integer());
1779        }
1780      } else {
1781        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type;
1782      }
1783      break;
1784    }
1785    case Instruction::NEW_INSTANCE: {
1786      RegType& res_type = ResolveClassAndCheckAccess(inst->VRegB_21c());
1787      if (res_type.IsConflict()) {
1788        DCHECK_NE(failures_.size(), 0U);
1789        break;  // bad class
1790      }
1791      // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
1792      // can't create an instance of an interface or abstract class */
1793      if (!res_type.IsInstantiableTypes()) {
1794        Fail(VERIFY_ERROR_INSTANTIATION)
1795            << "new-instance on primitive, interface or abstract class" << res_type;
1796        // Soft failure so carry on to set register type.
1797      }
1798      RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_);
1799      // Any registers holding previous allocations from this address that have not yet been
1800      // initialized must be marked invalid.
1801      work_line_->MarkUninitRefsAsInvalid(uninit_type);
1802      // add the new uninitialized reference to the register state
1803      work_line_->SetRegisterType(inst->VRegA_21c(), uninit_type);
1804      break;
1805    }
1806    case Instruction::NEW_ARRAY:
1807      VerifyNewArray(inst, false, false);
1808      break;
1809    case Instruction::FILLED_NEW_ARRAY:
1810      VerifyNewArray(inst, true, false);
1811      just_set_result = true;  // Filled new array sets result register
1812      break;
1813    case Instruction::FILLED_NEW_ARRAY_RANGE:
1814      VerifyNewArray(inst, true, true);
1815      just_set_result = true;  // Filled new array range sets result register
1816      break;
1817    case Instruction::CMPL_FLOAT:
1818    case Instruction::CMPG_FLOAT:
1819      if (!work_line_->VerifyRegisterType(inst->VRegB_23x(), reg_types_.Float())) {
1820        break;
1821      }
1822      if (!work_line_->VerifyRegisterType(inst->VRegC_23x(), reg_types_.Float())) {
1823        break;
1824      }
1825      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1826      break;
1827    case Instruction::CMPL_DOUBLE:
1828    case Instruction::CMPG_DOUBLE:
1829      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.DoubleLo(),
1830                                              reg_types_.DoubleHi())) {
1831        break;
1832      }
1833      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.DoubleLo(),
1834                                              reg_types_.DoubleHi())) {
1835        break;
1836      }
1837      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1838      break;
1839    case Instruction::CMP_LONG:
1840      if (!work_line_->VerifyRegisterTypeWide(inst->VRegB_23x(), reg_types_.LongLo(),
1841                                              reg_types_.LongHi())) {
1842        break;
1843      }
1844      if (!work_line_->VerifyRegisterTypeWide(inst->VRegC_23x(), reg_types_.LongLo(),
1845                                              reg_types_.LongHi())) {
1846        break;
1847      }
1848      work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Integer());
1849      break;
1850    case Instruction::THROW: {
1851      RegType& res_type = work_line_->GetRegisterType(inst->VRegA_11x());
1852      if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(res_type)) {
1853        Fail(res_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS : VERIFY_ERROR_BAD_CLASS_SOFT)
1854            << "thrown class " << res_type << " not instanceof Throwable";
1855      }
1856      break;
1857    }
1858    case Instruction::GOTO:
1859    case Instruction::GOTO_16:
1860    case Instruction::GOTO_32:
1861      /* no effect on or use of registers */
1862      break;
1863
1864    case Instruction::PACKED_SWITCH:
1865    case Instruction::SPARSE_SWITCH:
1866      /* verify that vAA is an integer, or can be converted to one */
1867      work_line_->VerifyRegisterType(inst->VRegA_31t(), reg_types_.Integer());
1868      break;
1869
1870    case Instruction::FILL_ARRAY_DATA: {
1871      /* Similar to the verification done for APUT */
1872      RegType& array_type = work_line_->GetRegisterType(inst->VRegA_31t());
1873      /* array_type can be null if the reg type is Zero */
1874      if (!array_type.IsZero()) {
1875        if (!array_type.IsArrayTypes()) {
1876          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type "
1877                                            << array_type;
1878        } else {
1879          RegType& component_type = reg_types_.GetComponentType(array_type,
1880                                                                      class_loader_->Get());
1881          DCHECK(!component_type.IsConflict());
1882          if (component_type.IsNonZeroReferenceTypes()) {
1883            Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type "
1884                                              << component_type;
1885          } else {
1886            // Now verify if the element width in the table matches the element width declared in
1887            // the array
1888            const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16));
1889            if (array_data[0] != Instruction::kArrayDataSignature) {
1890              Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data";
1891            } else {
1892              size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType());
1893              // Since we don't compress the data in Dex, expect to see equal width of data stored
1894              // in the table and expected from the array class.
1895              if (array_data[1] != elem_width) {
1896                Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1]
1897                                                  << " vs " << elem_width << ")";
1898              }
1899            }
1900          }
1901        }
1902      }
1903      break;
1904    }
1905    case Instruction::IF_EQ:
1906    case Instruction::IF_NE: {
1907      RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1908      RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1909      bool mismatch = false;
1910      if (reg_type1.IsZero()) {  // zero then integral or reference expected
1911        mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes();
1912      } else if (reg_type1.IsReferenceTypes()) {  // both references?
1913        mismatch = !reg_type2.IsReferenceTypes();
1914      } else {  // both integral?
1915        mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes();
1916      }
1917      if (mismatch) {
1918        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << ","
1919                                          << reg_type2 << ") must both be references or integral";
1920      }
1921      break;
1922    }
1923    case Instruction::IF_LT:
1924    case Instruction::IF_GE:
1925    case Instruction::IF_GT:
1926    case Instruction::IF_LE: {
1927      RegType& reg_type1 = work_line_->GetRegisterType(inst->VRegA_22t());
1928      RegType& reg_type2 = work_line_->GetRegisterType(inst->VRegB_22t());
1929      if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) {
1930        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << ","
1931                                          << reg_type2 << ") must be integral";
1932      }
1933      break;
1934    }
1935    case Instruction::IF_EQZ:
1936    case Instruction::IF_NEZ: {
1937      RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
1938      if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) {
1939        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
1940                                          << " unexpected as arg to if-eqz/if-nez";
1941      }
1942
1943      // Find previous instruction - its existence is a precondition to peephole optimization.
1944      uint32_t instance_of_idx = 0;
1945      if (0 != work_insn_idx_) {
1946        instance_of_idx = work_insn_idx_ - 1;
1947        while (0 != instance_of_idx && !insn_flags_[instance_of_idx].IsOpcode()) {
1948          instance_of_idx--;
1949        }
1950        CHECK(insn_flags_[instance_of_idx].IsOpcode());
1951      } else {
1952        break;
1953      }
1954
1955      const Instruction* instance_of_inst = Instruction::At(code_item_->insns_ + instance_of_idx);
1956
1957      /* Check for peep-hole pattern of:
1958       *    ...;
1959       *    instance-of vX, vY, T;
1960       *    ifXXX vX, label ;
1961       *    ...;
1962       * label:
1963       *    ...;
1964       * and sharpen the type of vY to be type T.
1965       * Note, this pattern can't be if:
1966       *  - if there are other branches to this branch,
1967       *  - when vX == vY.
1968       */
1969      if (!CurrentInsnFlags()->IsBranchTarget() &&
1970          (Instruction::INSTANCE_OF == instance_of_inst->Opcode()) &&
1971          (inst->VRegA_21t() == instance_of_inst->VRegA_22c()) &&
1972          (instance_of_inst->VRegA_22c() != instance_of_inst->VRegB_22c())) {
1973        // Check the type of the instance-of is different than that of registers type, as if they
1974        // are the same there is no work to be done here. Check that the conversion is not to or
1975        // from an unresolved type as type information is imprecise. If the instance-of is to an
1976        // interface then ignore the type information as interfaces can only be treated as Objects
1977        // and we don't want to disallow field and other operations on the object. If the value
1978        // being instance-of checked against is known null (zero) then allow the optimization as
1979        // we didn't have type information. If the merge of the instance-of type with the original
1980        // type is assignable to the original then allow optimization. This check is performed to
1981        // ensure that subsequent merges don't lose type information - such as becoming an
1982        // interface from a class that would lose information relevant to field checks.
1983        RegType& orig_type = work_line_->GetRegisterType(instance_of_inst->VRegB_22c());
1984        RegType& cast_type = ResolveClassAndCheckAccess(instance_of_inst->VRegC_22c());
1985
1986        if (!orig_type.Equals(cast_type) &&
1987            !cast_type.IsUnresolvedTypes() && !orig_type.IsUnresolvedTypes() &&
1988            cast_type.HasClass() &&             // Could be conflict type, make sure it has a class.
1989            !cast_type.GetClass()->IsInterface() &&
1990            (orig_type.IsZero() ||
1991                orig_type.IsStrictlyAssignableFrom(cast_type.Merge(orig_type, &reg_types_)))) {
1992          RegisterLine* update_line = RegisterLine::Create(code_item_->registers_size_, this);
1993          if (inst->Opcode() == Instruction::IF_EQZ) {
1994            fallthrough_line.reset(update_line);
1995          } else {
1996            branch_line.reset(update_line);
1997          }
1998          update_line->CopyFromLine(work_line_.get());
1999          update_line->SetRegisterType(instance_of_inst->VRegB_22c(), cast_type);
2000          if (!insn_flags_[instance_of_idx].IsBranchTarget() && 0 != instance_of_idx) {
2001            // See if instance-of was preceded by a move-object operation, common due to the small
2002            // register encoding space of instance-of, and propagate type information to the source
2003            // of the move-object.
