Expr.cpp revision 0da76df9218d7c27b471b0a4d83a5b29fe24e5b4
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// Primary Expressions.
32//===----------------------------------------------------------------------===//
33
34void ExplicitTemplateArgumentList::initializeFrom(
35                                      const TemplateArgumentListInfo &Info) {
36  LAngleLoc = Info.getLAngleLoc();
37  RAngleLoc = Info.getRAngleLoc();
38  NumTemplateArgs = Info.size();
39
40  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
41  for (unsigned i = 0; i != NumTemplateArgs; ++i)
42    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
43}
44
45void ExplicitTemplateArgumentList::copyInto(
46                                      TemplateArgumentListInfo &Info) const {
47  Info.setLAngleLoc(LAngleLoc);
48  Info.setRAngleLoc(RAngleLoc);
49  for (unsigned I = 0; I != NumTemplateArgs; ++I)
50    Info.addArgument(getTemplateArgs()[I]);
51}
52
53std::size_t ExplicitTemplateArgumentList::sizeFor(
54                                      const TemplateArgumentListInfo &Info) {
55  return sizeof(ExplicitTemplateArgumentList) +
56         sizeof(TemplateArgumentLoc) * Info.size();
57}
58
59void DeclRefExpr::computeDependence() {
60  TypeDependent = false;
61  ValueDependent = false;
62
63  NamedDecl *D = getDecl();
64
65  // (TD) C++ [temp.dep.expr]p3:
66  //   An id-expression is type-dependent if it contains:
67  //
68  // and
69  //
70  // (VD) C++ [temp.dep.constexpr]p2:
71  //  An identifier is value-dependent if it is:
72
73  //  (TD)  - an identifier that was declared with dependent type
74  //  (VD)  - a name declared with a dependent type,
75  if (getType()->isDependentType()) {
76    TypeDependent = true;
77    ValueDependent = true;
78  }
79  //  (TD)  - a conversion-function-id that specifies a dependent type
80  else if (D->getDeclName().getNameKind()
81                               == DeclarationName::CXXConversionFunctionName &&
82           D->getDeclName().getCXXNameType()->isDependentType()) {
83    TypeDependent = true;
84    ValueDependent = true;
85  }
86  //  (TD)  - a template-id that is dependent,
87  else if (hasExplicitTemplateArgumentList() &&
88           TemplateSpecializationType::anyDependentTemplateArguments(
89                                                       getTemplateArgs(),
90                                                       getNumTemplateArgs())) {
91    TypeDependent = true;
92    ValueDependent = true;
93  }
94  //  (VD)  - the name of a non-type template parameter,
95  else if (isa<NonTypeTemplateParmDecl>(D))
96    ValueDependent = true;
97  //  (VD) - a constant with integral or enumeration type and is
98  //         initialized with an expression that is value-dependent.
99  else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
100    if (Var->getType()->isIntegralType() &&
101        Var->getType().getCVRQualifiers() == Qualifiers::Const &&
102        Var->getInit() &&
103        Var->getInit()->isValueDependent())
104    ValueDependent = true;
105  }
106  //  (TD)  - a nested-name-specifier or a qualified-id that names a
107  //          member of an unknown specialization.
108  //        (handled by DependentScopeDeclRefExpr)
109}
110
111DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
112                         SourceRange QualifierRange,
113                         NamedDecl *D, SourceLocation NameLoc,
114                         const TemplateArgumentListInfo *TemplateArgs,
115                         QualType T)
116  : Expr(DeclRefExprClass, T, false, false),
117    DecoratedD(D,
118               (Qualifier? HasQualifierFlag : 0) |
119               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
120    Loc(NameLoc) {
121  assert(!isa<OverloadedFunctionDecl>(D));
122  if (Qualifier) {
123    NameQualifier *NQ = getNameQualifier();
124    NQ->NNS = Qualifier;
125    NQ->Range = QualifierRange;
126  }
127
128  if (TemplateArgs)
129    getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs);
130
131  computeDependence();
132}
133
134DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
135                                 NestedNameSpecifier *Qualifier,
136                                 SourceRange QualifierRange,
137                                 NamedDecl *D,
138                                 SourceLocation NameLoc,
139                                 QualType T,
140                                 const TemplateArgumentListInfo *TemplateArgs) {
141  std::size_t Size = sizeof(DeclRefExpr);
142  if (Qualifier != 0)
143    Size += sizeof(NameQualifier);
144
145  if (TemplateArgs)
146    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
147
148  void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
149  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc,
150                               TemplateArgs, T);
151}
152
153SourceRange DeclRefExpr::getSourceRange() const {
154  // FIXME: Does not handle multi-token names well, e.g., operator[].
155  SourceRange R(Loc);
156
157  if (hasQualifier())
158    R.setBegin(getQualifierRange().getBegin());
159  if (hasExplicitTemplateArgumentList())
160    R.setEnd(getRAngleLoc());
161  return R;
162}
163
164// FIXME: Maybe this should use DeclPrinter with a special "print predefined
165// expr" policy instead.
166std::string PredefinedExpr::ComputeName(ASTContext &Context, IdentType IT,
167                                        const Decl *CurrentDecl) {
168  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
169    if (IT != PrettyFunction)
170      return FD->getNameAsString();
171
172    llvm::SmallString<256> Name;
173    llvm::raw_svector_ostream Out(Name);
174
175    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
176      if (MD->isVirtual())
177        Out << "virtual ";
178    }
179
180    PrintingPolicy Policy(Context.getLangOptions());
181    Policy.SuppressTagKind = true;
182
183    std::string Proto = FD->getQualifiedNameAsString(Policy);
184
185    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
186    const FunctionProtoType *FT = 0;
187    if (FD->hasWrittenPrototype())
188      FT = dyn_cast<FunctionProtoType>(AFT);
189
190    Proto += "(";
191    if (FT) {
192      llvm::raw_string_ostream POut(Proto);
193      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
194        if (i) POut << ", ";
195        std::string Param;
196        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
197        POut << Param;
198      }
199
200      if (FT->isVariadic()) {
201        if (FD->getNumParams()) POut << ", ";
202        POut << "...";
203      }
204    }
205    Proto += ")";
206
207    AFT->getResultType().getAsStringInternal(Proto, Policy);
208
209    Out << Proto;
210
211    Out.flush();
212    return Name.str().str();
213  }
214  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
215    llvm::SmallString<256> Name;
216    llvm::raw_svector_ostream Out(Name);
217    Out << (MD->isInstanceMethod() ? '-' : '+');
218    Out << '[';
219    Out << MD->getClassInterface()->getNameAsString();
220    if (const ObjCCategoryImplDecl *CID =
221        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) {
222      Out << '(';
223      Out <<  CID->getNameAsString();
224      Out <<  ')';
225    }
226    Out <<  ' ';
227    Out << MD->getSelector().getAsString();
228    Out <<  ']';
229
230    Out.flush();
231    return Name.str().str();
232  }
233  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
234    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
235    return "top level";
236  }
237  return "";
238}
239
240/// getValueAsApproximateDouble - This returns the value as an inaccurate
241/// double.  Note that this may cause loss of precision, but is useful for
242/// debugging dumps, etc.
