Expr.cpp revision 0b4fe503ef00d9f8ea330850d3e3b303e9c7c876
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Lex/LiteralSupport.h"
25#include "clang/Lex/Lexer.h"
26#include "clang/Sema/SemaDiagnostic.h"
27#include "clang/Basic/Builtins.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/raw_ostream.h"
32#include <algorithm>
33#include <cstring>
34using namespace clang;
35
36const CXXRecordDecl *Expr::getMostDerivedClassDeclForType() const {
37  const Expr *E = this;
38
39  while (true) {
40    E = E->IgnoreParens();
41    if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
42      if (CE->getCastKind() == CK_DerivedToBase ||
43          CE->getCastKind() == CK_UncheckedDerivedToBase ||
44          CE->getCastKind() == CK_NoOp) {
45        E = CE->getSubExpr();
46        continue;
47      }
48    }
49
50    break;
51  }
52
53  QualType DerivedType = E->getType();
54  if (DerivedType->isDependentType())
55    return NULL;
56  if (const PointerType *PTy = DerivedType->getAs<PointerType>())
57    DerivedType = PTy->getPointeeType();
58
59  const RecordType *Ty = DerivedType->castAs<RecordType>();
60  if (!Ty)
61    return NULL;
62
63  Decl *D = Ty->getDecl();
64  return cast<CXXRecordDecl>(D);
65}
66
67/// isKnownToHaveBooleanValue - Return true if this is an integer expression
68/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
69/// but also int expressions which are produced by things like comparisons in
70/// C.
71bool Expr::isKnownToHaveBooleanValue() const {
72  const Expr *E = IgnoreParens();
73
74  // If this value has _Bool type, it is obvious 0/1.
75  if (E->getType()->isBooleanType()) return true;
76  // If this is a non-scalar-integer type, we don't care enough to try.
77  if (!E->getType()->isIntegralOrEnumerationType()) return false;
78
79  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
80    switch (UO->getOpcode()) {
81    case UO_Plus:
82      return UO->getSubExpr()->isKnownToHaveBooleanValue();
83    default:
84      return false;
85    }
86  }
87
88  // Only look through implicit casts.  If the user writes
89  // '(int) (a && b)' treat it as an arbitrary int.
90  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
91    return CE->getSubExpr()->isKnownToHaveBooleanValue();
92
93  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
94    switch (BO->getOpcode()) {
95    default: return false;
96    case BO_LT:   // Relational operators.
97    case BO_GT:
98    case BO_LE:
99    case BO_GE:
100    case BO_EQ:   // Equality operators.
101    case BO_NE:
102    case BO_LAnd: // AND operator.
103    case BO_LOr:  // Logical OR operator.
104      return true;
105
106    case BO_And:  // Bitwise AND operator.
107    case BO_Xor:  // Bitwise XOR operator.
108    case BO_Or:   // Bitwise OR operator.
109      // Handle things like (x==2)|(y==12).
110      return BO->getLHS()->isKnownToHaveBooleanValue() &&
111             BO->getRHS()->isKnownToHaveBooleanValue();
112
113    case BO_Comma:
114    case BO_Assign:
115      return BO->getRHS()->isKnownToHaveBooleanValue();
116    }
117  }
118
119  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
120    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
121           CO->getFalseExpr()->isKnownToHaveBooleanValue();
122
123  return false;
124}
125
126// Amusing macro metaprogramming hack: check whether a class provides
127// a more specific implementation of getExprLoc().
128//
129// See also Stmt.cpp:{getLocStart(),getLocEnd()}.
130namespace {
131  /// This implementation is used when a class provides a custom
132  /// implementation of getExprLoc.
133  template <class E, class T>
134  SourceLocation getExprLocImpl(const Expr *expr,
135                                SourceLocation (T::*v)() const) {
136    return static_cast<const E*>(expr)->getExprLoc();
137  }
138
139  /// This implementation is used when a class doesn't provide
140  /// a custom implementation of getExprLoc.  Overload resolution
141  /// should pick it over the implementation above because it's
142  /// more specialized according to function template partial ordering.
143  template <class E>
144  SourceLocation getExprLocImpl(const Expr *expr,
145                                SourceLocation (Expr::*v)() const) {
146    return static_cast<const E*>(expr)->getLocStart();
147  }
148}
149
150SourceLocation Expr::getExprLoc() const {
151  switch (getStmtClass()) {
152  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
153#define ABSTRACT_STMT(type)
154#define STMT(type, base) \
155  case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
156#define EXPR(type, base) \
157  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
158#include "clang/AST/StmtNodes.inc"
159  }
160  llvm_unreachable("unknown statement kind");
161}
162
163//===----------------------------------------------------------------------===//
164// Primary Expressions.
165//===----------------------------------------------------------------------===//
166
167/// \brief Compute the type-, value-, and instantiation-dependence of a
168/// declaration reference
169/// based on the declaration being referenced.
170static void computeDeclRefDependence(ASTContext &Ctx, NamedDecl *D, QualType T,
171                                     bool &TypeDependent,
172                                     bool &ValueDependent,
173                                     bool &InstantiationDependent) {
174  TypeDependent = false;
175  ValueDependent = false;
176  InstantiationDependent = false;
177
178  // (TD) C++ [temp.dep.expr]p3:
179  //   An id-expression is type-dependent if it contains:
180  //
181  // and
182  //
183  // (VD) C++ [temp.dep.constexpr]p2:
184  //  An identifier is value-dependent if it is:
185
186  //  (TD)  - an identifier that was declared with dependent type
187  //  (VD)  - a name declared with a dependent type,
188  if (T->isDependentType()) {
189    TypeDependent = true;
190    ValueDependent = true;
191    InstantiationDependent = true;
192    return;
193  } else if (T->isInstantiationDependentType()) {
194    InstantiationDependent = true;
195  }
196
197  //  (TD)  - a conversion-function-id that specifies a dependent type
198  if (D->getDeclName().getNameKind()
199                                == DeclarationName::CXXConversionFunctionName) {
200    QualType T = D->getDeclName().getCXXNameType();
201    if (T->isDependentType()) {
202      TypeDependent = true;
203      ValueDependent = true;
204      InstantiationDependent = true;
205      return;
206    }
207
208    if (T->isInstantiationDependentType())
209      InstantiationDependent = true;
210  }
211
212  //  (VD)  - the name of a non-type template parameter,
213  if (isa<NonTypeTemplateParmDecl>(D)) {
214    ValueDependent = true;
215    InstantiationDependent = true;
216    return;
217  }
218
219  //  (VD) - a constant with integral or enumeration type and is
220  //         initialized with an expression that is value-dependent.
221  //  (VD) - a constant with literal type and is initialized with an
222  //         expression that is value-dependent [C++11].
223  //  (VD) - FIXME: Missing from the standard:
224  //       -  an entity with reference type and is initialized with an
225  //          expression that is value-dependent [C++11]
226  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
227    if ((Ctx.getLangOpts().CPlusPlus0x ?
228           Var->getType()->isLiteralType() :
229           Var->getType()->isIntegralOrEnumerationType()) &&
230        (Var->getType().getCVRQualifiers() == Qualifiers::Const ||
231         Var->getType()->isReferenceType())) {
232      if (const Expr *Init = Var->getAnyInitializer())
233        if (Init->isValueDependent()) {
234          ValueDependent = true;
235          InstantiationDependent = true;
236        }
237    }
238
239    // (VD) - FIXME: Missing from the standard:
240    //      -  a member function or a static data member of the current
241    //         instantiation
242    if (Var->isStaticDataMember() &&
243        Var->getDeclContext()->isDependentContext()) {
244      ValueDependent = true;
245      InstantiationDependent = true;
246    }
247
248    return;
249  }
250
251  // (VD) - FIXME: Missing from the standard:
252  //      -  a member function or a static data member of the current
253  //         instantiation
254  if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
255    ValueDependent = true;
256    InstantiationDependent = true;
257  }
258}
259
260void DeclRefExpr::computeDependence(ASTContext &Ctx) {
261  bool TypeDependent = false;
262  bool ValueDependent = false;
263  bool InstantiationDependent = false;
264  computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
265                           ValueDependent, InstantiationDependent);
266
267  // (TD) C++ [temp.dep.expr]p3:
268  //   An id-expression is type-dependent if it contains:
269  //
270  // and
271  //
272  // (VD) C++ [temp.dep.constexpr]p2:
273  //  An identifier is value-dependent if it is:
274  if (!TypeDependent && !ValueDependent &&
275      hasExplicitTemplateArgs() &&
276      TemplateSpecializationType::anyDependentTemplateArguments(
277                                                            getTemplateArgs(),
278                                                       getNumTemplateArgs(),
279                                                      InstantiationDependent)) {
280    TypeDependent = true;
281    ValueDependent = true;
282    InstantiationDependent = true;
283  }
284
285  ExprBits.TypeDependent = TypeDependent;
286  ExprBits.ValueDependent = ValueDependent;
287  ExprBits.InstantiationDependent = InstantiationDependent;
288
289  // Is the declaration a parameter pack?
290  if (getDecl()->isParameterPack())
291    ExprBits.ContainsUnexpandedParameterPack = true;
292}
293
294DeclRefExpr::DeclRefExpr(ASTContext &Ctx,
295                         NestedNameSpecifierLoc QualifierLoc,
296                         SourceLocation TemplateKWLoc,
297                         ValueDecl *D, bool RefersToEnclosingLocal,
298                         const DeclarationNameInfo &NameInfo,
299                         NamedDecl *FoundD,
300                         const TemplateArgumentListInfo *TemplateArgs,
301                         QualType T, ExprValueKind VK)
302  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
303    D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
304  DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
305  if (QualifierLoc)
306    getInternalQualifierLoc() = QualifierLoc;
307  DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
308  if (FoundD)
309    getInternalFoundDecl() = FoundD;
310  DeclRefExprBits.HasTemplateKWAndArgsInfo
311    = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
312  DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal;
313  if (TemplateArgs) {
314    bool Dependent = false;
315    bool InstantiationDependent = false;
316    bool ContainsUnexpandedParameterPack = false;
317    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
318                                               Dependent,
319                                               InstantiationDependent,
320                                               ContainsUnexpandedParameterPack);
321    if (InstantiationDependent)
322      setInstantiationDependent(true);
323  } else if (TemplateKWLoc.isValid()) {
324    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
325  }
326  DeclRefExprBits.HadMultipleCandidates = 0;
327
328  computeDependence(Ctx);
329}
330
331DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
332                                 NestedNameSpecifierLoc QualifierLoc,
333                                 SourceLocation TemplateKWLoc,
334                                 ValueDecl *D,
335                                 bool RefersToEnclosingLocal,
336                                 SourceLocation NameLoc,
337                                 QualType T,
338                                 ExprValueKind VK,
339                                 NamedDecl *FoundD,
340                                 const TemplateArgumentListInfo *TemplateArgs) {
341  return Create(Context, QualifierLoc, TemplateKWLoc, D,
342                RefersToEnclosingLocal,
343                DeclarationNameInfo(D->getDeclName(), NameLoc),
344                T, VK, FoundD, TemplateArgs);
345}
346
347DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
348                                 NestedNameSpecifierLoc QualifierLoc,
349                                 SourceLocation TemplateKWLoc,
350                                 ValueDecl *D,
351                                 bool RefersToEnclosingLocal,
352                                 const DeclarationNameInfo &NameInfo,
353                                 QualType T,
354                                 ExprValueKind VK,
355                                 NamedDecl *FoundD,
356                                 const TemplateArgumentListInfo *TemplateArgs) {
357  // Filter out cases where the found Decl is the same as the value refenenced.
358  if (D == FoundD)
359    FoundD = 0;
360
361  std::size_t Size = sizeof(DeclRefExpr);
362  if (QualifierLoc != 0)
363    Size += sizeof(NestedNameSpecifierLoc);
364  if (FoundD)
365    Size += sizeof(NamedDecl *);
366  if (TemplateArgs)
367    Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
368  else if (TemplateKWLoc.isValid())
369    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
370
371  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
372  return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
373                               RefersToEnclosingLocal,
374                               NameInfo, FoundD, TemplateArgs, T, VK);
375}
376
377DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
378                                      bool HasQualifier,
379                                      bool HasFoundDecl,
380                                      bool HasTemplateKWAndArgsInfo,
381                                      unsigned NumTemplateArgs) {
382  std::size_t Size = sizeof(DeclRefExpr);
383  if (HasQualifier)
384    Size += sizeof(NestedNameSpecifierLoc);
385  if (HasFoundDecl)
386    Size += sizeof(NamedDecl *);
387  if (HasTemplateKWAndArgsInfo)
388    Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
389
390  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
391  return new (Mem) DeclRefExpr(EmptyShell());
392}
393
394SourceRange DeclRefExpr::getSourceRange() const {
395  SourceRange R = getNameInfo().getSourceRange();
396  if (hasQualifier())
397    R.setBegin(getQualifierLoc().getBeginLoc());
398  if (hasExplicitTemplateArgs())
399    R.setEnd(getRAngleLoc());
400  return R;
401}
402SourceLocation DeclRefExpr::getLocStart() const {
403  if (hasQualifier())
404    return getQualifierLoc().getBeginLoc();
405  return getNameInfo().getLocStart();
406}
407SourceLocation DeclRefExpr::getLocEnd() const {
408  if (hasExplicitTemplateArgs())
409    return getRAngleLoc();
410  return getNameInfo().getLocEnd();
411}
412
413// FIXME: Maybe this should use DeclPrinter with a special "print predefined
414// expr" policy instead.
415std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
416  ASTContext &Context = CurrentDecl->getASTContext();
417
418  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
419    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
420      return FD->getNameAsString();
421
422    SmallString<256> Name;
423    llvm::raw_svector_ostream Out(Name);
424
425    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
426      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
427        Out << "virtual ";
428      if (MD->isStatic())
429        Out << "static ";
430    }
431
432    PrintingPolicy Policy(Context.getLangOpts());
433    std::string Proto = FD->getQualifiedNameAsString(Policy);
434    llvm::raw_string_ostream POut(Proto);
435
436    const FunctionDecl *Decl = FD;
437    if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
438      Decl = Pattern;
439    const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
440    const FunctionProtoType *FT = 0;
441    if (FD->hasWrittenPrototype())
442      FT = dyn_cast<FunctionProtoType>(AFT);
443
444    POut << "(";
445    if (FT) {
446      for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
447        if (i) POut << ", ";
448        POut << Decl->getParamDecl(i)->getType().stream(Policy);
449      }
450
451      if (FT->isVariadic()) {
452        if (FD->getNumParams()) POut << ", ";
453        POut << "...";
454      }
455    }
456    POut << ")";
457
458    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
459      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
460      if (ThisQuals.hasConst())
461        POut << " const";
462      if (ThisQuals.hasVolatile())
463        POut << " volatile";
464      RefQualifierKind Ref = MD->getRefQualifier();
465      if (Ref == RQ_LValue)
466        POut << " &";
467      else if (Ref == RQ_RValue)
468        POut << " &&";
469    }
470
471    typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
472    SpecsTy Specs;
473    const DeclContext *Ctx = FD->getDeclContext();
474    while (Ctx && isa<NamedDecl>(Ctx)) {
475      const ClassTemplateSpecializationDecl *Spec
476                               = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
477      if (Spec && !Spec->isExplicitSpecialization())
478        Specs.push_back(Spec);
479      Ctx = Ctx->getParent();
480    }
481
482    std::string TemplateParams;
483    llvm::raw_string_ostream TOut(TemplateParams);
484    for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
485         I != E; ++I) {
486      const TemplateParameterList *Params
487                  = (*I)->getSpecializedTemplate()->getTemplateParameters();
488      const TemplateArgumentList &Args = (*I)->getTemplateArgs();
489      assert(Params->size() == Args.size());
490      for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
491        StringRef Param = Params->getParam(i)->getName();
492        if (Param.empty()) continue;
493        TOut << Param << " = ";
494        Args.get(i).print(Policy, TOut);
495        TOut << ", ";
496      }
497    }
498
499    FunctionTemplateSpecializationInfo *FSI
500                                          = FD->getTemplateSpecializationInfo();
501    if (FSI && !FSI->isExplicitSpecialization()) {
502      const TemplateParameterList* Params
503                                  = FSI->getTemplate()->getTemplateParameters();
504      const TemplateArgumentList* Args = FSI->TemplateArguments;
505      assert(Params->size() == Args->size());
506      for (unsigned i = 0, e = Params->size(); i != e; ++i) {
507        StringRef Param = Params->getParam(i)->getName();
508        if (Param.empty()) continue;
509        TOut << Param << " = ";
510        Args->get(i).print(Policy, TOut);
511        TOut << ", ";
512      }
513    }
514
515    TOut.flush();
516    if (!TemplateParams.empty()) {
517      // remove the trailing comma and space
518      TemplateParams.resize(TemplateParams.size() - 2);
519      POut << " [" << TemplateParams << "]";
520    }
521
522    POut.flush();
523
524    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
525      AFT->getResultType().getAsStringInternal(Proto, Policy);
526
527    Out << Proto;
528
529    Out.flush();
530    return Name.str().str();
531  }
532  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
533    SmallString<256> Name;
534    llvm::raw_svector_ostream Out(Name);
535    Out << (MD->isInstanceMethod() ? '-' : '+');
536    Out << '[';
537
538    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
539    // a null check to avoid a crash.