2004            uint32_t move_idx = instance_of_idx - 1;
2005            while (0 != move_idx && !insn_flags_[move_idx].IsOpcode()) {
2006              move_idx--;
2007            }
2008            CHECK(insn_flags_[move_idx].IsOpcode());
2009            const Instruction* move_inst = Instruction::At(code_item_->insns_ + move_idx);
2010            switch (move_inst->Opcode()) {
2011              case Instruction::MOVE_OBJECT:
2012                if (move_inst->VRegA_12x() == instance_of_inst->VRegB_22c()) {
2013                  update_line->SetRegisterType(move_inst->VRegB_12x(), cast_type);
2014                }
2015                break;
2016              case Instruction::MOVE_OBJECT_FROM16:
2017                if (move_inst->VRegA_22x() == instance_of_inst->VRegB_22c()) {
2018                  update_line->SetRegisterType(move_inst->VRegB_22x(), cast_type);
2019                }
2020                break;
2021              case Instruction::MOVE_OBJECT_16:
2022                if (move_inst->VRegA_32x() == instance_of_inst->VRegB_22c()) {
2023                  update_line->SetRegisterType(move_inst->VRegB_32x(), cast_type);
2024                }
2025                break;
2026              default:
2027                break;
2028            }
2029          }
2030        }
2031      }
2032
2033      break;
2034    }
2035    case Instruction::IF_LTZ:
2036    case Instruction::IF_GEZ:
2037    case Instruction::IF_GTZ:
2038    case Instruction::IF_LEZ: {
2039      RegType& reg_type = work_line_->GetRegisterType(inst->VRegA_21t());
2040      if (!reg_type.IsIntegralTypes()) {
2041        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type
2042                                          << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez";
2043      }
2044      break;
2045    }
2046    case Instruction::AGET_BOOLEAN:
2047      VerifyAGet(inst, reg_types_.Boolean(), true);
2048      break;
2049    case Instruction::AGET_BYTE:
2050      VerifyAGet(inst, reg_types_.Byte(), true);
2051      break;
2052    case Instruction::AGET_CHAR:
2053      VerifyAGet(inst, reg_types_.Char(), true);
2054      break;
2055    case Instruction::AGET_SHORT:
2056      VerifyAGet(inst, reg_types_.Short(), true);
2057      break;
2058    case Instruction::AGET:
2059      VerifyAGet(inst, reg_types_.Integer(), true);
2060      break;
2061    case Instruction::AGET_WIDE:
2062      VerifyAGet(inst, reg_types_.LongLo(), true);
2063      break;
2064    case Instruction::AGET_OBJECT:
2065      VerifyAGet(inst, reg_types_.JavaLangObject(false), false);
2066      break;
2067
2068    case Instruction::APUT_BOOLEAN:
2069      VerifyAPut(inst, reg_types_.Boolean(), true);
2070      break;
2071    case Instruction::APUT_BYTE:
2072      VerifyAPut(inst, reg_types_.Byte(), true);
2073      break;
2074    case Instruction::APUT_CHAR:
2075      VerifyAPut(inst, reg_types_.Char(), true);
2076      break;
2077    case Instruction::APUT_SHORT:
2078      VerifyAPut(inst, reg_types_.Short(), true);
2079      break;
2080    case Instruction::APUT:
2081      VerifyAPut(inst, reg_types_.Integer(), true);
2082      break;
2083    case Instruction::APUT_WIDE:
2084      VerifyAPut(inst, reg_types_.LongLo(), true);
2085      break;
2086    case Instruction::APUT_OBJECT:
2087      VerifyAPut(inst, reg_types_.JavaLangObject(false), false);
2088      break;
2089
2090    case Instruction::IGET_BOOLEAN:
2091      VerifyISGet(inst, reg_types_.Boolean(), true, false);
2092      break;
2093    case Instruction::IGET_BYTE:
2094      VerifyISGet(inst, reg_types_.Byte(), true, false);
2095      break;
2096    case Instruction::IGET_CHAR:
2097      VerifyISGet(inst, reg_types_.Char(), true, false);
2098      break;
2099    case Instruction::IGET_SHORT:
2100      VerifyISGet(inst, reg_types_.Short(), true, false);
2101      break;
2102    case Instruction::IGET:
2103      VerifyISGet(inst, reg_types_.Integer(), true, false);
2104      break;
2105    case Instruction::IGET_WIDE:
2106      VerifyISGet(inst, reg_types_.LongLo(), true, false);
2107      break;
2108    case Instruction::IGET_OBJECT:
2109      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, false);
2110      break;
2111
2112    case Instruction::IPUT_BOOLEAN:
2113      VerifyISPut(inst, reg_types_.Boolean(), true, false);
2114      break;
2115    case Instruction::IPUT_BYTE:
2116      VerifyISPut(inst, reg_types_.Byte(), true, false);
2117      break;
2118    case Instruction::IPUT_CHAR:
2119      VerifyISPut(inst, reg_types_.Char(), true, false);
2120      break;
2121    case Instruction::IPUT_SHORT:
2122      VerifyISPut(inst, reg_types_.Short(), true, false);
2123      break;
2124    case Instruction::IPUT:
2125      VerifyISPut(inst, reg_types_.Integer(), true, false);
2126      break;
2127    case Instruction::IPUT_WIDE:
2128      VerifyISPut(inst, reg_types_.LongLo(), true, false);
2129      break;
2130    case Instruction::IPUT_OBJECT:
2131      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, false);
2132      break;
2133
2134    case Instruction::SGET_BOOLEAN:
2135      VerifyISGet(inst, reg_types_.Boolean(), true, true);
2136      break;
2137    case Instruction::SGET_BYTE:
2138      VerifyISGet(inst, reg_types_.Byte(), true, true);
2139      break;
2140    case Instruction::SGET_CHAR:
2141      VerifyISGet(inst, reg_types_.Char(), true, true);
2142      break;
2143    case Instruction::SGET_SHORT:
2144      VerifyISGet(inst, reg_types_.Short(), true, true);
2145      break;
2146    case Instruction::SGET:
2147      VerifyISGet(inst, reg_types_.Integer(), true, true);
2148      break;
2149    case Instruction::SGET_WIDE:
2150      VerifyISGet(inst, reg_types_.LongLo(), true, true);
2151      break;
2152    case Instruction::SGET_OBJECT:
2153      VerifyISGet(inst, reg_types_.JavaLangObject(false), false, true);
2154      break;
2155
2156    case Instruction::SPUT_BOOLEAN:
2157      VerifyISPut(inst, reg_types_.Boolean(), true, true);
2158      break;
2159    case Instruction::SPUT_BYTE:
2160      VerifyISPut(inst, reg_types_.Byte(), true, true);
2161      break;
2162    case Instruction::SPUT_CHAR:
2163      VerifyISPut(inst, reg_types_.Char(), true, true);
2164      break;
2165    case Instruction::SPUT_SHORT:
2166      VerifyISPut(inst, reg_types_.Short(), true, true);
2167      break;
2168    case Instruction::SPUT:
2169      VerifyISPut(inst, reg_types_.Integer(), true, true);
2170      break;
2171    case Instruction::SPUT_WIDE:
2172      VerifyISPut(inst, reg_types_.LongLo(), true, true);
2173      break;
2174    case Instruction::SPUT_OBJECT:
2175      VerifyISPut(inst, reg_types_.JavaLangObject(false), false, true);
2176      break;
2177
2178    case Instruction::INVOKE_VIRTUAL:
2179    case Instruction::INVOKE_VIRTUAL_RANGE:
2180    case Instruction::INVOKE_SUPER:
2181    case Instruction::INVOKE_SUPER_RANGE: {
2182      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE ||
2183                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2184      bool is_super = (inst->Opcode() == Instruction::INVOKE_SUPER ||
2185                       inst->Opcode() == Instruction::INVOKE_SUPER_RANGE);
2186      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_VIRTUAL, is_range,
2187                                                              is_super);
2188      RegType* return_type = nullptr;
2189      if (called_method != nullptr) {
2190        Thread* self = Thread::Current();
2191        StackHandleScope<1> hs(self);
2192        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2193        MethodHelper mh(h_called_method);
2194        mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
2195        if (return_type_class != nullptr) {
2196          return_type = &reg_types_.FromClass(h_called_method->GetReturnTypeDescriptor(),
2197                                              return_type_class,
2198                                              return_type_class->CannotBeAssignedFromOtherTypes());
2199        } else {
2200          DCHECK(!can_load_classes_ || self->IsExceptionPending());
2201          self->ClearException();
2202        }
2203      }
2204      if (return_type == nullptr) {
2205        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2206        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2207        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2208        const char* descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2209        return_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
2210      }
2211      if (!return_type->IsLowHalf()) {
2212        work_line_->SetResultRegisterType(*return_type);
2213      } else {
2214        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2215      }
2216      just_set_result = true;
2217      break;
2218    }
2219    case Instruction::INVOKE_DIRECT:
2220    case Instruction::INVOKE_DIRECT_RANGE: {
2221      bool is_range = (inst->Opcode() == Instruction::INVOKE_DIRECT_RANGE);
2222      mirror::ArtMethod* called_method = VerifyInvocationArgs(inst, METHOD_DIRECT,
2223                                                                   is_range, false);
2224      const char* return_type_descriptor;
2225      bool is_constructor;
2226      RegType* return_type = nullptr;
2227      if (called_method == NULL) {
2228        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2229        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2230        is_constructor = strcmp("<init>", dex_file_->StringDataByIdx(method_id.name_idx_)) == 0;
2231        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2232        return_type_descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2233      } else {
2234        is_constructor = called_method->IsConstructor();
2235        return_type_descriptor = called_method->GetReturnTypeDescriptor();
2236        Thread* self = Thread::Current();
2237        StackHandleScope<1> hs(self);
2238        Handle<mirror::ArtMethod> h_called_method(hs.NewHandle(called_method));
2239        MethodHelper mh(h_called_method);
2240        mirror::Class* return_type_class = mh.GetReturnType(can_load_classes_);
2241        if (return_type_class != nullptr) {
2242          return_type = &reg_types_.FromClass(return_type_descriptor,
2243                                              return_type_class,
2244                                              return_type_class->CannotBeAssignedFromOtherTypes());
2245        } else {
2246          DCHECK(!can_load_classes_ || self->IsExceptionPending());
2247          self->ClearException();
2248        }
2249      }
2250      if (is_constructor) {
2251        /*
2252         * Some additional checks when calling a constructor. We know from the invocation arg check
2253         * that the "this" argument is an instance of called_method->klass. Now we further restrict
2254         * that to require that called_method->klass is the same as this->klass or this->super,
2255         * allowing the latter only if the "this" argument is the same as the "this" argument to
2256         * this method (which implies that we're in a constructor ourselves).
2257         */
2258        RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2259        if (this_type.IsConflict())  // failure.
2260          break;
2261
2262        /* no null refs allowed (?) */
2263        if (this_type.IsZero()) {
2264          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref";
2265          break;
2266        }
2267
2268        /* must be in same class or in superclass */
2269        // RegType& this_super_klass = this_type.GetSuperClass(&reg_types_);
2270        // TODO: re-enable constructor type verification
2271        // if (this_super_klass.IsConflict()) {
2272          // Unknown super class, fail so we re-check at runtime.
2273          // Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "super class unknown for '" << this_type << "'";
2274          // break;
2275        // }
2276
2277        /* arg must be an uninitialized reference */
2278        if (!this_type.IsUninitializedTypes()) {
2279          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference "
2280              << this_type;
2281          break;
2282        }
2283
2284        /*
2285         * Replace the uninitialized reference with an initialized one. We need to do this for all
2286         * registers that have the same object instance in them, not just the "this" register.
2287         */
2288        work_line_->MarkRefsAsInitialized(this_type);
2289      }
2290      if (return_type == nullptr) {
2291        return_type = &reg_types_.FromDescriptor(class_loader_->Get(),
2292                                                 return_type_descriptor, false);
2293      }
2294      if (!return_type->IsLowHalf()) {
2295        work_line_->SetResultRegisterType(*return_type);
2296      } else {
2297        work_line_->SetResultRegisterTypeWide(*return_type, return_type->HighHalf(&reg_types_));
2298      }
2299      just_set_result = true;
2300      break;
2301    }
2302    case Instruction::INVOKE_STATIC:
2303    case Instruction::INVOKE_STATIC_RANGE: {
2304        bool is_range = (inst->Opcode() == Instruction::INVOKE_STATIC_RANGE);
2305        mirror::ArtMethod* called_method = VerifyInvocationArgs(inst,
2306                                                                     METHOD_STATIC,
2307                                                                     is_range,
2308                                                                     false);
2309        const char* descriptor;
2310        if (called_method == NULL) {
2311          uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2312          const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2313          uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2314          descriptor = dex_file_->StringByTypeIdx(return_type_idx);
2315        } else {
2316          descriptor = called_method->GetReturnTypeDescriptor();
2317        }
2318        RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2319                                                               false);
2320        if (!return_type.IsLowHalf()) {
2321          work_line_->SetResultRegisterType(return_type);
2322        } else {
2323          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2324        }
2325        just_set_result = true;
2326      }
2327      break;
2328    case Instruction::INVOKE_INTERFACE:
2329    case Instruction::INVOKE_INTERFACE_RANGE: {
2330      bool is_range =  (inst->Opcode() == Instruction::INVOKE_INTERFACE_RANGE);
2331      mirror::ArtMethod* abs_method = VerifyInvocationArgs(inst,
2332                                                                METHOD_INTERFACE,
2333                                                                is_range,
2334                                                                false);
2335      if (abs_method != NULL) {
2336        mirror::Class* called_interface = abs_method->GetDeclaringClass();
2337        if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) {
2338          Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '"
2339              << PrettyMethod(abs_method) << "'";
2340          break;
2341        }
2342      }
2343      /* Get the type of the "this" arg, which should either be a sub-interface of called
2344       * interface or Object (see comments in RegType::JoinClass).
2345       */
2346      RegType& this_type = work_line_->GetInvocationThis(inst, is_range);
2347      if (this_type.IsZero()) {
2348        /* null pointer always passes (and always fails at runtime) */
2349      } else {
2350        if (this_type.IsUninitializedTypes()) {
2351          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object "
2352              << this_type;
2353          break;
2354        }
2355        // In the past we have tried to assert that "called_interface" is assignable
2356        // from "this_type.GetClass()", however, as we do an imprecise Join
2357        // (RegType::JoinClass) we don't have full information on what interfaces are
2358        // implemented by "this_type". For example, two classes may implement the same
2359        // interfaces and have a common parent that doesn't implement the interface. The
2360        // join will set "this_type" to the parent class and a test that this implements
2361        // the interface will incorrectly fail.
2362      }
2363      /*
2364       * We don't have an object instance, so we can't find the concrete method. However, all of
2365       * the type information is in the abstract method, so we're good.