243double FloatingLiteral::getValueAsApproximateDouble() const {
244  llvm::APFloat V = getValue();
245  bool ignored;
246  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
247            &ignored);
248  return V.convertToDouble();
249}
250
251StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
252                                     unsigned ByteLength, bool Wide,
253                                     QualType Ty,
254                                     const SourceLocation *Loc,
255                                     unsigned NumStrs) {
256  // Allocate enough space for the StringLiteral plus an array of locations for
257  // any concatenated string tokens.
258  void *Mem = C.Allocate(sizeof(StringLiteral)+
259                         sizeof(SourceLocation)*(NumStrs-1),
260                         llvm::alignof<StringLiteral>());
261  StringLiteral *SL = new (Mem) StringLiteral(Ty);
262
263  // OPTIMIZE: could allocate this appended to the StringLiteral.
264  char *AStrData = new (C, 1) char[ByteLength];
265  memcpy(AStrData, StrData, ByteLength);
266  SL->StrData = AStrData;
267  SL->ByteLength = ByteLength;
268  SL->IsWide = Wide;
269  SL->TokLocs[0] = Loc[0];
270  SL->NumConcatenated = NumStrs;
271
272  if (NumStrs != 1)
273    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
274  return SL;
275}
276
277StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
278  void *Mem = C.Allocate(sizeof(StringLiteral)+
279                         sizeof(SourceLocation)*(NumStrs-1),
280                         llvm::alignof<StringLiteral>());
281  StringLiteral *SL = new (Mem) StringLiteral(QualType());
282  SL->StrData = 0;
283  SL->ByteLength = 0;
284  SL->NumConcatenated = NumStrs;
285  return SL;
286}
287
288void StringLiteral::DoDestroy(ASTContext &C) {
289  C.Deallocate(const_cast<char*>(StrData));
290  Expr::DoDestroy(C);
291}
292
293void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
294  if (StrData)
295    C.Deallocate(const_cast<char*>(StrData));
296
297  char *AStrData = new (C, 1) char[Str.size()];
298  memcpy(AStrData, Str.data(), Str.size());
299  StrData = AStrData;
300  ByteLength = Str.size();
301}
302
303/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
304/// corresponds to, e.g. "sizeof" or "[pre]++".
305const char *UnaryOperator::getOpcodeStr(Opcode Op) {
306  switch (Op) {
307  default: assert(0 && "Unknown unary operator");
308  case PostInc: return "++";
309  case PostDec: return "--";
310  case PreInc:  return "++";
311  case PreDec:  return "--";
312  case AddrOf:  return "&";
313  case Deref:   return "*";
314  case Plus:    return "+";
315  case Minus:   return "-";
316  case Not:     return "~";
317  case LNot:    return "!";
318  case Real:    return "__real";
319  case Imag:    return "__imag";
320  case Extension: return "__extension__";
321  case OffsetOf: return "__builtin_offsetof";
322  }
323}
324
325UnaryOperator::Opcode
326UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
327  switch (OO) {
328  default: assert(false && "No unary operator for overloaded function");
329  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
330  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
331  case OO_Amp:        return AddrOf;
332  case OO_Star:       return Deref;
333  case OO_Plus:       return Plus;
334  case OO_Minus:      return Minus;
335  case OO_Tilde:      return Not;
336  case OO_Exclaim:    return LNot;
337  }
338}
339
340OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
341  switch (Opc) {
342  case PostInc: case PreInc: return OO_PlusPlus;
343  case PostDec: case PreDec: return OO_MinusMinus;
344  case AddrOf: return OO_Amp;
345  case Deref: return OO_Star;
346  case Plus: return OO_Plus;
347  case Minus: return OO_Minus;
348  case Not: return OO_Tilde;
349  case LNot: return OO_Exclaim;
350  default: return OO_None;
351  }
352}
353
354
355//===----------------------------------------------------------------------===//
356// Postfix Operators.
357//===----------------------------------------------------------------------===//
358
359CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
360                   unsigned numargs, QualType t, SourceLocation rparenloc)
361  : Expr(SC, t,
362         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
363         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
364    NumArgs(numargs) {
365
366  SubExprs = new (C) Stmt*[numargs+1];
367  SubExprs[FN] = fn;
368  for (unsigned i = 0; i != numargs; ++i)
369    SubExprs[i+ARGS_START] = args[i];
370
371  RParenLoc = rparenloc;
372}
373
374CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
375                   QualType t, SourceLocation rparenloc)
376  : Expr(CallExprClass, t,
377         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
378         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
379    NumArgs(numargs) {
380
381  SubExprs = new (C) Stmt*[numargs+1];
382  SubExprs[FN] = fn;
383  for (unsigned i = 0; i != numargs; ++i)
384    SubExprs[i+ARGS_START] = args[i];
385
386  RParenLoc = rparenloc;
387}
388
389CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
390  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
391  SubExprs = new (C) Stmt*[1];
392}
393
394void CallExpr::DoDestroy(ASTContext& C) {
395  DestroyChildren(C);
396  if (SubExprs) C.Deallocate(SubExprs);
397  this->~CallExpr();
398  C.Deallocate(this);
399}
400
401FunctionDecl *CallExpr::getDirectCallee() {
402  Expr *CEE = getCallee()->IgnoreParenCasts();
403  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
404    return dyn_cast<FunctionDecl>(DRE->getDecl());
405
406  return 0;
407}
408
409/// setNumArgs - This changes the number of arguments present in this call.
410/// Any orphaned expressions are deleted by this, and any new operands are set
411/// to null.
412void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
413  // No change, just return.
414  if (NumArgs == getNumArgs()) return;
415
416  // If shrinking # arguments, just delete the extras and forgot them.
417  if (NumArgs < getNumArgs()) {
418    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
419      getArg(i)->Destroy(C);
420    this->NumArgs = NumArgs;
421    return;
422  }
423
424  // Otherwise, we are growing the # arguments.  New an bigger argument array.
425  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
426  // Copy over args.
427  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
428    NewSubExprs[i] = SubExprs[i];
429  // Null out new args.
430  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
431    NewSubExprs[i] = 0;
432
433  if (SubExprs) C.Deallocate(SubExprs);
434  SubExprs = NewSubExprs;
435  this->NumArgs = NumArgs;
436}
437
438/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
439/// not, return 0.
440unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
441  // All simple function calls (e.g. func()) are implicitly cast to pointer to
442  // function. As a result, we try and obtain the DeclRefExpr from the
443  // ImplicitCastExpr.
