res_cache.c revision 52764f5546362d0ffab99afaffe8e8c7f21f8ef2
1/*
2 * Copyright (C) 2008 The Android Open Source Project
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *  * Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 *  * Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in
12 *    the documentation and/or other materials provided with the
13 *    distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29#include "resolv_cache.h"
30#include <resolv.h>
31#include <stdlib.h>
32#include <string.h>
33#include <time.h>
34#include "pthread.h"
35
36#include <errno.h>
37#include "arpa_nameser.h"
38#include <sys/system_properties.h>
39#include <net/if.h>
40#include <netdb.h>
41#include <linux/if.h>
42
43#include <arpa/inet.h>
44#include "resolv_private.h"
45#include "resolv_iface.h"
46
47/* This code implements a small and *simple* DNS resolver cache.
48 *
49 * It is only used to cache DNS answers for a time defined by the smallest TTL
50 * among the answer records in order to reduce DNS traffic. It is not supposed
51 * to be a full DNS cache, since we plan to implement that in the future in a
52 * dedicated process running on the system.
53 *
54 * Note that its design is kept simple very intentionally, i.e.:
55 *
56 *  - it takes raw DNS query packet data as input, and returns raw DNS
57 *    answer packet data as output
58 *
59 *    (this means that two similar queries that encode the DNS name
60 *     differently will be treated distinctly).
61 *
62 *    the smallest TTL value among the answer records are used as the time
63 *    to keep an answer in the cache.
64 *
65 *    this is bad, but we absolutely want to avoid parsing the answer packets
66 *    (and should be solved by the later full DNS cache process).
67 *
68 *  - the implementation is just a (query-data) => (answer-data) hash table
69 *    with a trivial least-recently-used expiration policy.
70 *
71 * Doing this keeps the code simple and avoids to deal with a lot of things
72 * that a full DNS cache is expected to do.
73 *
74 * The API is also very simple:
75 *
76 *   - the client calls _resolv_cache_get() to obtain a handle to the cache.
77 *     this will initialize the cache on first usage. the result can be NULL
78 *     if the cache is disabled.
79 *
80 *   - the client calls _resolv_cache_lookup() before performing a query
81 *
82 *     if the function returns RESOLV_CACHE_FOUND, a copy of the answer data
83 *     has been copied into the client-provided answer buffer.
84 *
85 *     if the function returns RESOLV_CACHE_NOTFOUND, the client should perform
86 *     a request normally, *then* call _resolv_cache_add() to add the received
87 *     answer to the cache.
88 *
89 *     if the function returns RESOLV_CACHE_UNSUPPORTED, the client should
90 *     perform a request normally, and *not* call _resolv_cache_add()
91 *
92 *     note that RESOLV_CACHE_UNSUPPORTED is also returned if the answer buffer
93 *     is too short to accomodate the cached result.
94 *
95 *  - when network settings change, the cache must be flushed since the list
96 *    of DNS servers probably changed. this is done by calling
97 *    _resolv_cache_reset()
98 *
99 *    the parameter to this function must be an ever-increasing generation
100 *    number corresponding to the current network settings state.
101 *
102 *    This is done because several threads could detect the same network
103 *    settings change (but at different times) and will all end up calling the
104 *    same function. Comparing with the last used generation number ensures
105 *    that the cache is only flushed once per network change.
106 */
107
108/* the name of an environment variable that will be checked the first time
109 * this code is called if its value is "0", then the resolver cache is
110 * disabled.
111 */
112#define  CONFIG_ENV  "BIONIC_DNSCACHE"
113
114/* entries older than CONFIG_SECONDS seconds are always discarded.
115 */
116#define  CONFIG_SECONDS    (60*10)    /* 10 minutes */
117
118/* default number of entries kept in the cache. This value has been
119 * determined by browsing through various sites and counting the number
120 * of corresponding requests. Keep in mind that our framework is currently
121 * performing two requests per name lookup (one for IPv4, the other for IPv6)
122 *
123 *    www.google.com      4
124 *    www.ysearch.com     6
125 *    www.amazon.com      8
126 *    www.nytimes.com     22
127 *    www.espn.com        28
128 *    www.msn.com         28
129 *    www.lemonde.fr      35
130 *
131 * (determined in 2009-2-17 from Paris, France, results may vary depending
132 *  on location)
133 *
134 * most high-level websites use lots of media/ad servers with different names
135 * but these are generally reused when browsing through the site.
136 *
137 * As such, a value of 64 should be relatively comfortable at the moment.
138 *
139 * The system property ro.net.dns_cache_size can be used to override the default
140 * value with a custom value
141 *
142 *
143 * ******************************************
144 * * NOTE - this has changed.
145 * * 1) we've added IPv6 support so each dns query results in 2 responses
146 * * 2) we've made this a system-wide cache, so the cost is less (it's not
147 * *    duplicated in each process) and the need is greater (more processes
148 * *    making different requests).
149 * * Upping by 2x for IPv6
150 * * Upping by another 5x for the centralized nature
151 * *****************************************
152 */
153#define  CONFIG_MAX_ENTRIES    64 * 2 * 5
154/* name of the system property that can be used to set the cache size */
155#define  DNS_CACHE_SIZE_PROP_NAME   "ro.net.dns_cache_size"
156
157/****************************************************************************/
158/****************************************************************************/
159/*****                                                                  *****/
160/*****                                                                  *****/
161/*****                                                                  *****/
162/****************************************************************************/
163/****************************************************************************/
164
165/* set to 1 to debug cache operations */
166#define  DEBUG       0
167
168/* set to 1 to debug query data */
169#define  DEBUG_DATA  0
170
171#undef XLOG
172#if DEBUG
173#  include <logd.h>
174#  define  XLOG(...)   \
175    __libc_android_log_print(ANDROID_LOG_DEBUG,"libc",__VA_ARGS__)
176
177#include <stdio.h>
178#include <stdarg.h>
179
180/** BOUNDED BUFFER FORMATTING
181 **/
182
183/* technical note:
184 *
185 *   the following debugging routines are used to append data to a bounded
186 *   buffer they take two parameters that are:
187 *
188 *   - p : a pointer to the current cursor position in the buffer
189 *         this value is initially set to the buffer's address.
190 *
191 *   - end : the address of the buffer's limit, i.e. of the first byte
192 *           after the buffer. this address should never be touched.
193 *
194 *           IMPORTANT: it is assumed that end > buffer_address, i.e.
195 *                      that the buffer is at least one byte.
196 *
197 *   the _bprint_() functions return the new value of 'p' after the data
198 *   has been appended, and also ensure the following:
199 *
200 *   - the returned value will never be strictly greater than 'end'
201 *
202 *   - a return value equal to 'end' means that truncation occured
203 *     (in which case, end[-1] will be set to 0)
204 *
205 *   - after returning from a _bprint_() function, the content of the buffer
206 *     is always 0-terminated, even in the event of truncation.