540    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
541      Out << *ID;
542
543    if (const ObjCCategoryImplDecl *CID =
544        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
545      Out << '(' << *CID << ')';
546
547    Out <<  ' ';
548    Out << MD->getSelector().getAsString();
549    Out <<  ']';
550
551    Out.flush();
552    return Name.str().str();
553  }
554  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
555    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
556    return "top level";
557  }
558  return "";
559}
560
561void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
562  if (hasAllocation())
563    C.Deallocate(pVal);
564
565  BitWidth = Val.getBitWidth();
566  unsigned NumWords = Val.getNumWords();
567  const uint64_t* Words = Val.getRawData();
568  if (NumWords > 1) {
569    pVal = new (C) uint64_t[NumWords];
570    std::copy(Words, Words + NumWords, pVal);
571  } else if (NumWords == 1)
572    VAL = Words[0];
573  else
574    VAL = 0;
575}
576
577IntegerLiteral *
578IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
579                       QualType type, SourceLocation l) {
580  return new (C) IntegerLiteral(C, V, type, l);
581}
582
583IntegerLiteral *
584IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
585  return new (C) IntegerLiteral(Empty);
586}
587
588FloatingLiteral *
589FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
590                        bool isexact, QualType Type, SourceLocation L) {
591  return new (C) FloatingLiteral(C, V, isexact, Type, L);
592}
593
594FloatingLiteral *
595FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
596  return new (C) FloatingLiteral(C, Empty);
597}
598
599/// getValueAsApproximateDouble - This returns the value as an inaccurate
600/// double.  Note that this may cause loss of precision, but is useful for
601/// debugging dumps, etc.
602double FloatingLiteral::getValueAsApproximateDouble() const {
603  llvm::APFloat V = getValue();
604  bool ignored;
605  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
606            &ignored);
607  return V.convertToDouble();
608}
609
610int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
611  int CharByteWidth = 0;
612  switch(k) {
613    case Ascii:
614    case UTF8:
615      CharByteWidth = target.getCharWidth();
616      break;
617    case Wide:
618      CharByteWidth = target.getWCharWidth();
619      break;
620    case UTF16:
621      CharByteWidth = target.getChar16Width();
622      break;
623    case UTF32:
624      CharByteWidth = target.getChar32Width();
625      break;
626  }
627  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
628  CharByteWidth /= 8;
629  assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
630         && "character byte widths supported are 1, 2, and 4 only");
631  return CharByteWidth;
632}
633
634StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str,
635                                     StringKind Kind, bool Pascal, QualType Ty,
636                                     const SourceLocation *Loc,
637                                     unsigned NumStrs) {
638  // Allocate enough space for the StringLiteral plus an array of locations for
639  // any concatenated string tokens.
640  void *Mem = C.Allocate(sizeof(StringLiteral)+
641                         sizeof(SourceLocation)*(NumStrs-1),
642                         llvm::alignOf<StringLiteral>());
643  StringLiteral *SL = new (Mem) StringLiteral(Ty);
644
645  // OPTIMIZE: could allocate this appended to the StringLiteral.
646  SL->setString(C,Str,Kind,Pascal);
647
648  SL->TokLocs[0] = Loc[0];
649  SL->NumConcatenated = NumStrs;
650
651  if (NumStrs != 1)
652    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
653  return SL;
654}
655
656StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
657  void *Mem = C.Allocate(sizeof(StringLiteral)+
658                         sizeof(SourceLocation)*(NumStrs-1),
659                         llvm::alignOf<StringLiteral>());
660  StringLiteral *SL = new (Mem) StringLiteral(QualType());
661  SL->CharByteWidth = 0;
662  SL->Length = 0;
663  SL->NumConcatenated = NumStrs;
664  return SL;
665}
666
667void StringLiteral::outputString(raw_ostream &OS) {
668  switch (getKind()) {
669  case Ascii: break; // no prefix.
670  case Wide:  OS << 'L'; break;
671  case UTF8:  OS << "u8"; break;
672  case UTF16: OS << 'u'; break;
673  case UTF32: OS << 'U'; break;
674  }
675  OS << '"';
676  static const char Hex[] = "0123456789ABCDEF";
677
678  unsigned LastSlashX = getLength();
679  for (unsigned I = 0, N = getLength(); I != N; ++I) {
680    switch (uint32_t Char = getCodeUnit(I)) {
681    default:
682      // FIXME: Convert UTF-8 back to codepoints before rendering.
683
684      // Convert UTF-16 surrogate pairs back to codepoints before rendering.
685      // Leave invalid surrogates alone; we'll use \x for those.
686      if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
687          Char <= 0xdbff) {
688        uint32_t Trail = getCodeUnit(I + 1);
689        if (Trail >= 0xdc00 && Trail <= 0xdfff) {
690          Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
691          ++I;
692        }
693      }
694
695      if (Char > 0xff) {
696        // If this is a wide string, output characters over 0xff using \x
697        // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
698        // codepoint: use \x escapes for invalid codepoints.
699        if (getKind() == Wide ||
700            (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
701          // FIXME: Is this the best way to print wchar_t?
702          OS << "\\x";
703          int Shift = 28;
704          while ((Char >> Shift) == 0)
705            Shift -= 4;
706          for (/**/; Shift >= 0; Shift -= 4)
707            OS << Hex[(Char >> Shift) & 15];
708          LastSlashX = I;
709          break;
710        }
711
712        if (Char > 0xffff)
713          OS << "\\U00"
714             << Hex[(Char >> 20) & 15]
715             << Hex[(Char >> 16) & 15];
716        else
717          OS << "\\u";
718        OS << Hex[(Char >> 12) & 15]
719           << Hex[(Char >>  8) & 15]
720           << Hex[(Char >>  4) & 15]
721           << Hex[(Char >>  0) & 15];
722        break;
723      }
724
725      // If we used \x... for the previous character, and this character is a
726      // hexadecimal digit, prevent it being slurped as part of the \x.
727      if (LastSlashX + 1 == I) {
728        switch (Char) {
729          case '0': case '1': case '2': case '3': case '4':
730          case '5': case '6': case '7': case '8': case '9':
731          case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
732          case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
733            OS << "\"\"";
734        }
735      }
736
737      assert(Char <= 0xff &&
738             "Characters above 0xff should already have been handled.");
739
740      if (isprint(Char))
741        OS << (char)Char;
742      else  // Output anything hard as an octal escape.
743        OS << '\\'
744           << (char)('0' + ((Char >> 6) & 7))
745           << (char)('0' + ((Char >> 3) & 7))
746           << (char)('0' + ((Char >> 0) & 7));
747      break;
748    // Handle some common non-printable cases to make dumps prettier.
749    case '\\': OS << "\\\\"; break;
750    case '"': OS << "\\\""; break;
751    case '\n': OS << "\\n"; break;
752    case '\t': OS << "\\t"; break;
753    case '\a': OS << "\\a"; break;
754    case '\b': OS << "\\b"; break;
755    }
756  }
757  OS << '"';
758}
759
760void StringLiteral::setString(ASTContext &C, StringRef Str,
761                              StringKind Kind, bool IsPascal) {
762  //FIXME: we assume that the string data comes from a target that uses the same
763  // code unit size and endianess for the type of string.
764  this->Kind = Kind;
765  this->IsPascal = IsPascal;
766
767  CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
768  assert((Str.size()%CharByteWidth == 0)
769         && "size of data must be multiple of CharByteWidth");
770  Length = Str.size()/CharByteWidth;
771
772  switch(CharByteWidth) {
773    case 1: {
774      char *AStrData = new (C) char[Length];
775      std::memcpy(AStrData,Str.data(),Str.size());
776      StrData.asChar = AStrData;
777      break;
778    }
779    case 2: {
780      uint16_t *AStrData = new (C) uint16_t[Length];
781      std::memcpy(AStrData,Str.data(),Str.size());
782      StrData.asUInt16 = AStrData;
783      break;
784    }
785    case 4: {
786      uint32_t *AStrData = new (C) uint32_t[Length];
787      std::memcpy(AStrData,Str.data(),Str.size());
788      StrData.asUInt32 = AStrData;
789      break;
790    }
791    default:
792      assert(false && "unsupported CharByteWidth");
793  }
794}
795
796/// getLocationOfByte - Return a source location that points to the specified
797/// byte of this string literal.
798///
799/// Strings are amazingly complex.  They can be formed from multiple tokens and
800/// can have escape sequences in them in addition to the usual trigraph and
801/// escaped newline business.  This routine handles this complexity.
802///
803SourceLocation StringLiteral::
804getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
805                  const LangOptions &Features, const TargetInfo &Target) const {
806  assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
807         "Only narrow string literals are currently supported");
808
809  // Loop over all of the tokens in this string until we find the one that
810  // contains the byte we're looking for.
811  unsigned TokNo = 0;
812  while (1) {
813    assert(TokNo < getNumConcatenated() && "Invalid byte number!");
814    SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
815
816    // Get the spelling of the string so that we can get the data that makes up
817    // the string literal, not the identifier for the macro it is potentially
818    // expanded through.
819    SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
820
821    // Re-lex the token to get its length and original spelling.
822    std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
823    bool Invalid = false;
824    StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
825    if (Invalid)
826      return StrTokSpellingLoc;
827
828    const char *StrData = Buffer.data()+LocInfo.second;
829
830    // Create a lexer starting at the beginning of this token.
831    Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
832                   Buffer.begin(), StrData, Buffer.end());
833    Token TheTok;
834    TheLexer.LexFromRawLexer(TheTok);
835
836    // Use the StringLiteralParser to compute the length of the string in bytes.
837    StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
838    unsigned TokNumBytes = SLP.GetStringLength();
839
840    // If the byte is in this token, return the location of the byte.
841    if (ByteNo < TokNumBytes ||
842        (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
843      unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
844
845      // Now that we know the offset of the token in the spelling, use the
846      // preprocessor to get the offset in the original source.
847      return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
848    }
849
850    // Move to the next string token.
851    ++TokNo;
852    ByteNo -= TokNumBytes;
853  }
854}
855
856
857
858/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
859/// corresponds to, e.g. "sizeof" or "[pre]++".
860const char *UnaryOperator::getOpcodeStr(Opcode Op) {
861  switch (Op) {
862  case UO_PostInc: return "++";
863  case UO_PostDec: return "--";
864  case UO_PreInc:  return "++";
865  case UO_PreDec:  return "--";
866  case UO_AddrOf:  return "&";
867  case UO_Deref:   return "*";
868  case UO_Plus:    return "+";
869  case UO_Minus:   return "-";
870  case UO_Not:     return "~";
871  case UO_LNot:    return "!";
872  case UO_Real:    return "__real";
873  case UO_Imag:    return "__imag";
874  case UO_Extension: return "__extension__";
875  }
876  llvm_unreachable("Unknown unary operator");
877}
878
879UnaryOperatorKind
880UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
881  switch (OO) {
882  default: llvm_unreachable("No unary operator for overloaded function");
883  case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
884  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
885  case OO_Amp:        return UO_AddrOf;
886  case OO_Star:       return UO_Deref;
887  case OO_Plus:       return UO_Plus;
888  case OO_Minus:      return UO_Minus;
889  case OO_Tilde:      return UO_Not;
890  case OO_Exclaim:    return UO_LNot;
891  }
892}
893
894OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
895  switch (Opc) {
896  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
897  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
898  case UO_AddrOf: return OO_Amp;
899  case UO_Deref: return OO_Star;
900  case UO_Plus: return OO_Plus;
901  case UO_Minus: return OO_Minus;
902  case UO_Not: return OO_Tilde;
903  case UO_LNot: return OO_Exclaim;
904  default: return OO_None;
905  }
906}
907
908
909//===----------------------------------------------------------------------===//
910// Postfix Operators.
911//===----------------------------------------------------------------------===//
912
913CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
914                   Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
915                   SourceLocation rparenloc)
916  : Expr(SC, t, VK, OK_Ordinary,
917         fn->isTypeDependent(),
918         fn->isValueDependent(),
919         fn->isInstantiationDependent(),
920         fn->containsUnexpandedParameterPack()),
921    NumArgs(numargs) {
922
923  SubExprs = new (C) Stmt*[numargs+PREARGS_START+NumPreArgs];
924  SubExprs[FN] = fn;
925  for (unsigned i = 0; i != numargs; ++i) {
926    if (args[i]->isTypeDependent())
927      ExprBits.TypeDependent = true;
928    if (args[i]->isValueDependent())
929      ExprBits.ValueDependent = true;
930    if (args[i]->isInstantiationDependent())
931      ExprBits.InstantiationDependent = true;
932    if (args[i]->containsUnexpandedParameterPack())
933      ExprBits.ContainsUnexpandedParameterPack = true;
934
935    SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
936  }
937
938  CallExprBits.NumPreArgs = NumPreArgs;
939  RParenLoc = rparenloc;
940}
941
942CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
943                   QualType t, ExprValueKind VK, SourceLocation rparenloc)
944  : Expr(CallExprClass, t, VK, OK_Ordinary,
945         fn->isTypeDependent(),
946         fn->isValueDependent(),
947         fn->isInstantiationDependent(),
948         fn->containsUnexpandedParameterPack()),
949    NumArgs(numargs) {
950
951  SubExprs = new (C) Stmt*[numargs+PREARGS_START];
952  SubExprs[FN] = fn;
953  for (unsigned i = 0; i != numargs; ++i) {
954    if (args[i]->isTypeDependent())
955      ExprBits.TypeDependent = true;
956    if (args[i]->isValueDependent())
957      ExprBits.ValueDependent = true;
958    if (args[i]->isInstantiationDependent())
959      ExprBits.InstantiationDependent = true;
960    if (args[i]->containsUnexpandedParameterPack())
961      ExprBits.ContainsUnexpandedParameterPack = true;
962
963    SubExprs[i+PREARGS_START] = args[i];
964  }
965
966  CallExprBits.NumPreArgs = 0;
967  RParenLoc = rparenloc;
968}
969
970CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
971  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
972  // FIXME: Why do we allocate this?
