1// Copyright (c) 2012 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "base/message_loop/message_pump_win.h"
6
7#include <math.h>
8
9#include "base/debug/trace_event.h"
10#include "base/message_loop/message_loop.h"
11#include "base/metrics/histogram.h"
12#include "base/process/memory.h"
13#include "base/strings/stringprintf.h"
14#include "base/win/wrapped_window_proc.h"
15
16namespace base {
17
18namespace {
19
20enum MessageLoopProblems {
21  MESSAGE_POST_ERROR,
22  COMPLETION_POST_ERROR,
23  SET_TIMER_ERROR,
24  MESSAGE_LOOP_PROBLEM_MAX,
25};
26
27}  // namespace
28
29static const wchar_t kWndClassFormat[] = L"Chrome_MessagePumpWindow_%p";
30
31// Message sent to get an additional time slice for pumping (processing) another
32// task (a series of such messages creates a continuous task pump).
33static const int kMsgHaveWork = WM_USER + 1;
34
35//-----------------------------------------------------------------------------
36// MessagePumpWin public:
37
38void MessagePumpWin::AddObserver(MessagePumpObserver* observer) {
39  observers_.AddObserver(observer);
40}
41
42void MessagePumpWin::RemoveObserver(MessagePumpObserver* observer) {
43  observers_.RemoveObserver(observer);
44}
45
46void MessagePumpWin::WillProcessMessage(const MSG& msg) {
47  FOR_EACH_OBSERVER(MessagePumpObserver, observers_, WillProcessEvent(msg));
48}
49
50void MessagePumpWin::DidProcessMessage(const MSG& msg) {
51  FOR_EACH_OBSERVER(MessagePumpObserver, observers_, DidProcessEvent(msg));
52}
53
54void MessagePumpWin::RunWithDispatcher(
55    Delegate* delegate, MessagePumpDispatcher* dispatcher) {
56  RunState s;
57  s.delegate = delegate;
58  s.dispatcher = dispatcher;
59  s.should_quit = false;
60  s.run_depth = state_ ? state_->run_depth + 1 : 1;
61
62  RunState* previous_state = state_;
63  state_ = &s;
64
65  DoRunLoop();
66
67  state_ = previous_state;
68}
69
70void MessagePumpWin::Quit() {
71  DCHECK(state_);
72  state_->should_quit = true;
73}
74
75//-----------------------------------------------------------------------------
76// MessagePumpWin protected:
77
78int MessagePumpWin::GetCurrentDelay() const {
79  if (delayed_work_time_.is_null())
80    return -1;
81
82  // Be careful here.  TimeDelta has a precision of microseconds, but we want a
83  // value in milliseconds.  If there are 5.5ms left, should the delay be 5 or
84  // 6?  It should be 6 to avoid executing delayed work too early.
85  double timeout =
86      ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF());
87
88  // If this value is negative, then we need to run delayed work soon.
89  int delay = static_cast<int>(timeout);
90  if (delay < 0)
91    delay = 0;
92
93  return delay;
94}
95
96//-----------------------------------------------------------------------------
97// MessagePumpForUI public:
98
99MessagePumpForUI::MessagePumpForUI()
100    : atom_(0) {
101  InitMessageWnd();
102}
103
104MessagePumpForUI::~MessagePumpForUI() {
105  DestroyWindow(message_hwnd_);
106  UnregisterClass(MAKEINTATOM(atom_),
107                  GetModuleFromAddress(&WndProcThunk));
108}
109
110void MessagePumpForUI::ScheduleWork() {
111  if (InterlockedExchange(&have_work_, 1))
112    return;  // Someone else continued the pumping.
113
114  // Make sure the MessagePump does some work for us.
115  BOOL ret = PostMessage(message_hwnd_, kMsgHaveWork,
116                         reinterpret_cast<WPARAM>(this), 0);
117  if (ret)
118    return;  // There was room in the Window Message queue.
