1// Copyright (c) 2013 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "net/quic/crypto/strike_register.h"
6
7#include "base/logging.h"
8
9using std::pair;
10using std::set;
11using std::vector;
12
13namespace net {
14
15// static
16const uint32 StrikeRegister::kExternalNodeSize = 24;
17// static
18const uint32 StrikeRegister::kNil = (1 << 31) | 1;
19// static
20const uint32 StrikeRegister::kExternalFlag = 1 << 23;
21
22// InternalNode represents a non-leaf node in the critbit tree. See the comment
23// in the .h file for details.
24class StrikeRegister::InternalNode {
25 public:
26  void SetChild(unsigned direction, uint32 child) {
27    data_[direction] = (data_[direction] & 0xff) | (child << 8);
28  }
29
30  void SetCritByte(uint8 critbyte) {
31    data_[0] &= 0xffffff00;
32    data_[0] |= critbyte;
33  }
34
35  void SetOtherBits(uint8 otherbits) {
36    data_[1] &= 0xffffff00;
37    data_[1] |= otherbits;
38  }
39
40  void SetNextPtr(uint32 next) { data_[0] = next; }
41
42  uint32 next() const { return data_[0]; }
43
44  uint32 child(unsigned n) const { return data_[n] >> 8; }
45
46  uint8 critbyte() const { return data_[0]; }
47
48  uint8 otherbits() const { return data_[1]; }
49
50  // These bytes are organised thus:
51  //   <24 bits> left child
52  //   <8 bits> crit-byte
53  //   <24 bits> right child
54  //   <8 bits> other-bits
55  uint32 data_[2];
56};
57
58// kCreationTimeFromInternalEpoch contains the number of seconds between the
59// start of the internal epoch and the creation time. This allows us
60// to consider times that are before the creation time.
61static const uint32 kCreationTimeFromInternalEpoch = 63115200.0;  // 2 years.
62
63void StrikeRegister::ValidateStrikeRegisterConfig(unsigned max_entries) {
64  // We only have 23 bits of index available.
65  CHECK_LT(max_entries, 1u << 23);
66  CHECK_GT(max_entries, 1u);           // There must be at least two entries.
67  CHECK_EQ(sizeof(InternalNode), 8u);  // in case of compiler changes.
68}
69
70StrikeRegister::StrikeRegister(unsigned max_entries,
71                               uint32 current_time,
72                               uint32 window_secs,
73                               const uint8 orbit[8],
74                               StartupType startup)
75    : max_entries_(max_entries),
76      window_secs_(window_secs),
77      internal_epoch_(current_time > kCreationTimeFromInternalEpoch
78                          ? current_time - kCreationTimeFromInternalEpoch
79                          : 0),
80      // The horizon is initially set |window_secs| into the future because, if
81      // we just crashed, then we may have accepted nonces in the span
82      // [current_time...current_time+window_secs) and so we conservatively
83      // reject the whole timespan unless |startup| tells us otherwise.
84      horizon_(ExternalTimeToInternal(current_time) + window_secs),
85      horizon_valid_(startup == DENY_REQUESTS_AT_STARTUP) {
86  memcpy(orbit_, orbit, sizeof(orbit_));
87
88  ValidateStrikeRegisterConfig(max_entries);
89  internal_nodes_ = new InternalNode[max_entries];
90  external_nodes_.reset(new uint8[kExternalNodeSize * max_entries]);
91
92  Reset();
93}
94
95StrikeRegister::~StrikeRegister() { delete[] internal_nodes_; }
96
97void StrikeRegister::Reset() {
98  // Thread a free list through all of the internal nodes.
99  internal_node_free_head_ = 0;
100  for (unsigned i = 0; i < max_entries_ - 1; i++)
101    internal_nodes_[i].SetNextPtr(i + 1);
102  internal_nodes_[max_entries_ - 1].SetNextPtr(kNil);
103
104  // Also thread a free list through the external nodes.
105  external_node_free_head_ = 0;
106  for (unsigned i = 0; i < max_entries_ - 1; i++)
107    external_node_next_ptr(i) = i + 1;
108  external_node_next_ptr(max_entries_ - 1) = kNil;
109
110  // This is the root of the tree.
111  internal_node_head_ = kNil;
112}
113
114bool StrikeRegister::Insert(const uint8 nonce[32],
115                            const uint32 current_time_external) {
116  const uint32 current_time = ExternalTimeToInternal(current_time_external);
117
118  // Check to see if the orbit is correct.
