pthread_mutex.cpp revision 8641833b62e3b319796dc80ea16eb1592c05edf6
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *  * Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 *  * Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in
12 *    the documentation and/or other materials provided with the
13 *    distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28#include <sys/types.h>
29#include <unistd.h>
30#include <signal.h>
31#include <stdint.h>
32#include <stdio.h>
33#include <stdlib.h>
34#include <errno.h>
35#include <sys/atomics.h>
36#include <bionic_tls.h>
37#include <sys/mman.h>
38#include <pthread.h>
39#include <time.h>
40#include "pthread_internal.h"
41#include "thread_private.h"
42#include <limits.h>
43#include <memory.h>
44#include <assert.h>
45#include <malloc.h>
46
47extern int  __pthread_clone(int (*fn)(void*), void *child_stack, int flags, void *arg);
48extern void _exit_with_stack_teardown(void * stackBase, int stackSize, int retCode);
49extern void _exit_thread(int  retCode);
50extern int  __set_errno(int);
51
52void _thread_created_hook(pid_t thread_id) __attribute__((noinline));
53
54#define PTHREAD_ATTR_FLAG_DETACHED      0x00000001
55#define PTHREAD_ATTR_FLAG_USER_STACK    0x00000002
56
57#define DEFAULT_STACKSIZE (1024 * 1024)
58#define STACKBASE 0x10000000
59
60static uint8_t * gStackBase = (uint8_t *)STACKBASE;
61
62static pthread_mutex_t mmap_lock = PTHREAD_MUTEX_INITIALIZER;
63
64
65static const pthread_attr_t gDefaultPthreadAttr = {
66    .flags = 0,
67    .stack_base = NULL,
68    .stack_size = DEFAULT_STACKSIZE,
69    .guard_size = PAGE_SIZE,
70    .sched_policy = SCHED_NORMAL,
71    .sched_priority = 0
72};
73
74#define  INIT_THREADS  1
75
76static pthread_internal_t*  gThreadList = NULL;
77static pthread_mutex_t gThreadListLock = PTHREAD_MUTEX_INITIALIZER;
78static pthread_mutex_t gDebuggerNotificationLock = PTHREAD_MUTEX_INITIALIZER;
79
80
81/* we simply malloc/free the internal pthread_internal_t structures. we may
82 * want to use a different allocation scheme in the future, but this one should
83 * be largely enough
84 */
85static pthread_internal_t*
86_pthread_internal_alloc(void)
87{
88    pthread_internal_t*   thread;
89
90    thread = calloc( sizeof(*thread), 1 );
91    if (thread)
92        thread->intern = 1;
93
94    return thread;
95}
96
97static void
98_pthread_internal_free( pthread_internal_t*  thread )
99{
100    if (thread && thread->intern) {
101        thread->intern = 0;  /* just in case */
102        free (thread);
103    }
104}
105
106
107static void
108_pthread_internal_remove_locked( pthread_internal_t*  thread )
109{
110    thread->next->pref = thread->pref;
111    thread->pref[0]    = thread->next;
112}
113
114static void
115_pthread_internal_remove( pthread_internal_t*  thread )
116{
117    pthread_mutex_lock(&gThreadListLock);
118    _pthread_internal_remove_locked(thread);
119    pthread_mutex_unlock(&gThreadListLock);
120}
121
122static void
123_pthread_internal_add( pthread_internal_t*  thread )
124{
125    pthread_mutex_lock(&gThreadListLock);
126    thread->pref = &gThreadList;
127    thread->next = thread->pref[0];
128    if (thread->next)
129        thread->next->pref = &thread->next;
130    thread->pref[0] = thread;
131    pthread_mutex_unlock(&gThreadListLock);
132}
133
134pthread_internal_t*
135__get_thread(void)
136{
137    void**  tls = (void**)__get_tls();
138
139    return  (pthread_internal_t*) tls[TLS_SLOT_THREAD_ID];
140}
141
142
143void*
144__get_stack_base(int  *p_stack_size)
145{
146    pthread_internal_t*  thread = __get_thread();
147
148    *p_stack_size = thread->attr.stack_size;
149    return thread->attr.stack_base;
150}
151
152
153void  __init_tls(void**  tls, void*  thread)
154{
155    int  nn;
156
157    ((pthread_internal_t*)thread)->tls = tls;
158
159    // slot 0 must point to the tls area, this is required by the implementation
160    // of the x86 Linux kernel thread-local-storage
161    tls[TLS_SLOT_SELF]      = (void*)tls;
162    tls[TLS_SLOT_THREAD_ID] = thread;
163    for (nn = TLS_SLOT_ERRNO; nn < BIONIC_TLS_SLOTS; nn++)
164       tls[nn] = 0;
165
166    __set_tls( (void*)tls );
167}
168
169
170/*
171 * This trampoline is called from the assembly clone() function
172 */
173void __thread_entry(int (*func)(void*), void *arg, void **tls)
174{
175    int retValue;
176    pthread_internal_t * thrInfo;
177
178    // Wait for our creating thread to release us. This lets it have time to
179    // notify gdb about this thread before it starts doing anything.
180    pthread_mutex_t * start_mutex = (pthread_mutex_t *)&tls[TLS_SLOT_SELF];
181    pthread_mutex_lock(start_mutex);
182    pthread_mutex_destroy(start_mutex);
183
184    thrInfo = (pthread_internal_t *) tls[TLS_SLOT_THREAD_ID];
185
186    __init_tls( tls, thrInfo );
187
188    pthread_exit( (void*)func(arg) );
189}
190
191void _init_thread(pthread_internal_t * thread, pid_t kernel_id, pthread_attr_t * attr, void * stack_base)
192{
193    if (attr == NULL) {
194        thread->attr = gDefaultPthreadAttr;
195    } else {
196        thread->attr = *attr;
197    }
198    thread->attr.stack_base = stack_base;
199    thread->kernel_id       = kernel_id;
200
201    // set the scheduling policy/priority of the thread
202    if (thread->attr.sched_policy != SCHED_NORMAL) {
203        struct sched_param param;
204        param.sched_priority = thread->attr.sched_priority;
205        sched_setscheduler(kernel_id, thread->attr.sched_policy, &param);
206    }
207
208    pthread_cond_init(&thread->join_cond, NULL);
209    thread->join_count = 0;
210
211    thread->cleanup_stack = NULL;
212
213    _pthread_internal_add(thread);
214}
215
216
217/* XXX stacks not reclaimed if thread spawn fails */
218/* XXX stacks address spaces should be reused if available again */
219
220static void *mkstack(size_t size, size_t guard_size)
221{
222    void * stack;
223
224    pthread_mutex_lock(&mmap_lock);
225
226    stack = mmap((void *)gStackBase, size,
227                 PROT_READ | PROT_WRITE,
228                 MAP_PRIVATE | MAP_ANONYMOUS | MAP_NORESERVE,
229                 -1, 0);
230
231    if(stack == MAP_FAILED) {
232        stack = NULL;
233        goto done;
234    }
235
236    if(mprotect(stack, guard_size, PROT_NONE)){
237        munmap(stack, size);
238        stack = NULL;
239        goto done;
240    }
241
242done:
243    pthread_mutex_unlock(&mmap_lock);
244    return stack;
245}
246
247/*
248 * Create a new thread. The thread's stack is layed out like so:
249 *
250 * +---------------------------+
251 * |     pthread_internal_t    |
252 * +---------------------------+
253 * |                           |
254 * |          TLS area         |
255 * |                           |
256 * +---------------------------+
257 * |                           |
258 * .                           .