119
120  // We have failed to insert a have-work message, so there is a chance that we
121  // will starve tasks/timers while sitting in a nested message loop.  Nested
122  // loops only look at Windows Message queues, and don't look at *our* task
123  // queues, etc., so we might not get a time slice in such. :-(
124  // We could abort here, but the fear is that this failure mode is plausibly
125  // common (queue is full, of about 2000 messages), so we'll do a near-graceful
126  // recovery.  Nested loops are pretty transient (we think), so this will
127  // probably be recoverable.
128  InterlockedExchange(&have_work_, 0);  // Clarify that we didn't really insert.
129  UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", MESSAGE_POST_ERROR,
130                            MESSAGE_LOOP_PROBLEM_MAX);
131}
132
133void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
134  //
135  // We would *like* to provide high resolution timers.  Windows timers using
136  // SetTimer() have a 10ms granularity.  We have to use WM_TIMER as a wakeup
137  // mechanism because the application can enter modal windows loops where it
138  // is not running our MessageLoop; the only way to have our timers fire in
139  // these cases is to post messages there.
140  //
141  // To provide sub-10ms timers, we process timers directly from our run loop.
142  // For the common case, timers will be processed there as the run loop does
143  // its normal work.  However, we *also* set the system timer so that WM_TIMER
144  // events fire.  This mops up the case of timers not being able to work in
145  // modal message loops.  It is possible for the SetTimer to pop and have no
146  // pending timers, because they could have already been processed by the
147  // run loop itself.
148  //
149  // We use a single SetTimer corresponding to the timer that will expire
150  // soonest.  As new timers are created and destroyed, we update SetTimer.
151  // Getting a spurrious SetTimer event firing is benign, as we'll just be
152  // processing an empty timer queue.
153  //
154  delayed_work_time_ = delayed_work_time;
155
156  int delay_msec = GetCurrentDelay();
157  DCHECK_GE(delay_msec, 0);
158  if (delay_msec < USER_TIMER_MINIMUM)
159    delay_msec = USER_TIMER_MINIMUM;
160
161  // Create a WM_TIMER event that will wake us up to check for any pending
162  // timers (in case we are running within a nested, external sub-pump).
163  BOOL ret = SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this),
164                      delay_msec, NULL);
165  if (ret)
166    return;
167  // If we can't set timers, we are in big trouble... but cross our fingers for
168  // now.
169  // TODO(jar): If we don't see this error, use a CHECK() here instead.
170  UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", SET_TIMER_ERROR,
171                            MESSAGE_LOOP_PROBLEM_MAX);
172}
173
174//-----------------------------------------------------------------------------
175// MessagePumpForUI private:
176
177// static
178LRESULT CALLBACK MessagePumpForUI::WndProcThunk(
179    HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) {
180  switch (message) {
181    case kMsgHaveWork:
182      reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage();
183      break;
184    case WM_TIMER:
185      reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage();
186      break;
187  }
188  return DefWindowProc(hwnd, message, wparam, lparam);
189}
190
191void MessagePumpForUI::DoRunLoop() {
192  // IF this was just a simple PeekMessage() loop (servicing all possible work
193  // queues), then Windows would try to achieve the following order according
194  // to MSDN documentation about PeekMessage with no filter):
195  //    * Sent messages
196  //    * Posted messages
197  //    * Sent messages (again)
198  //    * WM_PAINT messages
199  //    * WM_TIMER messages
200  //
201  // Summary: none of the above classes is starved, and sent messages has twice
202  // the chance of being processed (i.e., reduced service time).
203
204  for (;;) {
205    // If we do any work, we may create more messages etc., and more work may
206    // possibly be waiting in another task group.  When we (for example)
207    // ProcessNextWindowsMessage(), there is a good chance there are still more
208    // messages waiting.  On the other hand, when any of these methods return
209    // having done no work, then it is pretty unlikely that calling them again
210    // quickly will find any work to do.  Finally, if they all say they had no
211    // work, then it is a good time to consider sleeping (waiting) for more
212    // work.