2366       */
2367      const char* descriptor;
2368      if (abs_method == NULL) {
2369        uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
2370        const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
2371        uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_;
2372        descriptor =  dex_file_->StringByTypeIdx(return_type_idx);
2373      } else {
2374        descriptor = abs_method->GetReturnTypeDescriptor();
2375      }
2376      RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2377                                                             false);
2378      if (!return_type.IsLowHalf()) {
2379        work_line_->SetResultRegisterType(return_type);
2380      } else {
2381        work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2382      }
2383      just_set_result = true;
2384      break;
2385    }
2386    case Instruction::NEG_INT:
2387    case Instruction::NOT_INT:
2388      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Integer());
2389      break;
2390    case Instruction::NEG_LONG:
2391    case Instruction::NOT_LONG:
2392      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2393                                   reg_types_.LongLo(), reg_types_.LongHi());
2394      break;
2395    case Instruction::NEG_FLOAT:
2396      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Float());
2397      break;
2398    case Instruction::NEG_DOUBLE:
2399      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2400                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2401      break;
2402    case Instruction::INT_TO_LONG:
2403      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2404                                     reg_types_.Integer());
2405      break;
2406    case Instruction::INT_TO_FLOAT:
2407      work_line_->CheckUnaryOp(inst, reg_types_.Float(), reg_types_.Integer());
2408      break;
2409    case Instruction::INT_TO_DOUBLE:
2410      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2411                                     reg_types_.Integer());
2412      break;
2413    case Instruction::LONG_TO_INT:
2414      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2415                                       reg_types_.LongLo(), reg_types_.LongHi());
2416      break;
2417    case Instruction::LONG_TO_FLOAT:
2418      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2419                                       reg_types_.LongLo(), reg_types_.LongHi());
2420      break;
2421    case Instruction::LONG_TO_DOUBLE:
2422      work_line_->CheckUnaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2423                                   reg_types_.LongLo(), reg_types_.LongHi());
2424      break;
2425    case Instruction::FLOAT_TO_INT:
2426      work_line_->CheckUnaryOp(inst, reg_types_.Integer(), reg_types_.Float());
2427      break;
2428    case Instruction::FLOAT_TO_LONG:
2429      work_line_->CheckUnaryOpToWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2430                                     reg_types_.Float());
2431      break;
2432    case Instruction::FLOAT_TO_DOUBLE:
2433      work_line_->CheckUnaryOpToWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2434                                     reg_types_.Float());
2435      break;
2436    case Instruction::DOUBLE_TO_INT:
2437      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Integer(),
2438                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2439      break;
2440    case Instruction::DOUBLE_TO_LONG:
2441      work_line_->CheckUnaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2442                                   reg_types_.DoubleLo(), reg_types_.DoubleHi());
2443      break;
2444    case Instruction::DOUBLE_TO_FLOAT:
2445      work_line_->CheckUnaryOpFromWide(inst, reg_types_.Float(),
2446                                       reg_types_.DoubleLo(), reg_types_.DoubleHi());
2447      break;
2448    case Instruction::INT_TO_BYTE:
2449      work_line_->CheckUnaryOp(inst, reg_types_.Byte(), reg_types_.Integer());
2450      break;
2451    case Instruction::INT_TO_CHAR:
2452      work_line_->CheckUnaryOp(inst, reg_types_.Char(), reg_types_.Integer());
2453      break;
2454    case Instruction::INT_TO_SHORT:
2455      work_line_->CheckUnaryOp(inst, reg_types_.Short(), reg_types_.Integer());
2456      break;
2457
2458    case Instruction::ADD_INT:
2459    case Instruction::SUB_INT:
2460    case Instruction::MUL_INT:
2461    case Instruction::REM_INT:
2462    case Instruction::DIV_INT:
2463    case Instruction::SHL_INT:
2464    case Instruction::SHR_INT:
2465    case Instruction::USHR_INT:
2466      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2467                                reg_types_.Integer(), false);
2468      break;
2469    case Instruction::AND_INT:
2470    case Instruction::OR_INT:
2471    case Instruction::XOR_INT:
2472      work_line_->CheckBinaryOp(inst, reg_types_.Integer(), reg_types_.Integer(),
2473                                reg_types_.Integer(), true);
2474      break;
2475    case Instruction::ADD_LONG:
2476    case Instruction::SUB_LONG:
2477    case Instruction::MUL_LONG:
2478    case Instruction::DIV_LONG:
2479    case Instruction::REM_LONG:
2480    case Instruction::AND_LONG:
2481    case Instruction::OR_LONG:
2482    case Instruction::XOR_LONG:
2483      work_line_->CheckBinaryOpWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2484                                    reg_types_.LongLo(), reg_types_.LongHi(),
2485                                    reg_types_.LongLo(), reg_types_.LongHi());
2486      break;
2487    case Instruction::SHL_LONG:
2488    case Instruction::SHR_LONG:
2489    case Instruction::USHR_LONG:
2490      /* shift distance is Int, making these different from other binary operations */
2491      work_line_->CheckBinaryOpWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2492                                         reg_types_.Integer());
2493      break;
2494    case Instruction::ADD_FLOAT:
2495    case Instruction::SUB_FLOAT:
2496    case Instruction::MUL_FLOAT:
2497    case Instruction::DIV_FLOAT:
2498    case Instruction::REM_FLOAT:
2499      work_line_->CheckBinaryOp(inst,
2500                                reg_types_.Float(),
2501                                reg_types_.Float(),
2502                                reg_types_.Float(),
2503                                false);
2504      break;
2505    case Instruction::ADD_DOUBLE:
2506    case Instruction::SUB_DOUBLE:
2507    case Instruction::MUL_DOUBLE:
2508    case Instruction::DIV_DOUBLE:
2509    case Instruction::REM_DOUBLE:
2510      work_line_->CheckBinaryOpWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2511                                    reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2512                                    reg_types_.DoubleLo(), reg_types_.DoubleHi());
2513      break;
2514    case Instruction::ADD_INT_2ADDR:
2515    case Instruction::SUB_INT_2ADDR:
2516    case Instruction::MUL_INT_2ADDR:
2517    case Instruction::REM_INT_2ADDR:
2518    case Instruction::SHL_INT_2ADDR:
2519    case Instruction::SHR_INT_2ADDR:
2520    case Instruction::USHR_INT_2ADDR:
2521      work_line_->CheckBinaryOp2addr(inst,
2522                                     reg_types_.Integer(),
2523                                     reg_types_.Integer(),
2524                                     reg_types_.Integer(),
2525                                     false);
2526      break;
2527    case Instruction::AND_INT_2ADDR:
2528    case Instruction::OR_INT_2ADDR:
2529    case Instruction::XOR_INT_2ADDR:
2530      work_line_->CheckBinaryOp2addr(inst,
2531                                     reg_types_.Integer(),
2532                                     reg_types_.Integer(),
2533                                     reg_types_.Integer(),
2534                                     true);
2535      break;
2536    case Instruction::DIV_INT_2ADDR:
2537      work_line_->CheckBinaryOp2addr(inst,
2538                                     reg_types_.Integer(),
2539                                     reg_types_.Integer(),
2540                                     reg_types_.Integer(),
2541                                     false);
2542      break;
2543    case Instruction::ADD_LONG_2ADDR:
2544    case Instruction::SUB_LONG_2ADDR:
2545    case Instruction::MUL_LONG_2ADDR:
2546    case Instruction::DIV_LONG_2ADDR:
2547    case Instruction::REM_LONG_2ADDR:
2548    case Instruction::AND_LONG_2ADDR:
2549    case Instruction::OR_LONG_2ADDR:
2550    case Instruction::XOR_LONG_2ADDR:
2551      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2552                                         reg_types_.LongLo(), reg_types_.LongHi(),
2553                                         reg_types_.LongLo(), reg_types_.LongHi());
2554      break;
2555    case Instruction::SHL_LONG_2ADDR:
2556    case Instruction::SHR_LONG_2ADDR:
2557    case Instruction::USHR_LONG_2ADDR:
2558      work_line_->CheckBinaryOp2addrWideShift(inst, reg_types_.LongLo(), reg_types_.LongHi(),
2559                                              reg_types_.Integer());
2560      break;
2561    case Instruction::ADD_FLOAT_2ADDR:
2562    case Instruction::SUB_FLOAT_2ADDR:
2563    case Instruction::MUL_FLOAT_2ADDR:
2564    case Instruction::DIV_FLOAT_2ADDR:
2565    case Instruction::REM_FLOAT_2ADDR:
2566      work_line_->CheckBinaryOp2addr(inst,
2567                                     reg_types_.Float(),
2568                                     reg_types_.Float(),
2569                                     reg_types_.Float(),
2570                                     false);
2571      break;
2572    case Instruction::ADD_DOUBLE_2ADDR:
2573    case Instruction::SUB_DOUBLE_2ADDR:
2574    case Instruction::MUL_DOUBLE_2ADDR:
2575    case Instruction::DIV_DOUBLE_2ADDR:
2576    case Instruction::REM_DOUBLE_2ADDR:
2577      work_line_->CheckBinaryOp2addrWide(inst, reg_types_.DoubleLo(), reg_types_.DoubleHi(),
2578                                         reg_types_.DoubleLo(),  reg_types_.DoubleHi(),
2579                                         reg_types_.DoubleLo(), reg_types_.DoubleHi());
2580      break;
2581    case Instruction::ADD_INT_LIT16:
2582    case Instruction::RSUB_INT:
2583    case Instruction::MUL_INT_LIT16:
2584    case Instruction::DIV_INT_LIT16:
2585    case Instruction::REM_INT_LIT16:
2586      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, true);
2587      break;
2588    case Instruction::AND_INT_LIT16:
2589    case Instruction::OR_INT_LIT16:
2590    case Instruction::XOR_INT_LIT16:
2591      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, true);
2592      break;
2593    case Instruction::ADD_INT_LIT8:
2594    case Instruction::RSUB_INT_LIT8:
2595    case Instruction::MUL_INT_LIT8:
2596    case Instruction::DIV_INT_LIT8:
2597    case Instruction::REM_INT_LIT8:
2598    case Instruction::SHL_INT_LIT8:
2599    case Instruction::SHR_INT_LIT8:
2600    case Instruction::USHR_INT_LIT8:
2601      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), false, false);
2602      break;
2603    case Instruction::AND_INT_LIT8:
2604    case Instruction::OR_INT_LIT8:
2605    case Instruction::XOR_INT_LIT8:
2606      work_line_->CheckLiteralOp(inst, reg_types_.Integer(), reg_types_.Integer(), true, false);
2607      break;
2608
2609    // Special instructions.
2610    case Instruction::RETURN_VOID_BARRIER:
2611      if (!IsConstructor() || IsStatic()) {
2612          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void-barrier not expected";
2613      }
2614      break;
2615    // Note: the following instructions encode offsets derived from class linking.
2616    // As such they use Class*/Field*/AbstractMethod* as these offsets only have
2617    // meaning if the class linking and resolution were successful.
2618    case Instruction::IGET_QUICK:
2619      VerifyIGetQuick(inst, reg_types_.Integer(), true);
2620      break;
2621    case Instruction::IGET_WIDE_QUICK:
2622      VerifyIGetQuick(inst, reg_types_.LongLo(), true);
2623      break;
2624    case Instruction::IGET_OBJECT_QUICK:
2625      VerifyIGetQuick(inst, reg_types_.JavaLangObject(false), false);
2626      break;
2627    case Instruction::IPUT_QUICK:
2628      VerifyIPutQuick(inst, reg_types_.Integer(), true);
2629      break;
2630    case Instruction::IPUT_WIDE_QUICK:
2631      VerifyIPutQuick(inst, reg_types_.LongLo(), true);
2632      break;
2633    case Instruction::IPUT_OBJECT_QUICK:
2634      VerifyIPutQuick(inst, reg_types_.JavaLangObject(false), false);
2635      break;
2636    case Instruction::INVOKE_VIRTUAL_QUICK:
2637    case Instruction::INVOKE_VIRTUAL_RANGE_QUICK: {
2638      bool is_range = (inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
2639      mirror::ArtMethod* called_method = VerifyInvokeVirtualQuickArgs(inst, is_range);
2640      if (called_method != NULL) {
2641        const char* descriptor = called_method->GetReturnTypeDescriptor();
2642        RegType& return_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor,
2643                                                               false);
2644        if (!return_type.IsLowHalf()) {
2645          work_line_->SetResultRegisterType(return_type);
2646        } else {
2647          work_line_->SetResultRegisterTypeWide(return_type, return_type.HighHalf(&reg_types_));
2648        }
2649        just_set_result = true;
2650      }
2651      break;
2652    }
2653
2654    /* These should never appear during verification. */
2655    case Instruction::UNUSED_3E:
2656    case Instruction::UNUSED_3F:
2657    case Instruction::UNUSED_40:
2658    case Instruction::UNUSED_41:
2659    case Instruction::UNUSED_42:
2660    case Instruction::UNUSED_43:
2661    case Instruction::UNUSED_79:
2662    case Instruction::UNUSED_7A:
2663    case Instruction::UNUSED_EB:
2664    case Instruction::UNUSED_EC:
2665    case Instruction::UNUSED_ED:
2666    case Instruction::UNUSED_EE:
2667    case Instruction::UNUSED_EF:
2668    case Instruction::UNUSED_F0:
2669    case Instruction::UNUSED_F1:
2670    case Instruction::UNUSED_F2:
2671    case Instruction::UNUSED_F3:
2672    case Instruction::UNUSED_F4:
2673    case Instruction::UNUSED_F5:
2674    case Instruction::UNUSED_F6:
2675    case Instruction::UNUSED_F7:
2676    case Instruction::UNUSED_F8:
2677    case Instruction::UNUSED_F9:
2678    case Instruction::UNUSED_FA:
2679    case Instruction::UNUSED_FB:
2680    case Instruction::UNUSED_FC:
2681    case Instruction::UNUSED_FD:
2682    case Instruction::UNUSED_FE:
2683    case Instruction::UNUSED_FF:
2684      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_);
2685      break;
2686
2687    /*
2688     * DO NOT add a "default" clause here. Without it the compiler will
2689     * complain if an instruction is missing (which is desirable).