259 * .         stack area        .
260 * .                           .
261 * |                           |
262 * +---------------------------+
263 * |         guard page        |
264 * +---------------------------+
265 *
266 *  note that TLS[0] must be a pointer to itself, this is required
267 *  by the thread-local storage implementation of the x86 Linux
268 *  kernel, where the TLS pointer is read by reading fs:[0]
269 */
270int pthread_create(pthread_t *thread_out, pthread_attr_t const * attr,
271                   void *(*start_routine)(void *), void * arg)
272{
273    char*   stack;
274    void**  tls;
275    int tid;
276    pthread_mutex_t * start_mutex;
277    pthread_internal_t * thread;
278    int                  madestack = 0;
279    int     old_errno = errno;
280
281    /* this will inform the rest of the C library that at least one thread
282     * was created. this will enforce certain functions to acquire/release
283     * locks (e.g. atexit()) to protect shared global structures.
284     *
285     * this works because pthread_create() is not called by the C library
286     * initialization routine that sets up the main thread's data structures.
287     */
288    __isthreaded = 1;
289
290    thread = _pthread_internal_alloc();
291    if (thread == NULL)
292        return ENOMEM;
293
294    if (attr == NULL) {
295        attr = &gDefaultPthreadAttr;
296    }
297
298    // make sure the stack is PAGE_SIZE aligned
299    size_t stackSize = (attr->stack_size +
300                        (PAGE_SIZE-1)) & ~(PAGE_SIZE-1);
301
302    if (!attr->stack_base) {
303        stack = mkstack(stackSize, attr->guard_size);
304        if(stack == NULL) {
305            _pthread_internal_free(thread);
306            return ENOMEM;
307        }
308        madestack = 1;
309    } else {
310        stack = attr->stack_base;
311    }
312
313    // Make room for TLS
314    tls = (void**)(stack + stackSize - BIONIC_TLS_SLOTS*sizeof(void*));
315
316    // Create a mutex for the thread in TLS_SLOT_SELF to wait on once it starts so we can keep
317    // it from doing anything until after we notify the debugger about it
318    start_mutex = (pthread_mutex_t *) &tls[TLS_SLOT_SELF];
319    pthread_mutex_init(start_mutex, NULL);
320    pthread_mutex_lock(start_mutex);
321
322    tls[TLS_SLOT_THREAD_ID] = thread;
323
324    tid = __pthread_clone((int(*)(void*))start_routine, tls,
325                CLONE_FILES | CLONE_FS | CLONE_VM | CLONE_SIGHAND
326                | CLONE_THREAD | CLONE_SYSVSEM | CLONE_DETACHED,
327                arg);
328
329    if(tid < 0) {
330        int  result;
331        if (madestack)
332            munmap(stack, stackSize);
333        _pthread_internal_free(thread);
334        result = errno;
335        errno = old_errno;
336        return result;
337    }
338
339    _init_thread(thread, tid, (pthread_attr_t*)attr, stack);
340
341    if (!madestack)
342        thread->attr.flags |= PTHREAD_ATTR_FLAG_USER_STACK;
343
344    // Notify any debuggers about the new thread
345    pthread_mutex_lock(&gDebuggerNotificationLock);
346    _thread_created_hook(tid);
347    pthread_mutex_unlock(&gDebuggerNotificationLock);
348
349    // Let the thread do it's thing
350    pthread_mutex_unlock(start_mutex);
351
352    *thread_out = (pthread_t)thread;
353    return 0;
354}
355
356
357int pthread_attr_init(pthread_attr_t * attr)
358{
359    *attr = gDefaultPthreadAttr;
360    return 0;
361}
362
363int pthread_attr_destroy(pthread_attr_t * attr)
364{
365    memset(attr, 0x42, sizeof(pthread_attr_t));
366    return 0;
367}
368
369int pthread_attr_setdetachstate(pthread_attr_t * attr, int state)
370{
371    if (state == PTHREAD_CREATE_DETACHED) {
372        attr->flags |= PTHREAD_ATTR_FLAG_DETACHED;
373    } else if (state == PTHREAD_CREATE_JOINABLE) {
374        attr->flags &= ~PTHREAD_ATTR_FLAG_DETACHED;
375    } else {
376        return EINVAL;
377    }
378    return 0;
379}
380
381int pthread_attr_getdetachstate(pthread_attr_t const * attr, int * state)
382{
383    *state = (attr->flags & PTHREAD_ATTR_FLAG_DETACHED)
384           ? PTHREAD_CREATE_DETACHED
385           : PTHREAD_CREATE_JOINABLE;
386    return 0;
387}
388
389int pthread_attr_setschedpolicy(pthread_attr_t * attr, int policy)
390{
391    attr->sched_policy = policy;
392    return 0;
393}
394
395int pthread_attr_getschedpolicy(pthread_attr_t const * attr, int * policy)
396{
397    *policy = attr->sched_policy;
398    return 0;
399}
400
401int pthread_attr_setschedparam(pthread_attr_t * attr, struct sched_param const * param)
402{
403    attr->sched_priority = param->sched_priority;
404    return 0;
405}
406
407int pthread_attr_getschedparam(pthread_attr_t const * attr, struct sched_param * param)
408{
409    param->sched_priority = attr->sched_priority;
410    return 0;
411}
412
413int pthread_attr_setstacksize(pthread_attr_t * attr, size_t stack_size)
414{
415    if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
416        return EINVAL;
417    }
418    attr->stack_size = stack_size;
419    return 0;
420}
421
422int pthread_attr_getstacksize(pthread_attr_t const * attr, size_t * stack_size)
423{
424    *stack_size = attr->stack_size;
425    return 0;
426}
427
428int pthread_attr_setstackaddr(pthread_attr_t * attr, void * stack_addr)
429{
430#if 1
431    // It's not clear if this is setting the top or bottom of the stack, so don't handle it for now.