213
214    bool more_work_is_plausible = ProcessNextWindowsMessage();
215    if (state_->should_quit)
216      break;
217
218    more_work_is_plausible |= state_->delegate->DoWork();
219    if (state_->should_quit)
220      break;
221
222    more_work_is_plausible |=
223        state_->delegate->DoDelayedWork(&delayed_work_time_);
224    // If we did not process any delayed work, then we can assume that our
225    // existing WM_TIMER if any will fire when delayed work should run.  We
226    // don't want to disturb that timer if it is already in flight.  However,
227    // if we did do all remaining delayed work, then lets kill the WM_TIMER.
228    if (more_work_is_plausible && delayed_work_time_.is_null())
229      KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
230    if (state_->should_quit)
231      break;
232
233    if (more_work_is_plausible)
234      continue;
235
236    more_work_is_plausible = state_->delegate->DoIdleWork();
237    if (state_->should_quit)
238      break;
239
240    if (more_work_is_plausible)
241      continue;
242
243    WaitForWork();  // Wait (sleep) until we have work to do again.
244  }
245}
246
247void MessagePumpForUI::InitMessageWnd() {
248  // Generate a unique window class name.
249  string16 class_name = StringPrintf(kWndClassFormat, this);
250
251  HINSTANCE instance = GetModuleFromAddress(&WndProcThunk);
252  WNDCLASSEX wc = {0};
253  wc.cbSize = sizeof(wc);
254  wc.lpfnWndProc = base::win::WrappedWindowProc<WndProcThunk>;
255  wc.hInstance = instance;
256  wc.lpszClassName = class_name.c_str();
257  atom_ = RegisterClassEx(&wc);
258  DCHECK(atom_);
259
260  message_hwnd_ = CreateWindow(MAKEINTATOM(atom_), 0, 0, 0, 0, 0, 0,
261                               HWND_MESSAGE, 0, instance, 0);
262  DCHECK(message_hwnd_);
263}
264
265void MessagePumpForUI::WaitForWork() {
266  // Wait until a message is available, up to the time needed by the timer
267  // manager to fire the next set of timers.
268  int delay = GetCurrentDelay();
269  if (delay < 0)  // Negative value means no timers waiting.
270    delay = INFINITE;
271
272  DWORD result;
273  result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT,
274                                       MWMO_INPUTAVAILABLE);
275
276  if (WAIT_OBJECT_0 == result) {
277    // A WM_* message is available.
278    // If a parent child relationship exists between windows across threads
279    // then their thread inputs are implicitly attached.
280    // This causes the MsgWaitForMultipleObjectsEx API to return indicating
281    // that messages are ready for processing (Specifically, mouse messages
282    // intended for the child window may appear if the child window has
283    // capture).
284    // The subsequent PeekMessages call may fail to return any messages thus
285    // causing us to enter a tight loop at times.
286    // The WaitMessage call below is a workaround to give the child window
287    // some time to process its input messages.
288    MSG msg = {0};
289    DWORD queue_status = GetQueueStatus(QS_MOUSE);
290    if (HIWORD(queue_status) & QS_MOUSE &&
291        !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) {
292      WaitMessage();
293    }
294    return;
295  }
296
297  DCHECK_NE(WAIT_FAILED, result) << GetLastError();
298}
299
300void MessagePumpForUI::HandleWorkMessage() {
301  // If we are being called outside of the context of Run, then don't try to do
302  // any work.  This could correspond to a MessageBox call or something of that
303  // sort.
304  if (!state_) {
305    // Since we handled a kMsgHaveWork message, we must still update this flag.
306    InterlockedExchange(&have_work_, 0);
307    return;
308  }
309
310  // Let whatever would have run had we not been putting messages in the queue
311  // run now.  This is an attempt to make our dummy message not starve other
312  // messages that may be in the Windows message queue.
313  ProcessPumpReplacementMessage();
314
315  // Now give the delegate a chance to do some work.  He'll let us know if he
316  // needs to do more work.
317  if (state_->delegate->DoWork())
318    ScheduleWork();
319}
320
321void MessagePumpForUI::HandleTimerMessage() {
322  KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
323
324  // If we are being called outside of the context of Run, then don't do
325  // anything.  This could correspond to a MessageBox call or something of
326  // that sort.