207 *
208 *  these conventions allow you to call _bprint_ functions multiple times and
209 *  only check for truncation at the end of the sequence, as in:
210 *
211 *     char  buff[1000], *p = buff, *end = p + sizeof(buff);
212 *
213 *     p = _bprint_c(p, end, '"');
214 *     p = _bprint_s(p, end, my_string);
215 *     p = _bprint_c(p, end, '"');
216 *
217 *     if (p >= end) {
218 *        // buffer was too small
219 *     }
220 *
221 *     printf( "%s", buff );
222 */
223
224/* add a char to a bounded buffer */
225static char*
226_bprint_c( char*  p, char*  end, int  c )
227{
228    if (p < end) {
229        if (p+1 == end)
230            *p++ = 0;
231        else {
232            *p++ = (char) c;
233            *p   = 0;
234        }
235    }
236    return p;
237}
238
239/* add a sequence of bytes to a bounded buffer */
240static char*
241_bprint_b( char*  p, char*  end, const char*  buf, int  len )
242{
243    int  avail = end - p;
244
245    if (avail <= 0 || len <= 0)
246        return p;
247
248    if (avail > len)
249        avail = len;
250
251    memcpy( p, buf, avail );
252    p += avail;
253
254    if (p < end)
255        p[0] = 0;
256    else
257        end[-1] = 0;
258
259    return p;
260}
261
262/* add a string to a bounded buffer */
263static char*
264_bprint_s( char*  p, char*  end, const char*  str )
265{
266    return _bprint_b(p, end, str, strlen(str));
267}
268
269/* add a formatted string to a bounded buffer */
270static char*
271_bprint( char*  p, char*  end, const char*  format, ... )
272{
273    int      avail, n;
274    va_list  args;
275
276    avail = end - p;
277
278    if (avail <= 0)
279        return p;
280
281    va_start(args, format);
282    n = vsnprintf( p, avail, format, args);
283    va_end(args);
284
285    /* certain C libraries return -1 in case of truncation */
286    if (n < 0 || n > avail)
287        n = avail;
288
289    p += n;
290    /* certain C libraries do not zero-terminate in case of truncation */
291    if (p == end)
292        p[-1] = 0;
293
294    return p;
295}
296
297/* add a hex value to a bounded buffer, up to 8 digits */
298static char*
299_bprint_hex( char*  p, char*  end, unsigned  value, int  numDigits )
300{
301    char   text[sizeof(unsigned)*2];
302    int    nn = 0;
303
304    while (numDigits-- > 0) {
305        text[nn++] = "0123456789abcdef"[(value >> (numDigits*4)) & 15];
306    }
307    return _bprint_b(p, end, text, nn);
308}
309
310/* add the hexadecimal dump of some memory area to a bounded buffer */
311static char*
312_bprint_hexdump( char*  p, char*  end, const uint8_t*  data, int  datalen )
313{
314    int   lineSize = 16;
315
316    while (datalen > 0) {
317        int  avail = datalen;
318        int  nn;
319
320        if (avail > lineSize)
321            avail = lineSize;
322
323        for (nn = 0; nn < avail; nn++) {
324            if (nn > 0)
325                p = _bprint_c(p, end, ' ');
326            p = _bprint_hex(p, end, data[nn], 2);
327        }
328        for ( ; nn < lineSize; nn++ ) {
329            p = _bprint_s(p, end, "   ");
330        }
331        p = _bprint_s(p, end, "  ");
332
333        for (nn = 0; nn < avail; nn++) {
334            int  c = data[nn];
335
336            if (c < 32 || c > 127)
337                c = '.';
338
339            p = _bprint_c(p, end, c);
340        }
341        p = _bprint_c(p, end, '\n');
342
343        data    += avail;
344        datalen -= avail;
345    }
346    return p;
347}
348
349/* dump the content of a query of packet to the log */
350static void
351XLOG_BYTES( const void*  base, int  len )
352{
353    char  buff[1024];
354    char*  p = buff, *end = p + sizeof(buff);
355
356    p = _bprint_hexdump(p, end, base, len);
357    XLOG("%s",buff);
358}
359
360#else /* !DEBUG */
361#  define  XLOG(...)        ((void)0)
362#  define  XLOG_BYTES(a,b)  ((void)0)
363#endif
364
365static time_t
366_time_now( void )
367{
368    struct timeval  tv;
369
370    gettimeofday( &tv, NULL );
371    return tv.tv_sec;
372}
373
374/* reminder: the general format of a DNS packet is the following:
375 *
376 *    HEADER  (12 bytes)
377 *    QUESTION  (variable)
378 *    ANSWER (variable)
379 *    AUTHORITY (variable)
380 *    ADDITIONNAL (variable)
381 *
382 * the HEADER is made of:
383 *
384 *   ID     : 16 : 16-bit unique query identification field
385 *
386 *   QR     :  1 : set to 0 for queries, and 1 for responses
387 *   Opcode :  4 : set to 0 for queries
388 *   AA     :  1 : set to 0 for queries
389 *   TC     :  1 : truncation flag, will be set to 0 in queries
390 *   RD     :  1 : recursion desired
391 *
392 *   RA     :  1 : recursion available (0 in queries)
393 *   Z      :  3 : three reserved zero bits
394 *   RCODE  :  4 : response code (always 0=NOERROR in queries)
395 *
396 *   QDCount: 16 : question count
397 *   ANCount: 16 : Answer count (0 in queries)
398 *   NSCount: 16: Authority Record count (0 in queries)
399 *   ARCount: 16: Additionnal Record count (0 in queries)
400 *
401 * the QUESTION is made of QDCount Question Record (QRs)
402 * the ANSWER is made of ANCount RRs
403 * the AUTHORITY is made of NSCount RRs
404 * the ADDITIONNAL is made of ARCount RRs
405 *
406 * Each Question Record (QR) is made of:
407 *
408 *   QNAME   : variable : Query DNS NAME
409 *   TYPE    : 16       : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
410 *   CLASS   : 16       : class of query (IN=1)
411 *
412 * Each Resource Record (RR) is made of:
413 *
414 *   NAME    : variable : DNS NAME
415 *   TYPE    : 16       : type of query (A=1, PTR=12, MX=15, AAAA=28, ALL=255)
416 *   CLASS   : 16       : class of query (IN=1)
417 *   TTL     : 32       : seconds to cache this RR (0=none)
418 *   RDLENGTH: 16       : size of RDDATA in bytes
419 *   RDDATA  : variable : RR data (depends on TYPE)
420 *
421 * Each QNAME contains a domain name encoded as a sequence of 'labels'
422 * terminated by a zero. Each label has the following format:
423 *
424 *    LEN  : 8     : lenght of label (MUST be < 64)
425 *    NAME : 8*LEN : label length (must exclude dots)
426 *
427 * A value of 0 in the encoding is interpreted as the 'root' domain and
428 * terminates the encoding. So 'www.android.com' will be encoded as:
429 *
430 *   <3>www<7>android<3>com<0>
431 *
432 * Where <n> represents the byte with value 'n'
433 *
434 * Each NAME reflects the QNAME of the question, but has a slightly more
435 * complex encoding in order to provide message compression. This is achieved
436 * by using a 2-byte pointer, with format:
437 *
438 *    TYPE   : 2  : 0b11 to indicate a pointer, 0b01 and 0b10 are reserved
439 *    OFFSET : 14 : offset to another part of the DNS packet
440 *
441 * The offset is relative to the start of the DNS packet and must point
442 * A pointer terminates the encoding.
443 *
444 * The NAME can be encoded in one of the following formats:
445 *
446 *   - a sequence of simple labels terminated by 0 (like QNAMEs)
447 *   - a single pointer
448 *   - a sequence of simple labels terminated by a pointer
449 *
450 * A pointer shall always point to either a pointer of a sequence of
451 * labels (which can themselves be terminated by either a 0 or a pointer)
452 *
453 * The expanded length of a given domain name should not exceed 255 bytes.
454 *
455 * NOTE: we don't parse the answer packets, so don't need to deal with NAME
456 *       records, only QNAMEs.
457 */
458
459#define  DNS_HEADER_SIZE  12
460
461#define  DNS_TYPE_A   "\00\01"   /* big-endian decimal 1 */
462#define  DNS_TYPE_PTR "\00\014"  /* big-endian decimal 12 */
463#define  DNS_TYPE_MX  "\00\017"  /* big-endian decimal 15 */
464#define  DNS_TYPE_AAAA "\00\034" /* big-endian decimal 28 */
465#define  DNS_TYPE_ALL "\00\0377" /* big-endian decimal 255 */
466
467#define  DNS_CLASS_IN "\00\01"   /* big-endian decimal 1 */
468
469typedef struct {
470    const uint8_t*  base;
471    const uint8_t*  end;
472    const uint8_t*  cursor;
473} DnsPacket;
474
475static void
476_dnsPacket_init( DnsPacket*  packet, const uint8_t*  buff, int  bufflen )
477{
478    packet->base   = buff;
479    packet->end    = buff + bufflen;
480    packet->cursor = buff;
481}
482
483static void
484_dnsPacket_rewind( DnsPacket*  packet )
485{
486    packet->cursor = packet->base;
487}
488
489static void
490_dnsPacket_skip( DnsPacket*  packet, int  count )
491{
492    const uint8_t*  p = packet->cursor + count;
493
494    if (p > packet->end)
495        p = packet->end;
496
497    packet->cursor = p;
498}
499
500static int
501_dnsPacket_readInt16( DnsPacket*  packet )
502{
503    const uint8_t*  p = packet->cursor;
504
505    if (p+2 > packet->end)
506        return -1;
507
508    packet->cursor = p+2;
509    return (p[0]<< 8) | p[1];
510}
511
512/** QUERY CHECKING
513 **/
514
515/* check bytes in a dns packet. returns 1 on success, 0 on failure.