444  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
445  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
446    return 0;
447
448  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
449  if (!DRE)
450    return 0;
451
452  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
453  if (!FDecl)
454    return 0;
455
456  if (!FDecl->getIdentifier())
457    return 0;
458
459  return FDecl->getBuiltinID();
460}
461
462QualType CallExpr::getCallReturnType() const {
463  QualType CalleeType = getCallee()->getType();
464  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
465    CalleeType = FnTypePtr->getPointeeType();
466  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
467    CalleeType = BPT->getPointeeType();
468
469  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
470  return FnType->getResultType();
471}
472
473MemberExpr::MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
474                       SourceRange qualrange, NamedDecl *memberdecl,
475                       SourceLocation l, const TemplateArgumentListInfo *targs,
476                       QualType ty)
477  : Expr(MemberExprClass, ty,
478         base->isTypeDependent() || (qual && qual->isDependent()),
479         base->isValueDependent() || (qual && qual->isDependent())),
480    Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
481    HasQualifier(qual != 0), HasExplicitTemplateArgumentList(targs) {
482  // Initialize the qualifier, if any.
483  if (HasQualifier) {
484    NameQualifier *NQ = getMemberQualifier();
485    NQ->NNS = qual;
486    NQ->Range = qualrange;
487  }
488
489  // Initialize the explicit template argument list, if any.
490  if (targs)
491    getExplicitTemplateArgumentList()->initializeFrom(*targs);
492}
493
494MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
495                               NestedNameSpecifier *qual,
496                               SourceRange qualrange,
497                               NamedDecl *memberdecl,
498                               SourceLocation l,
499                               const TemplateArgumentListInfo *targs,
500                               QualType ty) {
501  std::size_t Size = sizeof(MemberExpr);
502  if (qual != 0)
503    Size += sizeof(NameQualifier);
504
505  if (targs)
506    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
507
508  void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>());
509  return new (Mem) MemberExpr(base, isarrow, qual, qualrange, memberdecl, l,
510                              targs, ty);
511}
512
513const char *CastExpr::getCastKindName() const {
514  switch (getCastKind()) {
515  case CastExpr::CK_Unknown:
516    return "Unknown";
517  case CastExpr::CK_BitCast:
518    return "BitCast";
519  case CastExpr::CK_NoOp:
520    return "NoOp";
521  case CastExpr::CK_BaseToDerived:
522    return "BaseToDerived";
523  case CastExpr::CK_DerivedToBase:
524    return "DerivedToBase";
525  case CastExpr::CK_Dynamic:
526    return "Dynamic";
527  case CastExpr::CK_ToUnion:
528    return "ToUnion";
529  case CastExpr::CK_ArrayToPointerDecay:
530    return "ArrayToPointerDecay";
531  case CastExpr::CK_FunctionToPointerDecay:
532    return "FunctionToPointerDecay";
533  case CastExpr::CK_NullToMemberPointer:
534    return "NullToMemberPointer";
535  case CastExpr::CK_BaseToDerivedMemberPointer:
536    return "BaseToDerivedMemberPointer";
537  case CastExpr::CK_DerivedToBaseMemberPointer:
538    return "DerivedToBaseMemberPointer";
539  case CastExpr::CK_UserDefinedConversion:
540    return "UserDefinedConversion";
541  case CastExpr::CK_ConstructorConversion:
542    return "ConstructorConversion";
543  case CastExpr::CK_IntegralToPointer:
544    return "IntegralToPointer";
545  case CastExpr::CK_PointerToIntegral:
546    return "PointerToIntegral";
547  case CastExpr::CK_ToVoid:
548    return "ToVoid";
549  case CastExpr::CK_VectorSplat:
550    return "VectorSplat";
551  case CastExpr::CK_IntegralCast:
552    return "IntegralCast";
553  case CastExpr::CK_IntegralToFloating:
554    return "IntegralToFloating";
555  case CastExpr::CK_FloatingToIntegral:
556    return "FloatingToIntegral";
557  case CastExpr::CK_FloatingCast:
558    return "FloatingCast";
559  }
560
561  assert(0 && "Unhandled cast kind!");
562  return 0;
563}
564
565/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
566/// corresponds to, e.g. "<<=".
567const char *BinaryOperator::getOpcodeStr(Opcode Op) {
568  switch (Op) {
569  case PtrMemD:   return ".*";
570  case PtrMemI:   return "->*";
571  case Mul:       return "*";
572  case Div:       return "/";
573  case Rem:       return "%";
574  case Add:       return "+";
575  case Sub:       return "-";
576  case Shl:       return "<<";
577  case Shr:       return ">>";
578  case LT:        return "<";
579  case GT:        return ">";
580  case LE:        return "<=";
581  case GE:        return ">=";
582  case EQ:        return "==";
583  case NE:        return "!=";
584  case And:       return "&";
585  case Xor:       return "^";
586  case Or:        return "|";
587  case LAnd:      return "&&";
588  case LOr:       return "||";
589  case Assign:    return "=";
590  case MulAssign: return "*=";
591  case DivAssign: return "/=";
592  case RemAssign: return "%=";
593  case AddAssign: return "+=";
594  case SubAssign: return "-=";
595  case ShlAssign: return "<<=";
596  case ShrAssign: return ">>=";
597  case AndAssign: return "&=";
598  case XorAssign: return "^=";
599  case OrAssign:  return "|=";
600  case Comma:     return ",";
601  }
602
603  return "";
604}
605
606BinaryOperator::Opcode
607BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
608  switch (OO) {
609  default: assert(false && "Not an overloadable binary operator");
610  case OO_Plus: return Add;
611  case OO_Minus: return Sub;
612  case OO_Star: return Mul;
613  case OO_Slash: return Div;
614  case OO_Percent: return Rem;
615  case OO_Caret: return Xor;
616  case OO_Amp: return And;
617  case OO_Pipe: return Or;
618  case OO_Equal: return Assign;
619  case OO_Less: return LT;
620  case OO_Greater: return GT;
621  case OO_PlusEqual: return AddAssign;
622  case OO_MinusEqual: return SubAssign;
623  case OO_StarEqual: return MulAssign;
624  case OO_SlashEqual: return DivAssign;
625  case OO_PercentEqual: return RemAssign;
626  case OO_CaretEqual: return XorAssign;
627  case OO_AmpEqual: return AndAssign;
628  case OO_PipeEqual: return OrAssign;
629  case OO_LessLess: return Shl;
630  case OO_GreaterGreater: return Shr;
631  case OO_LessLessEqual: return ShlAssign;
632  case OO_GreaterGreaterEqual: return ShrAssign;
633  case OO_EqualEqual: return EQ;
634  case OO_ExclaimEqual: return NE;
635  case OO_LessEqual: return LE;
636  case OO_GreaterEqual: return GE;
637  case OO_AmpAmp: return LAnd;
638  case OO_PipePipe: return LOr;
639  case OO_Comma: return Comma;
640  case OO_ArrowStar: return PtrMemI;
641  }
642}
643
644OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
645  static const OverloadedOperatorKind OverOps[] = {
646    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
647    OO_Star, OO_Slash, OO_Percent,
648    OO_Plus, OO_Minus,
649    OO_LessLess, OO_GreaterGreater,
650    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
651    OO_EqualEqual, OO_ExclaimEqual,
652    OO_Amp,
653    OO_Caret,
654    OO_Pipe,
655    OO_AmpAmp,
656    OO_PipePipe,
657    OO_Equal, OO_StarEqual,
658    OO_SlashEqual, OO_PercentEqual,
659    OO_PlusEqual, OO_MinusEqual,
660    OO_LessLessEqual, OO_GreaterGreaterEqual,
661    OO_AmpEqual, OO_CaretEqual,
662    OO_PipeEqual,
663    OO_Comma
664  };
665  return OverOps[Opc];
666}
667
668InitListExpr::InitListExpr(SourceLocation lbraceloc,
669                           Expr **initExprs, unsigned numInits,
670                           SourceLocation rbraceloc)
671  : Expr(InitListExprClass, QualType(), false, false),
672    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
673    UnionFieldInit(0), HadArrayRangeDesignator(false)
674{
675  for (unsigned I = 0; I != numInits; ++I) {
676    if (initExprs[I]->isTypeDependent())
677      TypeDependent = true;
678    if (initExprs[I]->isValueDependent())
679      ValueDependent = true;
680  }
681
682  InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
683}
684
685void InitListExpr::reserveInits(unsigned NumInits) {
686  if (NumInits > InitExprs.size())
687    InitExprs.reserve(NumInits);
688}
689
690void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) {
691  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
692       Idx < LastIdx; ++Idx)
693    InitExprs[Idx]->Destroy(Context);
694  InitExprs.resize(NumInits, 0);
695}
696
697Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
698  if (Init >= InitExprs.size()) {
699    InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0);
700    InitExprs.back() = expr;
701    return 0;
702  }
703
704  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
705  InitExprs[Init] = expr;
706  return Result;
707}
708
709/// getFunctionType - Return the underlying function type for this block.