973  SubExprs = new (C) Stmt*[PREARGS_START];
974  CallExprBits.NumPreArgs = 0;
975}
976
977CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
978                   EmptyShell Empty)
979  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
980  // FIXME: Why do we allocate this?
981  SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
982  CallExprBits.NumPreArgs = NumPreArgs;
983}
984
985Decl *CallExpr::getCalleeDecl() {
986  Expr *CEE = getCallee()->IgnoreParenImpCasts();
987
988  while (SubstNonTypeTemplateParmExpr *NTTP
989                                = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
990    CEE = NTTP->getReplacement()->IgnoreParenCasts();
991  }
992
993  // If we're calling a dereference, look at the pointer instead.
994  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
995    if (BO->isPtrMemOp())
996      CEE = BO->getRHS()->IgnoreParenCasts();
997  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
998    if (UO->getOpcode() == UO_Deref)
999      CEE = UO->getSubExpr()->IgnoreParenCasts();
1000  }
1001  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1002    return DRE->getDecl();
1003  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1004    return ME->getMemberDecl();
1005
1006  return 0;
1007}
1008
1009FunctionDecl *CallExpr::getDirectCallee() {
1010  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
1011}
1012
1013/// setNumArgs - This changes the number of arguments present in this call.
1014/// Any orphaned expressions are deleted by this, and any new operands are set
1015/// to null.
1016void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
1017  // No change, just return.
1018  if (NumArgs == getNumArgs()) return;
1019
1020  // If shrinking # arguments, just delete the extras and forgot them.
1021  if (NumArgs < getNumArgs()) {
1022    this->NumArgs = NumArgs;
1023    return;
1024  }
1025
1026  // Otherwise, we are growing the # arguments.  New an bigger argument array.
1027  unsigned NumPreArgs = getNumPreArgs();
1028  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
1029  // Copy over args.
1030  for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
1031    NewSubExprs[i] = SubExprs[i];
1032  // Null out new args.
1033  for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
1034       i != NumArgs+PREARGS_START+NumPreArgs; ++i)
1035    NewSubExprs[i] = 0;
1036
1037  if (SubExprs) C.Deallocate(SubExprs);
1038  SubExprs = NewSubExprs;
1039  this->NumArgs = NumArgs;
1040}
1041
1042/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1043/// not, return 0.
1044unsigned CallExpr::isBuiltinCall() const {
1045  // All simple function calls (e.g. func()) are implicitly cast to pointer to
1046  // function. As a result, we try and obtain the DeclRefExpr from the
1047  // ImplicitCastExpr.
1048  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1049  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1050    return 0;
1051
1052  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1053  if (!DRE)
1054    return 0;
1055
1056  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1057  if (!FDecl)
1058    return 0;
1059
1060  if (!FDecl->getIdentifier())
1061    return 0;
1062
1063  return FDecl->getBuiltinID();
1064}
1065
1066QualType CallExpr::getCallReturnType() const {
1067  QualType CalleeType = getCallee()->getType();
1068  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
1069    CalleeType = FnTypePtr->getPointeeType();
1070  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
1071    CalleeType = BPT->getPointeeType();
1072  else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
1073    // This should never be overloaded and so should never return null.
1074    CalleeType = Expr::findBoundMemberType(getCallee());
1075
1076  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1077  return FnType->getResultType();
1078}
1079
1080SourceRange CallExpr::getSourceRange() const {
1081  if (isa<CXXOperatorCallExpr>(this))
1082    return cast<CXXOperatorCallExpr>(this)->getSourceRange();
1083
1084  SourceLocation begin = getCallee()->getLocStart();
1085  if (begin.isInvalid() && getNumArgs() > 0)
1086    begin = getArg(0)->getLocStart();
1087  SourceLocation end = getRParenLoc();
1088  if (end.isInvalid() && getNumArgs() > 0)
1089    end = getArg(getNumArgs() - 1)->getLocEnd();
1090  return SourceRange(begin, end);
1091}
1092SourceLocation CallExpr::getLocStart() const {
1093  if (isa<CXXOperatorCallExpr>(this))
1094    return cast<CXXOperatorCallExpr>(this)->getSourceRange().getBegin();
1095
1096  SourceLocation begin = getCallee()->getLocStart();
1097  if (begin.isInvalid() && getNumArgs() > 0)
1098    begin = getArg(0)->getLocStart();
1099  return begin;
1100}
1101SourceLocation CallExpr::getLocEnd() const {
1102  if (isa<CXXOperatorCallExpr>(this))
1103    return cast<CXXOperatorCallExpr>(this)->getSourceRange().getEnd();
1104
1105  SourceLocation end = getRParenLoc();
1106  if (end.isInvalid() && getNumArgs() > 0)
1107    end = getArg(getNumArgs() - 1)->getLocEnd();
1108  return end;
1109}
1110
1111OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
1112                                   SourceLocation OperatorLoc,
1113                                   TypeSourceInfo *tsi,
1114                                   OffsetOfNode* compsPtr, unsigned numComps,
1115                                   Expr** exprsPtr, unsigned numExprs,
1116                                   SourceLocation RParenLoc) {
1117  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1118                         sizeof(OffsetOfNode) * numComps +
1119                         sizeof(Expr*) * numExprs);
1120
1121  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps,
1122                                exprsPtr, numExprs, RParenLoc);
1123}
1124
1125OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
1126                                        unsigned numComps, unsigned numExprs) {
1127  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1128                         sizeof(OffsetOfNode) * numComps +
1129                         sizeof(Expr*) * numExprs);
1130  return new (Mem) OffsetOfExpr(numComps, numExprs);
1131}
1132
1133OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
1134                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1135                           OffsetOfNode* compsPtr, unsigned numComps,
1136                           Expr** exprsPtr, unsigned numExprs,
1137                           SourceLocation RParenLoc)
1138  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1139         /*TypeDependent=*/false,
1140         /*ValueDependent=*/tsi->getType()->isDependentType(),
1141         tsi->getType()->isInstantiationDependentType(),
1142         tsi->getType()->containsUnexpandedParameterPack()),
1143    OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1144    NumComps(numComps), NumExprs(numExprs)
1145{
1146  for(unsigned i = 0; i < numComps; ++i) {
1147    setComponent(i, compsPtr[i]);
1148  }
1149
1150  for(unsigned i = 0; i < numExprs; ++i) {
1151    if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent())
1152      ExprBits.ValueDependent = true;
1153    if (exprsPtr[i]->containsUnexpandedParameterPack())
1154      ExprBits.ContainsUnexpandedParameterPack = true;
1155
1156    setIndexExpr(i, exprsPtr[i]);
1157  }
1158}
1159
1160IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
1161  assert(getKind() == Field || getKind() == Identifier);
1162  if (getKind() == Field)
1163    return getField()->getIdentifier();
1164
1165  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1166}
1167
1168MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
1169                               NestedNameSpecifierLoc QualifierLoc,
1170                               SourceLocation TemplateKWLoc,
1171                               ValueDecl *memberdecl,
1172                               DeclAccessPair founddecl,
1173                               DeclarationNameInfo nameinfo,
1174                               const TemplateArgumentListInfo *targs,
1175                               QualType ty,
1176                               ExprValueKind vk,
1177                               ExprObjectKind ok) {
1178  std::size_t Size = sizeof(MemberExpr);
1179
1180  bool hasQualOrFound = (QualifierLoc ||
1181                         founddecl.getDecl() != memberdecl ||
1182                         founddecl.getAccess() != memberdecl->getAccess());
1183  if (hasQualOrFound)
1184    Size += sizeof(MemberNameQualifier);
1185
1186  if (targs)
1187    Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
1188  else if (TemplateKWLoc.isValid())
1189    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
1190
1191  void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1192  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
1193                                       ty, vk, ok);
1194
1195  if (hasQualOrFound) {
1196    // FIXME: Wrong. We should be looking at the member declaration we found.
1197    if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1198      E->setValueDependent(true);
1199      E->setTypeDependent(true);
1200      E->setInstantiationDependent(true);
1201    }
1202    else if (QualifierLoc &&
1203             QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1204      E->setInstantiationDependent(true);
1205
1206    E->HasQualifierOrFoundDecl = true;
1207
1208    MemberNameQualifier *NQ = E->getMemberQualifier();
1209    NQ->QualifierLoc = QualifierLoc;
1210    NQ->FoundDecl = founddecl;
1211  }
1212
1213  E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1214
1215  if (targs) {
1216    bool Dependent = false;
1217    bool InstantiationDependent = false;
1218    bool ContainsUnexpandedParameterPack = false;
1219    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1220                                                  Dependent,
1221                                                  InstantiationDependent,
1222                                             ContainsUnexpandedParameterPack);
1223    if (InstantiationDependent)
1224      E->setInstantiationDependent(true);
1225  } else if (TemplateKWLoc.isValid()) {
1226    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1227  }
1228
1229  return E;
1230}
1231
1232SourceRange MemberExpr::getSourceRange() const {
1233  return SourceRange(getLocStart(), getLocEnd());
1234}
1235SourceLocation MemberExpr::getLocStart() const {
1236  if (isImplicitAccess()) {
1237    if (hasQualifier())
1238      return getQualifierLoc().getBeginLoc();
1239    return MemberLoc;
1240  }
1241
1242  // FIXME: We don't want this to happen. Rather, we should be able to
1243  // detect all kinds of implicit accesses more cleanly.
1244  SourceLocation BaseStartLoc = getBase()->getLocStart();
1245  if (BaseStartLoc.isValid())
1246    return BaseStartLoc;
1247  return MemberLoc;
1248}
1249SourceLocation MemberExpr::getLocEnd() const {
1250  if (hasExplicitTemplateArgs())
1251    return getRAngleLoc();
1252  return getMemberNameInfo().getEndLoc();
1253}
1254
1255void CastExpr::CheckCastConsistency() const {
1256  switch (getCastKind()) {
1257  case CK_DerivedToBase:
1258  case CK_UncheckedDerivedToBase:
1259  case CK_DerivedToBaseMemberPointer:
1260  case CK_BaseToDerived:
1261  case CK_BaseToDerivedMemberPointer:
1262    assert(!path_empty() && "Cast kind should have a base path!");
1263    break;
1264
1265  case CK_CPointerToObjCPointerCast:
1266    assert(getType()->isObjCObjectPointerType());
1267    assert(getSubExpr()->getType()->isPointerType());
1268    goto CheckNoBasePath;
1269
1270  case CK_BlockPointerToObjCPointerCast:
1271    assert(getType()->isObjCObjectPointerType());
1272    assert(getSubExpr()->getType()->isBlockPointerType());
1273    goto CheckNoBasePath;
1274
1275  case CK_ReinterpretMemberPointer:
1276    assert(getType()->isMemberPointerType());
1277    assert(getSubExpr()->getType()->isMemberPointerType());
1278    goto CheckNoBasePath;
1279
1280  case CK_BitCast:
1281    // Arbitrary casts to C pointer types count as bitcasts.
1282    // Otherwise, we should only have block and ObjC pointer casts
1283    // here if they stay within the type kind.
1284    if (!getType()->isPointerType()) {
1285      assert(getType()->isObjCObjectPointerType() ==
1286             getSubExpr()->getType()->isObjCObjectPointerType());
1287      assert(getType()->isBlockPointerType() ==
1288             getSubExpr()->getType()->isBlockPointerType());
1289    }
1290    goto CheckNoBasePath;
1291
1292  case CK_AnyPointerToBlockPointerCast:
1293    assert(getType()->isBlockPointerType());
1294    assert(getSubExpr()->getType()->isAnyPointerType() &&
1295           !getSubExpr()->getType()->isBlockPointerType());
1296    goto CheckNoBasePath;
1297
1298  case CK_CopyAndAutoreleaseBlockObject:
1299    assert(getType()->isBlockPointerType());
1300    assert(getSubExpr()->getType()->isBlockPointerType());
1301    goto CheckNoBasePath;
1302
1303  // These should not have an inheritance path.