516 * the cursor is only advanced in the case of success
517 */
518static int
519_dnsPacket_checkBytes( DnsPacket*  packet, int  numBytes, const void*  bytes )
520{
521    const uint8_t*  p = packet->cursor;
522
523    if (p + numBytes > packet->end)
524        return 0;
525
526    if (memcmp(p, bytes, numBytes) != 0)
527        return 0;
528
529    packet->cursor = p + numBytes;
530    return 1;
531}
532
533/* parse and skip a given QNAME stored in a query packet,
534 * from the current cursor position. returns 1 on success,
535 * or 0 for malformed data.
536 */
537static int
538_dnsPacket_checkQName( DnsPacket*  packet )
539{
540    const uint8_t*  p   = packet->cursor;
541    const uint8_t*  end = packet->end;
542
543    for (;;) {
544        int  c;
545
546        if (p >= end)
547            break;
548
549        c = *p++;
550
551        if (c == 0) {
552            packet->cursor = p;
553            return 1;
554        }
555
556        /* we don't expect label compression in QNAMEs */
557        if (c >= 64)
558            break;
559
560        p += c;
561        /* we rely on the bound check at the start
562         * of the loop here */
563    }
564    /* malformed data */
565    XLOG("malformed QNAME");
566    return 0;
567}
568
569/* parse and skip a given QR stored in a packet.
570 * returns 1 on success, and 0 on failure
571 */
572static int
573_dnsPacket_checkQR( DnsPacket*  packet )
574{
575    int  len;
576
577    if (!_dnsPacket_checkQName(packet))
578        return 0;
579
580    /* TYPE must be one of the things we support */
581    if (!_dnsPacket_checkBytes(packet, 2, DNS_TYPE_A) &&
582        !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_PTR) &&
583        !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_MX) &&
584        !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_AAAA) &&
585        !_dnsPacket_checkBytes(packet, 2, DNS_TYPE_ALL))
586    {
587        XLOG("unsupported TYPE");
588        return 0;
589    }
590    /* CLASS must be IN */
591    if (!_dnsPacket_checkBytes(packet, 2, DNS_CLASS_IN)) {
592        XLOG("unsupported CLASS");
593        return 0;
594    }
595
596    return 1;
597}
598
599/* check the header of a DNS Query packet, return 1 if it is one
600 * type of query we can cache, or 0 otherwise
601 */
602static int
603_dnsPacket_checkQuery( DnsPacket*  packet )
604{
605    const uint8_t*  p = packet->base;
606    int             qdCount, anCount, dnCount, arCount;
607
608    if (p + DNS_HEADER_SIZE > packet->end) {
609        XLOG("query packet too small");
610        return 0;
611    }
612
613    /* QR must be set to 0, opcode must be 0 and AA must be 0 */
614    /* RA, Z, and RCODE must be 0 */
615    if ((p[2] & 0xFC) != 0 || p[3] != 0) {
616        XLOG("query packet flags unsupported");
617        return 0;
618    }
619
620    /* Note that we ignore the TC and RD bits here for the
621     * following reasons:
622     *
623     * - there is no point for a query packet sent to a server
624     *   to have the TC bit set, but the implementation might
625     *   set the bit in the query buffer for its own needs
626     *   between a _resolv_cache_lookup and a
627     *   _resolv_cache_add. We should not freak out if this
628     *   is the case.
629     *
630     * - we consider that the result from a RD=0 or a RD=1
631     *   query might be different, hence that the RD bit
632     *   should be used to differentiate cached result.
633     *
634     *   this implies that RD is checked when hashing or
635     *   comparing query packets, but not TC
636     */
637
638    /* ANCOUNT, DNCOUNT and ARCOUNT must be 0 */
639    qdCount = (p[4] << 8) | p[5];
640    anCount = (p[6] << 8) | p[7];
641    dnCount = (p[8] << 8) | p[9];
642    arCount = (p[10]<< 8) | p[11];
643
644    if (anCount != 0 || dnCount != 0 || arCount != 0) {
645        XLOG("query packet contains non-query records");
646        return 0;
647    }
648
649    if (qdCount == 0) {
650        XLOG("query packet doesn't contain query record");
651        return 0;
652    }
653
654    /* Check QDCOUNT QRs */
655    packet->cursor = p + DNS_HEADER_SIZE;
656
657    for (;qdCount > 0; qdCount--)
658        if (!_dnsPacket_checkQR(packet))
659            return 0;
660
661    return 1;
662}
663
664/** QUERY DEBUGGING
665 **/
666#if DEBUG
667static char*
668_dnsPacket_bprintQName(DnsPacket*  packet, char*  bp, char*  bend)
669{
670    const uint8_t*  p   = packet->cursor;
671    const uint8_t*  end = packet->end;
672    int             first = 1;
673
674    for (;;) {
675        int  c;
676
677        if (p >= end)
678            break;
679
680        c = *p++;
681
682        if (c == 0) {
683            packet->cursor = p;
684            return bp;
685        }
686
687        /* we don't expect label compression in QNAMEs */
688        if (c >= 64)
689            break;
690
691        if (first)
692            first = 0;
693        else
694            bp = _bprint_c(bp, bend, '.');
695
696        bp = _bprint_b(bp, bend, (const char*)p, c);
697
698        p += c;
699        /* we rely on the bound check at the start
700         * of the loop here */
701    }
702    /* malformed data */
703    bp = _bprint_s(bp, bend, "<MALFORMED>");
704    return bp;
705}
706
707static char*
708_dnsPacket_bprintQR(DnsPacket*  packet, char*  p, char*  end)
709{
710#define  QQ(x)   { DNS_TYPE_##x, #x }
711    static const struct {
712        const char*  typeBytes;
713        const char*  typeString;
714    } qTypes[] =
715    {
716        QQ(A), QQ(PTR), QQ(MX), QQ(AAAA), QQ(ALL),
717        { NULL, NULL }
718    };
719    int          nn;
720    const char*  typeString = NULL;
721
722    /* dump QNAME */
723    p = _dnsPacket_bprintQName(packet, p, end);
724
725    /* dump TYPE */
726    p = _bprint_s(p, end, " (");
727
728    for (nn = 0; qTypes[nn].typeBytes != NULL; nn++) {
729        if (_dnsPacket_checkBytes(packet, 2, qTypes[nn].typeBytes)) {
730            typeString = qTypes[nn].typeString;
731            break;
732        }
733    }
734
735    if (typeString != NULL)
736        p = _bprint_s(p, end, typeString);
737    else {
738        int  typeCode = _dnsPacket_readInt16(packet);
739        p = _bprint(p, end, "UNKNOWN-%d", typeCode);
740    }
741
742    p = _bprint_c(p, end, ')');
743
744    /* skip CLASS */
745    _dnsPacket_skip(packet, 2);
746    return p;
747}
748
749/* this function assumes the packet has already been checked */
750static char*
751_dnsPacket_bprintQuery( DnsPacket*  packet, char*  p, char*  end )
752{
753    int   qdCount;
754
755    if (packet->base[2] & 0x1) {
756        p = _bprint_s(p, end, "RECURSIVE ");
757    }
758
759    _dnsPacket_skip(packet, 4);
760    qdCount = _dnsPacket_readInt16(packet);
761    _dnsPacket_skip(packet, 6);
762
763    for ( ; qdCount > 0; qdCount-- ) {
764        p = _dnsPacket_bprintQR(packet, p, end);
765    }
766    return p;
767}
768#endif
769
770
771/** QUERY HASHING SUPPORT
772 **
773 ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKET HAS ALREADY
774 ** BEEN SUCCESFULLY CHECKED.