119  if (memcmp(nonce + sizeof(current_time), orbit_, sizeof(orbit_))) {
120    return false;
121  }
122  const uint32 nonce_time = ExternalTimeToInternal(TimeFromBytes(nonce));
123  // We have dropped one or more nonces with a time value of |horizon_|, so
124  // we have to reject anything with a timestamp less than or equal to that.
125  if (horizon_valid_ && nonce_time <= horizon_) {
126    return false;
127  }
128
129  // Check that the timestamp is in the current window.
130  if ((current_time > window_secs_ &&
131       nonce_time < (current_time - window_secs_)) ||
132      nonce_time > (current_time + window_secs_)) {
133    return false;
134  }
135
136  // We strip the orbit out of the nonce.
137  uint8 value[24];
138  memcpy(value, &nonce_time, sizeof(nonce_time));
139  memcpy(value + sizeof(nonce_time),
140         nonce + sizeof(nonce_time) + sizeof(orbit_),
141         sizeof(value) - sizeof(nonce_time));
142
143  // Find the best match to |value| in the crit-bit tree. The best match is
144  // simply the value which /could/ match |value|, if any does, so we still
145  // need a memcmp to check.
146  uint32 best_match_index = BestMatch(value);
147  if (best_match_index == kNil) {
148    // Empty tree. Just insert the new value at the root.
149    uint32 index = GetFreeExternalNode();
150    memcpy(external_node(index), value, sizeof(value));
151    internal_node_head_ = (index | kExternalFlag) << 8;
152    return true;
153  }
154
155  const uint8* best_match = external_node(best_match_index);
156  if (memcmp(best_match, value, sizeof(value)) == 0) {
157    // We found the value in the tree.
158    return false;
159  }
160
161  // We are going to insert a new entry into the tree, so get the nodes now.
162  uint32 internal_node_index = GetFreeInternalNode();
163  uint32 external_node_index = GetFreeExternalNode();
164
165  // If we just evicted the best match, then we have to try and match again.
166  // We know that we didn't just empty the tree because we require that
167  // max_entries_ >= 2. Also, we know that it doesn't match because, if it
168  // did, it would have been returned previously.
169  if (external_node_index == best_match_index) {
170    best_match_index = BestMatch(value);
171    best_match = external_node(best_match_index);
172  }
173
174  // Now we need to find the first bit where we differ from |best_match|.
175  unsigned differing_byte;
176  uint8 new_other_bits;
177  for (differing_byte = 0; differing_byte < sizeof(value); differing_byte++) {
178    new_other_bits = value[differing_byte] ^ best_match[differing_byte];
179    if (new_other_bits) {
180      break;
181    }
182  }
183
184  // Once we have the XOR the of first differing byte in new_other_bits we need
185  // to find the most significant differing bit. We could do this with a simple
186  // for loop, testing bits 7..0. Instead we fold the bits so that we end up
187  // with a byte where all the bits below the most significant one, are set.
188  new_other_bits |= new_other_bits >> 1;
189  new_other_bits |= new_other_bits >> 2;
190  new_other_bits |= new_other_bits >> 4;
191  // Now this bit trick results in all the bits set, except the original
192  // most-significant one.
193  new_other_bits = (new_other_bits & ~(new_other_bits >> 1)) ^ 255;
194
195  // Consider the effect of ORing against |new_other_bits|. If |value| did not
196  // have the critical bit set, the result is the same as |new_other_bits|. If
197  // it did, the result is all ones.
198
199  unsigned newdirection;
200  if ((new_other_bits | value[differing_byte]) == 0xff) {
201    newdirection = 1;
202  } else {
203    newdirection = 0;
204  }
205
206  memcpy(external_node(external_node_index), value, sizeof(value));
207  InternalNode* inode = &internal_nodes_[internal_node_index];
208
209  inode->SetChild(newdirection, external_node_index | kExternalFlag);
210  inode->SetCritByte(differing_byte);
211  inode->SetOtherBits(new_other_bits);
212
213  // |where_index| is a pointer to the uint32 which needs to be updated in
214  // order to insert the new internal node into the tree. The internal nodes
215  // store the child indexes in the top 24-bits of a 32-bit word and, to keep
216  // the code simple, we define that |internal_node_head_| is organised the
217  // same way.