1304  case CK_Dynamic:
1305  case CK_ToUnion:
1306  case CK_ArrayToPointerDecay:
1307  case CK_FunctionToPointerDecay:
1308  case CK_NullToMemberPointer:
1309  case CK_NullToPointer:
1310  case CK_ConstructorConversion:
1311  case CK_IntegralToPointer:
1312  case CK_PointerToIntegral:
1313  case CK_ToVoid:
1314  case CK_VectorSplat:
1315  case CK_IntegralCast:
1316  case CK_IntegralToFloating:
1317  case CK_FloatingToIntegral:
1318  case CK_FloatingCast:
1319  case CK_ObjCObjectLValueCast:
1320  case CK_FloatingRealToComplex:
1321  case CK_FloatingComplexToReal:
1322  case CK_FloatingComplexCast:
1323  case CK_FloatingComplexToIntegralComplex:
1324  case CK_IntegralRealToComplex:
1325  case CK_IntegralComplexToReal:
1326  case CK_IntegralComplexCast:
1327  case CK_IntegralComplexToFloatingComplex:
1328  case CK_ARCProduceObject:
1329  case CK_ARCConsumeObject:
1330  case CK_ARCReclaimReturnedObject:
1331  case CK_ARCExtendBlockObject:
1332    assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1333    goto CheckNoBasePath;
1334
1335  case CK_Dependent:
1336  case CK_LValueToRValue:
1337  case CK_NoOp:
1338  case CK_AtomicToNonAtomic:
1339  case CK_NonAtomicToAtomic:
1340  case CK_PointerToBoolean:
1341  case CK_IntegralToBoolean:
1342  case CK_FloatingToBoolean:
1343  case CK_MemberPointerToBoolean:
1344  case CK_FloatingComplexToBoolean:
1345  case CK_IntegralComplexToBoolean:
1346  case CK_LValueBitCast:            // -> bool&
1347  case CK_UserDefinedConversion:    // operator bool()
1348  CheckNoBasePath:
1349    assert(path_empty() && "Cast kind should not have a base path!");
1350    break;
1351  }
1352}
1353
1354const char *CastExpr::getCastKindName() const {
1355  switch (getCastKind()) {
1356  case CK_Dependent:
1357    return "Dependent";
1358  case CK_BitCast:
1359    return "BitCast";
1360  case CK_LValueBitCast:
1361    return "LValueBitCast";
1362  case CK_LValueToRValue:
1363    return "LValueToRValue";
1364  case CK_NoOp:
1365    return "NoOp";
1366  case CK_BaseToDerived:
1367    return "BaseToDerived";
1368  case CK_DerivedToBase:
1369    return "DerivedToBase";
1370  case CK_UncheckedDerivedToBase:
1371    return "UncheckedDerivedToBase";
1372  case CK_Dynamic:
1373    return "Dynamic";
1374  case CK_ToUnion:
1375    return "ToUnion";
1376  case CK_ArrayToPointerDecay:
1377    return "ArrayToPointerDecay";
1378  case CK_FunctionToPointerDecay:
1379    return "FunctionToPointerDecay";
1380  case CK_NullToMemberPointer:
1381    return "NullToMemberPointer";
1382  case CK_NullToPointer:
1383    return "NullToPointer";
1384  case CK_BaseToDerivedMemberPointer:
1385    return "BaseToDerivedMemberPointer";
1386  case CK_DerivedToBaseMemberPointer:
1387    return "DerivedToBaseMemberPointer";
1388  case CK_ReinterpretMemberPointer:
1389    return "ReinterpretMemberPointer";
1390  case CK_UserDefinedConversion:
1391    return "UserDefinedConversion";
1392  case CK_ConstructorConversion:
1393    return "ConstructorConversion";
1394  case CK_IntegralToPointer:
1395    return "IntegralToPointer";
1396  case CK_PointerToIntegral:
1397    return "PointerToIntegral";
1398  case CK_PointerToBoolean:
1399    return "PointerToBoolean";
1400  case CK_ToVoid:
1401    return "ToVoid";
1402  case CK_VectorSplat:
1403    return "VectorSplat";
1404  case CK_IntegralCast:
1405    return "IntegralCast";
1406  case CK_IntegralToBoolean:
1407    return "IntegralToBoolean";
1408  case CK_IntegralToFloating:
1409    return "IntegralToFloating";
1410  case CK_FloatingToIntegral:
1411    return "FloatingToIntegral";
1412  case CK_FloatingCast:
1413    return "FloatingCast";
1414  case CK_FloatingToBoolean:
1415    return "FloatingToBoolean";
1416  case CK_MemberPointerToBoolean:
1417    return "MemberPointerToBoolean";
1418  case CK_CPointerToObjCPointerCast:
1419    return "CPointerToObjCPointerCast";
1420  case CK_BlockPointerToObjCPointerCast:
1421    return "BlockPointerToObjCPointerCast";
1422  case CK_AnyPointerToBlockPointerCast:
1423    return "AnyPointerToBlockPointerCast";
1424  case CK_ObjCObjectLValueCast:
1425    return "ObjCObjectLValueCast";
1426  case CK_FloatingRealToComplex:
1427    return "FloatingRealToComplex";
1428  case CK_FloatingComplexToReal:
1429    return "FloatingComplexToReal";
1430  case CK_FloatingComplexToBoolean:
1431    return "FloatingComplexToBoolean";
1432  case CK_FloatingComplexCast:
1433    return "FloatingComplexCast";
1434  case CK_FloatingComplexToIntegralComplex:
1435    return "FloatingComplexToIntegralComplex";
1436  case CK_IntegralRealToComplex:
1437    return "IntegralRealToComplex";
1438  case CK_IntegralComplexToReal:
1439    return "IntegralComplexToReal";
1440  case CK_IntegralComplexToBoolean:
1441    return "IntegralComplexToBoolean";
1442  case CK_IntegralComplexCast:
1443    return "IntegralComplexCast";
1444  case CK_IntegralComplexToFloatingComplex:
1445    return "IntegralComplexToFloatingComplex";
1446  case CK_ARCConsumeObject:
1447    return "ARCConsumeObject";
1448  case CK_ARCProduceObject:
1449    return "ARCProduceObject";
1450  case CK_ARCReclaimReturnedObject:
1451    return "ARCReclaimReturnedObject";
1452  case CK_ARCExtendBlockObject:
1453    return "ARCCExtendBlockObject";
1454  case CK_AtomicToNonAtomic:
1455    return "AtomicToNonAtomic";
1456  case CK_NonAtomicToAtomic:
1457    return "NonAtomicToAtomic";
1458  case CK_CopyAndAutoreleaseBlockObject:
1459    return "CopyAndAutoreleaseBlockObject";
1460  }
1461
1462  llvm_unreachable("Unhandled cast kind!");
1463}
1464
1465Expr *CastExpr::getSubExprAsWritten() {
1466  Expr *SubExpr = 0;
1467  CastExpr *E = this;
1468  do {
1469    SubExpr = E->getSubExpr();
1470
1471    // Skip through reference binding to temporary.
1472    if (MaterializeTemporaryExpr *Materialize
1473                                  = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1474      SubExpr = Materialize->GetTemporaryExpr();
1475
1476    // Skip any temporary bindings; they're implicit.
1477    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1478      SubExpr = Binder->getSubExpr();
1479
1480    // Conversions by constructor and conversion functions have a
1481    // subexpression describing the call; strip it off.
1482    if (E->getCastKind() == CK_ConstructorConversion)
1483      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1484    else if (E->getCastKind() == CK_UserDefinedConversion)
1485      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1486
1487    // If the subexpression we're left with is an implicit cast, look
1488    // through that, too.
1489  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1490
1491  return SubExpr;
1492}
1493
1494CXXBaseSpecifier **CastExpr::path_buffer() {
1495  switch (getStmtClass()) {
1496#define ABSTRACT_STMT(x)
1497#define CASTEXPR(Type, Base) \
1498  case Stmt::Type##Class: \
1499    return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1500#define STMT(Type, Base)
1501#include "clang/AST/StmtNodes.inc"
1502  default:
1503    llvm_unreachable("non-cast expressions not possible here");
1504  }
1505}
1506
1507void CastExpr::setCastPath(const CXXCastPath &Path) {
1508  assert(Path.size() == path_size());
1509  memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1510}
1511
1512ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
1513                                           CastKind Kind, Expr *Operand,
1514                                           const CXXCastPath *BasePath,
1515                                           ExprValueKind VK) {
1516  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1517  void *Buffer =
1518    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1519  ImplicitCastExpr *E =
1520    new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1521  if (PathSize) E->setCastPath(*BasePath);
1522  return E;
1523}
1524
1525ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
1526                                                unsigned PathSize) {
1527  void *Buffer =
1528    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1529  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1530}
1531
1532
1533CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
1534                                       ExprValueKind VK, CastKind K, Expr *Op,
1535                                       const CXXCastPath *BasePath,
1536                                       TypeSourceInfo *WrittenTy,
1537                                       SourceLocation L, SourceLocation R) {
1538  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1539  void *Buffer =
1540    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1541  CStyleCastExpr *E =
1542    new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1543  if (PathSize) E->setCastPath(*BasePath);
1544  return E;
1545}
1546
1547CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
1548  void *Buffer =
1549    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1550  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1551}
1552
1553/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1554/// corresponds to, e.g. "<<=".
1555const char *BinaryOperator::getOpcodeStr(Opcode Op) {
1556  switch (Op) {
1557  case BO_PtrMemD:   return ".*";
1558  case BO_PtrMemI:   return "->*";
1559  case BO_Mul:       return "*";
1560  case BO_Div:       return "/";
1561  case BO_Rem:       return "%";
1562  case BO_Add:       return "+";
1563  case BO_Sub:       return "-";
1564  case BO_Shl:       return "<<";
1565  case BO_Shr:       return ">>";
1566  case BO_LT:        return "<";
1567  case BO_GT:        return ">";
1568  case BO_LE:        return "<=";
1569  case BO_GE:        return ">=";
1570  case BO_EQ:        return "==";
1571  case BO_NE:        return "!=";
1572  case BO_And:       return "&";
1573  case BO_Xor:       return "^";
1574  case BO_Or:        return "|";
1575  case BO_LAnd:      return "&&";
1576  case BO_LOr:       return "||";
1577  case BO_Assign:    return "=";
1578  case BO_MulAssign: return "*=";
1579  case BO_DivAssign: return "/=";
1580  case BO_RemAssign: return "%=";
1581  case BO_AddAssign: return "+=";
1582  case BO_SubAssign: return "-=";
1583  case BO_ShlAssign: return "<<=";
1584  case BO_ShrAssign: return ">>=";
1585  case BO_AndAssign: return "&=";
1586  case BO_XorAssign: return "^=";
1587  case BO_OrAssign:  return "|=";
1588  case BO_Comma:     return ",";
1589  }
1590
1591  llvm_unreachable("Invalid OpCode!");
1592}
1593
1594BinaryOperatorKind
1595BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1596  switch (OO) {
1597  default: llvm_unreachable("Not an overloadable binary operator");
1598  case OO_Plus: return BO_Add;
1599  case OO_Minus: return BO_Sub;
1600  case OO_Star: return BO_Mul;
1601  case OO_Slash: return BO_Div;
1602  case OO_Percent: return BO_Rem;
1603  case OO_Caret: return BO_Xor;
1604  case OO_Amp: return BO_And;
1605  case OO_Pipe: return BO_Or;
1606  case OO_Equal: return BO_Assign;
1607  case OO_Less: return BO_LT;
1608  case OO_Greater: return BO_GT;
1609  case OO_PlusEqual: return BO_AddAssign;
1610  case OO_MinusEqual: return BO_SubAssign;
1611  case OO_StarEqual: return BO_MulAssign;
1612  case OO_SlashEqual: return BO_DivAssign;
1613  case OO_PercentEqual: return BO_RemAssign;
1614  case OO_CaretEqual: return BO_XorAssign;
1615  case OO_AmpEqual: return BO_AndAssign;
1616  case OO_PipeEqual: return BO_OrAssign;
1617  case OO_LessLess: return BO_Shl;
1618  case OO_GreaterGreater: return BO_Shr;
1619  case OO_LessLessEqual: return BO_ShlAssign;
1620  case OO_GreaterGreaterEqual: return BO_ShrAssign;
1621  case OO_EqualEqual: return BO_EQ;
1622  case OO_ExclaimEqual: return BO_NE;
1623  case OO_LessEqual: return BO_LE;
1624  case OO_GreaterEqual: return BO_GE;
1625  case OO_AmpAmp: return BO_LAnd;
1626  case OO_PipePipe: return BO_LOr;
1627  case OO_Comma: return BO_Comma;
1628  case OO_ArrowStar: return BO_PtrMemI;
1629  }
1630}
1631
1632OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1633  static const OverloadedOperatorKind OverOps[] = {
1634    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1635    OO_Star, OO_Slash, OO_Percent,
1636    OO_Plus, OO_Minus,
1637    OO_LessLess, OO_GreaterGreater,
1638    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1639    OO_EqualEqual, OO_ExclaimEqual,
1640    OO_Amp,
1641    OO_Caret,
1642    OO_Pipe,
1643    OO_AmpAmp,
1644    OO_PipePipe,
1645    OO_Equal, OO_StarEqual,
1646    OO_SlashEqual, OO_PercentEqual,
1647    OO_PlusEqual, OO_MinusEqual,
1648    OO_LessLessEqual, OO_GreaterGreaterEqual,
1649    OO_AmpEqual, OO_CaretEqual,
1650    OO_PipeEqual,
1651    OO_Comma
1652  };
1653  return OverOps[Opc];
1654}
1655
1656InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
1657                           Expr **initExprs, unsigned numInits,
1658                           SourceLocation rbraceloc)
1659  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1660         false, false),
1661    InitExprs(C, numInits),
1662    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0)
1663{
1664  sawArrayRangeDesignator(false);
1665  setInitializesStdInitializerList(false);
1666  for (unsigned I = 0; I != numInits; ++I) {
1667    if (initExprs[I]->isTypeDependent())
1668      ExprBits.TypeDependent = true;
1669    if (initExprs[I]->isValueDependent())
1670      ExprBits.ValueDependent = true;
1671    if (initExprs[I]->isInstantiationDependent())
1672      ExprBits.InstantiationDependent = true;
1673    if (initExprs[I]->containsUnexpandedParameterPack())
1674      ExprBits.ContainsUnexpandedParameterPack = true;
1675  }
1676
1677  InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
1678}
1679
1680void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
1681  if (NumInits > InitExprs.size())
1682    InitExprs.reserve(C, NumInits);
1683}
1684
1685void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
1686  InitExprs.resize(C, NumInits, 0);
1687}
1688
1689Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
1690  if (Init >= InitExprs.size()) {
1691    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1692    InitExprs.back() = expr;
1693    return 0;
1694  }
1695
1696  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1697  InitExprs[Init] = expr;
1698  return Result;
1699}
1700
1701void InitListExpr::setArrayFiller(Expr *filler) {
1702  assert(!hasArrayFiller() && "Filler already set!");
1703  ArrayFillerOrUnionFieldInit = filler;
1704  // Fill out any "holes" in the array due to designated initializers.
1705  Expr **inits = getInits();
1706  for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1707    if (inits[i] == 0)
1708      inits[i] = filler;
1709}
1710
1711bool InitListExpr::isStringLiteralInit() const {
1712  if (getNumInits() != 1)
1713    return false;
1714  const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(getType());
1715  if (!CAT || !CAT->getElementType()->isIntegerType())
1716    return false;
1717  const Expr *Init = getInit(0)->IgnoreParenImpCasts();
1718  return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
1719}
1720
1721SourceRange InitListExpr::getSourceRange() const {
1722  if (SyntacticForm)
1723    return SyntacticForm->getSourceRange();
1724  SourceLocation Beg = LBraceLoc, End = RBraceLoc;
1725  if (Beg.isInvalid()) {
1726    // Find the first non-null initializer.
1727    for (InitExprsTy::const_iterator I = InitExprs.begin(),
1728                                     E = InitExprs.end();
1729      I != E; ++I) {
1730      if (Stmt *S = *I) {
1731        Beg = S->getLocStart();
1732        break;
1733      }
1734    }
1735  }
1736  if (End.isInvalid()) {
1737    // Find the first non-null initializer from the end.
1738    for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1739                                             E = InitExprs.rend();
1740      I != E; ++I) {
1741      if (Stmt *S = *I) {
1742        End = S->getSourceRange().getEnd();
1743        break;
1744      }
1745    }
1746  }
1747  return SourceRange(Beg, End);
1748}
1749
1750/// getFunctionType - Return the underlying function type for this block.
1751///
1752const FunctionProtoType *BlockExpr::getFunctionType() const {
1753  // The block pointer is never sugared, but the function type might be.
1754  return cast<BlockPointerType>(getType())
1755           ->getPointeeType()->castAs<FunctionProtoType>();
1756}
1757
1758SourceLocation BlockExpr::getCaretLocation() const {
1759  return TheBlock->getCaretLocation();
1760}
1761const Stmt *BlockExpr::getBody() const {
1762  return TheBlock->getBody();
1763}
1764Stmt *BlockExpr::getBody() {
1765  return TheBlock->getBody();
1766}
1767
1768
1769//===----------------------------------------------------------------------===//
1770// Generic Expression Routines
1771//===----------------------------------------------------------------------===//
1772
1773/// isUnusedResultAWarning - Return true if this immediate expression should
1774/// be warned about if the result is unused.  If so, fill in Loc and Ranges
1775/// with location to warn on and the source range[s] to report with the
1776/// warning.
1777bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
1778                                  SourceRange &R1, SourceRange &R2,
1779                                  ASTContext &Ctx) const {
1780  // Don't warn if the expr is type dependent. The type could end up
1781  // instantiating to void.
1782  if (isTypeDependent())
1783    return false;
1784
1785  switch (getStmtClass()) {
1786  default:
1787    if (getType()->isVoidType())
1788      return false;
1789    WarnE = this;
1790    Loc = getExprLoc();
1791    R1 = getSourceRange();
1792    return true;
1793  case ParenExprClass:
1794    return cast<ParenExpr>(this)->getSubExpr()->
1795      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1796  case GenericSelectionExprClass:
1797    return cast<GenericSelectionExpr>(this)->getResultExpr()->
1798      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1799  case UnaryOperatorClass: {
1800    const UnaryOperator *UO = cast<UnaryOperator>(this);
1801
1802    switch (UO->getOpcode()) {
1803    case UO_Plus:
1804    case UO_Minus:
1805    case UO_AddrOf:
1806    case UO_Not:
1807    case UO_LNot:
1808    case UO_Deref:
1809      break;
1810    case UO_PostInc:
1811    case UO_PostDec:
1812    case UO_PreInc:
1813    case UO_PreDec:                 // ++/--
1814      return false;  // Not a warning.
1815    case UO_Real:
1816    case UO_Imag:
1817      // accessing a piece of a volatile complex is a side-effect.