432    return ENOSYS;
433#else
434    if ((uint32_t)stack_addr & (PAGE_SIZE - 1)) {
435        return EINVAL;
436    }
437    attr->stack_base = stack_addr;
438    return 0;
439#endif
440}
441
442int pthread_attr_getstackaddr(pthread_attr_t const * attr, void ** stack_addr)
443{
444    *stack_addr = (char*)attr->stack_base + attr->stack_size;
445    return 0;
446}
447
448int pthread_attr_setstack(pthread_attr_t * attr, void * stack_base, size_t stack_size)
449{
450    if ((stack_size & (PAGE_SIZE - 1) || stack_size < PTHREAD_STACK_MIN)) {
451        return EINVAL;
452    }
453    if ((uint32_t)stack_base & (PAGE_SIZE - 1)) {
454        return EINVAL;
455    }
456    attr->stack_base = stack_base;
457    attr->stack_size = stack_size;
458    return 0;
459}
460
461int pthread_attr_getstack(pthread_attr_t const * attr, void ** stack_base, size_t * stack_size)
462{
463    *stack_base = attr->stack_base;
464    *stack_size = attr->stack_size;
465    return 0;
466}
467
468int pthread_attr_setguardsize(pthread_attr_t * attr, size_t guard_size)
469{
470    if (guard_size & (PAGE_SIZE - 1) || guard_size < PAGE_SIZE) {
471        return EINVAL;
472    }
473
474    attr->guard_size = guard_size;
475    return 0;
476}
477
478int pthread_attr_getguardsize(pthread_attr_t const * attr, size_t * guard_size)
479{
480    *guard_size = attr->guard_size;
481    return 0;
482}
483
484int pthread_getattr_np(pthread_t thid, pthread_attr_t * attr)
485{
486    pthread_internal_t * thread = (pthread_internal_t *)thid;
487    *attr = thread->attr;
488    return 0;
489}
490
491int pthread_attr_setscope(pthread_attr_t *attr, int  scope)
492{
493    if (scope == PTHREAD_SCOPE_SYSTEM)
494        return 0;
495    if (scope == PTHREAD_SCOPE_PROCESS)
496        return ENOTSUP;
497
498    return EINVAL;
499}
500
501int pthread_attr_getscope(pthread_attr_t const *attr)
502{
503    return PTHREAD_SCOPE_SYSTEM;
504}
505
506
507/* CAVEAT: our implementation of pthread_cleanup_push/pop doesn't support C++ exceptions
508 *         and thread cancelation
509 */
510
511void __pthread_cleanup_push( __pthread_cleanup_t*      c,
512                             __pthread_cleanup_func_t  routine,
513                             void*                     arg )
514{
515    pthread_internal_t*  thread = __get_thread();
516
517    c->__cleanup_routine  = routine;
518    c->__cleanup_arg      = arg;
519    c->__cleanup_prev     = thread->cleanup_stack;
520    thread->cleanup_stack = c;
521}
522
523void __pthread_cleanup_pop( __pthread_cleanup_t*  c, int  execute )
524{
525    pthread_internal_t*  thread = __get_thread();
526
527    thread->cleanup_stack = c->__cleanup_prev;
528    if (execute)
529        c->__cleanup_routine(c->__cleanup_arg);
530}
531
532/* used by pthread_exit() to clean all TLS keys of the current thread */
533static void pthread_key_clean_all(void);
534
535void pthread_exit(void * retval)
536{
537    pthread_internal_t*  thread     = __get_thread();
538    void*                stack_base = thread->attr.stack_base;
539    int                  stack_size = thread->attr.stack_size;
540    int                  user_stack = (thread->attr.flags & PTHREAD_ATTR_FLAG_USER_STACK) != 0;
541
542    // call the cleanup handlers first
543    while (thread->cleanup_stack) {
544        __pthread_cleanup_t*  c = thread->cleanup_stack;
545        thread->cleanup_stack   = c->__cleanup_prev;
546        c->__cleanup_routine(c->__cleanup_arg);
547    }
548
549    // call the TLS destructors, it is important to do that before removing this
550    // thread from the global list. this will ensure that if someone else deletes
551    // a TLS key, the corresponding value will be set to NULL in this thread's TLS
552    // space (see pthread_key_delete)
553    pthread_key_clean_all();
554
555    // if the thread is detached, destroy the pthread_internal_t
556    // otherwise, keep it in memory and signal any joiners
557    if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
558        _pthread_internal_remove(thread);
559        _pthread_internal_free(thread);
560    } else {
561       /* the join_count field is used to store the number of threads waiting for
562        * the termination of this thread with pthread_join(),
563        *
564        * if it is positive we need to signal the waiters, and we do not touch
565        * the count (it will be decremented by the waiters, the last one will
566        * also remove/free the thread structure
567        *
568        * if it is zero, we set the count value to -1 to indicate that the
569        * thread is in 'zombie' state: it has stopped executing, and its stack
570        * is gone (as well as its TLS area). when another thread calls pthread_join()
571        * on it, it will immediately free the thread and return.
572        */
573        pthread_mutex_lock(&gThreadListLock);
574        thread->return_value = retval;
575        if (thread->join_count > 0) {
576            pthread_cond_broadcast(&thread->join_cond);
577        } else {
578            thread->join_count = -1;  /* zombie thread */
579        }
580        pthread_mutex_unlock(&gThreadListLock);
581    }
582
583    // destroy the thread stack
584    if (user_stack)
585        _exit_thread((int)retval);
586    else
587        _exit_with_stack_teardown(stack_base, stack_size, (int)retval);
588}
589
590int pthread_join(pthread_t thid, void ** ret_val)
591{
592    pthread_internal_t*  thread = (pthread_internal_t*)thid;
593    int                  count;
594
595    // check that the thread still exists and is not detached
596    pthread_mutex_lock(&gThreadListLock);
597
598    for (thread = gThreadList; thread != NULL; thread = thread->next)
599        if (thread == (pthread_internal_t*)thid)
600            break;
601
602    if (!thread) {
603        pthread_mutex_unlock(&gThreadListLock);
604        return ESRCH;
605    }
606
607    if (thread->attr.flags & PTHREAD_ATTR_FLAG_DETACHED) {
608        pthread_mutex_unlock(&gThreadListLock);
609        return EINVAL;
610    }
611
612   /* wait for thread death when needed
613    *
614    * if the 'join_count' is negative, this is a 'zombie' thread that
615    * is already dead and without stack/TLS
616    *
617    * otherwise, we need to increment 'join-count' and wait to be signaled
618    */
619   count = thread->join_count;
620    if (count >= 0) {
621        thread->join_count += 1;
622        pthread_cond_wait( &thread->join_cond, &gThreadListLock );
623        count = --thread->join_count;
624    }
625    if (ret_val)
626        *ret_val = thread->return_value;
627
628    /* remove thread descriptor when we're the last joiner or when the
629     * thread was already a zombie.