710///
711const FunctionType *BlockExpr::getFunctionType() const {
712  return getType()->getAs<BlockPointerType>()->
713                    getPointeeType()->getAs<FunctionType>();
714}
715
716SourceLocation BlockExpr::getCaretLocation() const {
717  return TheBlock->getCaretLocation();
718}
719const Stmt *BlockExpr::getBody() const {
720  return TheBlock->getBody();
721}
722Stmt *BlockExpr::getBody() {
723  return TheBlock->getBody();
724}
725
726
727//===----------------------------------------------------------------------===//
728// Generic Expression Routines
729//===----------------------------------------------------------------------===//
730
731/// isUnusedResultAWarning - Return true if this immediate expression should
732/// be warned about if the result is unused.  If so, fill in Loc and Ranges
733/// with location to warn on and the source range[s] to report with the
734/// warning.
735bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
736                                  SourceRange &R2, ASTContext &Ctx) const {
737  // Don't warn if the expr is type dependent. The type could end up
738  // instantiating to void.
739  if (isTypeDependent())
740    return false;
741
742  switch (getStmtClass()) {
743  default:
744    Loc = getExprLoc();
745    R1 = getSourceRange();
746    return true;
747  case ParenExprClass:
748    return cast<ParenExpr>(this)->getSubExpr()->
749      isUnusedResultAWarning(Loc, R1, R2, Ctx);
750  case UnaryOperatorClass: {
751    const UnaryOperator *UO = cast<UnaryOperator>(this);
752
753    switch (UO->getOpcode()) {
754    default: break;
755    case UnaryOperator::PostInc:
756    case UnaryOperator::PostDec:
757    case UnaryOperator::PreInc:
758    case UnaryOperator::PreDec:                 // ++/--
759      return false;  // Not a warning.
760    case UnaryOperator::Deref:
761      // Dereferencing a volatile pointer is a side-effect.
762      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
763        return false;
764      break;
765    case UnaryOperator::Real:
766    case UnaryOperator::Imag:
767      // accessing a piece of a volatile complex is a side-effect.
768      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
769          .isVolatileQualified())
770        return false;
771      break;
772    case UnaryOperator::Extension:
773      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
774    }
775    Loc = UO->getOperatorLoc();
776    R1 = UO->getSubExpr()->getSourceRange();
777    return true;
778  }
779  case BinaryOperatorClass: {
780    const BinaryOperator *BO = cast<BinaryOperator>(this);
781    // Consider comma to have side effects if the LHS or RHS does.
782    if (BO->getOpcode() == BinaryOperator::Comma)
783      return (BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
784              BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
785
786    if (BO->isAssignmentOp())
787      return false;
788    Loc = BO->getOperatorLoc();
789    R1 = BO->getLHS()->getSourceRange();
790    R2 = BO->getRHS()->getSourceRange();
791    return true;
792  }
793  case CompoundAssignOperatorClass:
794    return false;
795
796  case ConditionalOperatorClass: {
797    // The condition must be evaluated, but if either the LHS or RHS is a
798    // warning, warn about them.
799    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
800    if (Exp->getLHS() &&
801        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
802      return true;
803    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
804  }
805
806  case MemberExprClass:
807    // If the base pointer or element is to a volatile pointer/field, accessing
808    // it is a side effect.
809    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
810      return false;
811    Loc = cast<MemberExpr>(this)->getMemberLoc();
812    R1 = SourceRange(Loc, Loc);
813    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
814    return true;
815
816  case ArraySubscriptExprClass:
817    // If the base pointer or element is to a volatile pointer/field, accessing
818    // it is a side effect.
819    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
820      return false;
821    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
822    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
823    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
824    return true;
825
826  case CallExprClass:
827  case CXXOperatorCallExprClass:
828  case CXXMemberCallExprClass: {
829    // If this is a direct call, get the callee.
830    const CallExpr *CE = cast<CallExpr>(this);
831    if (const FunctionDecl *FD = CE->getDirectCallee()) {
832      // If the callee has attribute pure, const, or warn_unused_result, warn
833      // about it. void foo() { strlen("bar"); } should warn.
834      //
835      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
836      // updated to match for QoI.
837      if (FD->getAttr<WarnUnusedResultAttr>() ||
838          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
839        Loc = CE->getCallee()->getLocStart();
840        R1 = CE->getCallee()->getSourceRange();
841
842        if (unsigned NumArgs = CE->getNumArgs())
843          R2 = SourceRange(CE->getArg(0)->getLocStart(),
844                           CE->getArg(NumArgs-1)->getLocEnd());
845        return true;
846      }
847    }
848    return false;
849  }
850
851  case CXXTemporaryObjectExprClass:
852  case CXXConstructExprClass:
853    return false;
854
855  case ObjCMessageExprClass:
856    return false;
857
858  case ObjCImplicitSetterGetterRefExprClass: {   // Dot syntax for message send.
859#if 0
860    const ObjCImplicitSetterGetterRefExpr *Ref =
861      cast<ObjCImplicitSetterGetterRefExpr>(this);
862    // FIXME: We really want the location of the '.' here.
863    Loc = Ref->getLocation();
864    R1 = SourceRange(Ref->getLocation(), Ref->getLocation());
865    if (Ref->getBase())
866      R2 = Ref->getBase()->getSourceRange();
867#else
868    Loc = getExprLoc();
869    R1 = getSourceRange();
870#endif
871    return true;
872  }
873  case StmtExprClass: {
874    // Statement exprs don't logically have side effects themselves, but are
875    // sometimes used in macros in ways that give them a type that is unused.