2690     */
2691  }  // end - switch (dec_insn.opcode)
2692
2693  if (have_pending_hard_failure_) {
2694    if (Runtime::Current()->IsCompiler()) {
2695      /* When compiling, check that the last failure is a hard failure */
2696      CHECK_EQ(failures_[failures_.size() - 1], VERIFY_ERROR_BAD_CLASS_HARD);
2697    }
2698    /* immediate failure, reject class */
2699    info_messages_ << "Rejecting opcode " << inst->DumpString(dex_file_);
2700    return false;
2701  } else if (have_pending_runtime_throw_failure_) {
2702    /* checking interpreter will throw, mark following code as unreachable */
2703    opcode_flags = Instruction::kThrow;
2704  }
2705  /*
2706   * If we didn't just set the result register, clear it out. This ensures that you can only use
2707   * "move-result" immediately after the result is set. (We could check this statically, but it's
2708   * not expensive and it makes our debugging output cleaner.)
2709   */
2710  if (!just_set_result) {
2711    work_line_->SetResultTypeToUnknown();
2712  }
2713
2714
2715
2716  /*
2717   * Handle "branch". Tag the branch target.
2718   *
2719   * NOTE: instructions like Instruction::EQZ provide information about the
2720   * state of the register when the branch is taken or not taken. For example,
2721   * somebody could get a reference field, check it for zero, and if the
2722   * branch is taken immediately store that register in a boolean field
2723   * since the value is known to be zero. We do not currently account for
2724   * that, and will reject the code.
2725   *
2726   * TODO: avoid re-fetching the branch target
2727   */
2728  if ((opcode_flags & Instruction::kBranch) != 0) {
2729    bool isConditional, selfOkay;
2730    if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) {
2731      /* should never happen after static verification */
2732      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch";
2733      return false;
2734    }
2735    DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0);
2736    if (!CheckNotMoveException(code_item_->insns_, work_insn_idx_ + branch_target)) {
2737      return false;
2738    }
2739    /* update branch target, set "changed" if appropriate */
2740    if (NULL != branch_line.get()) {
2741      if (!UpdateRegisters(work_insn_idx_ + branch_target, branch_line.get(), false)) {
2742        return false;
2743      }
2744    } else {
2745      if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get(), false)) {
2746        return false;
2747      }
2748    }
2749  }
2750
2751  /*
2752   * Handle "switch". Tag all possible branch targets.
2753   *
2754   * We've already verified that the table is structurally sound, so we
2755   * just need to walk through and tag the targets.
2756   */
2757  if ((opcode_flags & Instruction::kSwitch) != 0) {
2758    int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16);
2759    const uint16_t* switch_insns = insns + offset_to_switch;
2760    int switch_count = switch_insns[1];
2761    int offset_to_targets, targ;
2762
2763    if ((*insns & 0xff) == Instruction::PACKED_SWITCH) {
2764      /* 0 = sig, 1 = count, 2/3 = first key */
2765      offset_to_targets = 4;
2766    } else {
2767      /* 0 = sig, 1 = count, 2..count * 2 = keys */
2768      DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH);
2769      offset_to_targets = 2 + 2 * switch_count;
2770    }
2771
2772    /* verify each switch target */
2773    for (targ = 0; targ < switch_count; targ++) {
2774      int offset;
2775      uint32_t abs_offset;
2776
2777      /* offsets are 32-bit, and only partly endian-swapped */
2778      offset = switch_insns[offset_to_targets + targ * 2] |
2779         (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16);
2780      abs_offset = work_insn_idx_ + offset;
2781      DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_);
2782      if (!CheckNotMoveException(code_item_->insns_, abs_offset)) {
2783        return false;
2784      }
2785      if (!UpdateRegisters(abs_offset, work_line_.get(), false)) {
2786        return false;
2787      }
2788    }
2789  }
2790
2791  /*
2792   * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a
2793   * "try" block when they throw, control transfers out of the method.)
2794   */
2795  if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) {
2796    bool has_catch_all_handler = false;
2797    CatchHandlerIterator iterator(*code_item_, work_insn_idx_);
2798
2799    // Need the linker to try and resolve the handled class to check if it's Throwable.
2800    ClassLinker* linker = Runtime::Current()->GetClassLinker();
2801
2802    for (; iterator.HasNext(); iterator.Next()) {
2803      uint16_t handler_type_idx = iterator.GetHandlerTypeIndex();
2804      if (handler_type_idx == DexFile::kDexNoIndex16) {
2805        has_catch_all_handler = true;
2806      } else {
2807        // It is also a catch-all if it is java.lang.Throwable.
2808        mirror::Class* klass = linker->ResolveType(*dex_file_, handler_type_idx, *dex_cache_,
2809                                                   *class_loader_);
2810        if (klass != nullptr) {
2811          if (klass == mirror::Throwable::GetJavaLangThrowable()) {
2812            has_catch_all_handler = true;
2813          }
2814        } else {
2815          // Clear exception.
2816          Thread* self = Thread::Current();
2817          DCHECK(self->IsExceptionPending());
2818          self->ClearException();
2819        }
2820      }
2821      /*
2822       * Merge registers into the "catch" block. We want to use the "savedRegs" rather than
2823       * "work_regs", because at runtime the exception will be thrown before the instruction
2824       * modifies any registers.
2825       */
2826      if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get(), false)) {
2827        return false;
2828      }
2829    }
2830
2831    /*
2832     * If the monitor stack depth is nonzero, there must be a "catch all" handler for this
2833     * instruction. This does apply to monitor-exit because of async exception handling.
2834     */
2835    if (work_line_->MonitorStackDepth() > 0 && !has_catch_all_handler) {
2836      /*
2837       * The state in work_line reflects the post-execution state. If the current instruction is a
2838       * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws,
2839       * it will do so before grabbing the lock).
2840       */
2841      if (inst->Opcode() != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) {
2842        Fail(VERIFY_ERROR_BAD_CLASS_HARD)
2843            << "expected to be within a catch-all for an instruction where a monitor is held";
2844        return false;
2845      }
2846    }
2847  }
2848
2849  /* Handle "continue". Tag the next consecutive instruction.
2850   *  Note: Keep the code handling "continue" case below the "branch" and "switch" cases,
2851   *        because it changes work_line_ when performing peephole optimization
2852   *        and this change should not be used in those cases.
2853   */
2854  if ((opcode_flags & Instruction::kContinue) != 0) {
2855    uint32_t next_insn_idx = work_insn_idx_ + CurrentInsnFlags()->GetLengthInCodeUnits();
2856    if (next_insn_idx >= code_item_->insns_size_in_code_units_) {
2857      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area";
2858      return false;
2859    }
2860    // The only way to get to a move-exception instruction is to get thrown there. Make sure the
2861    // next instruction isn't one.
2862    if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) {
2863      return false;
2864    }
2865    if (NULL != fallthrough_line.get()) {
2866      // Make workline consistent with fallthrough computed from peephole optimization.
2867      work_line_->CopyFromLine(fallthrough_line.get());
2868    }
2869    if (insn_flags_[next_insn_idx].IsReturn()) {
2870      // For returns we only care about the operand to the return, all other registers are dead.
2871      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn_idx);
2872      Instruction::Code opcode = ret_inst->Opcode();
2873      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
2874        work_line_->MarkAllRegistersAsConflicts();
2875      } else {
2876        if (opcode == Instruction::RETURN_WIDE) {
2877          work_line_->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
2878        } else {
2879          work_line_->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
2880        }
2881      }
2882    }
2883    RegisterLine* next_line = reg_table_.GetLine(next_insn_idx);
2884    if (next_line != NULL) {
2885      // Merge registers into what we have for the next instruction, and set the "changed" flag if
2886      // needed. If the merge changes the state of the registers then the work line will be
2887      // updated.
2888      if (!UpdateRegisters(next_insn_idx, work_line_.get(), true)) {
2889        return false;
2890      }
2891    } else {
2892      /*
2893       * We're not recording register data for the next instruction, so we don't know what the
2894       * prior state was. We have to assume that something has changed and re-evaluate it.
2895       */
2896      insn_flags_[next_insn_idx].SetChanged();
2897    }
2898  }
2899
2900  /* If we're returning from the method, make sure monitor stack is empty. */
2901  if ((opcode_flags & Instruction::kReturn) != 0) {
2902    if (!work_line_->VerifyMonitorStackEmpty()) {
2903      return false;
2904    }
2905  }
2906
2907  /*
2908   * Update start_guess. Advance to the next instruction of that's
2909   * possible, otherwise use the branch target if one was found. If
2910   * neither of those exists we're in a return or throw; leave start_guess
2911   * alone and let the caller sort it out.
2912   */
2913  if ((opcode_flags & Instruction::kContinue) != 0) {
2914    *start_guess = work_insn_idx_ + insn_flags_[work_insn_idx_].GetLengthInCodeUnits();
2915  } else if ((opcode_flags & Instruction::kBranch) != 0) {
2916    /* we're still okay if branch_target is zero */
2917    *start_guess = work_insn_idx_ + branch_target;
2918  }
2919
2920  DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_);
2921  DCHECK(insn_flags_[*start_guess].IsOpcode());
2922
2923  return true;
2924}  // NOLINT(readability/fn_size)
2925
2926RegType& MethodVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) {
2927  const char* descriptor = dex_file_->StringByTypeIdx(class_idx);
2928  RegType& referrer = GetDeclaringClass();
2929  mirror::Class* klass = (*dex_cache_)->GetResolvedType(class_idx);
2930  RegType& result =
2931      klass != NULL ? reg_types_.FromClass(descriptor, klass,
2932                                           klass->CannotBeAssignedFromOtherTypes())
2933                    : reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
2934  if (result.IsConflict()) {
2935    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing broken descriptor '" << descriptor
2936        << "' in " << referrer;
2937    return result;
2938  }
2939  if (klass == NULL && !result.IsUnresolvedTypes()) {
2940    (*dex_cache_)->SetResolvedType(class_idx, result.GetClass());
2941  }
2942  // Check if access is allowed. Unresolved types use xxxWithAccessCheck to
2943  // check at runtime if access is allowed and so pass here. If result is
2944  // primitive, skip the access check.
2945  if (result.IsNonZeroReferenceTypes() && !result.IsUnresolvedTypes() &&
2946      !referrer.IsUnresolvedTypes() && !referrer.CanAccess(result)) {
2947    Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '"
2948                                    << referrer << "' -> '" << result << "'";
2949  }
2950  return result;
2951}
2952
2953RegType& MethodVerifier::GetCaughtExceptionType() {
2954  RegType* common_super = NULL;
2955  if (code_item_->tries_size_ != 0) {
2956    const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0);
2957    uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr);
2958    for (uint32_t i = 0; i < handlers_size; i++) {
2959      CatchHandlerIterator iterator(handlers_ptr);
2960      for (; iterator.HasNext(); iterator.Next()) {
2961        if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) {
2962          if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) {
2963            common_super = &reg_types_.JavaLangThrowable(false);
2964          } else {
2965            RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex());
2966            if (!reg_types_.JavaLangThrowable(false).IsAssignableFrom(exception)) {
2967              if (exception.IsUnresolvedTypes()) {
2968                // We don't know enough about the type. Fail here and let runtime handle it.