630     */
631    if (count <= 0) {
632        _pthread_internal_remove_locked(thread);
633        _pthread_internal_free(thread);
634    }
635    pthread_mutex_unlock(&gThreadListLock);
636    return 0;
637}
638
639int  pthread_detach( pthread_t  thid )
640{
641    pthread_internal_t*  thread;
642    int                  result = 0;
643    int                  flags;
644
645    pthread_mutex_lock(&gThreadListLock);
646    for (thread = gThreadList; thread != NULL; thread = thread->next)
647        if (thread == (pthread_internal_t*)thid)
648            goto FoundIt;
649
650    result = ESRCH;
651    goto Exit;
652
653FoundIt:
654    do {
655        flags = thread->attr.flags;
656
657        if ( flags & PTHREAD_ATTR_FLAG_DETACHED ) {
658            /* thread is not joinable ! */
659            result = EINVAL;
660            goto Exit;
661        }
662    }
663    while ( __atomic_cmpxchg( flags, flags | PTHREAD_ATTR_FLAG_DETACHED,
664                              (volatile int*)&thread->attr.flags ) != 0 );
665Exit:
666    pthread_mutex_unlock(&gThreadListLock);
667    return result;
668}
669
670pthread_t pthread_self(void)
671{
672    return (pthread_t)__get_thread();
673}
674
675int pthread_equal(pthread_t one, pthread_t two)
676{
677    return (one == two ? 1 : 0);
678}
679
680int pthread_getschedparam(pthread_t thid, int * policy,
681                          struct sched_param * param)
682{
683    int  old_errno = errno;
684
685    pthread_internal_t * thread = (pthread_internal_t *)thid;
686    int err = sched_getparam(thread->kernel_id, param);
687    if (!err) {
688        *policy = sched_getscheduler(thread->kernel_id);
689    } else {
690        err = errno;
691        errno = old_errno;
692    }
693    return err;
694}
695
696int pthread_setschedparam(pthread_t thid, int policy,
697                          struct sched_param const * param)
698{
699    pthread_internal_t * thread = (pthread_internal_t *)thid;
700    int                  old_errno = errno;
701    int                  ret;
702
703    ret = sched_setscheduler(thread->kernel_id, policy, param);
704    if (ret < 0) {
705        ret = errno;
706        errno = old_errno;
707    }
708    return ret;
709}
710
711
712int __futex_wait(volatile void *ftx, int val, const struct timespec *timeout);
713int __futex_wake(volatile void *ftx, int count);
714
715// mutex lock states
716//
717// 0: unlocked
718// 1: locked, no waiters
719// 2: locked, maybe waiters
720
721/* a mutex is implemented as a 32-bit integer holding the following fields
722 *
723 * bits:     name     description
724 * 31-16     tid      owner thread's kernel id (recursive and errorcheck only)
725 * 15-14     type     mutex type
726 * 13-2      counter  counter of recursive mutexes
727 * 1-0       state    lock state (0, 1 or 2)
728 */
729
730
731#define  MUTEX_OWNER(m)  (((m)->value >> 16) & 0xffff)
732#define  MUTEX_COUNTER(m) (((m)->value >> 2) & 0xfff)
733
734#define  MUTEX_TYPE_MASK       0xc000
735#define  MUTEX_TYPE_NORMAL     0x0000
736#define  MUTEX_TYPE_RECURSIVE  0x4000
737#define  MUTEX_TYPE_ERRORCHECK 0x8000
738
739#define  MUTEX_COUNTER_SHIFT  2
740#define  MUTEX_COUNTER_MASK   0x3ffc
741
742
743
744
745int pthread_mutexattr_init(pthread_mutexattr_t *attr)
746{
747    if (attr) {
748        *attr = PTHREAD_MUTEX_DEFAULT;
749        return 0;
750    } else {
751        return EINVAL;
752    }
753}
754
755int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
756{
757    if (attr) {
758        *attr = -1;
759        return 0;
760    } else {
761        return EINVAL;
762    }
763}
764
765int pthread_mutexattr_gettype(const pthread_mutexattr_t *attr, int *type)
766{
767    if (attr && *attr >= PTHREAD_MUTEX_NORMAL &&
768                *attr <= PTHREAD_MUTEX_ERRORCHECK ) {
769        *type = *attr;
770        return 0;
771    }
772    return EINVAL;
773}
774
775int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
776{
777    if (attr && type >= PTHREAD_MUTEX_NORMAL &&
778                type <= PTHREAD_MUTEX_ERRORCHECK ) {
779        *attr = type;
780        return 0;
781    }
782    return EINVAL;
783}
784
785/* process-shared mutexes are not supported at the moment */
786
787int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr, int  pshared)
788{
789    if (!attr)
790        return EINVAL;
791
792    switch (pshared) {
793    case PTHREAD_PROCESS_PRIVATE:
794    case PTHREAD_PROCESS_SHARED:
795        /* our current implementation of pthread actually supports shared
796         * mutexes but won't cleanup if a process dies with the mutex held.
797         * Nevertheless, it's better than nothing. Shared mutexes are used
798         * by surfaceflinger and audioflinger.
799         */
800        return 0;
801    }
802
803    return ENOTSUP;
804}
805
806int pthread_mutexattr_getpshared(pthread_mutexattr_t *attr, int *pshared)
807{
808    if (!attr)
809        return EINVAL;
810
811    *pshared = PTHREAD_PROCESS_PRIVATE;
812    return 0;
813}
814
815int pthread_mutex_init(pthread_mutex_t *mutex,
816                       const pthread_mutexattr_t *attr)
817{
818    if ( mutex ) {
819        if (attr == NULL) {
820            mutex->value = MUTEX_TYPE_NORMAL;
821            return 0;
822        }
823        switch ( *attr ) {
824        case PTHREAD_MUTEX_NORMAL:
825            mutex->value = MUTEX_TYPE_NORMAL;
826            return 0;
827
828        case PTHREAD_MUTEX_RECURSIVE:
829            mutex->value = MUTEX_TYPE_RECURSIVE;
830            return 0;
831
832        case PTHREAD_MUTEX_ERRORCHECK:
833            mutex->value = MUTEX_TYPE_ERRORCHECK;
834            return 0;
835        }
836    }
837    return EINVAL;
838}
839
840int pthread_mutex_destroy(pthread_mutex_t *mutex)
841{
842    mutex->value = 0xdead10cc;
843    return 0;
844}
845
846
847/*
848 * Lock a non-recursive mutex.
849 *
850 * As noted above, there are three states:
851 *   0 (unlocked, no contention)
852 *   1 (locked, no contention)
853 *   2 (locked, contention)
854 *
855 * Non-recursive mutexes don't use the thread-id or counter fields, and the
856 * "type" value is zero, so the only bits that will be set are the ones in
857 * the lock state field.
858 */
859static __inline__ void
860_normal_lock(pthread_mutex_t*  mutex)
861{
862    /*
863     * The common case is an unlocked mutex, so we begin by trying to
864     * change the lock's state from 0 to 1.  __atomic_cmpxchg() returns 0
865     * if it made the swap successfully.  If the result is nonzero, this
866     * lock is already held by another thread.
867     */
868    if (__atomic_cmpxchg(0, 1, &mutex->value ) != 0) {
869        /*
870         * We want to go to sleep until the mutex is available, which
871         * requires promoting it to state 2.  We need to swap in the new
872         * state value and then wait until somebody wakes us up.
873         *
874         * __atomic_swap() returns the previous value.  We swap 2 in and
875         * see if we got zero back; if so, we have acquired the lock.  If
876         * not, another thread still holds the lock and we wait again.
877         *
878         * The second argument to the __futex_wait() call is compared
879         * against the current value.  If it doesn't match, __futex_wait()
880         * returns immediately (otherwise, it sleeps for a time specified
881         * by the third argument; 0 means sleep forever).  This ensures
882         * that the mutex is in state 2 when we go to sleep on it, which
883         * guarantees a wake-up call.
884         */
885        while (__atomic_swap(2, &mutex->value ) != 0)
886            __futex_wait(&mutex->value, 2, 0);
887    }
888}
889
890/*
891 * Release a non-recursive mutex.  The caller is responsible for determining
892 * that we are in fact the owner of this lock.
893 */
894static __inline__ void
895_normal_unlock(pthread_mutex_t*  mutex)
896{
897    /*
898     * The mutex value will be 1 or (rarely) 2.  We use an atomic decrement
899     * to release the lock.  __atomic_dec() returns the previous value;
900     * if it wasn't 1 we have to do some additional work.
901     */
902    if (__atomic_dec(&mutex->value) != 1) {
903        /*
904         * Start by releasing the lock.  The decrement changed it from
905         * "contended lock" to "uncontended lock", which means we still
906         * hold it, and anybody who tries to sneak in will push it back
907         * to state 2.
908         *
909         * Once we set it to zero the lock is up for grabs.  We follow
910         * this with a __futex_wake() to ensure that one of the waiting
911         * threads has a chance to grab it.
