s_fma.c revision 78419467a2f88744ae2445fca5eb442877ebb1b0
1/*-
2 * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD$");
29
30#include <fenv.h>
31#include <float.h>
32#include <math.h>
33
34#include "math_private.h"
35
36/*
37 * A struct dd represents a floating-point number with twice the precision
38 * of a double.  We maintain the invariant that "hi" stores the 53 high-order
39 * bits of the result.
40 */
41struct dd {
42	double hi;
43	double lo;
44};
45
46/*
47 * Compute a+b exactly, returning the exact result in a struct dd.  We assume
48 * that both a and b are finite, but make no assumptions about their relative
49 * magnitudes.
50 */
51static inline struct dd
52dd_add(double a, double b)
53{
54	struct dd ret;
55	double s;
56
57	ret.hi = a + b;
58	s = ret.hi - a;
59	ret.lo = (a - (ret.hi - s)) + (b - s);
60	return (ret);
61}
62
63/*
64 * Compute a+b, with a small tweak:  The least significant bit of the
65 * result is adjusted into a sticky bit summarizing all the bits that
66 * were lost to rounding.  This adjustment negates the effects of double
67 * rounding when the result is added to another number with a higher
68 * exponent.  For an explanation of round and sticky bits, see any reference
69 * on FPU design, e.g.,
70 *
71 *     J. Coonen.  An Implementation Guide to a Proposed Standard for
72 *     Floating-Point Arithmetic.  Computer, vol. 13, no. 1, Jan 1980.
73 */
74static inline double
75add_adjusted(double a, double b)
76{
77	struct dd sum;
78	uint64_t hibits, lobits;
79
80	sum = dd_add(a, b);
81	if (sum.lo != 0) {
82		EXTRACT_WORD64(hibits, sum.hi);
83		if ((hibits & 1) == 0) {
84			/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
85			EXTRACT_WORD64(lobits, sum.lo);
86			hibits += 1 - ((hibits ^ lobits) >> 62);
87			INSERT_WORD64(sum.hi, hibits);
88		}
89	}
90	return (sum.hi);
91}
92
93/*
94 * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
95 * that the result will be subnormal, and care is taken to ensure that
96 * double rounding does not occur.
97 */
98static inline double
99add_and_denormalize(double a, double b, int scale)
100{
101	struct dd sum;
102	uint64_t hibits, lobits;
103	int bits_lost;
104
105	sum = dd_add(a, b);
106
107	/*
108	 * If we are losing at least two bits of accuracy to denormalization,
109	 * then the first lost bit becomes a round bit, and we adjust the
110	 * lowest bit of sum.hi to make it a sticky bit summarizing all the
111	 * bits in sum.lo. With the sticky bit adjusted, the hardware will
112	 * break any ties in the correct direction.
113	 *
114	 * If we are losing only one bit to denormalization, however, we must
115	 * break the ties manually.
116	 */
117	if (sum.lo != 0) {
118		EXTRACT_WORD64(hibits, sum.hi);
119		bits_lost = -((int)(hibits >> 52) & 0x7ff) - scale + 1;
120		if (bits_lost != 1 ^ (int)(hibits & 1)) {
121			/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
122			EXTRACT_WORD64(lobits, sum.lo);
123			hibits += 1 - (((hibits ^ lobits) >> 62) & 2);
124			INSERT_WORD64(sum.hi, hibits);
125		}
126	}
127	return (ldexp(sum.hi, scale));
128}
129
130/*
131 * Compute a*b exactly, returning the exact result in a struct dd.  We assume
132 * that both a and b are normalized, so no underflow or overflow will occur.
133 * The current rounding mode must be round-to-nearest.
134 */
135static inline struct dd
136dd_mul(double a, double b)
137{
138	static const double split = 0x1p27 + 1.0;
139	struct dd ret;
140	double ha, hb, la, lb, p, q;
141
142	p = a * split;
143	ha = a - p;
144	ha += p;
145	la = a - ha;
146
147	p = b * split;
148	hb = b - p;
149	hb += p;
150	lb = b - hb;
151
152	p = ha * hb;
153	q = ha * lb + la * hb;
154
155	ret.hi = p + q;
156	ret.lo = p - ret.hi + q + la * lb;
157	return (ret);
158}
159
160/*
161 * Fused multiply-add: Compute x * y + z with a single rounding error.