2969                Fail(VERIFY_ERROR_NO_CLASS) << "unresolved exception class " << exception;
2970                return exception;
2971              } else {
2972                Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception;
2973                return reg_types_.Conflict();
2974              }
2975            } else if (common_super == nullptr) {
2976              common_super = &exception;
2977            } else if (common_super->Equals(exception)) {
2978              // odd case, but nothing to do
2979            } else {
2980              common_super = &common_super->Merge(exception, &reg_types_);
2981              CHECK(reg_types_.JavaLangThrowable(false).IsAssignableFrom(*common_super));
2982            }
2983          }
2984        }
2985      }
2986      handlers_ptr = iterator.EndDataPointer();
2987    }
2988  }
2989  if (common_super == NULL) {
2990    /* no catch blocks, or no catches with classes we can find */
2991    Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler";
2992    return reg_types_.Conflict();
2993  }
2994  return *common_super;
2995}
2996
2997mirror::ArtMethod* MethodVerifier::ResolveMethodAndCheckAccess(uint32_t dex_method_idx,
2998                                                               MethodType method_type) {
2999  const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx);
3000  RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_);
3001  if (klass_type.IsConflict()) {
3002    std::string append(" in attempt to access method ");
3003    append += dex_file_->GetMethodName(method_id);
3004    AppendToLastFailMessage(append);
3005    return NULL;
3006  }
3007  if (klass_type.IsUnresolvedTypes()) {
3008    return NULL;  // Can't resolve Class so no more to do here
3009  }
3010  mirror::Class* klass = klass_type.GetClass();
3011  RegType& referrer = GetDeclaringClass();
3012  mirror::ArtMethod* res_method = (*dex_cache_)->GetResolvedMethod(dex_method_idx);
3013  if (res_method == NULL) {
3014    const char* name = dex_file_->GetMethodName(method_id);
3015    const Signature signature = dex_file_->GetMethodSignature(method_id);
3016
3017    if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) {
3018      res_method = klass->FindDirectMethod(name, signature);
3019    } else if (method_type == METHOD_INTERFACE) {
3020      res_method = klass->FindInterfaceMethod(name, signature);
3021    } else {
3022      res_method = klass->FindVirtualMethod(name, signature);
3023    }
3024    if (res_method != NULL) {
3025      (*dex_cache_)->SetResolvedMethod(dex_method_idx, res_method);
3026    } else {
3027      // If a virtual or interface method wasn't found with the expected type, look in
3028      // the direct methods. This can happen when the wrong invoke type is used or when
3029      // a class has changed, and will be flagged as an error in later checks.
3030      if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) {
3031        res_method = klass->FindDirectMethod(name, signature);
3032      }
3033      if (res_method == NULL) {
3034        Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method "
3035                                     << PrettyDescriptor(klass) << "." << name
3036                                     << " " << signature;
3037        return NULL;
3038      }
3039    }
3040  }
3041  // Make sure calls to constructors are "direct". There are additional restrictions but we don't
3042  // enforce them here.
3043  if (res_method->IsConstructor() && method_type != METHOD_DIRECT) {
3044    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor "
3045                                      << PrettyMethod(res_method);
3046    return NULL;
3047  }
3048  // Disallow any calls to class initializers.
3049  if (res_method->IsClassInitializer()) {
3050    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer "
3051                                      << PrettyMethod(res_method);
3052    return NULL;
3053  }
3054  // Check if access is allowed.
3055  if (!referrer.CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) {
3056    Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method)
3057                                     << " from " << referrer << ")";
3058    return res_method;
3059  }
3060  // Check that invoke-virtual and invoke-super are not used on private methods of the same class.
3061  if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) {
3062    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method "
3063                                      << PrettyMethod(res_method);
3064    return NULL;
3065  }
3066  // Check that interface methods match interface classes.
3067  if (klass->IsInterface() && method_type != METHOD_INTERFACE) {
3068    Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method)
3069                                    << " is in an interface class " << PrettyClass(klass);
3070    return NULL;
3071  } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) {
3072    Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method)
3073                                    << " is in a non-interface class " << PrettyClass(klass);
3074    return NULL;
3075  }
3076  // See if the method type implied by the invoke instruction matches the access flags for the
3077  // target method.
3078  if ((method_type == METHOD_DIRECT && !res_method->IsDirect()) ||
3079      (method_type == METHOD_STATIC && !res_method->IsStatic()) ||
3080      ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect())
3081      ) {
3082    Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type (" << method_type << ") does not match method "
3083                                       " type of " << PrettyMethod(res_method);
3084    return NULL;
3085  }
3086  return res_method;
3087}
3088
3089template <class T>
3090mirror::ArtMethod* MethodVerifier::VerifyInvocationArgsFromIterator(T* it, const Instruction* inst,
3091                                                                    MethodType method_type,
3092                                                                    bool is_range,
3093                                                                    mirror::ArtMethod* res_method) {
3094  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3095  // match the call to the signature. Also, we might be calling through an abstract method
3096  // definition (which doesn't have register count values).
3097  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3098  /* caught by static verifier */
3099  DCHECK(is_range || expected_args <= 5);
3100  if (expected_args > code_item_->outs_size_) {
3101    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3102        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3103    return nullptr;
3104  }
3105
3106  uint32_t arg[5];
3107  if (!is_range) {
3108    inst->GetVarArgs(arg);
3109  }
3110  uint32_t sig_registers = 0;
3111
3112  /*
3113   * Check the "this" argument, which must be an instance of the class that declared the method.
3114   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3115   * rigorous check here (which is okay since we have to do it at runtime).
3116   */
3117  if (method_type != METHOD_STATIC) {
3118    RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3119    if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3120      CHECK(have_pending_hard_failure_);
3121      return nullptr;
3122    }
3123    if (actual_arg_type.IsUninitializedReference()) {
3124      if (res_method) {
3125        if (!res_method->IsConstructor()) {
3126          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3127          return nullptr;
3128        }
3129      } else {
3130        // Check whether the name of the called method is "<init>"
3131        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3132        if (strcmp(dex_file_->GetMethodName(dex_file_->GetMethodId(method_idx)), "<init>") != 0) {
3133          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3134          return nullptr;
3135        }
3136      }
3137    }
3138    if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) {
3139      RegType* res_method_class;
3140      if (res_method != nullptr) {
3141        mirror::Class* klass = res_method->GetDeclaringClass();
3142        std::string temp;
3143        res_method_class = &reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3144                                                 klass->CannotBeAssignedFromOtherTypes());
3145      } else {
3146        const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3147        const uint16_t class_idx = dex_file_->GetMethodId(method_idx).class_idx_;
3148        res_method_class = &reg_types_.FromDescriptor(class_loader_->Get(),
3149                                                      dex_file_->StringByTypeIdx(class_idx),
3150                                                      false);
3151      }
3152      if (!res_method_class->IsAssignableFrom(actual_arg_type)) {
3153        Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS:
3154            VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3155                << "' not instance of '" << *res_method_class << "'";
3156        // Continue on soft failures. We need to find possible hard failures to avoid problems in
3157        // the compiler.
3158        if (have_pending_hard_failure_) {
3159          return nullptr;
3160        }
3161      }
3162    }
3163    sig_registers = 1;
3164  }
3165
3166  for ( ; it->HasNext(); it->Next()) {
3167    if (sig_registers >= expected_args) {
3168      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << inst->VRegA() <<
3169          " arguments, found " << sig_registers << " or more.";
3170      return nullptr;
3171    }
3172
3173    const char* param_descriptor = it->GetDescriptor();
3174
3175    if (param_descriptor == nullptr) {
3176      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation because of missing signature "
3177          "component";
3178      return nullptr;
3179    }
3180
3181    RegType& reg_type = reg_types_.FromDescriptor(class_loader_->Get(), param_descriptor,
3182                                                        false);
3183    uint32_t get_reg = is_range ? inst->VRegC_3rc() + static_cast<uint32_t>(sig_registers) :
3184        arg[sig_registers];
3185    if (reg_type.IsIntegralTypes()) {
3186      RegType& src_type = work_line_->GetRegisterType(get_reg);
3187      if (!src_type.IsIntegralTypes()) {
3188        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register v" << get_reg << " has type " << src_type
3189            << " but expected " << reg_type;
3190        return res_method;
3191      }
3192    } else if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3193      // Continue on soft failures. We need to find possible hard failures to avoid problems in the
3194      // compiler.
3195      if (have_pending_hard_failure_) {
3196        return res_method;
3197      }
3198    }
3199    sig_registers += reg_type.IsLongOrDoubleTypes() ?  2 : 1;
3200  }
3201  if (expected_args != sig_registers) {
3202    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation, expected " << expected_args <<
3203        " arguments, found " << sig_registers;
3204    return nullptr;
3205  }
3206  return res_method;
3207}
3208
3209void MethodVerifier::VerifyInvocationArgsUnresolvedMethod(const Instruction* inst,
3210                                                          MethodType method_type,
3211                                                          bool is_range) {
3212  // As the method may not have been resolved, make this static check against what we expect.
3213  // The main reason for this code block is to fail hard when we find an illegal use, e.g.,
3214  // wrong number of arguments or wrong primitive types, even if the method could not be resolved.
3215  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3216  DexFileParameterIterator it(*dex_file_,
3217                              dex_file_->GetProtoId(dex_file_->GetMethodId(method_idx).proto_idx_));
3218  VerifyInvocationArgsFromIterator<DexFileParameterIterator>(&it, inst, method_type, is_range,
3219                                                             nullptr);
3220}
3221
3222class MethodParamListDescriptorIterator {
3223 public:
3224  explicit MethodParamListDescriptorIterator(mirror::ArtMethod* res_method) :
3225      res_method_(res_method), pos_(0), params_(res_method->GetParameterTypeList()),
3226      params_size_(params_ == nullptr ? 0 : params_->Size()) {
3227  }
3228
3229  bool HasNext() {
3230    return pos_ < params_size_;
3231  }
3232
3233  void Next() {
3234    ++pos_;
3235  }
3236
3237  const char* GetDescriptor() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
3238    return res_method_->GetTypeDescriptorFromTypeIdx(params_->GetTypeItem(pos_).type_idx_);
3239  }
3240
3241 private:
3242  mirror::ArtMethod* res_method_;
3243  size_t pos_;
3244  const DexFile::TypeList* params_;
3245  const size_t params_size_;
3246};
3247
3248mirror::ArtMethod* MethodVerifier::VerifyInvocationArgs(const Instruction* inst,
3249                                                             MethodType method_type,
3250                                                             bool is_range,
3251                                                             bool is_super) {
3252  // Resolve the method. This could be an abstract or concrete method depending on what sort of call
3253  // we're making.
3254  const uint32_t method_idx = (is_range) ? inst->VRegB_3rc() : inst->VRegB_35c();
3255
3256  mirror::ArtMethod* res_method = ResolveMethodAndCheckAccess(method_idx, method_type);
3257  if (res_method == NULL) {  // error or class is unresolved
3258    // Check what we can statically.
3259    if (!have_pending_hard_failure_) {
3260      VerifyInvocationArgsUnresolvedMethod(inst, method_type, is_range);
3261    }
3262    return nullptr;
3263  }
3264
3265  // If we're using invoke-super(method), make sure that the executing method's class' superclass
3266  // has a vtable entry for the target method.