218  DCHECK_EQ(internal_node_head_ & 0xff, 0u);
219  uint32* where_index = &internal_node_head_;
220  while (((*where_index >> 8) & kExternalFlag) == 0) {
221    InternalNode* node = &internal_nodes_[*where_index >> 8];
222    if (node->critbyte() > differing_byte) {
223      break;
224    }
225    if (node->critbyte() == differing_byte &&
226        node->otherbits() > new_other_bits) {
227      break;
228    }
229    if (node->critbyte() == differing_byte &&
230        node->otherbits() == new_other_bits) {
231      CHECK(false);
232    }
233
234    uint8 c = value[node->critbyte()];
235    const int direction =
236        (1 + static_cast<unsigned>(node->otherbits() | c)) >> 8;
237    where_index = &node->data_[direction];
238  }
239
240  inode->SetChild(newdirection ^ 1, *where_index >> 8);
241  *where_index = (*where_index & 0xff) | (internal_node_index << 8);
242
243  return true;
244}
245
246const uint8* StrikeRegister::orbit() const {
247  return orbit_;
248}
249
250void StrikeRegister::Validate() {
251  set<uint32> free_internal_nodes;
252  for (uint32 i = internal_node_free_head_; i != kNil;
253       i = internal_nodes_[i].next()) {
254    CHECK_LT(i, max_entries_);
255    CHECK_EQ(free_internal_nodes.count(i), 0u);
256    free_internal_nodes.insert(i);
257  }
258
259  set<uint32> free_external_nodes;
260  for (uint32 i = external_node_free_head_; i != kNil;
261       i = external_node_next_ptr(i)) {
262    CHECK_LT(i, max_entries_);
263    CHECK_EQ(free_external_nodes.count(i), 0u);
264    free_external_nodes.insert(i);
265  }
266
267  set<uint32> used_external_nodes;
268  set<uint32> used_internal_nodes;
269
270  if (internal_node_head_ != kNil &&
271      ((internal_node_head_ >> 8) & kExternalFlag) == 0) {
272    vector<pair<unsigned, bool> > bits;
273    ValidateTree(internal_node_head_ >> 8, -1, bits, free_internal_nodes,
274                 free_external_nodes, &used_internal_nodes,
275                 &used_external_nodes);
276  }
277}
278
279// static
280uint32 StrikeRegister::TimeFromBytes(const uint8 d[4]) {
281  return static_cast<uint32>(d[0]) << 24 |
282         static_cast<uint32>(d[1]) << 16 |
283         static_cast<uint32>(d[2]) << 8 |
284         static_cast<uint32>(d[3]);
285}
286
287uint32 StrikeRegister::ExternalTimeToInternal(uint32 external_time) {
288  return external_time - internal_epoch_;
289}
290
291uint32 StrikeRegister::BestMatch(const uint8 v[24]) const {
292  if (internal_node_head_ == kNil) {
293    return kNil;
294  }
295
296  uint32 next = internal_node_head_ >> 8;
297  while ((next & kExternalFlag) == 0) {
298    InternalNode* node = &internal_nodes_[next];
299    uint8 b = v[node->critbyte()];
300    unsigned direction =
301        (1 + static_cast<unsigned>(node->otherbits() | b)) >> 8;
302    next = node->child(direction);
303  }
304
305  return next & ~kExternalFlag;
306}
307
308uint32& StrikeRegister::external_node_next_ptr(unsigned i) {
309  return *reinterpret_cast<uint32*>(&external_nodes_[i * kExternalNodeSize]);
310}
311
312uint8* StrikeRegister::external_node(unsigned i) {
313  return &external_nodes_[i * kExternalNodeSize];
314}
315
316uint32 StrikeRegister::GetFreeExternalNode() {
317  uint32 index = external_node_free_head_;
318  if (index == kNil) {
319    DropNode();
320    return GetFreeExternalNode();
321  }
322
323  external_node_free_head_ = external_node_next_ptr(index);
324  return index;
325}
326
327uint32 StrikeRegister::GetFreeInternalNode() {
328  uint32 index = internal_node_free_head_;
329  if (index == kNil) {
330    DropNode();
331    return GetFreeInternalNode();
332  }
333
334  internal_node_free_head_ = internal_nodes_[index].next();
335  return index;
336}
337
338void StrikeRegister::DropNode() {
339  // DropNode should never be called on an empty tree.
340  DCHECK(internal_node_head_ != kNil);
341
342  // An internal node in a crit-bit tree always has exactly two children.
343  // This means that, if we are removing an external node (which is one of
344  // those children), then we also need to remove an internal node. In order
345  // to do that we keep pointers to the parent (wherep) and grandparent
346  // (whereq) when walking down the tree.