876    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
877    // however, if the result of the stmt expr is dead, we don't want to emit a
878    // warning.
879    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
880    if (!CS->body_empty())
881      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
882        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
883
884    Loc = cast<StmtExpr>(this)->getLParenLoc();
885    R1 = getSourceRange();
886    return true;
887  }
888  case CStyleCastExprClass:
889    // If this is an explicit cast to void, allow it.  People do this when they
890    // think they know what they're doing :).
891    if (getType()->isVoidType())
892      return false;
893    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
894    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
895    return true;
896  case CXXFunctionalCastExprClass: {
897    const CastExpr *CE = cast<CastExpr>(this);
898
899    // If this is a cast to void or a constructor conversion, check the operand.
900    // Otherwise, the result of the cast is unused.
901    if (CE->getCastKind() == CastExpr::CK_ToVoid ||
902        CE->getCastKind() == CastExpr::CK_ConstructorConversion)
903      return (cast<CastExpr>(this)->getSubExpr()
904              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
905    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
906    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
907    return true;
908  }
909
910  case ImplicitCastExprClass:
911    // Check the operand, since implicit casts are inserted by Sema
912    return (cast<ImplicitCastExpr>(this)
913            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
914
915  case CXXDefaultArgExprClass:
916    return (cast<CXXDefaultArgExpr>(this)
917            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
918
919  case CXXNewExprClass:
920    // FIXME: In theory, there might be new expressions that don't have side
921    // effects (e.g. a placement new with an uninitialized POD).
922  case CXXDeleteExprClass:
923    return false;
924  case CXXBindTemporaryExprClass:
925    return (cast<CXXBindTemporaryExpr>(this)
926            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
927  case CXXExprWithTemporariesClass:
928    return (cast<CXXExprWithTemporaries>(this)
929            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
930  }
931}
932
933/// DeclCanBeLvalue - Determine whether the given declaration can be
934/// an lvalue. This is a helper routine for isLvalue.
935static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
936  // C++ [temp.param]p6:
937  //   A non-type non-reference template-parameter is not an lvalue.
938  if (const NonTypeTemplateParmDecl *NTTParm
939        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
940    return NTTParm->getType()->isReferenceType();
941
942  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
943    // C++ 3.10p2: An lvalue refers to an object or function.
944    (Ctx.getLangOptions().CPlusPlus &&
945     (isa<FunctionDecl>(Decl) || isa<OverloadedFunctionDecl>(Decl) ||
946      isa<FunctionTemplateDecl>(Decl)));
947}
948
949/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
950/// incomplete type other than void. Nonarray expressions that can be lvalues:
951///  - name, where name must be a variable
952///  - e[i]
953///  - (e), where e must be an lvalue
954///  - e.name, where e must be an lvalue
955///  - e->name
956///  - *e, the type of e cannot be a function type
957///  - string-constant
958///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
959///  - reference type [C++ [expr]]
960///
961Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
962  assert(!TR->isReferenceType() && "Expressions can't have reference type.");
963
964  isLvalueResult Res = isLvalueInternal(Ctx);
965  if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
966    return Res;
967
968  // first, check the type (C99 6.3.2.1). Expressions with function
969  // type in C are not lvalues, but they can be lvalues in C++.
970  if (TR->isFunctionType() || TR == Ctx.OverloadTy)
971    return LV_NotObjectType;
972
973  // Allow qualified void which is an incomplete type other than void (yuck).
974  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers())
975    return LV_IncompleteVoidType;
976
977  return LV_Valid;
978}
979
980// Check whether the expression can be sanely treated like an l-value
981Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
982  switch (getStmtClass()) {
983  case StringLiteralClass:  // C99 6.5.1p4
984  case ObjCEncodeExprClass: // @encode behaves like its string in every way.
985    return LV_Valid;
986  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
987    // For vectors, make sure base is an lvalue (i.e. not a function call).
988    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
989      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
990    return LV_Valid;
991  case DeclRefExprClass: { // C99 6.5.1p2
992    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
993    if (DeclCanBeLvalue(RefdDecl, Ctx))
994      return LV_Valid;
995    break;
996  }
997  case BlockDeclRefExprClass: {
998    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
999    if (isa<VarDecl>(BDR->getDecl()))
1000      return LV_Valid;
1001    break;
1002  }
1003  case MemberExprClass: {
1004    const MemberExpr *m = cast<MemberExpr>(this);
1005    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
1006      NamedDecl *Member = m->getMemberDecl();
1007      // C++ [expr.ref]p4:
1008      //   If E2 is declared to have type "reference to T", then E1.E2
1009      //   is an lvalue.
1010      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
1011        if (Value->getType()->isReferenceType())
1012          return LV_Valid;
1013
1014      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
1015      if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
1016        return LV_Valid;
1017
1018      //   -- If E2 is a non-static data member [...]. If E1 is an
1019      //      lvalue, then E1.E2 is an lvalue.
1020      if (isa<FieldDecl>(Member))
1021        return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
1022
1023      //   -- If it refers to a static member function [...], then
1024      //      E1.E2 is an lvalue.
1025      //   -- Otherwise, if E1.E2 refers to a non-static member
1026      //      function [...], then E1.E2 is not an lvalue.
1027      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
1028        return Method->isStatic()? LV_Valid : LV_MemberFunction;
1029
1030      //   -- If E2 is a member enumerator [...], the expression E1.E2
1031      //      is not an lvalue.
1032      if (isa<EnumConstantDecl>(Member))
1033        return LV_InvalidExpression;
1034
1035        // Not an lvalue.
1036      return LV_InvalidExpression;
1037    }
1038
1039    // C99 6.5.2.3p4
1040    return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
1041  }
1042  case UnaryOperatorClass:
1043    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
1044      return LV_Valid; // C99 6.5.3p4
1045
1046    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
1047        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
1048        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
1049      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
1050
1051    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
1052        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
1053         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
1054      return LV_Valid;
1055    break;
1056  case ImplicitCastExprClass:
1057    return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid
1058                                                       : LV_InvalidExpression;
1059  case ParenExprClass: // C99 6.5.1p5
1060    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
1061  case BinaryOperatorClass:
1062  case CompoundAssignOperatorClass: {
1063    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
1064
1065    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
1066        BinOp->getOpcode() == BinaryOperator::Comma)
1067      return BinOp->getRHS()->isLvalue(Ctx);
1068
1069    // C++ [expr.mptr.oper]p6
1070    // The result of a .* expression is an lvalue only if its first operand is
1071    // an lvalue and its second operand is a pointer to data member.
1072    if (BinOp->getOpcode() == BinaryOperator::PtrMemD &&
1073        !BinOp->getType()->isFunctionType())
1074      return BinOp->getLHS()->isLvalue(Ctx);
1075
1076    // The result of an ->* expression is an lvalue only if its second operand
1077    // is a pointer to data member.