775 **/
776
777/* use 32-bit FNV hash function */
778#define  FNV_MULT   16777619U
779#define  FNV_BASIS  2166136261U
780
781static unsigned
782_dnsPacket_hashBytes( DnsPacket*  packet, int  numBytes, unsigned  hash )
783{
784    const uint8_t*  p   = packet->cursor;
785    const uint8_t*  end = packet->end;
786
787    while (numBytes > 0 && p < end) {
788        hash = hash*FNV_MULT ^ *p++;
789    }
790    packet->cursor = p;
791    return hash;
792}
793
794
795static unsigned
796_dnsPacket_hashQName( DnsPacket*  packet, unsigned  hash )
797{
798    const uint8_t*  p   = packet->cursor;
799    const uint8_t*  end = packet->end;
800
801    for (;;) {
802        int  c;
803
804        if (p >= end) {  /* should not happen */
805            XLOG("%s: INTERNAL_ERROR: read-overflow !!\n", __FUNCTION__);
806            break;
807        }
808
809        c = *p++;
810
811        if (c == 0)
812            break;
813
814        if (c >= 64) {
815            XLOG("%s: INTERNAL_ERROR: malformed domain !!\n", __FUNCTION__);
816            break;
817        }
818        if (p + c >= end) {
819            XLOG("%s: INTERNAL_ERROR: simple label read-overflow !!\n",
820                    __FUNCTION__);
821            break;
822        }
823        while (c > 0) {
824            hash = hash*FNV_MULT ^ *p++;
825            c   -= 1;
826        }
827    }
828    packet->cursor = p;
829    return hash;
830}
831
832static unsigned
833_dnsPacket_hashQR( DnsPacket*  packet, unsigned  hash )
834{
835    int   len;
836
837    hash = _dnsPacket_hashQName(packet, hash);
838    hash = _dnsPacket_hashBytes(packet, 4, hash); /* TYPE and CLASS */
839    return hash;
840}
841
842static unsigned
843_dnsPacket_hashQuery( DnsPacket*  packet )
844{
845    unsigned  hash = FNV_BASIS;
846    int       count;
847    _dnsPacket_rewind(packet);
848
849    /* we ignore the TC bit for reasons explained in
850     * _dnsPacket_checkQuery().
851     *
852     * however we hash the RD bit to differentiate
853     * between answers for recursive and non-recursive
854     * queries.
855     */
856    hash = hash*FNV_MULT ^ (packet->base[2] & 1);
857
858    /* assume: other flags are 0 */
859    _dnsPacket_skip(packet, 4);
860
861    /* read QDCOUNT */
862    count = _dnsPacket_readInt16(packet);
863
864    /* assume: ANcount, NScount, ARcount are 0 */
865    _dnsPacket_skip(packet, 6);
866
867    /* hash QDCOUNT QRs */
868    for ( ; count > 0; count-- )
869        hash = _dnsPacket_hashQR(packet, hash);
870
871    return hash;
872}
873
874
875/** QUERY COMPARISON
876 **
877 ** THE FOLLOWING CODE ASSUMES THAT THE INPUT PACKETS HAVE ALREADY
878 ** BEEN SUCCESFULLY CHECKED.
879 **/
880
881static int
882_dnsPacket_isEqualDomainName( DnsPacket*  pack1, DnsPacket*  pack2 )
883{
884    const uint8_t*  p1   = pack1->cursor;
885    const uint8_t*  end1 = pack1->end;
886    const uint8_t*  p2   = pack2->cursor;
887    const uint8_t*  end2 = pack2->end;
888
889    for (;;) {
890        int  c1, c2;
891
892        if (p1 >= end1 || p2 >= end2) {
893            XLOG("%s: INTERNAL_ERROR: read-overflow !!\n", __FUNCTION__);
894            break;
895        }
896        c1 = *p1++;
897        c2 = *p2++;
898        if (c1 != c2)
899            break;
900
901        if (c1 == 0) {
902            pack1->cursor = p1;
903            pack2->cursor = p2;
904            return 1;
905        }
906        if (c1 >= 64) {
907            XLOG("%s: INTERNAL_ERROR: malformed domain !!\n", __FUNCTION__);
908            break;
909        }
910        if ((p1+c1 > end1) || (p2+c1 > end2)) {
911            XLOG("%s: INTERNAL_ERROR: simple label read-overflow !!\n",
912                    __FUNCTION__);
913            break;
914        }
915        if (memcmp(p1, p2, c1) != 0)
916            break;
917        p1 += c1;
918        p2 += c1;
919        /* we rely on the bound checks at the start of the loop */
920    }
921    /* not the same, or one is malformed */
922    XLOG("different DN");
923    return 0;
924}
925
926static int
927_dnsPacket_isEqualBytes( DnsPacket*  pack1, DnsPacket*  pack2, int  numBytes )
928{
929    const uint8_t*  p1 = pack1->cursor;
930    const uint8_t*  p2 = pack2->cursor;
931
932    if ( p1 + numBytes > pack1->end || p2 + numBytes > pack2->end )
933        return 0;
934
935    if ( memcmp(p1, p2, numBytes) != 0 )
936        return 0;
937
938    pack1->cursor += numBytes;
939    pack2->cursor += numBytes;
940    return 1;
941}
942
943static int
944_dnsPacket_isEqualQR( DnsPacket*  pack1, DnsPacket*  pack2 )
945{
946    /* compare domain name encoding + TYPE + CLASS */
947    if ( !_dnsPacket_isEqualDomainName(pack1, pack2) ||
948         !_dnsPacket_isEqualBytes(pack1, pack2, 2+2) )
949        return 0;
950
951    return 1;
952}
953
954static int
955_dnsPacket_isEqualQuery( DnsPacket*  pack1, DnsPacket*  pack2 )
956{
957    int  count1, count2;
958
959    /* compare the headers, ignore most fields */
960    _dnsPacket_rewind(pack1);
961    _dnsPacket_rewind(pack2);
962
963    /* compare RD, ignore TC, see comment in _dnsPacket_checkQuery */
964    if ((pack1->base[2] & 1) != (pack2->base[2] & 1)) {
965        XLOG("different RD");
966        return 0;
967    }
968
969    /* assume: other flags are all 0 */
970    _dnsPacket_skip(pack1, 4);
971    _dnsPacket_skip(pack2, 4);
972
973    /* compare QDCOUNT */
974    count1 = _dnsPacket_readInt16(pack1);
975    count2 = _dnsPacket_readInt16(pack2);
976    if (count1 != count2 || count1 < 0) {
977        XLOG("different QDCOUNT");
978        return 0;
979    }
980
981    /* assume: ANcount, NScount and ARcount are all 0 */
982    _dnsPacket_skip(pack1, 6);
983    _dnsPacket_skip(pack2, 6);
984
985    /* compare the QDCOUNT QRs */
986    for ( ; count1 > 0; count1-- ) {
987        if (!_dnsPacket_isEqualQR(pack1, pack2)) {
988            XLOG("different QR");
989            return 0;
990        }
991    }
992    return 1;
993}
994
995/****************************************************************************/
996/****************************************************************************/
997/*****                                                                  *****/
998/*****                                                                  *****/
999/*****                                                                  *****/
1000/****************************************************************************/
1001/****************************************************************************/
1002
1003/* cache entry. for simplicity, 'hash' and 'hlink' are inlined in this
1004 * structure though they are conceptually part of the hash table.
1005 *
1006 * similarly, mru_next and mru_prev are part of the global MRU list
1007 */
1008typedef struct Entry {
1009    unsigned int     hash;   /* hash value */
1010    struct Entry*    hlink;  /* next in collision chain */
1011    struct Entry*    mru_prev;
1012    struct Entry*    mru_next;
1013
1014    const uint8_t*   query;
1015    int              querylen;
1016    const uint8_t*   answer;
1017    int              answerlen;
1018    time_t           expires;   /* time_t when the entry isn't valid any more */
1019    int              id;        /* for debugging purpose */
1020} Entry;
1021
1022/**
1023 * Parse the answer records and find the smallest
1024 * TTL among the answer records.
1025 *
1026 * The returned TTL is the number of seconds to
1027 * keep the answer in the cache.
1028 *
1029 * In case of parse error zero (0) is returned which
1030 * indicates that the answer shall not be cached.