912         *
913         * This doesn't cause a race with the swap/wait pair in
914         * _normal_lock(), because the __futex_wait() call there will
915         * return immediately if the mutex value isn't 2.
916         */
917        mutex->value = 0;
918
919        /*
920         * Wake up one waiting thread.  We don't know which thread will be
921         * woken or when it'll start executing -- futexes make no guarantees
922         * here.  There may not even be a thread waiting.
923         *
924         * The newly-woken thread will replace the 0 we just set above
925         * with 2, which means that when it eventually releases the mutex
926         * it will also call FUTEX_WAKE.  This results in one extra wake
927         * call whenever a lock is contended, but lets us avoid forgetting
928         * anyone without requiring us to track the number of sleepers.
929         *
930         * It's possible for another thread to sneak in and grab the lock
931         * between the zero assignment above and the wake call below.  If
932         * the new thread is "slow" and holds the lock for a while, we'll
933         * wake up a sleeper, which will swap in a 2 and then go back to
934         * sleep since the lock is still held.  If the new thread is "fast",
935         * running to completion before we call wake, the thread we
936         * eventually wake will find an unlocked mutex and will execute.
937         * Either way we have correct behavior and nobody is orphaned on
938         * the wait queue.
939         */
940        __futex_wake(&mutex->value, 1);
941    }
942}
943
944static pthread_mutex_t  __recursive_lock = PTHREAD_MUTEX_INITIALIZER;
945
946static void
947_recursive_lock(void)
948{
949    _normal_lock( &__recursive_lock);
950}
951
952static void
953_recursive_unlock(void)
954{
955    _normal_unlock( &__recursive_lock );
956}
957
958#define  __likely(cond)    __builtin_expect(!!(cond), 1)
959#define  __unlikely(cond)  __builtin_expect(!!(cond), 0)
960
961int pthread_mutex_lock(pthread_mutex_t *mutex)
962{
963    if (__likely(mutex != NULL))
964    {
965        int  mtype = (mutex->value & MUTEX_TYPE_MASK);
966
967        if ( __likely(mtype == MUTEX_TYPE_NORMAL) ) {
968            _normal_lock(mutex);
969        }
970        else
971        {
972            int  tid = __get_thread()->kernel_id;
973
974            if ( tid == MUTEX_OWNER(mutex) )
975            {
976                int  oldv, counter;
977
978                if (mtype == MUTEX_TYPE_ERRORCHECK) {
979                    /* trying to re-lock a mutex we already acquired */
980                    return EDEADLK;
981                }
982                /*
983                 * We own the mutex, but other threads are able to change
984                 * the contents (e.g. promoting it to "contended"), so we
985                 * need to hold the global lock.
986                 */
987                _recursive_lock();
988                oldv         = mutex->value;
989                counter      = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
990                mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
991                _recursive_unlock();
992            }
993            else
994            {
995                /*
996                 * If the new lock is available immediately, we grab it in
997                 * the "uncontended" state.
998                 */
999                int new_lock_type = 1;
1000
1001                for (;;) {
1002                    int  oldv;
1003
1004                    _recursive_lock();
1005                    oldv = mutex->value;
1006                    if (oldv == mtype) { /* uncontended released lock => 1 or 2 */
1007                        mutex->value = ((tid << 16) | mtype | new_lock_type);
1008                    } else if ((oldv & 3) == 1) { /* locked state 1 => state 2 */
1009                        oldv ^= 3;
1010                        mutex->value = oldv;
1011                    }
1012                    _recursive_unlock();
1013
1014                    if (oldv == mtype)
1015                        break;
1016
1017                    /*
1018                     * The lock was held, possibly contended by others.  From
1019                     * now on, if we manage to acquire the lock, we have to
1020                     * assume that others are still contending for it so that
1021                     * we'll wake them when we unlock it.
1022                     */
1023                    new_lock_type = 2;
1024
1025                    __futex_wait( &mutex->value, oldv, 0 );
1026                }
1027            }
1028        }
1029        return 0;
1030    }
1031    return EINVAL;
1032}
1033
1034
1035int pthread_mutex_unlock(pthread_mutex_t *mutex)
1036{
1037    if (__likely(mutex != NULL))
1038    {
1039        int  mtype = (mutex->value & MUTEX_TYPE_MASK);
1040
1041        if (__likely(mtype == MUTEX_TYPE_NORMAL)) {
1042            _normal_unlock(mutex);
1043        }
1044        else
1045        {
1046            int  tid = __get_thread()->kernel_id;
1047
1048            if ( tid == MUTEX_OWNER(mutex) )
1049            {
1050                int  oldv;
1051
1052                _recursive_lock();
1053                oldv = mutex->value;
1054                if (oldv & MUTEX_COUNTER_MASK) {
1055                    mutex->value = oldv - (1 << MUTEX_COUNTER_SHIFT);
1056                    oldv = 0;
1057                } else {
1058                    mutex->value = mtype;
1059                }
1060                _recursive_unlock();
1061
1062                if ((oldv & 3) == 2)
1063                    __futex_wake( &mutex->value, 1 );
1064            }
1065            else {
1066                /* trying to unlock a lock we do not own */
1067                return EPERM;
1068            }
1069        }
1070        return 0;
1071    }
1072    return EINVAL;
1073}
1074
1075
1076int pthread_mutex_trylock(pthread_mutex_t *mutex)
1077{
1078    if (__likely(mutex != NULL))
1079    {
1080        int  mtype = (mutex->value & MUTEX_TYPE_MASK);
1081
1082        if ( __likely(mtype == MUTEX_TYPE_NORMAL) )
1083        {
1084            if (__atomic_cmpxchg(0, 1, &mutex->value) == 0)
1085                return 0;
1086
1087            return EBUSY;
1088        }
1089        else
1090        {
1091            int  tid = __get_thread()->kernel_id;
1092            int  oldv;
1093
1094            if ( tid == MUTEX_OWNER(mutex) )
1095            {
1096                int  oldv, counter;
1097
1098                if (mtype == MUTEX_TYPE_ERRORCHECK) {
1099                    /* already locked by ourselves */
1100                    return EDEADLK;
1101                }
1102
1103                _recursive_lock();
1104                oldv = mutex->value;
1105                counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
1106                mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
1107                _recursive_unlock();
1108                return 0;
1109            }
1110
1111            /* try to lock it */
1112            _recursive_lock();
1113            oldv = mutex->value;
1114            if (oldv == mtype)  /* uncontended released lock => state 1 */
1115                mutex->value = ((tid << 16) | mtype | 1);
1116            _recursive_unlock();
1117
1118            if (oldv != mtype)
1119                return EBUSY;
1120
1121            return 0;
1122        }
1123    }
1124    return EINVAL;
1125}
1126
1127
1128/* initialize 'ts' with the difference between 'abstime' and the current time
1129 * according to 'clock'. Returns -1 if abstime already expired, or 0 otherwise.
1130 */
1131static int
1132__timespec_to_absolute(struct timespec*  ts, const struct timespec*  abstime, clockid_t  clock)
1133{
1134    clock_gettime(clock, ts);
1135    ts->tv_sec  = abstime->tv_sec - ts->tv_sec;
1136    ts->tv_nsec = abstime->tv_nsec - ts->tv_nsec;
1137    if (ts->tv_nsec < 0) {
1138        ts->tv_sec--;
1139        ts->tv_nsec += 1000000000;
1140    }
1141    if ((ts->tv_nsec < 0) || (ts->tv_sec < 0))
1142        return -1;
1143
1144    return 0;
1145}
1146
1147/* initialize 'abstime' to the current time according to 'clock' plus 'msecs'
1148 * milliseconds.
