11d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// Ceres Solver - A fast non-linear least squares minimizer
21d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// Copyright 2013 Google Inc. All rights reserved.
31d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// http://code.google.com/p/ceres-solver/
41d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
51d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// Redistribution and use in source and binary forms, with or without
61d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// modification, are permitted provided that the following conditions are met:
71d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
81d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// * Redistributions of source code must retain the above copyright notice,
91d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//   this list of conditions and the following disclaimer.
101d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// * Redistributions in binary form must reproduce the above copyright notice,
111d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//   this list of conditions and the following disclaimer in the documentation
121d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//   and/or other materials provided with the distribution.
131d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// * Neither the name of Google Inc. nor the names of its contributors may be
141d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//   used to endorse or promote products derived from this software without
151d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//   specific prior written permission.
161d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
171d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
181d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
191d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
201d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
211d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
221d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
231d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
241d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
251d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
261d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
271d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// POSSIBILITY OF SUCH DAMAGE.
281d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
291d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// Author: sameeragarwal@google.com (Sameer Agarwal)
301d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
311d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling#ifndef CERES_PUBLIC_COVARIANCE_H_
321d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling#define CERES_PUBLIC_COVARIANCE_H_
331d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
341d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling#include <utility>
351d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling#include <vector>
361d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling#include "ceres/internal/port.h"
371d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling#include "ceres/internal/scoped_ptr.h"
381d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling#include "ceres/types.h"
3979397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez#include "ceres/internal/disable_warnings.h"
401d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
411d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingnamespace ceres {
421d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
431d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingclass Problem;
441d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
451d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingnamespace internal {
461d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberlingclass CovarianceImpl;
471d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling}  // namespace internal
481d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
491d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// WARNING
501d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// =======
511d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// It is very easy to use this class incorrectly without understanding
521d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// the underlying mathematics. Please read and understand the
531d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// documentation completely before attempting to use this class.
541d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
551d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
561d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// This class allows the user to evaluate the covariance for a
571d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// non-linear least squares problem and provides random access to its
581d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// blocks
591d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
601d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// Background
611d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// ==========
621d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// One way to assess the quality of the solution returned by a
631d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// non-linear least squares solve is to analyze the covariance of the
641d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// solution.
651d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
661d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// Let us consider the non-linear regression problem
671d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
681d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//   y = f(x) + N(0, I)
691d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
701d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// i.e., the observation y is a random non-linear function of the
711d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// independent variable x with mean f(x) and identity covariance. Then
721d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// the maximum likelihood estimate of x given observations y is the
731d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// solution to the non-linear least squares problem:
741d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
751d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  x* = arg min_x |f(x)|^2
761d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
771d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// And the covariance of x* is given by
781d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
791d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  C(x*) = inverse[J'(x*)J(x*)]
801d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
811d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// Here J(x*) is the Jacobian of f at x*. The above formula assumes
821d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// that J(x*) has full column rank.
831d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
841d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// If J(x*) is rank deficient, then the covariance matrix C(x*) is
851d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// also rank deficient and is given by
861d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
871d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  C(x*) =  pseudoinverse[J'(x*)J(x*)]
881d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
891d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// Note that in the above, we assumed that the covariance
901d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// matrix for y was identity. This is an important assumption. If this
911d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// is not the case and we have
921d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
931d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  y = f(x) + N(0, S)
941d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
951d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// Where S is a positive semi-definite matrix denoting the covariance
961d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// of y, then the maximum likelihood problem to be solved is
971d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
981d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  x* = arg min_x f'(x) inverse[S] f(x)
991d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
1001d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// and the corresponding covariance estimate of x* is given by
1011d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
1021d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  C(x*) = inverse[J'(x*) inverse[S] J(x*)]
1031d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
1041d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// So, if it is the case that the observations being fitted to have a
1051d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// covariance matrix not equal to identity, then it is the user's
1061d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// responsibility that the corresponding cost functions are correctly
1071d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// scaled, e.g. in the above case the cost function for this problem
1081d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// should evaluate S^{-1/2} f(x) instead of just f(x), where S^{-1/2}
1091d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// is the inverse square root of the covariance matrix S.