1031 */
1032static u_long
1033answer_getTTL(const void* answer, int answerlen)
1034{
1035    ns_msg handle;
1036    int ancount, n;
1037    u_long result, ttl;
1038    ns_rr rr;
1039
1040    result = 0;
1041    if (ns_initparse(answer, answerlen, &handle) >= 0) {
1042        // get number of answer records
1043        ancount = ns_msg_count(handle, ns_s_an);
1044        for (n = 0; n < ancount; n++) {
1045            if (ns_parserr(&handle, ns_s_an, n, &rr) == 0) {
1046                ttl = ns_rr_ttl(rr);
1047                if (n == 0 || ttl < result) {
1048                    result = ttl;
1049                }
1050            } else {
1051                XLOG("ns_parserr failed ancount no = %d. errno = %s\n", n, strerror(errno));
1052            }
1053        }
1054    } else {
1055        XLOG("ns_parserr failed. %s\n", strerror(errno));
1056    }
1057
1058    XLOG("TTL = %d\n", result);
1059
1060    return result;
1061}
1062
1063static void
1064entry_free( Entry*  e )
1065{
1066    /* everything is allocated in a single memory block */
1067    if (e) {
1068        free(e);
1069    }
1070}
1071
1072static __inline__ void
1073entry_mru_remove( Entry*  e )
1074{
1075    e->mru_prev->mru_next = e->mru_next;
1076    e->mru_next->mru_prev = e->mru_prev;
1077}
1078
1079static __inline__ void
1080entry_mru_add( Entry*  e, Entry*  list )
1081{
1082    Entry*  first = list->mru_next;
1083
1084    e->mru_next = first;
1085    e->mru_prev = list;
1086
1087    list->mru_next  = e;
1088    first->mru_prev = e;
1089}
1090
1091/* compute the hash of a given entry, this is a hash of most
1092 * data in the query (key) */
1093static unsigned
1094entry_hash( const Entry*  e )
1095{
1096    DnsPacket  pack[1];
1097
1098    _dnsPacket_init(pack, e->query, e->querylen);
1099    return _dnsPacket_hashQuery(pack);
1100}
1101
1102/* initialize an Entry as a search key, this also checks the input query packet
1103 * returns 1 on success, or 0 in case of unsupported/malformed data */
1104static int
1105entry_init_key( Entry*  e, const void*  query, int  querylen )
1106{
1107    DnsPacket  pack[1];
1108
1109    memset(e, 0, sizeof(*e));
1110
1111    e->query    = query;
1112    e->querylen = querylen;
1113    e->hash     = entry_hash(e);
1114
1115    _dnsPacket_init(pack, query, querylen);
1116
1117    return _dnsPacket_checkQuery(pack);
1118}
1119
1120/* allocate a new entry as a cache node */
1121static Entry*
1122entry_alloc( const Entry*  init, const void*  answer, int  answerlen )
1123{
1124    Entry*  e;
1125    int     size;
1126
1127    size = sizeof(*e) + init->querylen + answerlen;
1128    e    = calloc(size, 1);
1129    if (e == NULL)
1130        return e;
1131
1132    e->hash     = init->hash;
1133    e->query    = (const uint8_t*)(e+1);
1134    e->querylen = init->querylen;
1135
1136    memcpy( (char*)e->query, init->query, e->querylen );
1137
1138    e->answer    = e->query + e->querylen;
1139    e->answerlen = answerlen;
1140
1141    memcpy( (char*)e->answer, answer, e->answerlen );
1142
1143    return e;
1144}
1145
1146static int
1147entry_equals( const Entry*  e1, const Entry*  e2 )
1148{
1149    DnsPacket  pack1[1], pack2[1];
1150
1151    if (e1->querylen != e2->querylen) {
1152        return 0;
1153    }
1154    _dnsPacket_init(pack1, e1->query, e1->querylen);
1155    _dnsPacket_init(pack2, e2->query, e2->querylen);
1156
1157    return _dnsPacket_isEqualQuery(pack1, pack2);
1158}
1159
1160/****************************************************************************/
1161/****************************************************************************/
1162/*****                                                                  *****/
1163/*****                                                                  *****/
1164/*****                                                                  *****/
1165/****************************************************************************/
1166/****************************************************************************/
1167
1168/* We use a simple hash table with external collision lists
1169 * for simplicity, the hash-table fields 'hash' and 'hlink' are
1170 * inlined in the Entry structure.
1171 */
1172
1173typedef struct resolv_cache {
1174    int              max_entries;
1175    int              num_entries;
1176    Entry            mru_list;
1177    pthread_mutex_t  lock;
1178    unsigned         generation;
1179    int              last_id;
1180    Entry*           entries;
1181} Cache;
1182
1183typedef struct resolv_cache_info {
1184    char                        ifname[IF_NAMESIZE + 1];
1185    struct in_addr              ifaddr;
1186    Cache*                      cache;
1187    struct resolv_cache_info*   next;
1188    char*                       nameservers[MAXNS +1];
1189    struct addrinfo*            nsaddrinfo[MAXNS + 1];
1190} CacheInfo;
1191
1192#define  HTABLE_VALID(x)  ((x) != NULL && (x) != HTABLE_DELETED)
1193
1194static void
1195_cache_flush_locked( Cache*  cache )
1196{
1197    int     nn;
1198    time_t  now = _time_now();
1199
1200    for (nn = 0; nn < cache->max_entries; nn++)
1201    {
1202        Entry**  pnode = (Entry**) &cache->entries[nn];
1203
1204        while (*pnode != NULL) {
1205            Entry*  node = *pnode;
1206            *pnode = node->hlink;
1207            entry_free(node);
1208        }
1209    }
1210
1211    cache->mru_list.mru_next = cache->mru_list.mru_prev = &cache->mru_list;
1212    cache->num_entries       = 0;
1213    cache->last_id           = 0;
1214
1215    XLOG("*************************\n"
1216         "*** DNS CACHE FLUSHED ***\n"
1217         "*************************");
1218}
1219
1220/* Return max number of entries allowed in the cache,
1221 * i.e. cache size. The cache size is either defined
1222 * by system property ro.net.dns_cache_size or by
1223 * CONFIG_MAX_ENTRIES if system property not set
1224 * or set to invalid value. */
1225static int
1226_res_cache_get_max_entries( void )
1227{
1228    int result = -1;
1229    char cache_size[PROP_VALUE_MAX];
1230
1231    const char* cache_mode = getenv("ANDROID_DNS_MODE");
1232
1233    if (cache_mode == NULL || strcmp(cache_mode, "local") != 0) {
1234        // Don't use the cache in local mode.  This is used by the
1235        // proxy itself.
1236        // TODO - change this to 0 when all dns stuff uses proxy (5918973)
1237        XLOG("setup cache for non-cache process. size=1");
1238        return 1;
1239    }
1240
1241    if (__system_property_get(DNS_CACHE_SIZE_PROP_NAME, cache_size) > 0) {
1242        result = atoi(cache_size);
1243    }
1244
1245    // ro.net.dns_cache_size not set or set to negative value
1246    if (result <= 0) {
1247        result = CONFIG_MAX_ENTRIES;
1248    }
1249
1250    XLOG("cache size: %d", result);
1251    return result;
1252}
1253
1254static struct resolv_cache*
1255_resolv_cache_create( void )
1256{
1257    struct resolv_cache*  cache;
1258
1259    cache = calloc(sizeof(*cache), 1);
1260    if (cache) {
1261        cache->max_entries = _res_cache_get_max_entries();
1262        cache->entries = calloc(sizeof(*cache->entries), cache->max_entries);
1263        if (cache->entries) {
1264            cache->generation = ~0U;
1265            pthread_mutex_init( &cache->lock, NULL );
1266            cache->mru_list.mru_prev = cache->mru_list.mru_next = &cache->mru_list;
1267            XLOG("%s: cache created\n", __FUNCTION__);
1268        } else {
1269            free(cache);
1270            cache = NULL;
1271        }
1272    }
1273    return cache;
1274}
1275
1276
1277#if DEBUG
1278static void
1279_dump_query( const uint8_t*  query, int  querylen )
1280{
1281    char       temp[256], *p=temp, *end=p+sizeof(temp);
1282    DnsPacket  pack[1];
1283
1284    _dnsPacket_init(pack, query, querylen);
1285    p = _dnsPacket_bprintQuery(pack, p, end);
1286    XLOG("QUERY: %s", temp);
1287}
1288
1289static void
1290_cache_dump_mru( Cache*  cache )
1291{
1292    char    temp[512], *p=temp, *end=p+sizeof(temp);
1293    Entry*  e;
1294
1295    p = _bprint(temp, end, "MRU LIST (%2d): ", cache->num_entries);
1296    for (e = cache->mru_list.mru_next; e != &cache->mru_list; e = e->mru_next)
1297        p = _bprint(p, end, " %d", e->id);
1298
1299    XLOG("%s", temp);
1300}
1301
1302static void
1303_dump_answer(const void* answer, int answerlen)
1304{
1305    res_state statep;
1306    FILE* fp;
1307    char* buf;
1308    int fileLen;
1309
1310    fp = fopen("/data/reslog.txt", "w+");
1311    if (fp != NULL) {
1312        statep = __res_get_state();
1313
1314        res_pquery(statep, answer, answerlen, fp);
1315
1316        //Get file length
1317        fseek(fp, 0, SEEK_END);
1318        fileLen=ftell(fp);
1319        fseek(fp, 0, SEEK_SET);
1320        buf = (char *)malloc(fileLen+1);
1321        if (buf != NULL) {
1322            //Read file contents into buffer
1323            fread(buf, fileLen, 1, fp);
1324            XLOG("%s\n", buf);
1325            free(buf);
1326        }
1327        fclose(fp);
1328        remove("/data/reslog.txt");
1329    }
1330    else {
1331        XLOG("_dump_answer: can't open file\n");
1332    }
1333}
1334#endif
1335
1336#if DEBUG
1337#  define  XLOG_QUERY(q,len)   _dump_query((q), (len))
1338#  define  XLOG_ANSWER(a, len) _dump_answer((a), (len))
1339#else
1340#  define  XLOG_QUERY(q,len)   ((void)0)
1341#  define  XLOG_ANSWER(a,len)  ((void)0)
1342#endif
1343
1344/* This function tries to find a key within the hash table
1345 * In case of success, it will return a *pointer* to the hashed key.