1149 */
1150static void
1151__timespec_to_relative_msec(struct timespec*  abstime, unsigned  msecs, clockid_t  clock)
1152{
1153    clock_gettime(clock, abstime);
1154    abstime->tv_sec  += msecs/1000;
1155    abstime->tv_nsec += (msecs%1000)*1000000;
1156    if (abstime->tv_nsec >= 1000000000) {
1157        abstime->tv_sec++;
1158        abstime->tv_nsec -= 1000000000;
1159    }
1160}
1161
1162int pthread_mutex_lock_timeout_np(pthread_mutex_t *mutex, unsigned msecs)
1163{
1164    clockid_t        clock = CLOCK_MONOTONIC;
1165    struct timespec  abstime;
1166    struct timespec  ts;
1167
1168    /* compute absolute expiration time */
1169    __timespec_to_relative_msec(&abstime, msecs, clock);
1170
1171    if (__likely(mutex != NULL))
1172    {
1173        int  mtype = (mutex->value & MUTEX_TYPE_MASK);
1174
1175        if ( __likely(mtype == MUTEX_TYPE_NORMAL) )
1176        {
1177            /* fast path for unconteded lock */
1178            if (__atomic_cmpxchg(0, 1, &mutex->value) == 0)
1179                return 0;
1180
1181            /* loop while needed */
1182            while (__atomic_swap(2, &mutex->value) != 0) {
1183                if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
1184                    return EBUSY;
1185
1186                __futex_wait(&mutex->value, 2, &ts);
1187            }
1188            return 0;
1189        }
1190        else
1191        {
1192            int  tid = __get_thread()->kernel_id;
1193            int  oldv;
1194
1195            if ( tid == MUTEX_OWNER(mutex) )
1196            {
1197                int  oldv, counter;
1198
1199                if (mtype == MUTEX_TYPE_ERRORCHECK) {
1200                    /* already locked by ourselves */
1201                    return EDEADLK;
1202                }
1203
1204                _recursive_lock();
1205                oldv = mutex->value;
1206                counter = (oldv + (1 << MUTEX_COUNTER_SHIFT)) & MUTEX_COUNTER_MASK;
1207                mutex->value = (oldv & ~MUTEX_COUNTER_MASK) | counter;
1208                _recursive_unlock();
1209                return 0;
1210            }
1211            else
1212            {
1213                /*
1214                 * If the new lock is available immediately, we grab it in
1215                 * the "uncontended" state.
1216                 */
1217                int new_lock_type = 1;
1218
1219                for (;;) {
1220                    int  oldv;
1221                    struct timespec  ts;
1222
1223                    _recursive_lock();
1224                    oldv = mutex->value;
1225                    if (oldv == mtype) { /* uncontended released lock => 1 or 2 */
1226                        mutex->value = ((tid << 16) | mtype | new_lock_type);
1227                    } else if ((oldv & 3) == 1) { /* locked state 1 => state 2 */
1228                        oldv ^= 3;
1229                        mutex->value = oldv;
1230                    }
1231                    _recursive_unlock();
1232
1233                    if (oldv == mtype)
1234                        break;
1235
1236                    /*
1237                     * The lock was held, possibly contended by others.  From
1238                     * now on, if we manage to acquire the lock, we have to
1239                     * assume that others are still contending for it so that
1240                     * we'll wake them when we unlock it.
1241                     */
1242                    new_lock_type = 2;
1243
1244                    if (__timespec_to_absolute(&ts, &abstime, clock) < 0)
1245                        return EBUSY;
1246
1247                    __futex_wait( &mutex->value, oldv, &ts );
1248                }
1249                return 0;
1250            }
1251        }
1252    }
1253    return EINVAL;
1254}
1255
1256
1257/* XXX *technically* there is a race condition that could allow
1258 * XXX a signal to be missed.  If thread A is preempted in _wait()
1259 * XXX after unlocking the mutex and before waiting, and if other
1260 * XXX threads call signal or broadcast UINT_MAX times (exactly),
1261 * XXX before thread A is scheduled again and calls futex_wait(),
1262 * XXX then the signal will be lost.
1263 */
1264
1265int pthread_cond_init(pthread_cond_t *cond,
1266                      const pthread_condattr_t *attr)
1267{
1268    cond->value = 0;
1269    return 0;
1270}
1271
1272int pthread_cond_destroy(pthread_cond_t *cond)
1273{
1274    cond->value = 0xdeadc04d;
1275    return 0;
1276}
1277
1278int pthread_cond_broadcast(pthread_cond_t *cond)
1279{
1280    __atomic_dec(&cond->value);
1281    __futex_wake(&cond->value, INT_MAX);
1282    return 0;
1283}
1284
1285int pthread_cond_signal(pthread_cond_t *cond)
1286{
1287    __atomic_dec(&cond->value);
1288    __futex_wake(&cond->value, 1);
1289    return 0;
1290}
1291
1292int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex)
1293{
1294    return pthread_cond_timedwait(cond, mutex, NULL);
1295}
1296
1297int __pthread_cond_timedwait_relative(pthread_cond_t *cond,
1298                                      pthread_mutex_t * mutex,
1299                                      const struct timespec *reltime)
1300{
1301    int  status;
1302    int  oldvalue = cond->value;
1303
1304    pthread_mutex_unlock(mutex);
1305    status = __futex_wait(&cond->value, oldvalue, reltime);
1306    pthread_mutex_lock(mutex);
1307
1308    if (status == (-ETIMEDOUT)) return ETIMEDOUT;
1309    return 0;
1310}
1311
1312int __pthread_cond_timedwait(pthread_cond_t *cond,
1313                             pthread_mutex_t * mutex,
1314                             const struct timespec *abstime,
1315                             clockid_t clock)
1316{
1317    struct timespec ts;
1318    struct timespec * tsp;
1319
1320    if (abstime != NULL) {
1321        if (__timespec_to_absolute(&ts, abstime, clock) < 0)
1322            return ETIMEDOUT;
1323        tsp = &ts;
1324    } else {
1325        tsp = NULL;
1326    }
1327
1328    return __pthread_cond_timedwait_relative(cond, mutex, tsp);
1329}
1330
1331int pthread_cond_timedwait(pthread_cond_t *cond,
1332                           pthread_mutex_t * mutex,
1333                           const struct timespec *abstime)
1334{
1335    return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_REALTIME);
1336}
1337
1338
1339/* this one exists only for backward binary compatibility */
1340int pthread_cond_timedwait_monotonic(pthread_cond_t *cond,
1341                                     pthread_mutex_t * mutex,
1342                                     const struct timespec *abstime)
1343{
1344    return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1345}
1346
1347int pthread_cond_timedwait_monotonic_np(pthread_cond_t *cond,
1348                                     pthread_mutex_t * mutex,
1349                                     const struct timespec *abstime)
1350{
1351    return __pthread_cond_timedwait(cond, mutex, abstime, CLOCK_MONOTONIC);
1352}
1353
1354int pthread_cond_timedwait_relative_np(pthread_cond_t *cond,
1355                                      pthread_mutex_t * mutex,
1356                                      const struct timespec *reltime)
1357{
1358    return __pthread_cond_timedwait_relative(cond, mutex, reltime);
1359}
1360
1361int pthread_cond_timeout_np(pthread_cond_t *cond,
1362                            pthread_mutex_t * mutex,
1363                            unsigned msecs)
1364{
1365    struct timespec ts;
1366
1367    ts.tv_sec = msecs / 1000;
1368    ts.tv_nsec = (msecs % 1000) * 1000000;
1369
1370    return __pthread_cond_timedwait_relative(cond, mutex, &ts);
1371}
1372
1373
1374
1375/* A technical note regarding our thread-local-storage (TLS) implementation:
1376 *
1377 * There can be up to TLSMAP_SIZE independent TLS keys in a given process,
1378 * though the first TLSMAP_START keys are reserved for Bionic to hold
1379 * special thread-specific variables like errno or a pointer to
1380 * the current thread's descriptor.