1101d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
1111d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// This class allows the user to evaluate the covariance for a
1121d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// non-linear least squares problem and provides random access to its
1131d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// blocks. The computation assumes that the CostFunctions compute
1141d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// residuals such that their covariance is identity.
1151d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
1161d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// Since the computation of the covariance matrix requires computing
1171d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// the inverse of a potentially large matrix, this can involve a
1181d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// rather large amount of time and memory. However, it is usually the
1191d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// case that the user is only interested in a small part of the
1201d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// covariance matrix. Quite often just the block diagonal. This class
1211d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// allows the user to specify the parts of the covariance matrix that
1221d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// she is interested in and then uses this information to only compute
1231d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// and store those parts of the covariance matrix.
1241d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
1251d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// Rank of the Jacobian
1261d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// --------------------
1271d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// As we noted above, if the jacobian is rank deficient, then the
1281d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// inverse of J'J is not defined and instead a pseudo inverse needs to
1291d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// be computed.
1301d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
1311d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// The rank deficiency in J can be structural -- columns which are
1321d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// always known to be zero or numerical -- depending on the exact
1331d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// values in the Jacobian.
1341d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
1351d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// Structural rank deficiency occurs when the problem contains
1361d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// parameter blocks that are constant. This class correctly handles
1371d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// structural rank deficiency like that.
1381d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
1391d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// Numerical rank deficiency, where the rank of the matrix cannot be
1401d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// predicted by its sparsity structure and requires looking at its
1411d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// numerical values is more complicated. Here again there are two
1421d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// cases.
1431d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
1441d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//   a. The rank deficiency arises from overparameterization. e.g., a
1451d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//   four dimensional quaternion used to parameterize SO(3), which is
1461d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//   a three dimensional manifold. In cases like this, the user should
1471d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//   use an appropriate LocalParameterization. Not only will this lead
1481d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//   to better numerical behaviour of the Solver, it will also expose
1491d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//   the rank deficiency to the Covariance object so that it can
1501d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//   handle it correctly.
1511d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
1521d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//   b. More general numerical rank deficiency in the Jacobian
1531d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//   requires the computation of the so called Singular Value
1541d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//   Decomposition (SVD) of J'J. We do not know how to do this for
1551d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//   large sparse matrices efficiently. For small and moderate sized
1561d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//   problems this is done using dense linear algebra.
1571d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
1581d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// Gauge Invariance
1591d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// ----------------
1601d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// In structure from motion (3D reconstruction) problems, the
1611d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// reconstruction is ambiguous upto a similarity transform. This is
1621d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// known as a Gauge Ambiguity. Handling Gauges correctly requires the
1631d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// use of SVD or custom inversion algorithms. For small problems the
1641d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// user can use the dense algorithm. For more details see
1651d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
1661d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// Ken-ichi Kanatani, Daniel D. Morris: Gauges and gauge
1671d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// transformations for uncertainty description of geometric structure
1681d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// with indeterminacy. IEEE Transactions on Information Theory 47(5):
1691d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// 2017-2028 (2001)
1701d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
1711d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// Example Usage
1721d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling// =============
1731d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
1741d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  double x[3];
1751d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  double y[2];
1761d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
1771d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  Problem problem;
1781d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  problem.AddParameterBlock(x, 3);
1791d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  problem.AddParameterBlock(y, 2);
1801d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  <Build Problem>
1811d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  <Solve Problem>
1821d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
1831d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  Covariance::Options options;
1841d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  Covariance covariance(options);
1851d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
1861d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  vector<pair<const double*, const double*> > covariance_blocks;
1871d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  covariance_blocks.push_back(make_pair(x, x));
1881d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  covariance_blocks.push_back(make_pair(y, y));
1891d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  covariance_blocks.push_back(make_pair(x, y));
1901d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
1911d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  CHECK(covariance.Compute(covariance_blocks, &problem));
1921d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
1931d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  double covariance_xx[3 * 3];
1941d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  double covariance_yy[2 * 2];
1951d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  double covariance_xy[3 * 2];
1961d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  covariance.GetCovarianceBlock(x, x, covariance_xx)
1971d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  covariance.GetCovarianceBlock(y, y, covariance_yy)
1981d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//  covariance.GetCovarianceBlock(x, y, covariance_xy)
1991d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling//
20079397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandezclass CERES_EXPORT Covariance {
2011d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling public:
20279397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez  struct CERES_EXPORT Options {
2031d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    Options()
2041d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling#ifndef CERES_NO_SUITESPARSE
20579397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez        : algorithm_type(SUITE_SPARSE_QR),
2061d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling#else
20779397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez        : algorithm_type(EIGEN_SPARSE_QR),
2081d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling#endif
2091d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling          min_reciprocal_condition_number(1e-14),
2101d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling          null_space_rank(0),
2111d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling          num_threads(1),
2121d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling          apply_loss_function(true) {
2131d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    }
2141d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
2151d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // Ceres supports three different algorithms for covariance
2161d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // estimation, which represent different tradeoffs in speed,
2171d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // accuracy and reliability.