1346 * In case of failure, it will return a *pointer* to NULL
1347 *
1348 * So, the caller must check '*result' to check for success/failure.
1349 *
1350 * The main idea is that the result can later be used directly in
1351 * calls to _resolv_cache_add or _resolv_cache_remove as the 'lookup'
1352 * parameter. This makes the code simpler and avoids re-searching
1353 * for the key position in the htable.
1354 *
1355 * The result of a lookup_p is only valid until you alter the hash
1356 * table.
1357 */
1358static Entry**
1359_cache_lookup_p( Cache*   cache,
1360                 Entry*   key )
1361{
1362    int      index = key->hash % cache->max_entries;
1363    Entry**  pnode = (Entry**) &cache->entries[ index ];
1364
1365    while (*pnode != NULL) {
1366        Entry*  node = *pnode;
1367
1368        if (node == NULL)
1369            break;
1370
1371        if (node->hash == key->hash && entry_equals(node, key))
1372            break;
1373
1374        pnode = &node->hlink;
1375    }
1376    return pnode;
1377}
1378
1379/* Add a new entry to the hash table. 'lookup' must be the
1380 * result of an immediate previous failed _lookup_p() call
1381 * (i.e. with *lookup == NULL), and 'e' is the pointer to the
1382 * newly created entry
1383 */
1384static void
1385_cache_add_p( Cache*   cache,
1386              Entry**  lookup,
1387              Entry*   e )
1388{
1389    *lookup = e;
1390    e->id = ++cache->last_id;
1391    entry_mru_add(e, &cache->mru_list);
1392    cache->num_entries += 1;
1393
1394    XLOG("%s: entry %d added (count=%d)", __FUNCTION__,
1395         e->id, cache->num_entries);
1396}
1397
1398/* Remove an existing entry from the hash table,
1399 * 'lookup' must be the result of an immediate previous
1400 * and succesful _lookup_p() call.
1401 */
1402static void
1403_cache_remove_p( Cache*   cache,
1404                 Entry**  lookup )
1405{
1406    Entry*  e  = *lookup;
1407
1408    XLOG("%s: entry %d removed (count=%d)", __FUNCTION__,
1409         e->id, cache->num_entries-1);
1410
1411    entry_mru_remove(e);
1412    *lookup = e->hlink;
1413    entry_free(e);
1414    cache->num_entries -= 1;
1415}
1416
1417/* Remove the oldest entry from the hash table.
1418 */
1419static void
1420_cache_remove_oldest( Cache*  cache )
1421{
1422    Entry*   oldest = cache->mru_list.mru_prev;
1423    Entry**  lookup = _cache_lookup_p(cache, oldest);
1424
1425    if (*lookup == NULL) { /* should not happen */
1426        XLOG("%s: OLDEST NOT IN HTABLE ?", __FUNCTION__);
1427        return;
1428    }
1429    if (DEBUG) {
1430        XLOG("Cache full - removing oldest");
1431        XLOG_QUERY(oldest->query, oldest->querylen);
1432    }
1433    _cache_remove_p(cache, lookup);
1434}
1435
1436
1437ResolvCacheStatus
1438_resolv_cache_lookup( struct resolv_cache*  cache,
1439                      const void*           query,
1440                      int                   querylen,
1441                      void*                 answer,
1442                      int                   answersize,
1443                      int                  *answerlen )
1444{
1445    DnsPacket  pack[1];
1446    Entry      key[1];
1447    int        index;
1448    Entry**    lookup;
1449    Entry*     e;
1450    time_t     now;
1451
1452    ResolvCacheStatus  result = RESOLV_CACHE_NOTFOUND;
1453
1454    XLOG("%s: lookup", __FUNCTION__);
1455    XLOG_QUERY(query, querylen);
1456
1457    /* we don't cache malformed queries */
1458    if (!entry_init_key(key, query, querylen)) {
1459        XLOG("%s: unsupported query", __FUNCTION__);
1460        return RESOLV_CACHE_UNSUPPORTED;
1461    }
1462    /* lookup cache */
1463    pthread_mutex_lock( &cache->lock );
1464
1465    /* see the description of _lookup_p to understand this.
1466     * the function always return a non-NULL pointer.
1467     */
1468    lookup = _cache_lookup_p(cache, key);
1469    e      = *lookup;
1470
1471    if (e == NULL) {
1472        XLOG( "NOT IN CACHE");
1473        goto Exit;
1474    }
1475
1476    now = _time_now();
1477
1478    /* remove stale entries here */
1479    if (now >= e->expires) {
1480        XLOG( " NOT IN CACHE (STALE ENTRY %p DISCARDED)", *lookup );
1481        XLOG_QUERY(e->query, e->querylen);
1482        _cache_remove_p(cache, lookup);
1483        goto Exit;
1484    }
1485
1486    *answerlen = e->answerlen;
1487    if (e->answerlen > answersize) {
1488        /* NOTE: we return UNSUPPORTED if the answer buffer is too short */
1489        result = RESOLV_CACHE_UNSUPPORTED;
1490        XLOG(" ANSWER TOO LONG");
1491        goto Exit;
1492    }
1493
1494    memcpy( answer, e->answer, e->answerlen );
1495
1496    /* bump up this entry to the top of the MRU list */
1497    if (e != cache->mru_list.mru_next) {
1498        entry_mru_remove( e );
1499        entry_mru_add( e, &cache->mru_list );
1500    }
1501
1502    XLOG( "FOUND IN CACHE entry=%p", e );
1503    result = RESOLV_CACHE_FOUND;
1504
1505Exit:
1506    pthread_mutex_unlock( &cache->lock );
1507    return result;
1508}
1509
1510
1511void
1512_resolv_cache_add( struct resolv_cache*  cache,
1513                   const void*           query,
1514                   int                   querylen,
1515                   const void*           answer,
1516                   int                   answerlen )
1517{
1518    Entry    key[1];
1519    Entry*   e;
1520    Entry**  lookup;
1521    u_long   ttl;
1522
1523    /* don't assume that the query has already been cached
1524     */
1525    if (!entry_init_key( key, query, querylen )) {
1526        XLOG( "%s: passed invalid query ?", __FUNCTION__);
1527        return;
1528    }
1529
1530    pthread_mutex_lock( &cache->lock );
1531
1532    XLOG( "%s: query:", __FUNCTION__ );
1533    XLOG_QUERY(query,querylen);
1534    XLOG_ANSWER(answer, answerlen);
1535#if DEBUG_DATA
1536    XLOG( "answer:");
1537    XLOG_BYTES(answer,answerlen);
1538#endif
1539
1540    lookup = _cache_lookup_p(cache, key);
1541    e      = *lookup;
1542
1543    if (e != NULL) { /* should not happen */
1544        XLOG("%s: ALREADY IN CACHE (%p) ? IGNORING ADD",
1545             __FUNCTION__, e);
1546        goto Exit;
1547    }
1548
1549    if (cache->num_entries >= cache->max_entries) {
1550        _cache_remove_oldest(cache);
1551        /* need to lookup again */
1552        lookup = _cache_lookup_p(cache, key);
1553        e      = *lookup;
1554        if (e != NULL) {
1555            XLOG("%s: ALREADY IN CACHE (%p) ? IGNORING ADD",
1556                __FUNCTION__, e);
1557            goto Exit;
1558        }
1559    }
1560
1561    ttl = answer_getTTL(answer, answerlen);
1562    if (ttl > 0) {
1563        e = entry_alloc(key, answer, answerlen);
1564        if (e != NULL) {
1565            e->expires = ttl + _time_now();
1566            _cache_add_p(cache, lookup, e);
1567        }
1568    }
1569#if DEBUG
1570    _cache_dump_mru(cache);
1571#endif
1572Exit:
1573    pthread_mutex_unlock( &cache->lock );
1574}
1575
1576/****************************************************************************/
1577/****************************************************************************/
1578/*****                                                                  *****/
1579/*****                                                                  *****/
1580/*****                                                                  *****/
1581/****************************************************************************/
1582/****************************************************************************/
1583
1584static pthread_once_t        _res_cache_once;
1585
1586// Head of the list of caches.  Protected by _res_cache_list_lock.