1381 *
1382 * while stored in the TLS area, these entries cannot be accessed through
1383 * pthread_getspecific() / pthread_setspecific() and pthread_key_delete()
1384 *
1385 * also, some entries in the key table are pre-allocated (see tlsmap_lock)
1386 * to greatly simplify and speedup some OpenGL-related operations. though the
1387 * initialy value will be NULL on all threads.
1388 *
1389 * you can use pthread_getspecific()/setspecific() on these, and in theory
1390 * you could also call pthread_key_delete() as well, though this would
1391 * probably break some apps.
1392 *
1393 * The 'tlsmap_t' type defined below implements a shared global map of
1394 * currently created/allocated TLS keys and the destructors associated
1395 * with them. You should use tlsmap_lock/unlock to access it to avoid
1396 * any race condition.
1397 *
1398 * the global TLS map simply contains a bitmap of allocated keys, and
1399 * an array of destructors.
1400 *
1401 * each thread has a TLS area that is a simple array of TLSMAP_SIZE void*
1402 * pointers. the TLS area of the main thread is stack-allocated in
1403 * __libc_init_common, while the TLS area of other threads is placed at
1404 * the top of their stack in pthread_create.
1405 *
1406 * when pthread_key_create() is called, it finds the first free key in the
1407 * bitmap, then set it to 1, saving the destructor altogether
1408 *
1409 * when pthread_key_delete() is called. it will erase the key's bitmap bit
1410 * and its destructor, and will also clear the key data in the TLS area of
1411 * all created threads. As mandated by Posix, it is the responsability of
1412 * the caller of pthread_key_delete() to properly reclaim the objects that
1413 * were pointed to by these data fields (either before or after the call).
1414 *
1415 */
1416
1417/* TLS Map implementation
1418 */
1419
1420#define TLSMAP_START      (TLS_SLOT_MAX_WELL_KNOWN+1)
1421#define TLSMAP_SIZE       BIONIC_TLS_SLOTS
1422#define TLSMAP_BITS       32
1423#define TLSMAP_WORDS      ((TLSMAP_SIZE+TLSMAP_BITS-1)/TLSMAP_BITS)
1424#define TLSMAP_WORD(m,k)  (m)->map[(k)/TLSMAP_BITS]
1425#define TLSMAP_MASK(k)    (1U << ((k)&(TLSMAP_BITS-1)))
1426
1427/* this macro is used to quickly check that a key belongs to a reasonable range */
1428#define TLSMAP_VALIDATE_KEY(key)  \
1429    ((key) >= TLSMAP_START && (key) < TLSMAP_SIZE)
1430
1431/* the type of tls key destructor functions */
1432typedef void (*tls_dtor_t)(void*);
1433
1434typedef struct {
1435    int         init;                  /* see comment in tlsmap_lock() */
1436    uint32_t    map[TLSMAP_WORDS];     /* bitmap of allocated keys */
1437    tls_dtor_t  dtors[TLSMAP_SIZE];    /* key destructors */
1438} tlsmap_t;
1439
1440static pthread_mutex_t  _tlsmap_lock = PTHREAD_MUTEX_INITIALIZER;
1441static tlsmap_t         _tlsmap;
1442
1443/* lock the global TLS map lock and return a handle to it */
1444static __inline__ tlsmap_t* tlsmap_lock(void)
1445{
1446    tlsmap_t*   m = &_tlsmap;
1447
1448    pthread_mutex_lock(&_tlsmap_lock);
1449    /* we need to initialize the first entry of the 'map' array
1450     * with the value TLS_DEFAULT_ALLOC_MAP. doing it statically
1451     * when declaring _tlsmap is a bit awkward and is going to
1452     * produce warnings, so do it the first time we use the map
1453     * instead
1454     */
1455    if (__unlikely(!m->init)) {
1456        TLSMAP_WORD(m,0) = TLS_DEFAULT_ALLOC_MAP;
1457        m->init          = 1;
1458    }
1459    return m;
1460}
1461
1462/* unlock the global TLS map */
1463static __inline__ void tlsmap_unlock(tlsmap_t*  m)
1464{
1465    pthread_mutex_unlock(&_tlsmap_lock);
1466    (void)m;  /* a good compiler is a happy compiler */
1467}
1468
1469/* test to see wether a key is allocated */
1470static __inline__ int tlsmap_test(tlsmap_t*  m, int  key)
1471{
1472    return (TLSMAP_WORD(m,key) & TLSMAP_MASK(key)) != 0;
1473}
1474
1475/* set the destructor and bit flag on a newly allocated key */
1476static __inline__ void tlsmap_set(tlsmap_t*  m, int  key, tls_dtor_t  dtor)
1477{
1478    TLSMAP_WORD(m,key) |= TLSMAP_MASK(key);
1479    m->dtors[key]       = dtor;
1480}
1481
1482/* clear the destructor and bit flag on an existing key */
1483static __inline__ void  tlsmap_clear(tlsmap_t*  m, int  key)
1484{
1485    TLSMAP_WORD(m,key) &= ~TLSMAP_MASK(key);
1486    m->dtors[key]       = NULL;
1487}
1488
1489/* allocate a new TLS key, return -1 if no room left */
1490static int tlsmap_alloc(tlsmap_t*  m, tls_dtor_t  dtor)
1491{
1492    int  key;
1493
1494    for ( key = TLSMAP_START; key < TLSMAP_SIZE; key++ ) {
1495        if ( !tlsmap_test(m, key) ) {
1496            tlsmap_set(m, key, dtor);
1497            return key;
1498        }
1499    }
1500    return -1;
1501}
1502
1503
1504int pthread_key_create(pthread_key_t *key, void (*destructor_function)(void *))
1505{
1506    uint32_t   err = ENOMEM;
1507    tlsmap_t*  map = tlsmap_lock();
1508    int        k   = tlsmap_alloc(map, destructor_function);
1509
1510    if (k >= 0) {
1511        *key = k;
1512        err  = 0;
1513    }
1514    tlsmap_unlock(map);
1515    return err;
1516}
1517
1518
1519/* This deletes a pthread_key_t. note that the standard mandates that this does
1520 * not call the destructor of non-NULL key values. Instead, it is the
1521 * responsability of the caller to properly dispose of the corresponding data
1522 * and resources, using any mean it finds suitable.