2181d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
2191d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // 1. DENSE_SVD uses Eigen's JacobiSVD to perform the
2201d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //    computations. It computes the singular value decomposition
2211d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
2221d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //      U * S * V' = J
2231d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
2241d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //    and then uses it to compute the pseudo inverse of J'J as
2251d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
2261d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //      pseudoinverse[J'J]^ = V * pseudoinverse[S] * V'
2271d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
2281d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //    It is an accurate but slow method and should only be used
2291d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //    for small to moderate sized problems. It can handle
2301d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //    full-rank as well as rank deficient Jacobians.
2311d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
23279397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    // 2. EIGEN_SPARSE_QR uses the sparse QR factorization algorithm
23379397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    //    in Eigen to compute the decomposition
2341d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
2351d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //      Q * R = J
2361d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
2371d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //    [J'J]^-1 = [R*R']^-1
2381d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
23979397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    //    It is a moderately fast algorithm for sparse matrices.
2401d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
24179397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    // 3. SUITE_SPARSE_QR uses the SuiteSparseQR sparse QR
24279397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    //    factorization algorithm. It uses dense linear algebra and is
24379397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    //    multi threaded, so for large sparse sparse matrices it is
24479397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    //    significantly faster than EIGEN_SPARSE_QR.
24579397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    //
24679397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    // Neither EIGEN_SPARSE_QR not SUITE_SPARSE_QR are capable of
24779397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    // computing the covariance if the Jacobian is rank deficient.
2481d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    CovarianceAlgorithmType algorithm_type;
2491d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
2501d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // If the Jacobian matrix is near singular, then inverting J'J
2511d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // will result in unreliable results, e.g, if
2521d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
2531d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //   J = [1.0 1.0         ]
2541d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //       [1.0 1.0000001   ]
2551d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
2561d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // which is essentially a rank deficient matrix, we have
2571d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
2581d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //   inv(J'J) = [ 2.0471e+14  -2.0471e+14]
2591d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //              [-2.0471e+14   2.0471e+14]
2601d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
2611d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // This is not a useful result. Therefore, by default
2621d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // Covariance::Compute will return false if a rank deficient
2631d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // Jacobian is encountered. How rank deficiency is detected
2641d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // depends on the algorithm being used.
2651d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
2661d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // 1. DENSE_SVD
2671d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
2681d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //      min_sigma / max_sigma < sqrt(min_reciprocal_condition_number)
2691d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
2701d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //    where min_sigma and max_sigma are the minimum and maxiumum
2711d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //    singular values of J respectively.
2721d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
27379397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    // 2. SUITE_SPARSE_QR and EIGEN_SPARSE_QR
2741d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
2751d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //      rank(J) < num_col(J)
2761d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
2771d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //   Here rank(J) is the estimate of the rank of J returned by the
27879397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    //   sparse QR factorization algorithm. It is a fairly reliable
27979397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    //   indication of rank deficiency.
2801d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
2811d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    double min_reciprocal_condition_number;
2821d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
2831d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // When using DENSE_SVD, the user has more control in dealing with
2841d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // singular and near singular covariance matrices.
2851d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
2861d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // As mentioned above, when the covariance matrix is near
2871d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // singular, instead of computing the inverse of J'J, the
2881d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // Moore-Penrose pseudoinverse of J'J should be computed.
2891d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
2901d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // If J'J has the eigen decomposition (lambda_i, e_i), where
2911d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // lambda_i is the i^th eigenvalue and e_i is the corresponding
2921d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // eigenvector, then the inverse of J'J is
2931d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
2941d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //   inverse[J'J] = sum_i e_i e_i' / lambda_i
2951d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
2961d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // and computing the pseudo inverse involves dropping terms from
2971d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // this sum that correspond to small eigenvalues.