327  if (!state_)
328    return;
329
330  state_->delegate->DoDelayedWork(&delayed_work_time_);
331  if (!delayed_work_time_.is_null()) {
332    // A bit gratuitous to set delayed_work_time_ again, but oh well.
333    ScheduleDelayedWork(delayed_work_time_);
334  }
335}
336
337bool MessagePumpForUI::ProcessNextWindowsMessage() {
338  // If there are sent messages in the queue then PeekMessage internally
339  // dispatches the message and returns false. We return true in this
340  // case to ensure that the message loop peeks again instead of calling
341  // MsgWaitForMultipleObjectsEx again.
342  bool sent_messages_in_queue = false;
343  DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE);
344  if (HIWORD(queue_status) & QS_SENDMESSAGE)
345    sent_messages_in_queue = true;
346
347  MSG msg;
348  if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE) != FALSE)
349    return ProcessMessageHelper(msg);
350
351  return sent_messages_in_queue;
352}
353
354bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) {
355  TRACE_EVENT1("base", "MessagePumpForUI::ProcessMessageHelper",
356               "message", msg.message);
357  if (WM_QUIT == msg.message) {
358    // Repost the QUIT message so that it will be retrieved by the primary
359    // GetMessage() loop.
360    state_->should_quit = true;
361    PostQuitMessage(static_cast<int>(msg.wParam));
362    return false;
363  }
364
365  // While running our main message pump, we discard kMsgHaveWork messages.
366  if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_)
367    return ProcessPumpReplacementMessage();
368
369  if (CallMsgFilter(const_cast<MSG*>(&msg), kMessageFilterCode))
370    return true;
371
372  WillProcessMessage(msg);
373
374  uint32_t action = MessagePumpDispatcher::POST_DISPATCH_PERFORM_DEFAULT;
375  if (state_->dispatcher)
376    action = state_->dispatcher->Dispatch(msg);
377  if (action & MessagePumpDispatcher::POST_DISPATCH_QUIT_LOOP)
378    state_->should_quit = true;
379  if (action & MessagePumpDispatcher::POST_DISPATCH_PERFORM_DEFAULT) {
380    TranslateMessage(&msg);
381    DispatchMessage(&msg);
382  }
383
384  DidProcessMessage(msg);
385  return true;
386}
387
388bool MessagePumpForUI::ProcessPumpReplacementMessage() {
389  // When we encounter a kMsgHaveWork message, this method is called to peek
390  // and process a replacement message, such as a WM_PAINT or WM_TIMER.  The
391  // goal is to make the kMsgHaveWork as non-intrusive as possible, even though
392  // a continuous stream of such messages are posted.  This method carefully
393  // peeks a message while there is no chance for a kMsgHaveWork to be pending,
394  // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to
395  // possibly be posted), and finally dispatches that peeked replacement.  Note
396  // that the re-post of kMsgHaveWork may be asynchronous to this thread!!
397
398  bool have_message = false;
399  MSG msg;
400  // We should not process all window messages if we are in the context of an
401  // OS modal loop, i.e. in the context of a windows API call like MessageBox.
402  // This is to ensure that these messages are peeked out by the OS modal loop.
403  if (MessageLoop::current()->os_modal_loop()) {
404    // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above.
405    have_message = PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) ||
406                   PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE);
407  } else {
408    have_message = PeekMessage(&msg, NULL, 0, 0, PM_REMOVE) != FALSE;
409  }
410
411  DCHECK(!have_message || kMsgHaveWork != msg.message ||
412         msg.hwnd != message_hwnd_);
413
414  // Since we discarded a kMsgHaveWork message, we must update the flag.
415  int old_have_work = InterlockedExchange(&have_work_, 0);
416  DCHECK(old_have_work);
417
418  // We don't need a special time slice if we didn't have_message to process.
419  if (!have_message)
420    return false;
421
422  // Guarantee we'll get another time slice in the case where we go into native
423  // windows code.   This ScheduleWork() may hurt performance a tiny bit when
424  // tasks appear very infrequently, but when the event queue is busy, the
425  // kMsgHaveWork events get (percentage wise) rarer and rarer.