3267  if (is_super) {
3268    DCHECK(method_type == METHOD_VIRTUAL);
3269    RegType& super = GetDeclaringClass().GetSuperClass(&reg_types_);
3270    if (super.IsUnresolvedTypes()) {
3271      Fail(VERIFY_ERROR_NO_METHOD) << "unknown super class in invoke-super from "
3272                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3273                                   << " to super " << PrettyMethod(res_method);
3274      return nullptr;
3275    }
3276    mirror::Class* super_klass = super.GetClass();
3277    if (res_method->GetMethodIndex() >= super_klass->GetVTableLength()) {
3278      Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from "
3279                                   << PrettyMethod(dex_method_idx_, *dex_file_)
3280                                   << " to super " << super
3281                                   << "." << res_method->GetName()
3282                                   << res_method->GetSignature();
3283      return nullptr;
3284    }
3285  }
3286
3287  // Process the target method's signature. This signature may or may not
3288  MethodParamListDescriptorIterator it(res_method);
3289  return VerifyInvocationArgsFromIterator<MethodParamListDescriptorIterator>(&it, inst, method_type,
3290                                                                             is_range, res_method);
3291}
3292
3293mirror::ArtMethod* MethodVerifier::GetQuickInvokedMethod(const Instruction* inst,
3294                                                         RegisterLine* reg_line, bool is_range) {
3295  DCHECK(inst->Opcode() == Instruction::INVOKE_VIRTUAL_QUICK ||
3296         inst->Opcode() == Instruction::INVOKE_VIRTUAL_RANGE_QUICK);
3297  RegType& actual_arg_type = reg_line->GetInvocationThis(inst, is_range);
3298  if (!actual_arg_type.HasClass()) {
3299    VLOG(verifier) << "Failed to get mirror::Class* from '" << actual_arg_type << "'";
3300    return nullptr;
3301  }
3302  mirror::Class* klass = actual_arg_type.GetClass();
3303  mirror::Class* dispatch_class;
3304  if (klass->IsInterface()) {
3305    // Derive Object.class from Class.class.getSuperclass().
3306    mirror::Class* object_klass = klass->GetClass()->GetSuperClass();
3307    CHECK(object_klass->IsObjectClass());
3308    dispatch_class = object_klass;
3309  } else {
3310    dispatch_class = klass;
3311  }
3312  CHECK(dispatch_class->HasVTable()) << PrettyDescriptor(dispatch_class);
3313  uint16_t vtable_index = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
3314  CHECK_LT(static_cast<int32_t>(vtable_index), dispatch_class->GetVTableLength())
3315      << PrettyDescriptor(klass);
3316  mirror::ArtMethod* res_method = dispatch_class->GetVTableEntry(vtable_index);
3317  CHECK(!Thread::Current()->IsExceptionPending());
3318  return res_method;
3319}
3320
3321mirror::ArtMethod* MethodVerifier::VerifyInvokeVirtualQuickArgs(const Instruction* inst,
3322                                                                     bool is_range) {
3323  DCHECK(Runtime::Current()->IsStarted());
3324  mirror::ArtMethod* res_method = GetQuickInvokedMethod(inst, work_line_.get(),
3325                                                             is_range);
3326  if (res_method == NULL) {
3327    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer method from " << inst->Name();
3328    return NULL;
3329  }
3330  CHECK(!res_method->IsDirect() && !res_method->IsStatic());
3331
3332  // We use vAA as our expected arg count, rather than res_method->insSize, because we need to
3333  // match the call to the signature. Also, we might be calling through an abstract method
3334  // definition (which doesn't have register count values).
3335  RegType& actual_arg_type = work_line_->GetInvocationThis(inst, is_range);
3336  if (actual_arg_type.IsConflict()) {  // GetInvocationThis failed.
3337    return NULL;
3338  }
3339  const size_t expected_args = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3340  /* caught by static verifier */
3341  DCHECK(is_range || expected_args <= 5);
3342  if (expected_args > code_item_->outs_size_) {
3343    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args
3344        << ") exceeds outsSize (" << code_item_->outs_size_ << ")";
3345    return NULL;
3346  }
3347
3348  /*
3349   * Check the "this" argument, which must be an instance of the class that declared the method.
3350   * For an interface class, we don't do the full interface merge (see JoinClass), so we can't do a
3351   * rigorous check here (which is okay since we have to do it at runtime).
3352   */
3353  if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) {
3354    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized";
3355    return NULL;
3356  }
3357  if (!actual_arg_type.IsZero()) {
3358    mirror::Class* klass = res_method->GetDeclaringClass();
3359    std::string temp;
3360    RegType& res_method_class =
3361        reg_types_.FromClass(klass->GetDescriptor(&temp), klass,
3362                             klass->CannotBeAssignedFromOtherTypes());
3363    if (!res_method_class.IsAssignableFrom(actual_arg_type)) {
3364      Fail(actual_arg_type.IsUnresolvedTypes() ? VERIFY_ERROR_NO_CLASS :
3365          VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type
3366          << "' not instance of '" << res_method_class << "'";
3367      return NULL;
3368    }
3369  }
3370  /*
3371   * Process the target method's signature. This signature may or may not
3372   * have been verified, so we can't assume it's properly formed.
3373   */
3374  const DexFile::TypeList* params = res_method->GetParameterTypeList();
3375  size_t params_size = params == NULL ? 0 : params->Size();
3376  uint32_t arg[5];
3377  if (!is_range) {
3378    inst->GetVarArgs(arg);
3379  }
3380  size_t actual_args = 1;
3381  for (size_t param_index = 0; param_index < params_size; param_index++) {
3382    if (actual_args >= expected_args) {
3383      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method)
3384                                        << "'. Expected " << expected_args
3385                                         << " arguments, processing argument " << actual_args
3386                                        << " (where longs/doubles count twice).";
3387      return NULL;
3388    }
3389    const char* descriptor =
3390        res_method->GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_);
3391    if (descriptor == NULL) {
3392      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3393                                        << " missing signature component";
3394      return NULL;
3395    }
3396    RegType& reg_type = reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3397    uint32_t get_reg = is_range ? inst->VRegC_3rc() + actual_args : arg[actual_args];
3398    if (!work_line_->VerifyRegisterType(get_reg, reg_type)) {
3399      return res_method;
3400    }
3401    actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1;
3402  }
3403  if (actual_args != expected_args) {
3404    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method)
3405              << " expected " << expected_args << " arguments, found " << actual_args;
3406    return NULL;
3407  } else {
3408    return res_method;
3409  }
3410}
3411
3412void MethodVerifier::VerifyNewArray(const Instruction* inst, bool is_filled, bool is_range) {
3413  uint32_t type_idx;
3414  if (!is_filled) {
3415    DCHECK_EQ(inst->Opcode(), Instruction::NEW_ARRAY);
3416    type_idx = inst->VRegC_22c();
3417  } else if (!is_range) {
3418    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
3419    type_idx = inst->VRegB_35c();
3420  } else {
3421    DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
3422    type_idx = inst->VRegB_3rc();
3423  }
3424  RegType& res_type = ResolveClassAndCheckAccess(type_idx);
3425  if (res_type.IsConflict()) {  // bad class
3426    DCHECK_NE(failures_.size(), 0U);
3427  } else {
3428    // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved
3429    if (!res_type.IsArrayTypes()) {
3430      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type;
3431    } else if (!is_filled) {
3432      /* make sure "size" register is valid type */
3433      work_line_->VerifyRegisterType(inst->VRegB_22c(), reg_types_.Integer());
3434      /* set register type to array class */
3435      RegType& precise_type = reg_types_.FromUninitialized(res_type);
3436      work_line_->SetRegisterType(inst->VRegA_22c(), precise_type);
3437    } else {
3438      // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of
3439      // the list and fail. It's legal, if silly, for arg_count to be zero.
3440      RegType& expected_type = reg_types_.GetComponentType(res_type, class_loader_->Get());
3441      uint32_t arg_count = (is_range) ? inst->VRegA_3rc() : inst->VRegA_35c();
3442      uint32_t arg[5];
3443      if (!is_range) {
3444        inst->GetVarArgs(arg);
3445      }
3446      for (size_t ui = 0; ui < arg_count; ui++) {
3447        uint32_t get_reg = is_range ? inst->VRegC_3rc() + ui : arg[ui];
3448        if (!work_line_->VerifyRegisterType(get_reg, expected_type)) {
3449          work_line_->SetResultRegisterType(reg_types_.Conflict());
3450          return;
3451        }
3452      }
3453      // filled-array result goes into "result" register
3454      RegType& precise_type = reg_types_.FromUninitialized(res_type);
3455      work_line_->SetResultRegisterType(precise_type);
3456    }
3457  }
3458}
3459
3460void MethodVerifier::VerifyAGet(const Instruction* inst,
3461                                RegType& insn_type, bool is_primitive) {
3462  RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3463  if (!index_type.IsArrayIndexTypes()) {
3464    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3465  } else {
3466    RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3467    if (array_type.IsZero()) {
3468      // Null array class; this code path will fail at runtime. Infer a merge-able type from the
3469      // instruction type. TODO: have a proper notion of bottom here.
3470      if (!is_primitive || insn_type.IsCategory1Types()) {
3471        // Reference or category 1
3472        work_line_->SetRegisterType(inst->VRegA_23x(), reg_types_.Zero());
3473      } else {
3474        // Category 2
3475        work_line_->SetRegisterTypeWide(inst->VRegA_23x(), reg_types_.FromCat2ConstLo(0, false),
3476                                        reg_types_.FromCat2ConstHi(0, false));
3477      }
3478    } else if (!array_type.IsArrayTypes()) {
3479      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget";
3480    } else {
3481      /* verify the class */
3482      RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->Get());
3483      if (!component_type.IsReferenceTypes() && !is_primitive) {
3484        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3485            << " source for aget-object";
3486      } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) {
3487        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type
3488            << " source for category 1 aget";
3489      } else if (is_primitive && !insn_type.Equals(component_type) &&
3490                 !((insn_type.IsInteger() && component_type.IsFloat()) ||
3491                 (insn_type.IsLong() && component_type.IsDouble()))) {
3492        Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type
3493            << " incompatible with aget of type " << insn_type;
3494      } else {
3495        // Use knowledge of the field type which is stronger than the type inferred from the
3496        // instruction, which can't differentiate object types and ints from floats, longs from
3497        // doubles.
3498        if (!component_type.IsLowHalf()) {
3499          work_line_->SetRegisterType(inst->VRegA_23x(), component_type);
3500        } else {
3501          work_line_->SetRegisterTypeWide(inst->VRegA_23x(), component_type,
3502                                          component_type.HighHalf(&reg_types_));
3503        }
3504      }
3505    }
3506  }
3507}
3508
3509void MethodVerifier::VerifyPrimitivePut(RegType& target_type, RegType& insn_type,
3510                                        const uint32_t vregA) {
3511  // Primitive assignability rules are weaker than regular assignability rules.
3512  bool instruction_compatible;
3513  bool value_compatible;
3514  RegType& value_type = work_line_->GetRegisterType(vregA);
3515  if (target_type.IsIntegralTypes()) {
3516    instruction_compatible = target_type.Equals(insn_type);
3517    value_compatible = value_type.IsIntegralTypes();
3518  } else if (target_type.IsFloat()) {
3519    instruction_compatible = insn_type.IsInteger();  // no put-float, so expect put-int
3520    value_compatible = value_type.IsFloatTypes();
3521  } else if (target_type.IsLong()) {
3522    instruction_compatible = insn_type.IsLong();
3523    RegType& value_type_hi = work_line_->GetRegisterType(vregA + 1);
3524    value_compatible = value_type.IsLongTypes() && value_type.CheckWidePair(value_type_hi);
3525  } else if (target_type.IsDouble()) {
3526    instruction_compatible = insn_type.IsLong();  // no put-double, so expect put-long
3527    RegType& value_type_hi = work_line_->GetRegisterType(vregA + 1);
3528    value_compatible = value_type.IsDoubleTypes() && value_type.CheckWidePair(value_type_hi);
3529  } else {
3530    instruction_compatible = false;  // reference with primitive store
3531    value_compatible = false;  // unused
3532  }
3533  if (!instruction_compatible) {
3534    // This is a global failure rather than a class change failure as the instructions and
3535    // the descriptors for the type should have been consistent within the same file at
3536    // compile time.
3537    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "put insn has type '" << insn_type
3538        << "' but expected type '" << target_type << "'";
3539    return;
3540  }
3541  if (!value_compatible) {
3542    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3543        << " of type " << value_type << " but expected " << target_type << " for put";
3544    return;
3545  }
3546}
3547
3548void MethodVerifier::VerifyAPut(const Instruction* inst,
3549                                RegType& insn_type, bool is_primitive) {
3550  RegType& index_type = work_line_->GetRegisterType(inst->VRegC_23x());
3551  if (!index_type.IsArrayIndexTypes()) {
3552    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")";
3553  } else {
3554    RegType& array_type = work_line_->GetRegisterType(inst->VRegB_23x());
3555    if (array_type.IsZero()) {
3556      // Null array type; this code path will fail at runtime. Infer a merge-able type from the
3557      // instruction type.