347
348  uint32 p = internal_node_head_ >> 8, *wherep = &internal_node_head_,
349         *whereq = NULL;
350  while ((p & kExternalFlag) == 0) {
351    whereq = wherep;
352    InternalNode* inode = &internal_nodes_[p];
353    // We always go left, towards the smallest element, exploiting the fact
354    // that the timestamp is big-endian and at the start of the value.
355    wherep = &inode->data_[0];
356    p = (*wherep) >> 8;
357  }
358
359  const uint32 ext_index = p & ~kExternalFlag;
360  const uint8* ext_node = external_node(ext_index);
361  horizon_ = TimeFromBytes(ext_node);
362
363  if (!whereq) {
364    // We are removing the last element in a tree.
365    internal_node_head_ = kNil;
366    FreeExternalNode(ext_index);
367    return;
368  }
369
370  // |wherep| points to the left child pointer in the parent so we can add
371  // one and dereference to get the right child.
372  const uint32 other_child = wherep[1];
373  FreeInternalNode((*whereq) >> 8);
374  *whereq = (*whereq & 0xff) | (other_child & 0xffffff00);
375  FreeExternalNode(ext_index);
376}
377
378void StrikeRegister::FreeExternalNode(uint32 index) {
379  external_node_next_ptr(index) = external_node_free_head_;
380  external_node_free_head_ = index;
381}
382
383void StrikeRegister::FreeInternalNode(uint32 index) {
384  internal_nodes_[index].SetNextPtr(internal_node_free_head_);
385  internal_node_free_head_ = index;
386}
387
388void StrikeRegister::ValidateTree(
389    uint32 internal_node,
390    int last_bit,
391    const vector<pair<unsigned, bool> >& bits,
392    const set<uint32>& free_internal_nodes,
393    const set<uint32>& free_external_nodes,
394    set<uint32>* used_internal_nodes,
395    set<uint32>* used_external_nodes) {
396  CHECK_LT(internal_node, max_entries_);
397  const InternalNode* i = &internal_nodes_[internal_node];
398  unsigned bit = 0;
399  switch (i->otherbits()) {
400    case 0xff & ~(1 << 7):
401      bit = 0;
402      break;
403    case 0xff & ~(1 << 6):
404      bit = 1;
405      break;
406    case 0xff & ~(1 << 5):
407      bit = 2;
408      break;
409    case 0xff & ~(1 << 4):
410      bit = 3;
411      break;
412    case 0xff & ~(1 << 3):
413      bit = 4;
414      break;
415    case 0xff & ~(1 << 2):
416      bit = 5;
417      break;
418    case 0xff & ~(1 << 1):
419      bit = 6;
420      break;
421    case 0xff & ~1:
422      bit = 7;
423      break;
424    default:
425      CHECK(false);
426  }
427
428  bit += 8 * i->critbyte();
429  if (last_bit > -1) {
430    CHECK_GT(bit, static_cast<unsigned>(last_bit));
431  }
432
433  CHECK_EQ(free_internal_nodes.count(internal_node), 0u);
434
435  for (unsigned child = 0; child < 2; child++) {
436    if (i->child(child) & kExternalFlag) {
437      uint32 ext = i->child(child) & ~kExternalFlag;
438      CHECK_EQ(free_external_nodes.count(ext), 0u);
439      CHECK_EQ(used_external_nodes->count(ext), 0u);
440      used_external_nodes->insert(ext);
441      const uint8* bytes = external_node(ext);
442      for (vector<pair<unsigned, bool> >::const_iterator i = bits.begin();
443           i != bits.end(); i++) {
444        unsigned byte = i->first / 8;
445        DCHECK_LE(byte, 0xffu);
446        unsigned bit = i->first % 8;
447        static const uint8 kMasks[8] =
448            {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
449        CHECK_EQ((bytes[byte] & kMasks[bit]) != 0, i->second);
450      }
451    } else {
452      uint32 inter = i->child(child);
453      vector<pair<unsigned, bool> > new_bits(bits);
454      new_bits.push_back(pair<unsigned, bool>(bit, child != 0));
455      CHECK_EQ(free_internal_nodes.count(inter), 0u);
456      CHECK_EQ(used_internal_nodes->count(inter), 0u);
457      used_internal_nodes->insert(inter);
458      ValidateTree(inter, bit, bits, free_internal_nodes, free_external_nodes,
459                   used_internal_nodes, used_external_nodes);
460    }
461  }
462}
463
464}  // namespace net
465