1818      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1819          .isVolatileQualified())
1820        return false;
1821      break;
1822    case UO_Extension:
1823      return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1824    }
1825    WarnE = this;
1826    Loc = UO->getOperatorLoc();
1827    R1 = UO->getSubExpr()->getSourceRange();
1828    return true;
1829  }
1830  case BinaryOperatorClass: {
1831    const BinaryOperator *BO = cast<BinaryOperator>(this);
1832    switch (BO->getOpcode()) {
1833      default:
1834        break;
1835      // Consider the RHS of comma for side effects. LHS was checked by
1836      // Sema::CheckCommaOperands.
1837      case BO_Comma:
1838        // ((foo = <blah>), 0) is an idiom for hiding the result (and
1839        // lvalue-ness) of an assignment written in a macro.
1840        if (IntegerLiteral *IE =
1841              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1842          if (IE->getValue() == 0)
1843            return false;
1844        return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1845      // Consider '||', '&&' to have side effects if the LHS or RHS does.
1846      case BO_LAnd:
1847      case BO_LOr:
1848        if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
1849            !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
1850          return false;
1851        break;
1852    }
1853    if (BO->isAssignmentOp())
1854      return false;
1855    WarnE = this;
1856    Loc = BO->getOperatorLoc();
1857    R1 = BO->getLHS()->getSourceRange();
1858    R2 = BO->getRHS()->getSourceRange();
1859    return true;
1860  }
1861  case CompoundAssignOperatorClass:
1862  case VAArgExprClass:
1863  case AtomicExprClass:
1864    return false;
1865
1866  case ConditionalOperatorClass: {
1867    // If only one of the LHS or RHS is a warning, the operator might
1868    // be being used for control flow. Only warn if both the LHS and
1869    // RHS are warnings.
1870    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1871    if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
1872      return false;
1873    if (!Exp->getLHS())
1874      return true;
1875    return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1876  }
1877
1878  case MemberExprClass:
1879    WarnE = this;
1880    Loc = cast<MemberExpr>(this)->getMemberLoc();
1881    R1 = SourceRange(Loc, Loc);
1882    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
1883    return true;
1884
1885  case ArraySubscriptExprClass:
1886    WarnE = this;
1887    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
1888    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
1889    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
1890    return true;
1891
1892  case CXXOperatorCallExprClass: {
1893    // We warn about operator== and operator!= even when user-defined operator
1894    // overloads as there is no reasonable way to define these such that they
1895    // have non-trivial, desirable side-effects. See the -Wunused-comparison
1896    // warning: these operators are commonly typo'ed, and so warning on them
1897    // provides additional value as well. If this list is updated,
1898    // DiagnoseUnusedComparison should be as well.
1899    const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
1900    if (Op->getOperator() == OO_EqualEqual ||
1901        Op->getOperator() == OO_ExclaimEqual) {
1902      WarnE = this;
1903      Loc = Op->getOperatorLoc();
1904      R1 = Op->getSourceRange();
1905      return true;
1906    }
1907
1908    // Fallthrough for generic call handling.
1909  }
1910  case CallExprClass:
1911  case CXXMemberCallExprClass:
1912  case UserDefinedLiteralClass: {
1913    // If this is a direct call, get the callee.
1914    const CallExpr *CE = cast<CallExpr>(this);
1915    if (const Decl *FD = CE->getCalleeDecl()) {
1916      // If the callee has attribute pure, const, or warn_unused_result, warn
1917      // about it. void foo() { strlen("bar"); } should warn.
1918      //
1919      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
1920      // updated to match for QoI.
1921      if (FD->getAttr<WarnUnusedResultAttr>() ||
1922          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
1923        WarnE = this;
1924        Loc = CE->getCallee()->getLocStart();
1925        R1 = CE->getCallee()->getSourceRange();
1926
1927        if (unsigned NumArgs = CE->getNumArgs())
1928          R2 = SourceRange(CE->getArg(0)->getLocStart(),
1929                           CE->getArg(NumArgs-1)->getLocEnd());
1930        return true;
1931      }
1932    }
1933    return false;
1934  }
1935
1936  case CXXTemporaryObjectExprClass:
1937  case CXXConstructExprClass:
1938    return false;
1939
1940  case ObjCMessageExprClass: {
1941    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
1942    if (Ctx.getLangOpts().ObjCAutoRefCount &&
1943        ME->isInstanceMessage() &&
1944        !ME->getType()->isVoidType() &&
1945        ME->getSelector().getIdentifierInfoForSlot(0) &&
1946        ME->getSelector().getIdentifierInfoForSlot(0)
1947                                               ->getName().startswith("init")) {
1948      WarnE = this;
1949      Loc = getExprLoc();
1950      R1 = ME->getSourceRange();
1951      return true;
1952    }
1953
1954    const ObjCMethodDecl *MD = ME->getMethodDecl();
1955    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
1956      WarnE = this;
1957      Loc = getExprLoc();
1958      return true;
1959    }
1960    return false;
1961  }
1962
1963  case ObjCPropertyRefExprClass:
1964    WarnE = this;
1965    Loc = getExprLoc();
1966    R1 = getSourceRange();
1967    return true;
1968
1969  case PseudoObjectExprClass: {
1970    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
1971
1972    // Only complain about things that have the form of a getter.
1973    if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
1974        isa<BinaryOperator>(PO->getSyntacticForm()))
1975      return false;
1976
1977    WarnE = this;
1978    Loc = getExprLoc();
1979    R1 = getSourceRange();
1980    return true;
1981  }
1982
1983  case StmtExprClass: {
1984    // Statement exprs don't logically have side effects themselves, but are
1985    // sometimes used in macros in ways that give them a type that is unused.
1986    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
1987    // however, if the result of the stmt expr is dead, we don't want to emit a
1988    // warning.
1989    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
1990    if (!CS->body_empty()) {
1991      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
1992        return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1993      if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
1994        if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
1995          return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1996    }
1997
1998    if (getType()->isVoidType())
1999      return false;
2000    WarnE = this;
2001    Loc = cast<StmtExpr>(this)->getLParenLoc();
2002    R1 = getSourceRange();
2003    return true;
2004  }
2005  case CStyleCastExprClass: {
2006    // Ignore an explicit cast to void unless the operand is a non-trivial
2007    // volatile lvalue.
2008    const CastExpr *CE = cast<CastExpr>(this);
2009    if (CE->getCastKind() == CK_ToVoid) {
2010      if (CE->getSubExpr()->isGLValue() &&
2011          CE->getSubExpr()->getType().isVolatileQualified()) {
2012        const DeclRefExpr *DRE =
2013            dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2014        if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2015              cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
2016          return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2017                                                          R1, R2, Ctx);
2018        }
2019      }
2020      return false;
2021    }
2022
2023    // If this is a cast to a constructor conversion, check the operand.
2024    // Otherwise, the result of the cast is unused.
2025    if (CE->getCastKind() == CK_ConstructorConversion)
2026      return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2027
2028    WarnE = this;
2029    if (const CXXFunctionalCastExpr *CXXCE =
2030            dyn_cast<CXXFunctionalCastExpr>(this)) {
2031      Loc = CXXCE->getTypeBeginLoc();
2032      R1 = CXXCE->getSubExpr()->getSourceRange();
2033    } else {
2034      const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2035      Loc = CStyleCE->getLParenLoc();
2036      R1 = CStyleCE->getSubExpr()->getSourceRange();
2037    }
2038    return true;
2039  }
2040  case ImplicitCastExprClass: {
2041    const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2042
2043    // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2044    if (ICE->getCastKind() == CK_LValueToRValue &&
2045        ICE->getSubExpr()->getType().isVolatileQualified())
2046      return false;
2047
2048    return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2049  }
2050  case CXXDefaultArgExprClass:
2051    return (cast<CXXDefaultArgExpr>(this)
2052            ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2053
2054  case CXXNewExprClass:
2055    // FIXME: In theory, there might be new expressions that don't have side
2056    // effects (e.g. a placement new with an uninitialized POD).
2057  case CXXDeleteExprClass:
2058    return false;
2059  case CXXBindTemporaryExprClass:
2060    return (cast<CXXBindTemporaryExpr>(this)
2061            ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2062  case ExprWithCleanupsClass:
2063    return (cast<ExprWithCleanups>(this)
2064            ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2065  }
2066}
2067
2068/// isOBJCGCCandidate - Check if an expression is objc gc'able.
2069/// returns true, if it is; false otherwise.
2070bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2071  const Expr *E = IgnoreParens();
2072  switch (E->getStmtClass()) {
2073  default:
2074    return false;
2075  case ObjCIvarRefExprClass:
2076    return true;
2077  case Expr::UnaryOperatorClass:
2078    return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2079  case ImplicitCastExprClass:
2080    return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2081  case MaterializeTemporaryExprClass:
2082    return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2083                                                      ->isOBJCGCCandidate(Ctx);
2084  case CStyleCastExprClass:
2085    return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2086  case DeclRefExprClass: {
2087    const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2088
2089    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2090      if (VD->hasGlobalStorage())
2091        return true;
2092      QualType T = VD->getType();
2093      // dereferencing to a  pointer is always a gc'able candidate,
2094      // unless it is __weak.
2095      return T->isPointerType() &&
2096             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2097    }
2098    return false;
2099  }
2100  case MemberExprClass: {
2101    const MemberExpr *M = cast<MemberExpr>(E);
2102    return M->getBase()->isOBJCGCCandidate(Ctx);
2103  }
2104  case ArraySubscriptExprClass:
2105    return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2106  }
2107}
2108
2109bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2110  if (isTypeDependent())
2111    return false;
2112  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2113}
2114
2115QualType Expr::findBoundMemberType(const Expr *expr) {
2116  assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2117
2118  // Bound member expressions are always one of these possibilities:
2119  //   x->m      x.m      x->*y      x.*y
2120  // (possibly parenthesized)
2121
2122  expr = expr->IgnoreParens();
2123  if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2124    assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2125    return mem->getMemberDecl()->getType();
2126  }
2127
2128  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2129    QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2130                      ->getPointeeType();
2131    assert(type->isFunctionType());
2132    return type;
2133  }
2134
2135  assert(isa<UnresolvedMemberExpr>(expr));
2136  return QualType();
2137}
2138
2139Expr* Expr::IgnoreParens() {
2140  Expr* E = this;
2141  while (true) {
2142    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2143      E = P->getSubExpr();
2144      continue;
2145    }
2146    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2147      if (P->getOpcode() == UO_Extension) {
2148        E = P->getSubExpr();
2149        continue;
2150      }
2151    }
2152    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2153      if (!P->isResultDependent()) {
2154        E = P->getResultExpr();
2155        continue;
2156      }
2157    }
2158    return E;
2159  }
2160}
2161
2162/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
2163/// or CastExprs or ImplicitCastExprs, returning their operand.
2164Expr *Expr::IgnoreParenCasts() {
2165  Expr *E = this;
2166  while (true) {
2167    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2168      E = P->getSubExpr();
2169      continue;
2170    }
2171    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2172      E = P->getSubExpr();
2173      continue;
2174    }
2175    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2176      if (P->getOpcode() == UO_Extension) {
2177        E = P->getSubExpr();
2178        continue;
2179      }
2180    }
2181    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2182      if (!P->isResultDependent()) {
2183        E = P->getResultExpr();
2184        continue;
2185      }
2186    }
2187    if (MaterializeTemporaryExpr *Materialize
2188                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2189      E = Materialize->GetTemporaryExpr();
2190      continue;
2191    }
2192    if (SubstNonTypeTemplateParmExpr *NTTP
2193                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2194      E = NTTP->getReplacement();
2195      continue;
2196    }
2197    return E;
2198  }
2199}
2200
2201/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2202/// casts.  This is intended purely as a temporary workaround for code
2203/// that hasn't yet been rewritten to do the right thing about those
2204/// casts, and may disappear along with the last internal use.
2205Expr *Expr::IgnoreParenLValueCasts() {
2206  Expr *E = this;
2207  while (true) {
2208    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2209      E = P->getSubExpr();
2210      continue;
2211    } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2212      if (P->getCastKind() == CK_LValueToRValue) {
2213        E = P->getSubExpr();
2214        continue;
2215      }
2216    } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2217      if (P->getOpcode() == UO_Extension) {
2218        E = P->getSubExpr();
2219        continue;
2220      }
2221    } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2222      if (!P->isResultDependent()) {
2223        E = P->getResultExpr();
2224        continue;
2225      }
2226    } else if (MaterializeTemporaryExpr *Materialize
2227                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2228      E = Materialize->GetTemporaryExpr();
2229      continue;
2230    } else if (SubstNonTypeTemplateParmExpr *NTTP
2231                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2232      E = NTTP->getReplacement();
2233      continue;
2234    }
2235    break;
2236  }
2237  return E;
2238}
2239
2240Expr *Expr::IgnoreParenImpCasts() {
2241  Expr *E = this;
2242  while (true) {
2243    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2244      E = P->getSubExpr();
2245      continue;
2246    }
2247    if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2248      E = P->getSubExpr();
2249      continue;
2250    }
2251    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2252      if (P->getOpcode() == UO_Extension) {
2253        E = P->getSubExpr();
2254        continue;
2255      }
2256    }
2257    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2258      if (!P->isResultDependent()) {
2259        E = P->getResultExpr();
2260        continue;
2261      }
2262    }
2263    if (MaterializeTemporaryExpr *Materialize
2264                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2265      E = Materialize->GetTemporaryExpr();
2266      continue;
2267    }
2268    if (SubstNonTypeTemplateParmExpr *NTTP
2269                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2270      E = NTTP->getReplacement();
2271      continue;
2272    }
2273    return E;
2274  }
2275}
2276
2277Expr *Expr::IgnoreConversionOperator() {
2278  if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2279    if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2280      return MCE->getImplicitObjectArgument();
2281  }
2282  return this;
2283}
2284
2285/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2286/// value (including ptr->int casts of the same size).  Strip off any
2287/// ParenExpr or CastExprs, returning their operand.
2288Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2289  Expr *E = this;
2290  while (true) {
2291    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2292      E = P->getSubExpr();
2293      continue;
2294    }
2295
2296    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2297      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2298      // ptr<->int casts of the same width.  We also ignore all identity casts.
2299      Expr *SE = P->getSubExpr();
2300
2301      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2302        E = SE;
2303        continue;
2304      }
2305
2306      if ((E->getType()->isPointerType() ||
2307           E->getType()->isIntegralType(Ctx)) &&
2308          (SE->getType()->isPointerType() ||
2309           SE->getType()->isIntegralType(Ctx)) &&
2310          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2311        E = SE;
2312        continue;
2313      }
2314    }
2315
2316    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2317      if (P->getOpcode() == UO_Extension) {
2318        E = P->getSubExpr();
2319        continue;
2320      }
2321    }
2322
2323    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2324      if (!P->isResultDependent()) {
2325        E = P->getResultExpr();
2326        continue;
2327      }
2328    }
2329
2330    if (SubstNonTypeTemplateParmExpr *NTTP
2331                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2332      E = NTTP->getReplacement();
2333      continue;
2334    }
2335
2336    return E;
2337  }
2338}
2339
2340bool Expr::isDefaultArgument() const {
2341  const Expr *E = this;
2342  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2343    E = M->GetTemporaryExpr();
2344
2345  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2346    E = ICE->getSubExprAsWritten();
2347
2348  return isa<CXXDefaultArgExpr>(E);
2349}
2350
2351/// \brief Skip over any no-op casts and any temporary-binding
2352/// expressions.