3558    } else if (!array_type.IsArrayTypes()) {
3559      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput";
3560    } else {
3561      RegType& component_type = reg_types_.GetComponentType(array_type, class_loader_->Get());
3562      const uint32_t vregA = inst->VRegA_23x();
3563      if (is_primitive) {
3564        VerifyPrimitivePut(component_type, insn_type, vregA);
3565      } else {
3566        if (!component_type.IsReferenceTypes()) {
3567          Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type
3568              << " source for aput-object";
3569        } else {
3570          // The instruction agrees with the type of array, confirm the value to be stored does too
3571          // Note: we use the instruction type (rather than the component type) for aput-object as
3572          // incompatible classes will be caught at runtime as an array store exception
3573          work_line_->VerifyRegisterType(vregA, insn_type);
3574        }
3575      }
3576    }
3577  }
3578}
3579
3580mirror::ArtField* MethodVerifier::GetStaticField(int field_idx) {
3581  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3582  // Check access to class
3583  RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3584  if (klass_type.IsConflict()) {  // bad class
3585    AppendToLastFailMessage(StringPrintf(" in attempt to access static field %d (%s) in %s",
3586                                         field_idx, dex_file_->GetFieldName(field_id),
3587                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3588    return NULL;
3589  }
3590  if (klass_type.IsUnresolvedTypes()) {
3591    return NULL;  // Can't resolve Class so no more to do here, will do checking at runtime.
3592  }
3593  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3594  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3595                                                          *class_loader_);
3596  if (field == NULL) {
3597    VLOG(verifier) << "Unable to resolve static field " << field_idx << " ("
3598              << dex_file_->GetFieldName(field_id) << ") in "
3599              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3600    DCHECK(Thread::Current()->IsExceptionPending());
3601    Thread::Current()->ClearException();
3602    return NULL;
3603  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3604                                                  field->GetAccessFlags())) {
3605    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field)
3606                                    << " from " << GetDeclaringClass();
3607    return NULL;
3608  } else if (!field->IsStatic()) {
3609    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static";
3610    return NULL;
3611  }
3612  return field;
3613}
3614
3615mirror::ArtField* MethodVerifier::GetInstanceField(RegType& obj_type, int field_idx) {
3616  const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3617  // Check access to class
3618  RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_);
3619  if (klass_type.IsConflict()) {
3620    AppendToLastFailMessage(StringPrintf(" in attempt to access instance field %d (%s) in %s",
3621                                         field_idx, dex_file_->GetFieldName(field_id),
3622                                         dex_file_->GetFieldDeclaringClassDescriptor(field_id)));
3623    return NULL;
3624  }
3625  if (klass_type.IsUnresolvedTypes()) {
3626    return NULL;  // Can't resolve Class so no more to do here
3627  }
3628  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3629  mirror::ArtField* field = class_linker->ResolveFieldJLS(*dex_file_, field_idx, *dex_cache_,
3630                                                          *class_loader_);
3631  if (field == NULL) {
3632    VLOG(verifier) << "Unable to resolve instance field " << field_idx << " ("
3633              << dex_file_->GetFieldName(field_id) << ") in "
3634              << dex_file_->GetFieldDeclaringClassDescriptor(field_id);
3635    DCHECK(Thread::Current()->IsExceptionPending());
3636    Thread::Current()->ClearException();
3637    return NULL;
3638  } else if (!GetDeclaringClass().CanAccessMember(field->GetDeclaringClass(),
3639                                                  field->GetAccessFlags())) {
3640    Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field)
3641                                    << " from " << GetDeclaringClass();
3642    return NULL;
3643  } else if (field->IsStatic()) {
3644    Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field)
3645                                    << " to not be static";
3646    return NULL;
3647  } else if (obj_type.IsZero()) {
3648    // Cannot infer and check type, however, access will cause null pointer exception
3649    return field;
3650  } else if (!obj_type.IsReferenceTypes()) {
3651    // Trying to read a field from something that isn't a reference
3652    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "instance field access on object that has "
3653                                      << "non-reference type " << obj_type;
3654    return NULL;
3655  } else {
3656    mirror::Class* klass = field->GetDeclaringClass();
3657    RegType& field_klass =
3658        reg_types_.FromClass(dex_file_->GetFieldDeclaringClassDescriptor(field_id),
3659                             klass, klass->CannotBeAssignedFromOtherTypes());
3660    if (obj_type.IsUninitializedTypes() &&
3661        (!IsConstructor() || GetDeclaringClass().Equals(obj_type) ||
3662            !field_klass.Equals(GetDeclaringClass()))) {
3663      // Field accesses through uninitialized references are only allowable for constructors where
3664      // the field is declared in this class
3665      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field)
3666                                        << " of a not fully initialized object within the context"
3667                                        << " of " << PrettyMethod(dex_method_idx_, *dex_file_);
3668      return NULL;
3669    } else if (!field_klass.IsAssignableFrom(obj_type)) {
3670      // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class
3671      // of C1. For resolution to occur the declared class of the field must be compatible with
3672      // obj_type, we've discovered this wasn't so, so report the field didn't exist.
3673      Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field)
3674                                  << " from object of type " << obj_type;
3675      return NULL;
3676    } else {
3677      return field;
3678    }
3679  }
3680}
3681
3682void MethodVerifier::VerifyISGet(const Instruction* inst, RegType& insn_type,
3683                                 bool is_primitive, bool is_static) {
3684  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3685  mirror::ArtField* field;
3686  if (is_static) {
3687    field = GetStaticField(field_idx);
3688  } else {
3689    RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3690    field = GetInstanceField(object_type, field_idx);
3691  }
3692  RegType* field_type = nullptr;
3693  if (field != NULL) {
3694    Thread* self = Thread::Current();
3695    mirror::Class* field_type_class;
3696    {
3697      StackHandleScope<1> hs(self);
3698      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3699      field_type_class = FieldHelper(h_field).GetType(can_load_classes_);
3700    }
3701    if (field_type_class != nullptr) {
3702      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3703                                         field_type_class->CannotBeAssignedFromOtherTypes());
3704    } else {
3705      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3706      self->ClearException();
3707    }
3708  }
3709  if (field_type == nullptr) {
3710    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3711    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3712    field_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3713  }
3714  DCHECK(field_type != nullptr);
3715  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3716  if (is_primitive) {
3717    if (field_type->Equals(insn_type) ||
3718        (field_type->IsFloat() && insn_type.IsInteger()) ||
3719        (field_type->IsDouble() && insn_type.IsLong())) {
3720      // expected that read is of the correct primitive type or that int reads are reading
3721      // floats or long reads are reading doubles
3722    } else {
3723      // This is a global failure rather than a class change failure as the instructions and
3724      // the descriptors for the type should have been consistent within the same file at
3725      // compile time
3726      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3727                                        << " to be of type '" << insn_type
3728                                        << "' but found type '" << *field_type << "' in get";
3729      return;
3730    }
3731  } else {
3732    if (!insn_type.IsAssignableFrom(*field_type)) {
3733      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3734                                        << " to be compatible with type '" << insn_type
3735                                        << "' but found type '" << *field_type
3736                                        << "' in Get-object";
3737      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3738      return;
3739    }
3740  }
3741  if (!field_type->IsLowHalf()) {
3742    work_line_->SetRegisterType(vregA, *field_type);
3743  } else {
3744    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3745  }
3746}
3747
3748void MethodVerifier::VerifyISPut(const Instruction* inst, RegType& insn_type,
3749                                 bool is_primitive, bool is_static) {
3750  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
3751  mirror::ArtField* field;
3752  if (is_static) {
3753    field = GetStaticField(field_idx);
3754  } else {
3755    RegType& object_type = work_line_->GetRegisterType(inst->VRegB_22c());
3756    field = GetInstanceField(object_type, field_idx);
3757  }
3758  RegType* field_type = nullptr;
3759  if (field != NULL) {
3760    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3761      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3762                                      << " from other class " << GetDeclaringClass();
3763      return;
3764    }
3765    mirror::Class* field_type_class;
3766    {
3767      StackHandleScope<1> hs(Thread::Current());
3768      HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3769      FieldHelper fh(h_field);
3770      field_type_class = fh.GetType(can_load_classes_);
3771    }
3772    if (field_type_class != nullptr) {
3773      field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3774                                         field_type_class->CannotBeAssignedFromOtherTypes());
3775    } else {
3776      Thread* self = Thread::Current();
3777      DCHECK(!can_load_classes_ || self->IsExceptionPending());
3778      self->ClearException();
3779    }
3780  }
3781  if (field_type == nullptr) {
3782    const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx);
3783    const char* descriptor = dex_file_->GetFieldTypeDescriptor(field_id);
3784    field_type = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
3785  }
3786  DCHECK(field_type != nullptr);
3787  const uint32_t vregA = (is_static) ? inst->VRegA_21c() : inst->VRegA_22c();
3788  if (is_primitive) {
3789    VerifyPrimitivePut(*field_type, insn_type, vregA);
3790  } else {
3791    if (!insn_type.IsAssignableFrom(*field_type)) {
3792      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3793                                        << " to be compatible with type '" << insn_type
3794                                        << "' but found type '" << *field_type
3795                                        << "' in put-object";
3796      return;
3797    }
3798    work_line_->VerifyRegisterType(vregA, *field_type);
3799  }
3800}
3801
3802mirror::ArtField* MethodVerifier::GetQuickFieldAccess(const Instruction* inst,
3803                                                      RegisterLine* reg_line) {
3804  DCHECK(inst->Opcode() == Instruction::IGET_QUICK ||
3805         inst->Opcode() == Instruction::IGET_WIDE_QUICK ||
3806         inst->Opcode() == Instruction::IGET_OBJECT_QUICK ||
3807         inst->Opcode() == Instruction::IPUT_QUICK ||
3808         inst->Opcode() == Instruction::IPUT_WIDE_QUICK ||
3809         inst->Opcode() == Instruction::IPUT_OBJECT_QUICK);
3810  RegType& object_type = reg_line->GetRegisterType(inst->VRegB_22c());
3811  if (!object_type.HasClass()) {
3812    VLOG(verifier) << "Failed to get mirror::Class* from '" << object_type << "'";
3813    return nullptr;
3814  }
3815  uint32_t field_offset = static_cast<uint32_t>(inst->VRegC_22c());
3816  mirror::ArtField* f = mirror::ArtField::FindInstanceFieldWithOffset(object_type.GetClass(),
3817                                                                      field_offset);
3818  if (f == nullptr) {
3819    VLOG(verifier) << "Failed to find instance field at offset '" << field_offset
3820                   << "' from '" << PrettyDescriptor(object_type.GetClass()) << "'";
3821  }
3822  return f;
3823}
3824
3825void MethodVerifier::VerifyIGetQuick(const Instruction* inst, RegType& insn_type,
3826                                     bool is_primitive) {
3827  DCHECK(Runtime::Current()->IsStarted());
3828  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3829  if (field == NULL) {
3830    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3831    return;
3832  }
3833  mirror::Class* field_type_class;
3834  {
3835    StackHandleScope<1> hs(Thread::Current());
3836    HandleWrapper<mirror::ArtField> h_field(hs.NewHandleWrapper(&field));
3837    FieldHelper fh(h_field);
3838    field_type_class = fh.GetType(can_load_classes_);
3839  }
3840  RegType* field_type;
3841  if (field_type_class != nullptr) {
3842    field_type = &reg_types_.FromClass(field->GetTypeDescriptor(), field_type_class,