1587static struct resolv_cache_info _res_cache_list;
1588
1589// name of the current default inteface
1590static char            _res_default_ifname[IF_NAMESIZE + 1];
1591
1592// lock protecting everything in the _resolve_cache_info structs (next ptr, etc)
1593static pthread_mutex_t _res_cache_list_lock;
1594
1595
1596/* lookup the default interface name */
1597static char *_get_default_iface_locked();
1598/* insert resolv_cache_info into the list of resolv_cache_infos */
1599static void _insert_cache_info_locked(struct resolv_cache_info* cache_info);
1600/* creates a resolv_cache_info */
1601static struct resolv_cache_info* _create_cache_info( void );
1602/* gets cache associated with an interface name, or NULL if none exists */
1603static struct resolv_cache* _find_named_cache_locked(const char* ifname);
1604/* gets a resolv_cache_info associated with an interface name, or NULL if not found */
1605static struct resolv_cache_info* _find_cache_info_locked(const char* ifname);
1606/* free dns name server list of a resolv_cache_info structure */
1607static void _free_nameservers(struct resolv_cache_info* cache_info);
1608/* look up the named cache, and creates one if needed */
1609static struct resolv_cache* _get_res_cache_for_iface_locked(const char* ifname);
1610/* empty the named cache */
1611static void _flush_cache_for_iface_locked(const char* ifname);
1612/* empty the nameservers set for the named cache */
1613static void _free_nameservers_locked(struct resolv_cache_info* cache_info);
1614/* lookup the namserver for the name interface */
1615static int _get_nameserver_locked(const char* ifname, int n, char* addr, int addrLen);
1616/* lookup the addr of the nameserver for the named interface */
1617static struct addrinfo* _get_nameserver_addr_locked(const char* ifname, int n);
1618/* lookup the inteface's address */
1619static struct in_addr* _get_addr_locked(const char * ifname);
1620
1621
1622
1623static void
1624_res_cache_init(void)
1625{
1626    const char*  env = getenv(CONFIG_ENV);
1627
1628    if (env && atoi(env) == 0) {
1629        /* the cache is disabled */
1630        return;
1631    }
1632
1633    memset(&_res_default_ifname, 0, sizeof(_res_default_ifname));
1634    memset(&_res_cache_list, 0, sizeof(_res_cache_list));
1635    pthread_mutex_init(&_res_cache_list_lock, NULL);
1636}
1637
1638struct resolv_cache*
1639__get_res_cache(void)
1640{
1641    struct resolv_cache *cache;
1642
1643    pthread_once(&_res_cache_once, _res_cache_init);
1644
1645    pthread_mutex_lock(&_res_cache_list_lock);
1646
1647    char* ifname = _get_default_iface_locked();
1648
1649    // if default interface not set then use the first cache
1650    // associated with an interface as the default one.
1651    if (ifname[0] == '\0') {
1652        struct resolv_cache_info* cache_info = _res_cache_list.next;
1653        while (cache_info) {
1654            if (cache_info->ifname[0] != '\0') {
1655                ifname = cache_info->ifname;
1656                break;
1657            }
1658
1659            cache_info = cache_info->next;
1660        }
1661    }
1662    cache = _get_res_cache_for_iface_locked(ifname);
1663
1664    pthread_mutex_unlock(&_res_cache_list_lock);
1665    XLOG("_get_res_cache. default_ifname = %s\n", ifname);
1666    return cache;
1667}
1668
1669static struct resolv_cache*
1670_get_res_cache_for_iface_locked(const char* ifname)
1671{
1672    if (ifname == NULL)
1673        return NULL;
1674
1675    struct resolv_cache* cache = _find_named_cache_locked(ifname);
1676    if (!cache) {
1677        struct resolv_cache_info* cache_info = _create_cache_info();
1678        if (cache_info) {
1679            cache = _resolv_cache_create();
1680            if (cache) {
1681                int len = sizeof(cache_info->ifname);
1682                cache_info->cache = cache;
1683                strncpy(cache_info->ifname, ifname, len - 1);
1684                cache_info->ifname[len - 1] = '\0';
1685
1686                _insert_cache_info_locked(cache_info);
1687            } else {
1688                free(cache_info);
1689            }
1690        }
1691    }
1692    return cache;
1693}
1694
1695void
1696_resolv_cache_reset(unsigned  generation)
1697{
1698    XLOG("%s: generation=%d", __FUNCTION__, generation);
1699
1700    pthread_once(&_res_cache_once, _res_cache_init);
1701    pthread_mutex_lock(&_res_cache_list_lock);
1702
1703    char* ifname = _get_default_iface_locked();
1704    // if default interface not set then use the first cache
1705    // associated with an interface as the default one.