2353static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2354  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2355    E = M->GetTemporaryExpr();
2356
2357  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2358    if (ICE->getCastKind() == CK_NoOp)
2359      E = ICE->getSubExpr();
2360    else
2361      break;
2362  }
2363
2364  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2365    E = BE->getSubExpr();
2366
2367  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2368    if (ICE->getCastKind() == CK_NoOp)
2369      E = ICE->getSubExpr();
2370    else
2371      break;
2372  }
2373
2374  return E->IgnoreParens();
2375}
2376
2377/// isTemporaryObject - Determines if this expression produces a
2378/// temporary of the given class type.
2379bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2380  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2381    return false;
2382
2383  const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2384
2385  // Temporaries are by definition pr-values of class type.
2386  if (!E->Classify(C).isPRValue()) {
2387    // In this context, property reference is a message call and is pr-value.
2388    if (!isa<ObjCPropertyRefExpr>(E))
2389      return false;
2390  }
2391
2392  // Black-list a few cases which yield pr-values of class type that don't
2393  // refer to temporaries of that type:
2394
2395  // - implicit derived-to-base conversions
2396  if (isa<ImplicitCastExpr>(E)) {
2397    switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2398    case CK_DerivedToBase:
2399    case CK_UncheckedDerivedToBase:
2400      return false;
2401    default:
2402      break;
2403    }
2404  }
2405
2406  // - member expressions (all)
2407  if (isa<MemberExpr>(E))
2408    return false;
2409
2410  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2411    if (BO->isPtrMemOp())
2412      return false;
2413
2414  // - opaque values (all)
2415  if (isa<OpaqueValueExpr>(E))
2416    return false;
2417
2418  return true;
2419}
2420
2421bool Expr::isImplicitCXXThis() const {
2422  const Expr *E = this;
2423
2424  // Strip away parentheses and casts we don't care about.
2425  while (true) {
2426    if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2427      E = Paren->getSubExpr();
2428      continue;
2429    }
2430
2431    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2432      if (ICE->getCastKind() == CK_NoOp ||
2433          ICE->getCastKind() == CK_LValueToRValue ||
2434          ICE->getCastKind() == CK_DerivedToBase ||
2435          ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2436        E = ICE->getSubExpr();
2437        continue;
2438      }
2439    }
2440
2441    if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2442      if (UnOp->getOpcode() == UO_Extension) {
2443        E = UnOp->getSubExpr();
2444        continue;
2445      }
2446    }
2447
2448    if (const MaterializeTemporaryExpr *M
2449                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2450      E = M->GetTemporaryExpr();
2451      continue;
2452    }
2453
2454    break;
2455  }
2456
2457  if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2458    return This->isImplicit();
2459
2460  return false;
2461}
2462
2463/// hasAnyTypeDependentArguments - Determines if any of the expressions
2464/// in Exprs is type-dependent.
2465bool Expr::hasAnyTypeDependentArguments(llvm::ArrayRef<Expr *> Exprs) {
2466  for (unsigned I = 0; I < Exprs.size(); ++I)
2467    if (Exprs[I]->isTypeDependent())
2468      return true;
2469
2470  return false;
2471}
2472
2473bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
2474  // This function is attempting whether an expression is an initializer
2475  // which can be evaluated at compile-time.  isEvaluatable handles most
2476  // of the cases, but it can't deal with some initializer-specific
2477  // expressions, and it can't deal with aggregates; we deal with those here,
2478  // and fall back to isEvaluatable for the other cases.
2479
2480  // If we ever capture reference-binding directly in the AST, we can
2481  // kill the second parameter.
2482
2483  if (IsForRef) {
2484    EvalResult Result;
2485    return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
2486  }
2487
2488  switch (getStmtClass()) {
2489  default: break;
2490  case IntegerLiteralClass:
2491  case FloatingLiteralClass:
2492  case StringLiteralClass:
2493  case ObjCStringLiteralClass:
2494  case ObjCEncodeExprClass:
2495    return true;
2496  case CXXTemporaryObjectExprClass:
2497  case CXXConstructExprClass: {
2498    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2499
2500    // Only if it's
2501    if (CE->getConstructor()->isTrivial()) {
2502      // 1) an application of the trivial default constructor or
2503      if (!CE->getNumArgs()) return true;
2504
2505      // 2) an elidable trivial copy construction of an operand which is
2506      //    itself a constant initializer.  Note that we consider the
2507      //    operand on its own, *not* as a reference binding.
2508      if (CE->isElidable() &&
2509          CE->getArg(0)->isConstantInitializer(Ctx, false))
2510        return true;
2511    }
2512
2513    // 3) a foldable constexpr constructor.
2514    break;
2515  }
2516  case CompoundLiteralExprClass: {
2517    // This handles gcc's extension that allows global initializers like
2518    // "struct x {int x;} x = (struct x) {};".
2519    // FIXME: This accepts other cases it shouldn't!
2520    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2521    return Exp->isConstantInitializer(Ctx, false);
2522  }
2523  case InitListExprClass: {
2524    // FIXME: This doesn't deal with fields with reference types correctly.
2525    // FIXME: This incorrectly allows pointers cast to integers to be assigned
2526    // to bitfields.
2527    const InitListExpr *Exp = cast<InitListExpr>(this);
2528    unsigned numInits = Exp->getNumInits();
2529    for (unsigned i = 0; i < numInits; i++) {
2530      if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
2531        return false;
2532    }
2533    return true;
2534  }
2535  case ImplicitValueInitExprClass:
2536    return true;
2537  case ParenExprClass:
2538    return cast<ParenExpr>(this)->getSubExpr()
2539      ->isConstantInitializer(Ctx, IsForRef);
2540  case GenericSelectionExprClass:
2541    if (cast<GenericSelectionExpr>(this)->isResultDependent())
2542      return false;
2543    return cast<GenericSelectionExpr>(this)->getResultExpr()
2544      ->isConstantInitializer(Ctx, IsForRef);
2545  case ChooseExprClass:
2546    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
2547      ->isConstantInitializer(Ctx, IsForRef);
2548  case UnaryOperatorClass: {
2549    const UnaryOperator* Exp = cast<UnaryOperator>(this);
2550    if (Exp->getOpcode() == UO_Extension)
2551      return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
2552    break;
2553  }
2554  case CXXFunctionalCastExprClass:
2555  case CXXStaticCastExprClass:
2556  case ImplicitCastExprClass:
2557  case CStyleCastExprClass: {
2558    const CastExpr *CE = cast<CastExpr>(this);
2559
2560    // If we're promoting an integer to an _Atomic type then this is constant
2561    // if the integer is constant.  We also need to check the converse in case
2562    // someone does something like:
2563    //
2564    // int a = (_Atomic(int))42;
2565    //
2566    // I doubt anyone would write code like this directly, but it's quite
2567    // possible as the result of macro expansions.
2568    if (CE->getCastKind() == CK_NonAtomicToAtomic ||
2569        CE->getCastKind() == CK_AtomicToNonAtomic)
2570      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2571
2572    // Handle bitcasts of vector constants.
2573    if (getType()->isVectorType() && CE->getCastKind() == CK_BitCast)
2574      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2575
2576    // Handle misc casts we want to ignore.
2577    // FIXME: Is it really safe to ignore all these?
2578    if (CE->getCastKind() == CK_NoOp ||
2579        CE->getCastKind() == CK_LValueToRValue ||
2580        CE->getCastKind() == CK_ToUnion ||
2581        CE->getCastKind() == CK_ConstructorConversion)
2582      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2583
2584    break;
2585  }
2586  case MaterializeTemporaryExprClass:
2587    return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2588                                            ->isConstantInitializer(Ctx, false);
2589  }
2590  return isEvaluatable(Ctx);
2591}
2592
2593namespace {
2594  /// \brief Look for a call to a non-trivial function within an expression.
2595  class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
2596  {
2597    typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
2598
2599    bool NonTrivial;
2600
2601  public:
2602    explicit NonTrivialCallFinder(ASTContext &Context)
2603      : Inherited(Context), NonTrivial(false) { }
2604
2605    bool hasNonTrivialCall() const { return NonTrivial; }
2606
2607    void VisitCallExpr(CallExpr *E) {
2608      if (CXXMethodDecl *Method
2609          = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
2610        if (Method->isTrivial()) {
2611          // Recurse to children of the call.
2612          Inherited::VisitStmt(E);
2613          return;
2614        }
2615      }
2616
2617      NonTrivial = true;
2618    }
2619
2620    void VisitCXXConstructExpr(CXXConstructExpr *E) {
2621      if (E->getConstructor()->isTrivial()) {
2622        // Recurse to children of the call.
2623        Inherited::VisitStmt(E);
2624        return;
2625      }
2626
2627      NonTrivial = true;
2628    }
2629
2630    void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2631      if (E->getTemporary()->getDestructor()->isTrivial()) {
2632        Inherited::VisitStmt(E);
2633        return;
2634      }
2635
2636      NonTrivial = true;
2637    }
2638  };
2639}
2640
2641bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
2642  NonTrivialCallFinder Finder(Ctx);
2643  Finder.Visit(this);
2644  return Finder.hasNonTrivialCall();
2645}
2646
2647/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
2648/// pointer constant or not, as well as the specific kind of constant detected.
2649/// Null pointer constants can be integer constant expressions with the
2650/// value zero, casts of zero to void*, nullptr (C++0X), or __null
2651/// (a GNU extension).
2652Expr::NullPointerConstantKind
2653Expr::isNullPointerConstant(ASTContext &Ctx,
2654                            NullPointerConstantValueDependence NPC) const {
2655  if (isValueDependent()) {
2656    switch (NPC) {
2657    case NPC_NeverValueDependent:
2658      llvm_unreachable("Unexpected value dependent expression!");
2659    case NPC_ValueDependentIsNull:
2660      if (isTypeDependent() || getType()->isIntegralType(Ctx))
2661        return NPCK_ZeroInteger;
2662      else
2663        return NPCK_NotNull;
2664
2665    case NPC_ValueDependentIsNotNull:
2666      return NPCK_NotNull;
2667    }
2668  }
2669
2670  // Strip off a cast to void*, if it exists. Except in C++.
2671  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
2672    if (!Ctx.getLangOpts().CPlusPlus) {
2673      // Check that it is a cast to void*.
2674      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
2675        QualType Pointee = PT->getPointeeType();
2676        if (!Pointee.hasQualifiers() &&
2677            Pointee->isVoidType() &&                              // to void*
2678            CE->getSubExpr()->getType()->isIntegerType())         // from int.
2679          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2680      }
2681    }
2682  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
2683    // Ignore the ImplicitCastExpr type entirely.
2684    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2685  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
2686    // Accept ((void*)0) as a null pointer constant, as many other
2687    // implementations do.
2688    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2689  } else if (const GenericSelectionExpr *GE =
2690               dyn_cast<GenericSelectionExpr>(this)) {
2691    return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
2692  } else if (const CXXDefaultArgExpr *DefaultArg
2693               = dyn_cast<CXXDefaultArgExpr>(this)) {
2694    // See through default argument expressions
2695    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
2696  } else if (isa<GNUNullExpr>(this)) {
2697    // The GNU __null extension is always a null pointer constant.
2698    return NPCK_GNUNull;
2699  } else if (const MaterializeTemporaryExpr *M
2700                                   = dyn_cast<MaterializeTemporaryExpr>(this)) {
2701    return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
2702  } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
2703    if (const Expr *Source = OVE->getSourceExpr())
2704      return Source->isNullPointerConstant(Ctx, NPC);
2705  }
2706
2707  // C++0x nullptr_t is always a null pointer constant.
2708  if (getType()->isNullPtrType())
2709    return NPCK_CXX0X_nullptr;
2710
2711  if (const RecordType *UT = getType()->getAsUnionType())
2712    if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
2713      if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
2714        const Expr *InitExpr = CLE->getInitializer();
2715        if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
2716          return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
2717      }
2718  // This expression must be an integer type.
2719  if (!getType()->isIntegerType() ||
2720      (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
2721    return NPCK_NotNull;
2722
2723  // If we have an integer constant expression, we need to *evaluate* it and
2724  // test for the value 0. Don't use the C++11 constant expression semantics
2725  // for this, for now; once the dust settles on core issue 903, we might only
2726  // allow a literal 0 here in C++11 mode.
2727  if (Ctx.getLangOpts().CPlusPlus0x) {
2728    if (!isCXX98IntegralConstantExpr(Ctx))
2729      return NPCK_NotNull;
2730  } else {
2731    if (!isIntegerConstantExpr(Ctx))
2732      return NPCK_NotNull;
2733  }
2734
2735  return (EvaluateKnownConstInt(Ctx) == 0) ? NPCK_ZeroInteger : NPCK_NotNull;
2736}
2737
2738/// \brief If this expression is an l-value for an Objective C
2739/// property, find the underlying property reference expression.
2740const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
2741  const Expr *E = this;
2742  while (true) {
2743    assert((E->getValueKind() == VK_LValue &&
2744            E->getObjectKind() == OK_ObjCProperty) &&
2745           "expression is not a property reference");
2746    E = E->IgnoreParenCasts();
2747    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2748      if (BO->getOpcode() == BO_Comma) {
2749        E = BO->getRHS();
2750        continue;
2751      }
2752    }
2753
2754    break;
2755  }
2756
2757  return cast<ObjCPropertyRefExpr>(E);
2758}
2759
2760FieldDecl *Expr::getBitField() {
2761  Expr *E = this->IgnoreParens();
2762
2763  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2764    if (ICE->getCastKind() == CK_LValueToRValue ||
2765        (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
2766      E = ICE->getSubExpr()->IgnoreParens();
2767    else
2768      break;
2769  }
2770
2771  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
2772    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
2773      if (Field->isBitField())
2774        return Field;
2775
2776  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
2777    if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
2778      if (Field->isBitField())
2779        return Field;
2780
2781  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
2782    if (BinOp->isAssignmentOp() && BinOp->getLHS())
2783      return BinOp->getLHS()->getBitField();
2784
2785    if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
2786      return BinOp->getRHS()->getBitField();
2787  }
2788
2789  return 0;
2790}
2791
2792bool Expr::refersToVectorElement() const {
2793  const Expr *E = this->IgnoreParens();
2794
2795  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2796    if (ICE->getValueKind() != VK_RValue &&
2797        ICE->getCastKind() == CK_NoOp)
2798      E = ICE->getSubExpr()->IgnoreParens();
2799    else
2800      break;
2801  }
2802
2803  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
2804    return ASE->getBase()->getType()->isVectorType();
2805
2806  if (isa<ExtVectorElementExpr>(E))
2807    return true;
2808
2809  return false;
2810}
2811
2812/// isArrow - Return true if the base expression is a pointer to vector,
2813/// return false if the base expression is a vector.
2814bool ExtVectorElementExpr::isArrow() const {
2815  return getBase()->getType()->isPointerType();
2816}
2817
2818unsigned ExtVectorElementExpr::getNumElements() const {
2819  if (const VectorType *VT = getType()->getAs<VectorType>())
2820    return VT->getNumElements();
2821  return 1;
2822}
2823
2824/// containsDuplicateElements - Return true if any element access is repeated.
2825bool ExtVectorElementExpr::containsDuplicateElements() const {
2826  // FIXME: Refactor this code to an accessor on the AST node which returns the
2827  // "type" of component access, and share with code below and in Sema.
2828  StringRef Comp = Accessor->getName();
2829
2830  // Halving swizzles do not contain duplicate elements.
2831  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
2832    return false;
2833
2834  // Advance past s-char prefix on hex swizzles.