1078    if (BinOp->getOpcode() == BinaryOperator::PtrMemI &&
1079        !BinOp->getType()->isFunctionType()) {
1080      QualType Ty = BinOp->getRHS()->getType();
1081      if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType())
1082        return LV_Valid;
1083    }
1084
1085    if (!BinOp->isAssignmentOp())
1086      return LV_InvalidExpression;
1087
1088    if (Ctx.getLangOptions().CPlusPlus)
1089      // C++ [expr.ass]p1:
1090      //   The result of an assignment operation [...] is an lvalue.
1091      return LV_Valid;
1092
1093
1094    // C99 6.5.16:
1095    //   An assignment expression [...] is not an lvalue.
1096    return LV_InvalidExpression;
1097  }
1098  case CallExprClass:
1099  case CXXOperatorCallExprClass:
1100  case CXXMemberCallExprClass: {
1101    // C++0x [expr.call]p10
1102    //   A function call is an lvalue if and only if the result type
1103    //   is an lvalue reference.
1104    QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
1105    if (ReturnType->isLValueReferenceType())
1106      return LV_Valid;
1107
1108    break;
1109  }
1110  case CompoundLiteralExprClass: // C99 6.5.2.5p5
1111    return LV_Valid;
1112  case ChooseExprClass:
1113    // __builtin_choose_expr is an lvalue if the selected operand is.
1114    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
1115  case ExtVectorElementExprClass:
1116    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
1117      return LV_DuplicateVectorComponents;
1118    return LV_Valid;
1119  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
1120    return LV_Valid;
1121  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
1122    return LV_Valid;
1123  case ObjCImplicitSetterGetterRefExprClass: // FIXME: check if read-only property.
1124    return LV_Valid;
1125  case PredefinedExprClass:
1126    return LV_Valid;
1127  case UnresolvedLookupExprClass:
1128    return LV_Valid;
1129  case CXXDefaultArgExprClass:
1130    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
1131  case CXXConditionDeclExprClass:
1132    return LV_Valid;
1133  case CStyleCastExprClass:
1134  case CXXFunctionalCastExprClass:
1135  case CXXStaticCastExprClass:
1136  case CXXDynamicCastExprClass:
1137  case CXXReinterpretCastExprClass:
1138  case CXXConstCastExprClass:
1139    // The result of an explicit cast is an lvalue if the type we are
1140    // casting to is an lvalue reference type. See C++ [expr.cast]p1,
1141    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
1142    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
1143    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
1144          isLValueReferenceType())
1145      return LV_Valid;
1146    break;
1147  case CXXTypeidExprClass:
1148    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
1149    return LV_Valid;
1150  case CXXBindTemporaryExprClass:
1151    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()->
1152      isLvalueInternal(Ctx);
1153  case ConditionalOperatorClass: {
1154    // Complicated handling is only for C++.
1155    if (!Ctx.getLangOptions().CPlusPlus)
1156      return LV_InvalidExpression;
1157
1158    // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
1159    // everywhere there's an object converted to an rvalue. Also, any other
1160    // casts should be wrapped by ImplicitCastExprs. There's just the special
1161    // case involving throws to work out.
1162    const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
1163    Expr *True = Cond->getTrueExpr();
1164    Expr *False = Cond->getFalseExpr();
1165    // C++0x 5.16p2
1166    //   If either the second or the third operand has type (cv) void, [...]
1167    //   the result [...] is an rvalue.
1168    if (True->getType()->isVoidType() || False->getType()->isVoidType())
1169      return LV_InvalidExpression;
1170
1171    // Both sides must be lvalues for the result to be an lvalue.
1172    if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
1173      return LV_InvalidExpression;
1174
1175    // That's it.
1176    return LV_Valid;
1177  }
1178
1179  case TemplateIdRefExprClass: {
1180    const TemplateIdRefExpr *TID = cast<TemplateIdRefExpr>(this);
1181    TemplateName Template = TID->getTemplateName();
1182    NamedDecl *ND = Template.getAsTemplateDecl();
1183    if (!ND)
1184      ND = Template.getAsOverloadedFunctionDecl();
1185    if (ND && DeclCanBeLvalue(ND, Ctx))
1186      return LV_Valid;
1187
1188    break;
1189  }
1190
1191  default:
1192    break;
1193  }
1194  return LV_InvalidExpression;
1195}
1196
1197/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
1198/// does not have an incomplete type, does not have a const-qualified type, and
1199/// if it is a structure or union, does not have any member (including,
1200/// recursively, any member or element of all contained aggregates or unions)
1201/// with a const-qualified type.
1202Expr::isModifiableLvalueResult
1203Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
1204  isLvalueResult lvalResult = isLvalue(Ctx);
1205
1206  switch (lvalResult) {
1207  case LV_Valid:
1208    // C++ 3.10p11: Functions cannot be modified, but pointers to
1209    // functions can be modifiable.
1210    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
1211      return MLV_NotObjectType;
1212    break;
1213
1214  case LV_NotObjectType: return MLV_NotObjectType;
1215  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
1216  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
1217  case LV_InvalidExpression:
1218    // If the top level is a C-style cast, and the subexpression is a valid
1219    // lvalue, then this is probably a use of the old-school "cast as lvalue"
1220    // GCC extension.  We don't support it, but we want to produce good
1221    // diagnostics when it happens so that the user knows why.
1222    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
1223      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
1224        if (Loc)
1225          *Loc = CE->getLParenLoc();
1226        return MLV_LValueCast;
1227      }
1228    }
1229    return MLV_InvalidExpression;
1230  case LV_MemberFunction: return MLV_MemberFunction;
1231  }
1232
1233  // The following is illegal:
1234  //   void takeclosure(void (^C)(void));
1235  //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
1236  //
1237  if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) {
1238    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
1239      return MLV_NotBlockQualified;
1240  }
1241
1242  // Assigning to an 'implicit' property?
1243  if (const ObjCImplicitSetterGetterRefExpr* Expr =
1244        dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) {
1245    if (Expr->getSetterMethod() == 0)
1246      return MLV_NoSetterProperty;
1247  }
1248
1249  QualType CT = Ctx.getCanonicalType(getType());
1250
1251  if (CT.isConstQualified())
1252    return MLV_ConstQualified;
1253  if (CT->isArrayType())
1254    return MLV_ArrayType;
1255  if (CT->isIncompleteType())
1256    return MLV_IncompleteType;
1257
1258  if (const RecordType *r = CT->getAs<RecordType>()) {
1259    if (r->hasConstFields())
1260      return MLV_ConstQualified;
1261  }
1262
1263  return MLV_Valid;
1264}
1265
1266/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1267/// returns true, if it is; false otherwise.
1268bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1269  switch (getStmtClass()) {
1270  default:
1271    return false;
1272  case ObjCIvarRefExprClass:
1273    return true;
1274  case Expr::UnaryOperatorClass:
1275    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1276  case ParenExprClass:
1277    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1278  case ImplicitCastExprClass:
1279    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1280  case CStyleCastExprClass:
1281    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1282  case DeclRefExprClass: {
1283    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1284    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1285      if (VD->hasGlobalStorage())
1286        return true;
1287      QualType T = VD->getType();
1288      // dereferencing to a  pointer is always a gc'able candidate,
1289      // unless it is __weak.