1706    // Note: Copied the code from __get_res_cache since this
1707    // method will be deleted/obsolete when cache per interface
1708    // implemented all over
1709    if (ifname[0] == '\0') {
1710        struct resolv_cache_info* cache_info = _res_cache_list.next;
1711        while (cache_info) {
1712            if (cache_info->ifname[0] != '\0') {
1713                ifname = cache_info->ifname;
1714                break;
1715            }
1716
1717            cache_info = cache_info->next;
1718        }
1719    }
1720    struct resolv_cache* cache = _get_res_cache_for_iface_locked(ifname);
1721
1722    if (cache != NULL) {
1723        pthread_mutex_lock( &cache->lock );
1724        if (cache->generation != generation) {
1725            _cache_flush_locked(cache);
1726            cache->generation = generation;
1727        }
1728        pthread_mutex_unlock( &cache->lock );
1729    }
1730
1731    pthread_mutex_unlock(&_res_cache_list_lock);
1732}
1733
1734void
1735_resolv_flush_cache_for_default_iface(void)
1736{
1737    char* ifname;
1738
1739    pthread_once(&_res_cache_once, _res_cache_init);
1740    pthread_mutex_lock(&_res_cache_list_lock);
1741
1742    ifname = _get_default_iface_locked();
1743    _flush_cache_for_iface_locked(ifname);
1744
1745    pthread_mutex_unlock(&_res_cache_list_lock);
1746}
1747
1748void
1749_resolv_flush_cache_for_iface(const char* ifname)
1750{
1751    pthread_once(&_res_cache_once, _res_cache_init);
1752    pthread_mutex_lock(&_res_cache_list_lock);
1753
1754    _flush_cache_for_iface_locked(ifname);
1755
1756    pthread_mutex_unlock(&_res_cache_list_lock);
1757}
1758
1759static void
1760_flush_cache_for_iface_locked(const char* ifname)
1761{
1762    struct resolv_cache* cache = _find_named_cache_locked(ifname);
1763    if (cache) {
1764        pthread_mutex_lock(&cache->lock);
1765        _cache_flush_locked(cache);
1766        pthread_mutex_unlock(&cache->lock);
1767    }
1768}
1769
1770static struct resolv_cache_info*
1771_create_cache_info(void)
1772{
1773    struct resolv_cache_info*  cache_info;
1774
1775    cache_info = calloc(sizeof(*cache_info), 1);
1776    return cache_info;
1777}
1778
1779static void
1780_insert_cache_info_locked(struct resolv_cache_info* cache_info)
1781{
1782    struct resolv_cache_info* last;
1783
1784    for (last = &_res_cache_list; last->next; last = last->next);
1785
1786    last->next = cache_info;
1787
1788}
1789
1790static struct resolv_cache*
1791_find_named_cache_locked(const char* ifname) {
1792
1793    struct resolv_cache_info* info = _find_cache_info_locked(ifname);
1794
1795    if (info != NULL) return info->cache;
1796
1797    return NULL;
1798}
1799
1800static struct resolv_cache_info*
1801_find_cache_info_locked(const char* ifname)
1802{
1803    if (ifname == NULL)
1804        return NULL;
1805
1806    struct resolv_cache_info* cache_info = _res_cache_list.next;
1807
1808    while (cache_info) {
1809        if (strcmp(cache_info->ifname, ifname) == 0) {
1810            break;
1811        }
1812
1813        cache_info = cache_info->next;
1814    }
1815    return cache_info;
1816}
1817
1818static char*
1819_get_default_iface_locked(void)
1820{
1821    char* iface = _res_default_ifname;
1822
1823    return iface;
1824}
1825
1826void
1827_resolv_set_default_iface(const char* ifname)
1828{
1829    XLOG("_resolv_set_default_if ifname %s\n",ifname);
1830
1831    pthread_once(&_res_cache_once, _res_cache_init);
1832    pthread_mutex_lock(&_res_cache_list_lock);
1833
1834    int size = sizeof(_res_default_ifname);
1835    memset(_res_default_ifname, 0, size);
1836    strncpy(_res_default_ifname, ifname, size - 1);
1837    _res_default_ifname[size - 1] = '\0';
1838
1839    pthread_mutex_unlock(&_res_cache_list_lock);
1840}
1841
1842void
1843_resolv_set_nameservers_for_iface(const char* ifname, char** servers, int numservers)
1844{
1845    int i, rt, index;
1846    struct addrinfo hints;
1847    char sbuf[NI_MAXSERV];
1848
1849    pthread_once(&_res_cache_once, _res_cache_init);
1850
1851    pthread_mutex_lock(&_res_cache_list_lock);
1852    // creates the cache if not created
1853    _get_res_cache_for_iface_locked(ifname);
1854
1855    struct resolv_cache_info* cache_info = _find_cache_info_locked(ifname);
1856
1857    if (cache_info != NULL) {
1858        // free current before adding new
1859        _free_nameservers_locked(cache_info);
1860
1861        memset(&hints, 0, sizeof(hints));
1862        hints.ai_family = PF_UNSPEC;
1863        hints.ai_socktype = SOCK_DGRAM; /*dummy*/
1864        hints.ai_flags = AI_NUMERICHOST;
1865        sprintf(sbuf, "%u", NAMESERVER_PORT);
1866
1867        index = 0;
1868        for (i = 0; i < numservers && i < MAXNS; i++) {
1869            rt = getaddrinfo(servers[i], sbuf, &hints, &cache_info->nsaddrinfo[index]);
1870            if (rt == 0) {
1871                cache_info->nameservers[index] = strdup(servers[i]);
1872                index++;
1873            } else {
1874                cache_info->nsaddrinfo[index] = NULL;
1875            }
1876        }
1877    }
1878    pthread_mutex_unlock(&_res_cache_list_lock);
1879}
1880
1881static void
1882_free_nameservers_locked(struct resolv_cache_info* cache_info)
1883{
1884    int i;
1885    for (i = 0; i <= MAXNS; i++) {
1886        free(cache_info->nameservers[i]);
1887        cache_info->nameservers[i] = NULL;
1888        if (cache_info->nsaddrinfo[i] != NULL) {
1889            freeaddrinfo(cache_info->nsaddrinfo[i]);
1890            cache_info->nsaddrinfo[i] = NULL;
1891        }
1892    }
1893}
1894
1895int
1896_resolv_cache_get_nameserver(int n, char* addr, int addrLen)
1897{
1898    char *ifname;
1899    int result = 0;
1900
1901    pthread_once(&_res_cache_once, _res_cache_init);
1902    pthread_mutex_lock(&_res_cache_list_lock);
1903
1904    ifname = _get_default_iface_locked();
1905    result = _get_nameserver_locked(ifname, n, addr, addrLen);
1906
1907    pthread_mutex_unlock(&_res_cache_list_lock);
1908    return result;
1909}
1910
1911static int
1912_get_nameserver_locked(const char* ifname, int n, char* addr, int addrLen)
1913{
1914    int len = 0;
1915    char* ns;
1916    struct resolv_cache_info* cache_info;
1917
1918    if (n < 1 || n > MAXNS || !addr)
1919        return 0;
1920
1921    cache_info = _find_cache_info_locked(ifname);
1922    if (cache_info) {
1923        ns = cache_info->nameservers[n - 1];
1924        if (ns) {
1925            len = strlen(ns);
1926            if (len < addrLen) {
1927                strncpy(addr, ns, len);
1928                addr[len] = '\0';
1929            } else {
1930                len = 0;
1931            }
1932        }
1933    }
1934
1935    return len;
1936}
1937
1938struct addrinfo*
1939_cache_get_nameserver_addr(int n)
1940{
1941    struct addrinfo *result;
1942    char* ifname;
1943
1944    pthread_once(&_res_cache_once, _res_cache_init);
1945    pthread_mutex_lock(&_res_cache_list_lock);
1946
1947    ifname = _get_default_iface_locked();
1948
1949    result = _get_nameserver_addr_locked(ifname, n);
1950    pthread_mutex_unlock(&_res_cache_list_lock);
1951    return result;
1952}
1953
1954static struct addrinfo*
1955_get_nameserver_addr_locked(const char* ifname, int n)
1956{
1957    struct addrinfo* ai = NULL;
1958    struct resolv_cache_info* cache_info;
1959
1960    if (n < 1 || n > MAXNS)
1961        return NULL;
1962
1963    cache_info = _find_cache_info_locked(ifname);
1964    if (cache_info) {
1965        ai = cache_info->nsaddrinfo[n - 1];
1966    }
1967    return ai;
1968}
1969
1970void
1971_resolv_set_addr_of_iface(const char* ifname, struct in_addr* addr)
1972{
1973    pthread_once(&_res_cache_once, _res_cache_init);
1974    pthread_mutex_lock(&_res_cache_list_lock);
1975    struct resolv_cache_info* cache_info = _find_cache_info_locked(ifname);
1976    if (cache_info) {
1977        memcpy(&cache_info->ifaddr, addr, sizeof(*addr));
1978
1979        if (DEBUG) {
1980            char* addr_s = inet_ntoa(cache_info->ifaddr);
1981            XLOG("address of interface %s is %s\n", ifname, addr_s);
1982        }
1983    }
1984    pthread_mutex_unlock(&_res_cache_list_lock);
1985}
1986
1987struct in_addr*
1988_resolv_get_addr_of_default_iface(void)
1989{
1990    struct in_addr* ai = NULL;
1991    char* ifname;
1992
1993    pthread_once(&_res_cache_once, _res_cache_init);
1994    pthread_mutex_lock(&_res_cache_list_lock);
1995    ifname = _get_default_iface_locked();
1996    ai = _get_addr_locked(ifname);
1997    pthread_mutex_unlock(&_res_cache_list_lock);
1998
1999    return ai;
2000}
2001
2002struct in_addr*
2003_resolv_get_addr_of_iface(const char* ifname)
2004{
2005    struct in_addr* ai = NULL;
2006
2007    pthread_once(&_res_cache_once, _res_cache_init);
2008    pthread_mutex_lock(&_res_cache_list_lock);
2009    ai =_get_addr_locked(ifname);
2010    pthread_mutex_unlock(&_res_cache_list_lock);
2011    return ai;
2012}
2013
2014static struct in_addr*
2015_get_addr_locked(const char * ifname)
2016{
2017    struct resolv_cache_info* cache_info = _find_cache_info_locked(ifname);
2018    if (cache_info) {
2019        return &cache_info->ifaddr;
2020    }
2021    return NULL;
2022}
2023