2835  if (Comp[0] == 's' || Comp[0] == 'S')
2836    Comp = Comp.substr(1);
2837
2838  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
2839    if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
2840        return true;
2841
2842  return false;
2843}
2844
2845/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
2846void ExtVectorElementExpr::getEncodedElementAccess(
2847                                  SmallVectorImpl<unsigned> &Elts) const {
2848  StringRef Comp = Accessor->getName();
2849  if (Comp[0] == 's' || Comp[0] == 'S')
2850    Comp = Comp.substr(1);
2851
2852  bool isHi =   Comp == "hi";
2853  bool isLo =   Comp == "lo";
2854  bool isEven = Comp == "even";
2855  bool isOdd  = Comp == "odd";
2856
2857  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2858    uint64_t Index;
2859
2860    if (isHi)
2861      Index = e + i;
2862    else if (isLo)
2863      Index = i;
2864    else if (isEven)
2865      Index = 2 * i;
2866    else if (isOdd)
2867      Index = 2 * i + 1;
2868    else
2869      Index = ExtVectorType::getAccessorIdx(Comp[i]);
2870
2871    Elts.push_back(Index);
2872  }
2873}
2874
2875ObjCMessageExpr::ObjCMessageExpr(QualType T,
2876                                 ExprValueKind VK,
2877                                 SourceLocation LBracLoc,
2878                                 SourceLocation SuperLoc,
2879                                 bool IsInstanceSuper,
2880                                 QualType SuperType,
2881                                 Selector Sel,
2882                                 ArrayRef<SourceLocation> SelLocs,
2883                                 SelectorLocationsKind SelLocsK,
2884                                 ObjCMethodDecl *Method,
2885                                 ArrayRef<Expr *> Args,
2886                                 SourceLocation RBracLoc,
2887                                 bool isImplicit)
2888  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
2889         /*TypeDependent=*/false, /*ValueDependent=*/false,
2890         /*InstantiationDependent=*/false,
2891         /*ContainsUnexpandedParameterPack=*/false),
2892    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2893                                                       : Sel.getAsOpaquePtr())),
2894    Kind(IsInstanceSuper? SuperInstance : SuperClass),
2895    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
2896    SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2897{
2898  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
2899  setReceiverPointer(SuperType.getAsOpaquePtr());
2900}
2901
2902ObjCMessageExpr::ObjCMessageExpr(QualType T,
2903                                 ExprValueKind VK,
2904                                 SourceLocation LBracLoc,
2905                                 TypeSourceInfo *Receiver,
2906                                 Selector Sel,
2907                                 ArrayRef<SourceLocation> SelLocs,
2908                                 SelectorLocationsKind SelLocsK,
2909                                 ObjCMethodDecl *Method,
2910                                 ArrayRef<Expr *> Args,
2911                                 SourceLocation RBracLoc,
2912                                 bool isImplicit)
2913  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
2914         T->isDependentType(), T->isInstantiationDependentType(),
2915         T->containsUnexpandedParameterPack()),
2916    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2917                                                       : Sel.getAsOpaquePtr())),
2918    Kind(Class),
2919    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
2920    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2921{
2922  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
2923  setReceiverPointer(Receiver);
2924}
2925
2926ObjCMessageExpr::ObjCMessageExpr(QualType T,
2927                                 ExprValueKind VK,
2928                                 SourceLocation LBracLoc,
2929                                 Expr *Receiver,
2930                                 Selector Sel,
2931                                 ArrayRef<SourceLocation> SelLocs,
2932                                 SelectorLocationsKind SelLocsK,
2933                                 ObjCMethodDecl *Method,
2934                                 ArrayRef<Expr *> Args,
2935                                 SourceLocation RBracLoc,
2936                                 bool isImplicit)
2937  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
2938         Receiver->isTypeDependent(),
2939         Receiver->isInstantiationDependent(),
2940         Receiver->containsUnexpandedParameterPack()),
2941    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2942                                                       : Sel.getAsOpaquePtr())),
2943    Kind(Instance),
2944    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
2945    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2946{
2947  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
2948  setReceiverPointer(Receiver);
2949}
2950
2951void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
2952                                         ArrayRef<SourceLocation> SelLocs,
2953                                         SelectorLocationsKind SelLocsK) {
2954  setNumArgs(Args.size());
2955  Expr **MyArgs = getArgs();
2956  for (unsigned I = 0; I != Args.size(); ++I) {
2957    if (Args[I]->isTypeDependent())
2958      ExprBits.TypeDependent = true;
2959    if (Args[I]->isValueDependent())
2960      ExprBits.ValueDependent = true;
2961    if (Args[I]->isInstantiationDependent())
2962      ExprBits.InstantiationDependent = true;
2963    if (Args[I]->containsUnexpandedParameterPack())
2964      ExprBits.ContainsUnexpandedParameterPack = true;
2965
2966    MyArgs[I] = Args[I];
2967  }
2968
2969  SelLocsKind = SelLocsK;
2970  if (!isImplicit()) {
2971    if (SelLocsK == SelLoc_NonStandard)
2972      std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
2973  }
2974}
2975
2976ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2977                                         ExprValueKind VK,
2978                                         SourceLocation LBracLoc,
2979                                         SourceLocation SuperLoc,
2980                                         bool IsInstanceSuper,
2981                                         QualType SuperType,
2982                                         Selector Sel,
2983                                         ArrayRef<SourceLocation> SelLocs,
2984                                         ObjCMethodDecl *Method,
2985                                         ArrayRef<Expr *> Args,
2986                                         SourceLocation RBracLoc,
2987                                         bool isImplicit) {
2988  assert((!SelLocs.empty() || isImplicit) &&
2989         "No selector locs for non-implicit message");
2990  ObjCMessageExpr *Mem;
2991  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
2992  if (isImplicit)
2993    Mem = alloc(Context, Args.size(), 0);
2994  else
2995    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
2996  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
2997                                   SuperType, Sel, SelLocs, SelLocsK,
2998                                   Method, Args, RBracLoc, isImplicit);
2999}
3000
3001ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3002                                         ExprValueKind VK,
3003                                         SourceLocation LBracLoc,
3004                                         TypeSourceInfo *Receiver,
3005                                         Selector Sel,
3006                                         ArrayRef<SourceLocation> SelLocs,
3007                                         ObjCMethodDecl *Method,
3008                                         ArrayRef<Expr *> Args,
3009                                         SourceLocation RBracLoc,
3010                                         bool isImplicit) {
3011  assert((!SelLocs.empty() || isImplicit) &&
3012         "No selector locs for non-implicit message");
3013  ObjCMessageExpr *Mem;
3014  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3015  if (isImplicit)
3016    Mem = alloc(Context, Args.size(), 0);
3017  else
3018    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3019  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3020                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
3021                                   isImplicit);
3022}
3023
3024ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3025                                         ExprValueKind VK,
3026                                         SourceLocation LBracLoc,
3027                                         Expr *Receiver,
3028                                         Selector Sel,
3029                                         ArrayRef<SourceLocation> SelLocs,
3030                                         ObjCMethodDecl *Method,
3031                                         ArrayRef<Expr *> Args,
3032                                         SourceLocation RBracLoc,
3033                                         bool isImplicit) {
3034  assert((!SelLocs.empty() || isImplicit) &&
3035         "No selector locs for non-implicit message");
3036  ObjCMessageExpr *Mem;
3037  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3038  if (isImplicit)
3039    Mem = alloc(Context, Args.size(), 0);
3040  else
3041    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3042  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3043                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
3044                                   isImplicit);
3045}
3046
3047ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
3048                                              unsigned NumArgs,
3049                                              unsigned NumStoredSelLocs) {
3050  ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
3051  return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
3052}
3053
3054ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3055                                        ArrayRef<Expr *> Args,
3056                                        SourceLocation RBraceLoc,
3057                                        ArrayRef<SourceLocation> SelLocs,
3058                                        Selector Sel,
3059                                        SelectorLocationsKind &SelLocsK) {
3060  SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
3061  unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
3062                                                               : 0;
3063  return alloc(C, Args.size(), NumStoredSelLocs);
3064}
3065
3066ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3067                                        unsigned NumArgs,
3068                                        unsigned NumStoredSelLocs) {
3069  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
3070    NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
3071  return (ObjCMessageExpr *)C.Allocate(Size,
3072                                     llvm::AlignOf<ObjCMessageExpr>::Alignment);
3073}
3074
3075void ObjCMessageExpr::getSelectorLocs(
3076                               SmallVectorImpl<SourceLocation> &SelLocs) const {
3077  for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
3078    SelLocs.push_back(getSelectorLoc(i));
3079}
3080
3081SourceRange ObjCMessageExpr::getReceiverRange() const {
3082  switch (getReceiverKind()) {
3083  case Instance:
3084    return getInstanceReceiver()->getSourceRange();
3085
3086  case Class:
3087    return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
3088
3089  case SuperInstance:
3090  case SuperClass:
3091    return getSuperLoc();
3092  }
3093
3094  llvm_unreachable("Invalid ReceiverKind!");
3095}
3096
3097Selector ObjCMessageExpr::getSelector() const {
3098  if (HasMethod)
3099    return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
3100                                                               ->getSelector();
3101  return Selector(SelectorOrMethod);
3102}
3103
3104ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
3105  switch (getReceiverKind()) {
3106  case Instance:
3107    if (const ObjCObjectPointerType *Ptr
3108          = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
3109      return Ptr->getInterfaceDecl();
3110    break;
3111
3112  case Class:
3113    if (const ObjCObjectType *Ty
3114          = getClassReceiver()->getAs<ObjCObjectType>())
3115      return Ty->getInterface();
3116    break;
3117
3118  case SuperInstance:
3119    if (const ObjCObjectPointerType *Ptr
3120          = getSuperType()->getAs<ObjCObjectPointerType>())
3121      return Ptr->getInterfaceDecl();
3122    break;
3123
3124  case SuperClass:
3125    if (const ObjCObjectType *Iface
3126          = getSuperType()->getAs<ObjCObjectType>())
3127      return Iface->getInterface();
3128    break;
3129  }
3130
3131  return 0;
3132}
3133
3134StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
3135  switch (getBridgeKind()) {
3136  case OBC_Bridge:
3137    return "__bridge";
3138  case OBC_BridgeTransfer:
3139    return "__bridge_transfer";
3140  case OBC_BridgeRetained:
3141    return "__bridge_retained";
3142  }
3143
3144  llvm_unreachable("Invalid BridgeKind!");
3145}
3146
3147bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
3148  return getCond()->EvaluateKnownConstInt(C) != 0;
3149}
3150
3151ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3152                                     QualType Type, SourceLocation BLoc,
3153                                     SourceLocation RP)
3154   : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3155          Type->isDependentType(), Type->isDependentType(),
3156          Type->isInstantiationDependentType(),
3157          Type->containsUnexpandedParameterPack()),
3158     BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr)
3159{
3160  SubExprs = new (C) Stmt*[nexpr];
3161  for (unsigned i = 0; i < nexpr; i++) {
3162    if (args[i]->isTypeDependent())
3163      ExprBits.TypeDependent = true;
3164    if (args[i]->isValueDependent())
3165      ExprBits.ValueDependent = true;
3166    if (args[i]->isInstantiationDependent())
3167      ExprBits.InstantiationDependent = true;
3168    if (args[i]->containsUnexpandedParameterPack())
3169      ExprBits.ContainsUnexpandedParameterPack = true;
3170
3171    SubExprs[i] = args[i];
3172  }
3173}
3174
3175void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
3176                                 unsigned NumExprs) {
3177  if (SubExprs) C.Deallocate(SubExprs);
3178
3179  SubExprs = new (C) Stmt* [NumExprs];
3180  this->NumExprs = NumExprs;
3181  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
3182}
3183
3184GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3185                               SourceLocation GenericLoc, Expr *ControllingExpr,
3186                               TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3187                               unsigned NumAssocs, SourceLocation DefaultLoc,
3188                               SourceLocation RParenLoc,
3189                               bool ContainsUnexpandedParameterPack,
3190                               unsigned ResultIndex)
3191  : Expr(GenericSelectionExprClass,
3192         AssocExprs[ResultIndex]->getType(),
3193         AssocExprs[ResultIndex]->getValueKind(),
3194         AssocExprs[ResultIndex]->getObjectKind(),
3195         AssocExprs[ResultIndex]->isTypeDependent(),
3196         AssocExprs[ResultIndex]->isValueDependent(),
3197         AssocExprs[ResultIndex]->isInstantiationDependent(),
3198         ContainsUnexpandedParameterPack),
3199    AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
3200    SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
3201    ResultIndex(ResultIndex), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
3202    RParenLoc(RParenLoc) {
3203  SubExprs[CONTROLLING] = ControllingExpr;
3204  std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
3205  std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
3206}
3207
3208GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3209                               SourceLocation GenericLoc, Expr *ControllingExpr,
3210                               TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3211                               unsigned NumAssocs, SourceLocation DefaultLoc,
3212                               SourceLocation RParenLoc,
3213                               bool ContainsUnexpandedParameterPack)
3214  : Expr(GenericSelectionExprClass,
3215         Context.DependentTy,
3216         VK_RValue,
3217         OK_Ordinary,
3218         /*isTypeDependent=*/true,
3219         /*isValueDependent=*/true,
3220         /*isInstantiationDependent=*/true,
3221         ContainsUnexpandedParameterPack),
3222    AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
3223    SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
3224    ResultIndex(-1U), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
3225    RParenLoc(RParenLoc) {
3226  SubExprs[CONTROLLING] = ControllingExpr;
3227  std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
3228  std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
3229}
3230
3231//===----------------------------------------------------------------------===//
3232//  DesignatedInitExpr
3233//===----------------------------------------------------------------------===//
3234
3235IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3236  assert(Kind == FieldDesignator && "Only valid on a field designator");
3237  if (Field.NameOrField & 0x01)
3238    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3239  else
3240    return getField()->getIdentifier();
3241}
3242
3243DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
3244                                       unsigned NumDesignators,
3245                                       const Designator *Designators,
3246                                       SourceLocation EqualOrColonLoc,
3247                                       bool GNUSyntax,
3248                                       Expr **IndexExprs,
3249                                       unsigned NumIndexExprs,
3250                                       Expr *Init)
3251  : Expr(DesignatedInitExprClass, Ty,
3252         Init->getValueKind(), Init->getObjectKind(),
3253         Init->isTypeDependent(), Init->isValueDependent(),
3254         Init->isInstantiationDependent(),
3255         Init->containsUnexpandedParameterPack()),
3256    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3257    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
3258  this->Designators = new (C) Designator[NumDesignators];
3259
3260  // Record the initializer itself.
3261  child_range Child = children();
3262  *Child++ = Init;
3263
3264  // Copy the designators and their subexpressions, computing
3265  // value-dependence along the way.
3266  unsigned IndexIdx = 0;
3267  for (unsigned I = 0; I != NumDesignators; ++I) {
3268    this->Designators[I] = Designators[I];
3269
3270    if (this->Designators[I].isArrayDesignator()) {
3271      // Compute type- and value-dependence.
3272      Expr *Index = IndexExprs[IndexIdx];
3273      if (Index->isTypeDependent() || Index->isValueDependent())
3274        ExprBits.ValueDependent = true;
3275      if (Index->isInstantiationDependent())
3276        ExprBits.InstantiationDependent = true;
3277      // Propagate unexpanded parameter packs.
3278      if (Index->containsUnexpandedParameterPack())
3279        ExprBits.ContainsUnexpandedParameterPack = true;
3280
3281      // Copy the index expressions into permanent storage.
3282      *Child++ = IndexExprs[IndexIdx++];
3283    } else if (this->Designators[I].isArrayRangeDesignator()) {
3284      // Compute type- and value-dependence.