2981d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
2991d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // How terms are dropped is controlled by
3001d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // min_reciprocal_condition_number and null_space_rank.
3011d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
3021d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // If null_space_rank is non-negative, then the smallest
3031d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // null_space_rank eigenvalue/eigenvectors are dropped
3041d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // irrespective of the magnitude of lambda_i. If the ratio of the
3051d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // smallest non-zero eigenvalue to the largest eigenvalue in the
3061d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // truncated matrix is still below
3071d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // min_reciprocal_condition_number, then the Covariance::Compute()
3081d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // will fail and return false.
3091d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
3101d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // Setting null_space_rank = -1 drops all terms for which
3111d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
3121d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //   lambda_i / lambda_max < min_reciprocal_condition_number.
3131d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
31479397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    // This option has no effect on the SUITE_SPARSE_QR and
31579397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez    // EIGEN_SPARSE_QR algorithms.
3161d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    int null_space_rank;
3171d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
3181d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    int num_threads;
3191d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
3201d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // Even though the residual blocks in the problem may contain loss
3211d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // functions, setting apply_loss_function to false will turn off
3221d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // the application of the loss function to the output of the cost
3231d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // function and in turn its effect on the covariance.
3241d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    //
3251d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    // TODO(sameergaarwal): Expand this based on Jim's experiments.
3261d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling    bool apply_loss_function;
3271d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  };
3281d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
3291d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  explicit Covariance(const Options& options);
3301d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  ~Covariance();
3311d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
3321d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // Compute a part of the covariance matrix.
3331d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  //
3341d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // The vector covariance_blocks, indexes into the covariance matrix
3351d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // block-wise using pairs of parameter blocks. This allows the
3361d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // covariance estimation algorithm to only compute and store these
3371d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // blocks.
3381d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  //
3391d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // Since the covariance matrix is symmetric, if the user passes
3401d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // (block1, block2), then GetCovarianceBlock can be called with
3411d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // block1, block2 as well as block2, block1.
3421d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  //
3431d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // covariance_blocks cannot contain duplicates. Bad things will
3441d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // happen if they do.
3451d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  //
3461d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // Note that the list of covariance_blocks is only used to determine
3471d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // what parts of the covariance matrix are computed. The full
3481d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // Jacobian is used to do the computation, i.e. they do not have an
3491d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // impact on what part of the Jacobian is used for computation.
3501d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  //
3511d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // The return value indicates the success or failure of the
3521d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // covariance computation. Please see the documentation for
3531d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // Covariance::Options for more on the conditions under which this
3541d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // function returns false.
3551d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  bool Compute(
3561d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling      const vector<pair<const double*, const double*> >& covariance_blocks,
3571d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling      Problem* problem);
3581d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
3591d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // Return the block of the covariance matrix corresponding to
3601d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // parameter_block1 and parameter_block2.
3611d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  //
3621d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // Compute must be called before the first call to
3631d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // GetCovarianceBlock and the pair <parameter_block1,
3641d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // parameter_block2> OR the pair <parameter_block2,
3651d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // parameter_block1> must have been present in the vector
3661d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // covariance_blocks when Compute was called. Otherwise
3671d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // GetCovarianceBlock will return false.
3681d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  //
3691d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // covariance_block must point to a memory location that can store a
3701d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // parameter_block1_size x parameter_block2_size matrix. The
3711d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  // returned covariance will be a row-major matrix.
3721d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  bool GetCovarianceBlock(const double* parameter_block1,
3731d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling                          const double* parameter_block2,
3741d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling                          double* covariance_block) const;
3751d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
3761d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling private:
3771d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling  internal::scoped_ptr<internal::CovarianceImpl> impl_;
3781d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling};
3791d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
3801d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling}  // namespace ceres
3811d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling
38279397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez#include "ceres/internal/reenable_warnings.h"
38379397c21138f54fcff6ec067b44b847f1f7e0e98Carlos Hernandez
3841d2624a10e2c559f8ba9ef89eaa30832c0a83a96Sascha Haeberling#endif  // CERES_PUBLIC_COVARIANCE_H_
385