1290      return T->isPointerType() &&
1291             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1292    }
1293    return false;
1294  }
1295  case MemberExprClass: {
1296    const MemberExpr *M = cast<MemberExpr>(this);
1297    return M->getBase()->isOBJCGCCandidate(Ctx);
1298  }
1299  case ArraySubscriptExprClass:
1300    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1301  }
1302}
1303Expr* Expr::IgnoreParens() {
1304  Expr* E = this;
1305  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
1306    E = P->getSubExpr();
1307
1308  return E;
1309}
1310
1311/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1312/// or CastExprs or ImplicitCastExprs, returning their operand.
1313Expr *Expr::IgnoreParenCasts() {
1314  Expr *E = this;
1315  while (true) {
1316    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1317      E = P->getSubExpr();
1318    else if (CastExpr *P = dyn_cast<CastExpr>(E))
1319      E = P->getSubExpr();
1320    else
1321      return E;
1322  }
1323}
1324
1325/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1326/// value (including ptr->int casts of the same size).  Strip off any
1327/// ParenExpr or CastExprs, returning their operand.
1328Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1329  Expr *E = this;
1330  while (true) {
1331    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1332      E = P->getSubExpr();
1333      continue;
1334    }
1335
1336    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1337      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1338      // ptr<->int casts of the same width.  We also ignore all identify casts.
1339      Expr *SE = P->getSubExpr();
1340
1341      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1342        E = SE;
1343        continue;
1344      }
1345
1346      if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
1347          (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
1348          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1349        E = SE;
1350        continue;
1351      }
1352    }
1353
1354    return E;
1355  }
1356}
1357
1358
1359/// hasAnyTypeDependentArguments - Determines if any of the expressions
1360/// in Exprs is type-dependent.
1361bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1362  for (unsigned I = 0; I < NumExprs; ++I)
1363    if (Exprs[I]->isTypeDependent())
1364      return true;
1365
1366  return false;
1367}
1368
1369/// hasAnyValueDependentArguments - Determines if any of the expressions
1370/// in Exprs is value-dependent.
1371bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1372  for (unsigned I = 0; I < NumExprs; ++I)
1373    if (Exprs[I]->isValueDependent())
1374      return true;
1375
1376  return false;
1377}
1378
1379bool Expr::isConstantInitializer(ASTContext &Ctx) const {
1380  // This function is attempting whether an expression is an initializer
1381  // which can be evaluated at compile-time.  isEvaluatable handles most
1382  // of the cases, but it can't deal with some initializer-specific
1383  // expressions, and it can't deal with aggregates; we deal with those here,
1384  // and fall back to isEvaluatable for the other cases.
1385
1386  // FIXME: This function assumes the variable being assigned to
1387  // isn't a reference type!
1388
1389  switch (getStmtClass()) {
1390  default: break;
1391  case StringLiteralClass:
1392  case ObjCStringLiteralClass:
1393  case ObjCEncodeExprClass:
1394    return true;
1395  case CompoundLiteralExprClass: {
1396    // This handles gcc's extension that allows global initializers like
1397    // "struct x {int x;} x = (struct x) {};".
1398    // FIXME: This accepts other cases it shouldn't!
1399    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1400    return Exp->isConstantInitializer(Ctx);
1401  }
1402  case InitListExprClass: {
1403    // FIXME: This doesn't deal with fields with reference types correctly.
1404    // FIXME: This incorrectly allows pointers cast to integers to be assigned
1405    // to bitfields.
1406    const InitListExpr *Exp = cast<InitListExpr>(this);
1407    unsigned numInits = Exp->getNumInits();
1408    for (unsigned i = 0; i < numInits; i++) {
1409      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
1410        return false;
1411    }
1412    return true;
1413  }
1414  case ImplicitValueInitExprClass:
1415    return true;
1416  case ParenExprClass:
1417    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1418  case UnaryOperatorClass: {
1419    const UnaryOperator* Exp = cast<UnaryOperator>(this);
1420    if (Exp->getOpcode() == UnaryOperator::Extension)
1421      return Exp->getSubExpr()->isConstantInitializer(Ctx);
1422    break;
1423  }
1424  case BinaryOperatorClass: {
1425    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
1426    // but this handles the common case.
1427    const BinaryOperator *Exp = cast<BinaryOperator>(this);
1428    if (Exp->getOpcode() == BinaryOperator::Sub &&
1429        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
1430        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
1431      return true;
1432    break;
1433  }
1434  case ImplicitCastExprClass:
1435  case CStyleCastExprClass:
1436    // Handle casts with a destination that's a struct or union; this
1437    // deals with both the gcc no-op struct cast extension and the
1438    // cast-to-union extension.
1439    if (getType()->isRecordType())
1440      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1441
1442    // Integer->integer casts can be handled here, which is important for
1443    // things like (int)(&&x-&&y).  Scary but true.
1444    if (getType()->isIntegerType() &&
1445        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
1446      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1447
1448    break;
1449  }
1450  return isEvaluatable(Ctx);
1451}
1452
1453/// isIntegerConstantExpr - this recursive routine will test if an expression is
1454/// an integer constant expression.
1455
1456/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
1457/// comma, etc
1458///
1459/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
1460/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
1461/// cast+dereference.
1462
1463// CheckICE - This function does the fundamental ICE checking: the returned
1464// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
1465// Note that to reduce code duplication, this helper does no evaluation
1466// itself; the caller checks whether the expression is evaluatable, and
1467// in the rare cases where CheckICE actually cares about the evaluated
1468// value, it calls into Evalute.
1469//
1470// Meanings of Val:
1471// 0: This expression is an ICE if it can be evaluated by Evaluate.
1472// 1: This expression is not an ICE, but if it isn't evaluated, it's
1473//    a legal subexpression for an ICE. This return value is used to handle
1474//    the comma operator in C99 mode.
1475// 2: This expression is not an ICE, and is not a legal subexpression for one.
1476
1477struct ICEDiag {
1478  unsigned Val;
1479  SourceLocation Loc;
1480
1481  public:
1482  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
1483  ICEDiag() : Val(0) {}
1484};
1485
1486ICEDiag NoDiag() { return ICEDiag(); }
1487
1488static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
1489  Expr::EvalResult EVResult;
1490  if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1491      !EVResult.Val.isInt()) {
1492    return ICEDiag(2, E->getLocStart());
1493  }
1494  return NoDiag();
1495}
1496
1497static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
1498  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
1499  if (!E->getType()->isIntegralType()) {
1500    return ICEDiag(2, E->getLocStart());
1501  }
1502
1503  switch (E->getStmtClass()) {
1504#define STMT(Node, Base) case Expr::Node##Class:
1505#define EXPR(Node, Base)
1506#include "clang/AST/StmtNodes.def"
1507  case Expr::PredefinedExprClass:
1508  case Expr::FloatingLiteralClass:
1509  case Expr::ImaginaryLiteralClass:
1510  case Expr::StringLiteralClass:
1511  case Expr::ArraySubscriptExprClass:
1512  case Expr::MemberExprClass:
1513  case Expr::CompoundAssignOperatorClass:
1514  case Expr::CompoundLiteralExprClass:
1515  case Expr::ExtVectorElementExprClass:
1516  case Expr::InitListExprClass:
1517  case Expr::DesignatedInitExprClass:
1518  case Expr::ImplicitValueInitExprClass:
1519  case Expr::ParenListExprClass:
1520  case Expr::VAArgExprClass:
1521  case Expr::AddrLabelExprClass:
1522  case Expr::StmtExprClass:
1523  case Expr::CXXMemberCallExprClass:
1524  case Expr::CXXDynamicCastExprClass:
1525  case Expr::CXXTypeidExprClass:
1526  case Expr::CXXNullPtrLiteralExprClass:
1527  case Expr::CXXThisExprClass:
1528  case Expr::CXXThrowExprClass:
1529  case Expr::CXXConditionDeclExprClass: // FIXME: is this correct?