1523 *
1524 * On the other hand, this function will clear the corresponding key data
1525 * values in all known threads. this prevents later (invalid) calls to
1526 * pthread_getspecific() to receive invalid/stale values.
1527 */
1528int pthread_key_delete(pthread_key_t key)
1529{
1530    uint32_t             err;
1531    pthread_internal_t*  thr;
1532    tlsmap_t*            map;
1533
1534    if (!TLSMAP_VALIDATE_KEY(key)) {
1535        return EINVAL;
1536    }
1537
1538    map = tlsmap_lock();
1539
1540    if (!tlsmap_test(map, key)) {
1541        err = EINVAL;
1542        goto err1;
1543    }
1544
1545    /* clear value in all threads */
1546    pthread_mutex_lock(&gThreadListLock);
1547    for ( thr = gThreadList; thr != NULL; thr = thr->next ) {
1548        /* avoid zombie threads with a negative 'join_count'. these are really
1549         * already dead and don't have a TLS area anymore.
1550         *
1551         * similarly, it is possible to have thr->tls == NULL for threads that
1552         * were just recently created through pthread_create() but whose
1553         * startup trampoline (__thread_entry) hasn't been run yet by the
1554         * scheduler. so check for this too.
1555         */
1556        if (thr->join_count < 0 || !thr->tls)
1557            continue;
1558
1559        thr->tls[key] = NULL;
1560    }
1561    tlsmap_clear(map, key);
1562
1563    pthread_mutex_unlock(&gThreadListLock);
1564    err = 0;
1565
1566err1:
1567    tlsmap_unlock(map);
1568    return err;
1569}
1570
1571
1572int pthread_setspecific(pthread_key_t key, const void *ptr)
1573{
1574    int        err = EINVAL;
1575    tlsmap_t*  map;
1576
1577    if (TLSMAP_VALIDATE_KEY(key)) {
1578        /* check that we're trying to set data for an allocated key */
1579        map = tlsmap_lock();
1580        if (tlsmap_test(map, key)) {
1581            ((uint32_t *)__get_tls())[key] = (uint32_t)ptr;
1582            err = 0;
1583        }
1584        tlsmap_unlock(map);
1585    }
1586    return err;
1587}
1588
1589void * pthread_getspecific(pthread_key_t key)
1590{
1591    if (!TLSMAP_VALIDATE_KEY(key)) {
1592        return NULL;
1593    }
1594
1595    /* for performance reason, we do not lock/unlock the global TLS map
1596     * to check that the key is properly allocated. if the key was not
1597     * allocated, the value read from the TLS should always be NULL
1598     * due to pthread_key_delete() clearing the values for all threads.
1599     */
1600    return (void *)(((unsigned *)__get_tls())[key]);
1601}
1602
1603/* Posix mandates that this be defined in <limits.h> but we don't have
1604 * it just yet.
1605 */
1606#ifndef PTHREAD_DESTRUCTOR_ITERATIONS
1607#  define PTHREAD_DESTRUCTOR_ITERATIONS  4
1608#endif
1609
1610/* this function is called from pthread_exit() to remove all TLS key data
1611 * from this thread's TLS area. this must call the destructor of all keys
1612 * that have a non-NULL data value (and a non-NULL destructor).
1613 *
1614 * because destructors can do funky things like deleting/creating other
1615 * keys, we need to implement this in a loop
1616 */
1617static void pthread_key_clean_all(void)
1618{
1619    tlsmap_t*    map;
1620    void**       tls = (void**)__get_tls();
1621    int          rounds = PTHREAD_DESTRUCTOR_ITERATIONS;
1622
1623    map = tlsmap_lock();
1624
1625    for (rounds = PTHREAD_DESTRUCTOR_ITERATIONS; rounds > 0; rounds--)
1626    {
1627        int  kk, count = 0;
1628
1629        for (kk = TLSMAP_START; kk < TLSMAP_SIZE; kk++) {
1630            if ( tlsmap_test(map, kk) )
1631            {
1632                void*       data = tls[kk];
1633                tls_dtor_t  dtor = map->dtors[kk];
1634
1635                if (data != NULL && dtor != NULL)
1636                {
1637                   /* we need to clear the key data now, this will prevent the
1638                    * destructor (or a later one) from seeing the old value if
1639                    * it calls pthread_getspecific() for some odd reason
1640                    *
1641                    * we do not do this if 'dtor == NULL' just in case another
1642                    * destructor function might be responsible for manually
1643                    * releasing the corresponding data.
1644                    */
1645                    tls[kk] = NULL;
1646
1647                   /* because the destructor is free to call pthread_key_create
1648                    * and/or pthread_key_delete, we need to temporarily unlock
1649                    * the TLS map
1650                    */
1651                    tlsmap_unlock(map);
1652                    (*dtor)(data);
1653                    map = tlsmap_lock();
1654
1655                    count += 1;
1656                }
1657            }
1658        }
1659
1660        /* if we didn't call any destructor, there is no need to check the
1661         * TLS data again
1662         */
1663        if (count == 0)
1664            break;
1665    }
1666    tlsmap_unlock(map);
1667}
1668
1669// man says this should be in <linux/unistd.h>, but it isn't
1670extern int tkill(int tid, int sig);
1671
1672int pthread_kill(pthread_t tid, int sig)
1673{
1674    int  ret;
1675    int  old_errno = errno;
1676    pthread_internal_t * thread = (pthread_internal_t *)tid;
1677
1678    ret = tkill(thread->kernel_id, sig);
1679    if (ret < 0) {
1680        ret = errno;
1681        errno = old_errno;
1682    }
1683
1684    return ret;
1685}
1686
1687extern int __rt_sigprocmask(int, const sigset_t *, sigset_t *, size_t);
1688
1689int pthread_sigmask(int how, const sigset_t *set, sigset_t *oset)
1690{
1691    /* pthread_sigmask must return the error code, but the syscall
1692     * will set errno instead and return 0/-1
1693     */
1694    int ret, old_errno = errno;
1695
1696    ret = __rt_sigprocmask(how, set, oset, _NSIG / 8);
1697    if (ret < 0)
1698        ret = errno;
1699
1700    errno = old_errno;
1701    return ret;
1702}
1703
1704
1705int pthread_getcpuclockid(pthread_t  tid, clockid_t  *clockid)
1706{
1707    const int            CLOCK_IDTYPE_BITS = 3;
1708    pthread_internal_t*  thread = (pthread_internal_t*)tid;
1709
1710    if (!thread)
1711        return ESRCH;
1712
1713    *clockid = CLOCK_THREAD_CPUTIME_ID | (thread->kernel_id << CLOCK_IDTYPE_BITS);
1714    return 0;
1715}
1716
1717
1718/* NOTE: this implementation doesn't support a init function that throws a C++ exception
1719 *       or calls fork()
1720 */
1721int  pthread_once( pthread_once_t*  once_control,  void (*init_routine)(void) )
1722{
1723    static pthread_mutex_t   once_lock = PTHREAD_MUTEX_INITIALIZER;
1724
1725    if (*once_control == PTHREAD_ONCE_INIT) {
1726        _normal_lock( &once_lock );
1727        if (*once_control == PTHREAD_ONCE_INIT) {
1728            (*init_routine)();
1729            *once_control = ~PTHREAD_ONCE_INIT;
1730        }
1731        _normal_unlock( &once_lock );
1732    }
1733    return 0;
1734}
1735