426  ScheduleWork();
427  return ProcessMessageHelper(msg);
428}
429
430//-----------------------------------------------------------------------------
431// MessagePumpForIO public:
432
433MessagePumpForIO::MessagePumpForIO() {
434  port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 1));
435  DCHECK(port_.IsValid());
436}
437
438void MessagePumpForIO::ScheduleWork() {
439  if (InterlockedExchange(&have_work_, 1))
440    return;  // Someone else continued the pumping.
441
442  // Make sure the MessagePump does some work for us.
443  BOOL ret = PostQueuedCompletionStatus(port_, 0,
444                                        reinterpret_cast<ULONG_PTR>(this),
445                                        reinterpret_cast<OVERLAPPED*>(this));
446  if (ret)
447    return;  // Post worked perfectly.
448
449  // See comment in MessagePumpForUI::ScheduleWork() for this error recovery.
450  InterlockedExchange(&have_work_, 0);  // Clarify that we didn't succeed.
451  UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", COMPLETION_POST_ERROR,
452                            MESSAGE_LOOP_PROBLEM_MAX);
453}
454
455void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
456  // We know that we can't be blocked right now since this method can only be
457  // called on the same thread as Run, so we only need to update our record of
458  // how long to sleep when we do sleep.
459  delayed_work_time_ = delayed_work_time;
460}
461
462void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle,
463                                         IOHandler* handler) {
464  ULONG_PTR key = HandlerToKey(handler, true);
465  HANDLE port = CreateIoCompletionPort(file_handle, port_, key, 1);
466  DPCHECK(port);
467}
468
469bool MessagePumpForIO::RegisterJobObject(HANDLE job_handle,
470                                         IOHandler* handler) {
471  // Job object notifications use the OVERLAPPED pointer to carry the message
472  // data. Mark the completion key correspondingly, so we will not try to
473  // convert OVERLAPPED* to IOContext*.
474  ULONG_PTR key = HandlerToKey(handler, false);
475  JOBOBJECT_ASSOCIATE_COMPLETION_PORT info;
476  info.CompletionKey = reinterpret_cast<void*>(key);
477  info.CompletionPort = port_;
478  return SetInformationJobObject(job_handle,
479                                 JobObjectAssociateCompletionPortInformation,
480                                 &info,
481                                 sizeof(info)) != FALSE;
482}
483
484//-----------------------------------------------------------------------------
485// MessagePumpForIO private:
486
487void MessagePumpForIO::DoRunLoop() {
488  for (;;) {
489    // If we do any work, we may create more messages etc., and more work may
490    // possibly be waiting in another task group.  When we (for example)
491    // WaitForIOCompletion(), there is a good chance there are still more
492    // messages waiting.  On the other hand, when any of these methods return
493    // having done no work, then it is pretty unlikely that calling them
494    // again quickly will find any work to do.  Finally, if they all say they
495    // had no work, then it is a good time to consider sleeping (waiting) for
496    // more work.
497
498    bool more_work_is_plausible = state_->delegate->DoWork();
499    if (state_->should_quit)
500      break;
501
502    more_work_is_plausible |= WaitForIOCompletion(0, NULL);
503    if (state_->should_quit)
504      break;
505
506    more_work_is_plausible |=
507        state_->delegate->DoDelayedWork(&delayed_work_time_);
508    if (state_->should_quit)
509      break;
510
511    if (more_work_is_plausible)
512      continue;
513
514    more_work_is_plausible = state_->delegate->DoIdleWork();
515    if (state_->should_quit)
516      break;
517
518    if (more_work_is_plausible)
519      continue;
520
521    WaitForWork();  // Wait (sleep) until we have work to do again.
522  }
523}
524
525// Wait until IO completes, up to the time needed by the timer manager to fire
526// the next set of timers.
527void MessagePumpForIO::WaitForWork() {
528  // We do not support nested IO message loops. This is to avoid messy
529  // recursion problems.
530  DCHECK_EQ(1, state_->run_depth) << "Cannot nest an IO message loop!";
531
532  int timeout = GetCurrentDelay();
533  if (timeout < 0)  // Negative value means no timers waiting.