3843                                       field_type_class->CannotBeAssignedFromOtherTypes());
3844  } else {
3845    Thread* self = Thread::Current();
3846    DCHECK(!can_load_classes_ || self->IsExceptionPending());
3847    self->ClearException();
3848    field_type = &reg_types_.FromDescriptor(field->GetDeclaringClass()->GetClassLoader(),
3849                                            field->GetTypeDescriptor(), false);
3850  }
3851  DCHECK(field_type != nullptr);
3852  const uint32_t vregA = inst->VRegA_22c();
3853  if (is_primitive) {
3854    if (field_type->Equals(insn_type) ||
3855        (field_type->IsFloat() && insn_type.IsIntegralTypes()) ||
3856        (field_type->IsDouble() && insn_type.IsLongTypes())) {
3857      // expected that read is of the correct primitive type or that int reads are reading
3858      // floats or long reads are reading doubles
3859    } else {
3860      // This is a global failure rather than a class change failure as the instructions and
3861      // the descriptors for the type should have been consistent within the same file at
3862      // compile time
3863      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3864                                        << " to be of type '" << insn_type
3865                                        << "' but found type '" << *field_type << "' in Get";
3866      return;
3867    }
3868  } else {
3869    if (!insn_type.IsAssignableFrom(*field_type)) {
3870      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3871                                        << " to be compatible with type '" << insn_type
3872                                        << "' but found type '" << *field_type
3873                                        << "' in get-object";
3874      work_line_->SetRegisterType(vregA, reg_types_.Conflict());
3875      return;
3876    }
3877  }
3878  if (!field_type->IsLowHalf()) {
3879    work_line_->SetRegisterType(vregA, *field_type);
3880  } else {
3881    work_line_->SetRegisterTypeWide(vregA, *field_type, field_type->HighHalf(&reg_types_));
3882  }
3883}
3884
3885void MethodVerifier::VerifyIPutQuick(const Instruction* inst, RegType& insn_type,
3886                                     bool is_primitive) {
3887  DCHECK(Runtime::Current()->IsStarted());
3888  mirror::ArtField* field = GetQuickFieldAccess(inst, work_line_.get());
3889  if (field == NULL) {
3890    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot infer field from " << inst->Name();
3891    return;
3892  }
3893  const char* descriptor = field->GetTypeDescriptor();
3894  mirror::ClassLoader* loader = field->GetDeclaringClass()->GetClassLoader();
3895  RegType& field_type = reg_types_.FromDescriptor(loader, descriptor, false);
3896  if (field != NULL) {
3897    if (field->IsFinal() && field->GetDeclaringClass() != GetDeclaringClass().GetClass()) {
3898      Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field)
3899                                      << " from other class " << GetDeclaringClass();
3900      return;
3901    }
3902  }
3903  const uint32_t vregA = inst->VRegA_22c();
3904  if (is_primitive) {
3905    // Primitive field assignability rules are weaker than regular assignability rules
3906    bool instruction_compatible;
3907    bool value_compatible;
3908    RegType& value_type = work_line_->GetRegisterType(vregA);
3909    if (field_type.IsIntegralTypes()) {
3910      instruction_compatible = insn_type.IsIntegralTypes();
3911      value_compatible = value_type.IsIntegralTypes();
3912    } else if (field_type.IsFloat()) {
3913      instruction_compatible = insn_type.IsInteger();  // no [is]put-float, so expect [is]put-int
3914      value_compatible = value_type.IsFloatTypes();
3915    } else if (field_type.IsLong()) {
3916      instruction_compatible = insn_type.IsLong();
3917      value_compatible = value_type.IsLongTypes();
3918    } else if (field_type.IsDouble()) {
3919      instruction_compatible = insn_type.IsLong();  // no [is]put-double, so expect [is]put-long
3920      value_compatible = value_type.IsDoubleTypes();
3921    } else {
3922      instruction_compatible = false;  // reference field with primitive store
3923      value_compatible = false;  // unused
3924    }
3925    if (!instruction_compatible) {
3926      // This is a global failure rather than a class change failure as the instructions and
3927      // the descriptors for the type should have been consistent within the same file at
3928      // compile time
3929      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field)
3930                                        << " to be of type '" << insn_type
3931                                        << "' but found type '" << field_type
3932                                        << "' in put";
3933      return;
3934    }
3935    if (!value_compatible) {
3936      Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << vregA
3937          << " of type " << value_type
3938          << " but expected " << field_type
3939          << " for store to " << PrettyField(field) << " in put";
3940      return;
3941    }
3942  } else {
3943    if (!insn_type.IsAssignableFrom(field_type)) {
3944      Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field)
3945                                        << " to be compatible with type '" << insn_type
3946                                        << "' but found type '" << field_type
3947                                        << "' in put-object";
3948      return;
3949    }
3950    work_line_->VerifyRegisterType(vregA, field_type);
3951  }
3952}
3953
3954bool MethodVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) {
3955  if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) {
3956    Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception";
3957    return false;
3958  }
3959  return true;
3960}
3961
3962bool MethodVerifier::UpdateRegisters(uint32_t next_insn, RegisterLine* merge_line,
3963                                     bool update_merge_line) {
3964  bool changed = true;
3965  RegisterLine* target_line = reg_table_.GetLine(next_insn);
3966  if (!insn_flags_[next_insn].IsVisitedOrChanged()) {
3967    /*
3968     * We haven't processed this instruction before, and we haven't touched the registers here, so
3969     * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the
3970     * only way a register can transition out of "unknown", so this is not just an optimization.)
3971     */
3972    if (!insn_flags_[next_insn].IsReturn()) {
3973      target_line->CopyFromLine(merge_line);
3974    } else {
3975      // Verify that the monitor stack is empty on return.
3976      if (!merge_line->VerifyMonitorStackEmpty()) {
3977        return false;
3978      }
3979      // For returns we only care about the operand to the return, all other registers are dead.
3980      // Initialize them as conflicts so they don't add to GC and deoptimization information.
3981      const Instruction* ret_inst = Instruction::At(code_item_->insns_ + next_insn);
3982      Instruction::Code opcode = ret_inst->Opcode();
3983      if ((opcode == Instruction::RETURN_VOID) || (opcode == Instruction::RETURN_VOID_BARRIER)) {
3984        target_line->MarkAllRegistersAsConflicts();
3985      } else {
3986        target_line->CopyFromLine(merge_line);
3987        if (opcode == Instruction::RETURN_WIDE) {
3988          target_line->MarkAllRegistersAsConflictsExceptWide(ret_inst->VRegA_11x());
3989        } else {
3990          target_line->MarkAllRegistersAsConflictsExcept(ret_inst->VRegA_11x());
3991        }
3992      }
3993    }
3994  } else {
3995    std::unique_ptr<RegisterLine> copy(gDebugVerify ?
3996                                 RegisterLine::Create(target_line->NumRegs(), this) :
3997                                 NULL);
3998    if (gDebugVerify) {
3999      copy->CopyFromLine(target_line);
4000    }
4001    changed = target_line->MergeRegisters(merge_line);
4002    if (have_pending_hard_failure_) {
4003      return false;
4004    }
4005    if (gDebugVerify && changed) {
4006      LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]"
4007                      << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << "\n"
4008                      << *copy.get() << "  MERGE\n"
4009                      << *merge_line << "  ==\n"
4010                      << *target_line << "\n";
4011    }
4012    if (update_merge_line && changed) {
4013      merge_line->CopyFromLine(target_line);
4014    }
4015  }
4016  if (changed) {
4017    insn_flags_[next_insn].SetChanged();
4018  }
4019  return true;
4020}
4021
4022InstructionFlags* MethodVerifier::CurrentInsnFlags() {
4023  return &insn_flags_[work_insn_idx_];
4024}
4025
4026RegType& MethodVerifier::GetMethodReturnType() {
4027  if (return_type_ == nullptr) {
4028    if (mirror_method_ != NULL) {
4029      Thread* self = Thread::Current();
4030      StackHandleScope<1> hs(self);
4031      mirror::Class* return_type_class;
4032      {
4033        HandleWrapper<mirror::ArtMethod> h_mirror_method(hs.NewHandleWrapper(&mirror_method_));
4034        return_type_class = MethodHelper(h_mirror_method).GetReturnType(can_load_classes_);
4035      }
4036      if (return_type_class != nullptr) {
4037        return_type_ = &reg_types_.FromClass(mirror_method_->GetReturnTypeDescriptor(),
4038                                             return_type_class,
4039                                             return_type_class->CannotBeAssignedFromOtherTypes());
4040      } else {
4041        DCHECK(!can_load_classes_ || self->IsExceptionPending());
4042        self->ClearException();
4043      }
4044    }
4045    if (return_type_ == nullptr) {
4046      const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4047      const DexFile::ProtoId& proto_id = dex_file_->GetMethodPrototype(method_id);
4048      uint16_t return_type_idx = proto_id.return_type_idx_;
4049      const char* descriptor = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(return_type_idx));
4050      return_type_ = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
4051    }
4052  }
4053  return *return_type_;
4054}
4055
4056RegType& MethodVerifier::GetDeclaringClass() {
4057  if (declaring_class_ == NULL) {
4058    const DexFile::MethodId& method_id = dex_file_->GetMethodId(dex_method_idx_);
4059    const char* descriptor
4060        = dex_file_->GetTypeDescriptor(dex_file_->GetTypeId(method_id.class_idx_));
4061    if (mirror_method_ != NULL) {
4062      mirror::Class* klass = mirror_method_->GetDeclaringClass();
4063      declaring_class_ = &reg_types_.FromClass(descriptor, klass,
4064                                               klass->CannotBeAssignedFromOtherTypes());
4065    } else {
4066      declaring_class_ = &reg_types_.FromDescriptor(class_loader_->Get(), descriptor, false);
4067    }
4068  }
4069  return *declaring_class_;
4070}
4071
4072std::vector<int32_t> MethodVerifier::DescribeVRegs(uint32_t dex_pc) {
4073  RegisterLine* line = reg_table_.GetLine(dex_pc);
4074  DCHECK(line != nullptr) << "No register line at DEX pc " << StringPrintf("0x%x", dex_pc);
4075  std::vector<int32_t> result;
4076  for (size_t i = 0; i < line->NumRegs(); ++i) {
4077    RegType& type = line->GetRegisterType(i);
4078    if (type.IsConstant()) {
4079      result.push_back(type.IsPreciseConstant() ? kConstant : kImpreciseConstant);
4080      result.push_back(type.ConstantValue());
4081    } else if (type.IsConstantLo()) {
4082      result.push_back(type.IsPreciseConstantLo() ? kConstant : kImpreciseConstant);
4083      result.push_back(type.ConstantValueLo());
4084    } else if (type.IsConstantHi()) {
4085      result.push_back(type.IsPreciseConstantHi() ? kConstant : kImpreciseConstant);
4086      result.push_back(type.ConstantValueHi());
4087    } else if (type.IsIntegralTypes()) {
4088      result.push_back(kIntVReg);
4089      result.push_back(0);
4090    } else if (type.IsFloat()) {
4091      result.push_back(kFloatVReg);
4092      result.push_back(0);
4093    } else if (type.IsLong()) {
4094      result.push_back(kLongLoVReg);
4095      result.push_back(0);
4096      result.push_back(kLongHiVReg);
4097      result.push_back(0);
4098      ++i;
4099    } else if (type.IsDouble()) {
4100      result.push_back(kDoubleLoVReg);
4101      result.push_back(0);
4102      result.push_back(kDoubleHiVReg);
4103      result.push_back(0);
4104      ++i;
4105    } else if (type.IsUndefined() || type.IsConflict() || type.IsHighHalf()) {
4106      result.push_back(kUndefined);
4107      result.push_back(0);
4108    } else {
4109      CHECK(type.IsNonZeroReferenceTypes());
4110      result.push_back(kReferenceVReg);
4111      result.push_back(0);
4112    }
4113  }
4114  return result;
4115}
4116
4117RegType& MethodVerifier::DetermineCat1Constant(int32_t value, bool precise) {
4118  if (precise) {
4119    // Precise constant type.
4120    return reg_types_.FromCat1Const(value, true);
4121  } else {
4122    // Imprecise constant type.
4123    if (value < -32768) {
4124      return reg_types_.IntConstant();
4125    } else if (value < -128) {
4126      return reg_types_.ShortConstant();
4127    } else if (value < 0) {
4128      return reg_types_.ByteConstant();
4129    } else if (value == 0) {
4130      return reg_types_.Zero();
4131    } else if (value == 1) {
4132      return reg_types_.One();
4133    } else if (value < 128) {
4134      return reg_types_.PosByteConstant();
4135    } else if (value < 32768) {
4136      return reg_types_.PosShortConstant();
4137    } else if (value < 65536) {
4138      return reg_types_.CharConstant();
4139    } else {
4140      return reg_types_.IntConstant();
4141    }
4142  }
4143}
4144
4145void MethodVerifier::Init() {
4146  art::verifier::RegTypeCache::Init();
4147}
4148
4149void MethodVerifier::Shutdown() {
4150  verifier::RegTypeCache::ShutDown();
4151}
4152
4153void MethodVerifier::VisitRoots(RootCallback* callback, void* arg) {
4154  reg_types_.VisitRoots(callback, arg);
4155}
4156
4157}  // namespace verifier
4158}  // namespace art
4159