162 *
163 * We use scaling to avoid overflow/underflow, along with the
164 * canonical precision-doubling technique adapted from:
165 *
166 *	Dekker, T.  A Floating-Point Technique for Extending the
167 *	Available Precision.  Numer. Math. 18, 224-242 (1971).
168 *
169 * This algorithm is sensitive to the rounding precision.  FPUs such
170 * as the i387 must be set in double-precision mode if variables are
171 * to be stored in FP registers in order to avoid incorrect results.
172 * This is the default on FreeBSD, but not on many other systems.
173 *
174 * Hardware instructions should be used on architectures that support it,
175 * since this implementation will likely be several times slower.
176 */
177double
178fma(double x, double y, double z)
179{
180	double xs, ys, zs, adj;
181	struct dd xy, r;
182	int oround;
183	int ex, ey, ez;
184	int spread;
185
186	/*
187	 * Handle special cases. The order of operations and the particular
188	 * return values here are crucial in handling special cases involving
189	 * infinities, NaNs, overflows, and signed zeroes correctly.
190	 */
191	if (x == 0.0 || y == 0.0)
192		return (x * y + z);
193	if (z == 0.0)
194		return (x * y);
195	if (!isfinite(x) || !isfinite(y))
196		return (x * y + z);
197	if (!isfinite(z))
198		return (z);
199
200	xs = frexp(x, &ex);
201	ys = frexp(y, &ey);
202	zs = frexp(z, &ez);
203	oround = fegetround();
204	spread = ex + ey - ez;
205
206	/*
207	 * If x * y and z are many orders of magnitude apart, the scaling
208	 * will overflow, so we handle these cases specially.  Rounding
209	 * modes other than FE_TONEAREST are painful.
210	 */
211	if (spread < -DBL_MANT_DIG) {
212		feraiseexcept(FE_INEXACT);
213		if (!isnormal(z))
214			feraiseexcept(FE_UNDERFLOW);
215		switch (oround) {
216		case FE_TONEAREST:
217			return (z);
218		case FE_TOWARDZERO:
219			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
220				return (z);
221			else
222				return (nextafter(z, 0));
223		case FE_DOWNWARD:
224			if (x > 0.0 ^ y < 0.0)
225				return (z);
226			else
227				return (nextafter(z, -INFINITY));
228		default:	/* FE_UPWARD */
229			if (x > 0.0 ^ y < 0.0)
230				return (nextafter(z, INFINITY));
231			else
232				return (z);
233		}
234	}
235	if (spread <= DBL_MANT_DIG * 2)
236		zs = ldexp(zs, -spread);
237	else
238		zs = copysign(DBL_MIN, zs);
239
240	fesetround(FE_TONEAREST);
241	/* work around clang bug 8100 */
242	volatile double vxs = xs;
243
244	/*
245	 * Basic approach for round-to-nearest:
246	 *
247	 *     (xy.hi, xy.lo) = x * y		(exact)
248	 *     (r.hi, r.lo)   = xy.hi + z	(exact)
249	 *     adj = xy.lo + r.lo		(inexact; low bit is sticky)
250	 *     result = r.hi + adj		(correctly rounded)
251	 */
252	xy = dd_mul(vxs, ys);
253	r = dd_add(xy.hi, zs);
254
255	spread = ex + ey;
256
257	if (r.hi == 0.0) {
258		/*
259		 * When the addends cancel to 0, ensure that the result has
260		 * the correct sign.
261		 */
262		fesetround(oround);
263		volatile double vzs = zs; /* XXX gcc CSE bug workaround */
264		return (xy.hi + vzs + ldexp(xy.lo, spread));
265	}
266
267	if (oround != FE_TONEAREST) {
268		/*
269		 * There is no need to worry about double rounding in directed
270		 * rounding modes.
271		 */
272		fesetround(oround);
273		/* work around clang bug 8100 */
274		volatile double vrlo = r.lo;
275		adj = vrlo + xy.lo;
276		return (ldexp(r.hi + adj, spread));
277	}
278
279	adj = add_adjusted(r.lo, xy.lo);
280	if (spread + ilogb(r.hi) > -1023)
281		return (ldexp(r.hi + adj, spread));
282	else
283		return (add_and_denormalize(r.hi, adj, spread));
284}
285
286#if (LDBL_MANT_DIG == 53)
287__weak_reference(fma, fmal);
288#endif
289