534    timeout = INFINITE;
535
536  WaitForIOCompletion(timeout, NULL);
537}
538
539bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
540  IOItem item;
541  if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) {
542    // We have to ask the system for another IO completion.
543    if (!GetIOItem(timeout, &item))
544      return false;
545
546    if (ProcessInternalIOItem(item))
547      return true;
548  }
549
550  // If |item.has_valid_io_context| is false then |item.context| does not point
551  // to a context structure, and so should not be dereferenced, although it may
552  // still hold valid non-pointer data.
553  if (!item.has_valid_io_context || item.context->handler) {
554    if (filter && item.handler != filter) {
555      // Save this item for later
556      completed_io_.push_back(item);
557    } else {
558      DCHECK(!item.has_valid_io_context ||
559             (item.context->handler == item.handler));
560      WillProcessIOEvent();
561      item.handler->OnIOCompleted(item.context, item.bytes_transfered,
562                                  item.error);
563      DidProcessIOEvent();
564    }
565  } else {
566    // The handler must be gone by now, just cleanup the mess.
567    delete item.context;
568  }
569  return true;
570}
571
572// Asks the OS for another IO completion result.
573bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) {
574  memset(item, 0, sizeof(*item));
575  ULONG_PTR key = NULL;
576  OVERLAPPED* overlapped = NULL;
577  if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key,
578                                 &overlapped, timeout)) {
579    if (!overlapped)
580      return false;  // Nothing in the queue.
581    item->error = GetLastError();
582    item->bytes_transfered = 0;
583  }
584
585  item->handler = KeyToHandler(key, &item->has_valid_io_context);
586  item->context = reinterpret_cast<IOContext*>(overlapped);
587  return true;
588}
589
590bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) {
591  if (this == reinterpret_cast<MessagePumpForIO*>(item.context) &&
592      this == reinterpret_cast<MessagePumpForIO*>(item.handler)) {
593    // This is our internal completion.
594    DCHECK(!item.bytes_transfered);
595    InterlockedExchange(&have_work_, 0);
596    return true;
597  }
598  return false;
599}
600
601// Returns a completion item that was previously received.
602bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) {
603  DCHECK(!completed_io_.empty());
604  for (std::list<IOItem>::iterator it = completed_io_.begin();
605       it != completed_io_.end(); ++it) {
606    if (!filter || it->handler == filter) {
607      *item = *it;
608      completed_io_.erase(it);
609      return true;
610    }
611  }
612  return false;
613}
614
615void MessagePumpForIO::AddIOObserver(IOObserver *obs) {
616  io_observers_.AddObserver(obs);
617}
618
619void MessagePumpForIO::RemoveIOObserver(IOObserver *obs) {
620  io_observers_.RemoveObserver(obs);
621}
622
623void MessagePumpForIO::WillProcessIOEvent() {
624  FOR_EACH_OBSERVER(IOObserver, io_observers_, WillProcessIOEvent());
625}
626
627void MessagePumpForIO::DidProcessIOEvent() {
628  FOR_EACH_OBSERVER(IOObserver, io_observers_, DidProcessIOEvent());
629}
630
631// static
632ULONG_PTR MessagePumpForIO::HandlerToKey(IOHandler* handler,
633                                         bool has_valid_io_context) {
634  ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler);
635
636  // |IOHandler| is at least pointer-size aligned, so the lowest two bits are
637  // always cleared. We use the lowest bit to distinguish completion keys with
638  // and without the associated |IOContext|.
639  DCHECK((key & 1) == 0);
640
641  // Mark the completion key as context-less.
642  if (!has_valid_io_context)
643    key = key | 1;
644  return key;
645}
646
647// static
648MessagePumpForIO::IOHandler* MessagePumpForIO::KeyToHandler(
649    ULONG_PTR key,
650    bool* has_valid_io_context) {
651  *has_valid_io_context = ((key & 1) == 0);
652  return reinterpret_cast<IOHandler*>(key & ~static_cast<ULONG_PTR>(1));
653}
654
655}  // namespace base
656