3285      Expr *Start = IndexExprs[IndexIdx];
3286      Expr *End = IndexExprs[IndexIdx + 1];
3287      if (Start->isTypeDependent() || Start->isValueDependent() ||
3288          End->isTypeDependent() || End->isValueDependent()) {
3289        ExprBits.ValueDependent = true;
3290        ExprBits.InstantiationDependent = true;
3291      } else if (Start->isInstantiationDependent() ||
3292                 End->isInstantiationDependent()) {
3293        ExprBits.InstantiationDependent = true;
3294      }
3295
3296      // Propagate unexpanded parameter packs.
3297      if (Start->containsUnexpandedParameterPack() ||
3298          End->containsUnexpandedParameterPack())
3299        ExprBits.ContainsUnexpandedParameterPack = true;
3300
3301      // Copy the start/end expressions into permanent storage.
3302      *Child++ = IndexExprs[IndexIdx++];
3303      *Child++ = IndexExprs[IndexIdx++];
3304    }
3305  }
3306
3307  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
3308}
3309
3310DesignatedInitExpr *
3311DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
3312                           unsigned NumDesignators,
3313                           Expr **IndexExprs, unsigned NumIndexExprs,
3314                           SourceLocation ColonOrEqualLoc,
3315                           bool UsesColonSyntax, Expr *Init) {
3316  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3317                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3318  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3319                                      ColonOrEqualLoc, UsesColonSyntax,
3320                                      IndexExprs, NumIndexExprs, Init);
3321}
3322
3323DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
3324                                                    unsigned NumIndexExprs) {
3325  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3326                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3327  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3328}
3329
3330void DesignatedInitExpr::setDesignators(ASTContext &C,
3331                                        const Designator *Desigs,
3332                                        unsigned NumDesigs) {
3333  Designators = new (C) Designator[NumDesigs];
3334  NumDesignators = NumDesigs;
3335  for (unsigned I = 0; I != NumDesigs; ++I)
3336    Designators[I] = Desigs[I];
3337}
3338
3339SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3340  DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3341  if (size() == 1)
3342    return DIE->getDesignator(0)->getSourceRange();
3343  return SourceRange(DIE->getDesignator(0)->getStartLocation(),
3344                     DIE->getDesignator(size()-1)->getEndLocation());
3345}
3346
3347SourceRange DesignatedInitExpr::getSourceRange() const {
3348  SourceLocation StartLoc;
3349  Designator &First =
3350    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3351  if (First.isFieldDesignator()) {
3352    if (GNUSyntax)
3353      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3354    else
3355      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3356  } else
3357    StartLoc =
3358      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3359  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
3360}
3361
3362Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
3363  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3364  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3365  Ptr += sizeof(DesignatedInitExpr);
3366  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3367  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3368}
3369
3370Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
3371  assert(D.Kind == Designator::ArrayRangeDesignator &&
3372         "Requires array range designator");
3373  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3374  Ptr += sizeof(DesignatedInitExpr);
3375  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3376  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3377}
3378
3379Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
3380  assert(D.Kind == Designator::ArrayRangeDesignator &&
3381         "Requires array range designator");
3382  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3383  Ptr += sizeof(DesignatedInitExpr);
3384  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3385  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3386}
3387
3388/// \brief Replaces the designator at index @p Idx with the series
3389/// of designators in [First, Last).
3390void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
3391                                          const Designator *First,
3392                                          const Designator *Last) {
3393  unsigned NumNewDesignators = Last - First;
3394  if (NumNewDesignators == 0) {
3395    std::copy_backward(Designators + Idx + 1,
3396                       Designators + NumDesignators,
3397                       Designators + Idx);
3398    --NumNewDesignators;
3399    return;
3400  } else if (NumNewDesignators == 1) {
3401    Designators[Idx] = *First;
3402    return;
3403  }
3404
3405  Designator *NewDesignators
3406    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3407  std::copy(Designators, Designators + Idx, NewDesignators);
3408  std::copy(First, Last, NewDesignators + Idx);
3409  std::copy(Designators + Idx + 1, Designators + NumDesignators,
3410            NewDesignators + Idx + NumNewDesignators);
3411  Designators = NewDesignators;
3412  NumDesignators = NumDesignators - 1 + NumNewDesignators;
3413}
3414
3415ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
3416                             Expr **exprs, unsigned nexprs,
3417                             SourceLocation rparenloc)
3418  : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3419         false, false, false, false),
3420    NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3421  Exprs = new (C) Stmt*[nexprs];
3422  for (unsigned i = 0; i != nexprs; ++i) {
3423    if (exprs[i]->isTypeDependent())
3424      ExprBits.TypeDependent = true;
3425    if (exprs[i]->isValueDependent())
3426      ExprBits.ValueDependent = true;
3427    if (exprs[i]->isInstantiationDependent())
3428      ExprBits.InstantiationDependent = true;
3429    if (exprs[i]->containsUnexpandedParameterPack())
3430      ExprBits.ContainsUnexpandedParameterPack = true;
3431
3432    Exprs[i] = exprs[i];
3433  }
3434}
3435
3436const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3437  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3438    e = ewc->getSubExpr();
3439  if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3440    e = m->GetTemporaryExpr();
3441  e = cast<CXXConstructExpr>(e)->getArg(0);
3442  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3443    e = ice->getSubExpr();
3444  return cast<OpaqueValueExpr>(e);
3445}
3446
3447PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &Context, EmptyShell sh,
3448                                           unsigned numSemanticExprs) {
3449  void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
3450                                    (1 + numSemanticExprs) * sizeof(Expr*),
3451                                  llvm::alignOf<PseudoObjectExpr>());
3452  return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3453}
3454
3455PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3456  : Expr(PseudoObjectExprClass, shell) {
3457  PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3458}
3459
3460PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &C, Expr *syntax,
3461                                           ArrayRef<Expr*> semantics,
3462                                           unsigned resultIndex) {
3463  assert(syntax && "no syntactic expression!");
3464  assert(semantics.size() && "no semantic expressions!");
3465
3466  QualType type;
3467  ExprValueKind VK;
3468  if (resultIndex == NoResult) {
3469    type = C.VoidTy;
3470    VK = VK_RValue;
3471  } else {
3472    assert(resultIndex < semantics.size());
3473    type = semantics[resultIndex]->getType();
3474    VK = semantics[resultIndex]->getValueKind();
3475    assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3476  }
3477
3478  void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
3479                              (1 + semantics.size()) * sizeof(Expr*),
3480                            llvm::alignOf<PseudoObjectExpr>());
3481  return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3482                                      resultIndex);
3483}
3484
3485PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3486                                   Expr *syntax, ArrayRef<Expr*> semantics,
3487                                   unsigned resultIndex)
3488  : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3489         /*filled in at end of ctor*/ false, false, false, false) {
3490  PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3491  PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3492
3493  for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3494    Expr *E = (i == 0 ? syntax : semantics[i-1]);
3495    getSubExprsBuffer()[i] = E;
3496
3497    if (E->isTypeDependent())
3498      ExprBits.TypeDependent = true;
3499    if (E->isValueDependent())
3500      ExprBits.ValueDependent = true;
3501    if (E->isInstantiationDependent())
3502      ExprBits.InstantiationDependent = true;
3503    if (E->containsUnexpandedParameterPack())
3504      ExprBits.ContainsUnexpandedParameterPack = true;
3505
3506    if (isa<OpaqueValueExpr>(E))
3507      assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 &&
3508             "opaque-value semantic expressions for pseudo-object "
3509             "operations must have sources");
3510  }
3511}
3512
3513//===----------------------------------------------------------------------===//
3514//  ExprIterator.
3515//===----------------------------------------------------------------------===//
3516
3517Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
3518Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
3519Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
3520const Expr* ConstExprIterator::operator[](size_t idx) const {
3521  return cast<Expr>(I[idx]);
3522}
3523const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
3524const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
3525
3526//===----------------------------------------------------------------------===//
3527//  Child Iterators for iterating over subexpressions/substatements
3528//===----------------------------------------------------------------------===//
3529
3530// UnaryExprOrTypeTraitExpr
3531Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
3532  // If this is of a type and the type is a VLA type (and not a typedef), the
3533  // size expression of the VLA needs to be treated as an executable expression.
3534  // Why isn't this weirdness documented better in StmtIterator?
3535  if (isArgumentType()) {
3536    if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
3537                                   getArgumentType().getTypePtr()))
3538      return child_range(child_iterator(T), child_iterator());
3539    return child_range();
3540  }
3541  return child_range(&Argument.Ex, &Argument.Ex + 1);
3542}
3543
3544// ObjCMessageExpr
3545Stmt::child_range ObjCMessageExpr::children() {
3546  Stmt **begin;
3547  if (getReceiverKind() == Instance)
3548    begin = reinterpret_cast<Stmt **>(this + 1);
3549  else
3550    begin = reinterpret_cast<Stmt **>(getArgs());
3551  return child_range(begin,
3552                     reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
3553}
3554
3555ObjCArrayLiteral::ObjCArrayLiteral(llvm::ArrayRef<Expr *> Elements,
3556                                   QualType T, ObjCMethodDecl *Method,
3557                                   SourceRange SR)
3558  : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
3559         false, false, false, false),
3560    NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
3561{
3562  Expr **SaveElements = getElements();
3563  for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
3564    if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
3565      ExprBits.ValueDependent = true;
3566    if (Elements[I]->isInstantiationDependent())
3567      ExprBits.InstantiationDependent = true;
3568    if (Elements[I]->containsUnexpandedParameterPack())
3569      ExprBits.ContainsUnexpandedParameterPack = true;
3570
3571    SaveElements[I] = Elements[I];
3572  }
3573}
3574
3575ObjCArrayLiteral *ObjCArrayLiteral::Create(ASTContext &C,
3576                                           llvm::ArrayRef<Expr *> Elements,
3577                                           QualType T, ObjCMethodDecl * Method,
3578                                           SourceRange SR) {
3579  void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3580                         + Elements.size() * sizeof(Expr *));
3581  return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
3582}
3583
3584ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(ASTContext &C,
3585                                                unsigned NumElements) {
3586
3587  void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3588                         + NumElements * sizeof(Expr *));
3589  return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
3590}
3591
3592ObjCDictionaryLiteral::ObjCDictionaryLiteral(
3593                                             ArrayRef<ObjCDictionaryElement> VK,
3594                                             bool HasPackExpansions,
3595                                             QualType T, ObjCMethodDecl *method,
3596                                             SourceRange SR)
3597  : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
3598         false, false),
3599    NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
3600    DictWithObjectsMethod(method)
3601{
3602  KeyValuePair *KeyValues = getKeyValues();
3603  ExpansionData *Expansions = getExpansionData();
3604  for (unsigned I = 0; I < NumElements; I++) {
3605    if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
3606        VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
3607      ExprBits.ValueDependent = true;
3608    if (VK[I].Key->isInstantiationDependent() ||
3609        VK[I].Value->isInstantiationDependent())
3610      ExprBits.InstantiationDependent = true;
3611    if (VK[I].EllipsisLoc.isInvalid() &&
3612        (VK[I].Key->containsUnexpandedParameterPack() ||
3613         VK[I].Value->containsUnexpandedParameterPack()))
3614      ExprBits.ContainsUnexpandedParameterPack = true;
3615
3616    KeyValues[I].Key = VK[I].Key;
3617    KeyValues[I].Value = VK[I].Value;
3618    if (Expansions) {
3619      Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
3620      if (VK[I].NumExpansions)
3621        Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
3622      else
3623        Expansions[I].NumExpansionsPlusOne = 0;
3624    }
3625  }
3626}
3627
3628ObjCDictionaryLiteral *
3629ObjCDictionaryLiteral::Create(ASTContext &C,
3630                              ArrayRef<ObjCDictionaryElement> VK,
3631                              bool HasPackExpansions,
3632                              QualType T, ObjCMethodDecl *method,
3633                              SourceRange SR) {
3634  unsigned ExpansionsSize = 0;
3635  if (HasPackExpansions)
3636    ExpansionsSize = sizeof(ExpansionData) * VK.size();
3637
3638  void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
3639                         sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
3640  return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
3641}
3642
3643ObjCDictionaryLiteral *
3644ObjCDictionaryLiteral::CreateEmpty(ASTContext &C, unsigned NumElements,
3645                                   bool HasPackExpansions) {
3646  unsigned ExpansionsSize = 0;
3647  if (HasPackExpansions)
3648    ExpansionsSize = sizeof(ExpansionData) * NumElements;
3649  void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
3650                         sizeof(KeyValuePair) * NumElements + ExpansionsSize);
3651  return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
3652                                         HasPackExpansions);
3653}
3654
3655ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(ASTContext &C,
3656                                                   Expr *base,
3657                                                   Expr *key, QualType T,
3658                                                   ObjCMethodDecl *getMethod,
3659                                                   ObjCMethodDecl *setMethod,
3660                                                   SourceLocation RB) {
3661  void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
3662  return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
3663                                        OK_ObjCSubscript,
3664                                        getMethod, setMethod, RB);
3665}
3666
3667AtomicExpr::AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr,
3668                       QualType t, AtomicOp op, SourceLocation RP)
3669  : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
3670         false, false, false, false),
3671    NumSubExprs(nexpr), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
3672{
3673  assert(nexpr == getNumSubExprs(op) && "wrong number of subexpressions");
3674  for (unsigned i = 0; i < nexpr; i++) {
3675    if (args[i]->isTypeDependent())
3676      ExprBits.TypeDependent = true;
3677    if (args[i]->isValueDependent())
3678      ExprBits.ValueDependent = true;
3679    if (args[i]->isInstantiationDependent())
3680      ExprBits.InstantiationDependent = true;
3681    if (args[i]->containsUnexpandedParameterPack())
3682      ExprBits.ContainsUnexpandedParameterPack = true;
3683
3684    SubExprs[i] = args[i];
3685  }
3686}
3687
3688unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
3689  switch (Op) {
3690  case AO__c11_atomic_init:
3691  case AO__c11_atomic_load:
3692  case AO__atomic_load_n:
3693    return 2;
3694
3695  case AO__c11_atomic_store:
3696  case AO__c11_atomic_exchange:
3697  case AO__atomic_load:
3698  case AO__atomic_store:
3699  case AO__atomic_store_n:
3700  case AO__atomic_exchange_n:
3701  case AO__c11_atomic_fetch_add:
3702  case AO__c11_atomic_fetch_sub:
3703  case AO__c11_atomic_fetch_and:
3704  case AO__c11_atomic_fetch_or:
3705  case AO__c11_atomic_fetch_xor:
3706  case AO__atomic_fetch_add:
3707  case AO__atomic_fetch_sub:
3708  case AO__atomic_fetch_and:
3709  case AO__atomic_fetch_or:
3710  case AO__atomic_fetch_xor:
3711  case AO__atomic_fetch_nand:
3712  case AO__atomic_add_fetch:
3713  case AO__atomic_sub_fetch:
3714  case AO__atomic_and_fetch:
3715  case AO__atomic_or_fetch:
3716  case AO__atomic_xor_fetch:
3717  case AO__atomic_nand_fetch:
3718    return 3;
3719
3720  case AO__atomic_exchange:
3721    return 4;
3722
3723  case AO__c11_atomic_compare_exchange_strong:
3724  case AO__c11_atomic_compare_exchange_weak:
3725    return 5;
3726
3727  case AO__atomic_compare_exchange:
3728  case AO__atomic_compare_exchange_n:
3729    return 6;
3730  }
3731  llvm_unreachable("unknown atomic op");
3732}
3733