1530  case Expr::CXXNewExprClass:
1531  case Expr::CXXDeleteExprClass:
1532  case Expr::CXXPseudoDestructorExprClass:
1533  case Expr::UnresolvedLookupExprClass:
1534  case Expr::DependentScopeDeclRefExprClass:
1535  case Expr::TemplateIdRefExprClass:
1536  case Expr::CXXConstructExprClass:
1537  case Expr::CXXBindTemporaryExprClass:
1538  case Expr::CXXExprWithTemporariesClass:
1539  case Expr::CXXTemporaryObjectExprClass:
1540  case Expr::CXXUnresolvedConstructExprClass:
1541  case Expr::CXXDependentScopeMemberExprClass:
1542  case Expr::ObjCStringLiteralClass:
1543  case Expr::ObjCEncodeExprClass:
1544  case Expr::ObjCMessageExprClass:
1545  case Expr::ObjCSelectorExprClass:
1546  case Expr::ObjCProtocolExprClass:
1547  case Expr::ObjCIvarRefExprClass:
1548  case Expr::ObjCPropertyRefExprClass:
1549  case Expr::ObjCImplicitSetterGetterRefExprClass:
1550  case Expr::ObjCSuperExprClass:
1551  case Expr::ObjCIsaExprClass:
1552  case Expr::ShuffleVectorExprClass:
1553  case Expr::BlockExprClass:
1554  case Expr::BlockDeclRefExprClass:
1555  case Expr::NoStmtClass:
1556  case Expr::ExprClass:
1557    return ICEDiag(2, E->getLocStart());
1558
1559  case Expr::GNUNullExprClass:
1560    // GCC considers the GNU __null value to be an integral constant expression.
1561    return NoDiag();
1562
1563  case Expr::ParenExprClass:
1564    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
1565  case Expr::IntegerLiteralClass:
1566  case Expr::CharacterLiteralClass:
1567  case Expr::CXXBoolLiteralExprClass:
1568  case Expr::CXXZeroInitValueExprClass:
1569  case Expr::TypesCompatibleExprClass:
1570  case Expr::UnaryTypeTraitExprClass:
1571    return NoDiag();
1572  case Expr::CallExprClass:
1573  case Expr::CXXOperatorCallExprClass: {
1574    const CallExpr *CE = cast<CallExpr>(E);
1575    if (CE->isBuiltinCall(Ctx))
1576      return CheckEvalInICE(E, Ctx);
1577    return ICEDiag(2, E->getLocStart());
1578  }
1579  case Expr::DeclRefExprClass:
1580    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
1581      return NoDiag();
1582    if (Ctx.getLangOptions().CPlusPlus &&
1583        E->getType().getCVRQualifiers() == Qualifiers::Const) {
1584      // C++ 7.1.5.1p2
1585      //   A variable of non-volatile const-qualified integral or enumeration
1586      //   type initialized by an ICE can be used in ICEs.
1587      if (const VarDecl *Dcl =
1588              dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
1589        Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers();
1590        if (Quals.hasVolatile() || !Quals.hasConst())
1591          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1592
1593        // Look for the definition of this variable, which will actually have
1594        // an initializer.
1595        const VarDecl *Def = 0;
1596        const Expr *Init = Dcl->getDefinition(Def);
1597        if (Init) {
1598          if (Def->isInitKnownICE()) {
1599            // We have already checked whether this subexpression is an
1600            // integral constant expression.
1601            if (Def->isInitICE())
1602              return NoDiag();
1603            else
1604              return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1605          }
1606
1607          // C++ [class.static.data]p4:
1608          //   If a static data member is of const integral or const
1609          //   enumeration type, its declaration in the class definition can
1610          //   specify a constant-initializer which shall be an integral
1611          //   constant expression (5.19). In that case, the member can appear
1612          //   in integral constant expressions.
1613          if (Def->isOutOfLine()) {
1614            Dcl->setInitKnownICE(Ctx, false);
1615            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1616          }
1617
1618          ICEDiag Result = CheckICE(Init, Ctx);
1619          // Cache the result of the ICE test.
1620          Dcl->setInitKnownICE(Ctx, Result.Val == 0);
1621          return Result;
1622        }
1623      }
1624    }
1625    return ICEDiag(2, E->getLocStart());
1626  case Expr::UnaryOperatorClass: {
1627    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1628    switch (Exp->getOpcode()) {
1629    case UnaryOperator::PostInc:
1630    case UnaryOperator::PostDec:
1631    case UnaryOperator::PreInc:
1632    case UnaryOperator::PreDec:
1633    case UnaryOperator::AddrOf:
1634    case UnaryOperator::Deref:
1635      return ICEDiag(2, E->getLocStart());
1636
1637    case UnaryOperator::Extension:
1638    case UnaryOperator::LNot:
1639    case UnaryOperator::Plus:
1640    case UnaryOperator::Minus:
1641    case UnaryOperator::Not:
1642    case UnaryOperator::Real:
1643    case UnaryOperator::Imag:
1644      return CheckICE(Exp->getSubExpr(), Ctx);
1645    case UnaryOperator::OffsetOf:
1646      // Note that per C99, offsetof must be an ICE. And AFAIK, using
1647      // Evaluate matches the proposed gcc behavior for cases like
1648      // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect
1649      // compliance: we should warn earlier for offsetof expressions with
1650      // array subscripts that aren't ICEs, and if the array subscripts
1651      // are ICEs, the value of the offsetof must be an integer constant.
1652      return CheckEvalInICE(E, Ctx);
1653    }
1654  }
1655  case Expr::SizeOfAlignOfExprClass: {
1656    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
1657    if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
1658      return ICEDiag(2, E->getLocStart());
1659    return NoDiag();
1660  }
1661  case Expr::BinaryOperatorClass: {
1662    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1663    switch (Exp->getOpcode()) {
1664    case BinaryOperator::PtrMemD:
1665    case BinaryOperator::PtrMemI:
1666    case BinaryOperator::Assign:
1667    case BinaryOperator::MulAssign:
1668    case BinaryOperator::DivAssign:
1669    case BinaryOperator::RemAssign:
1670    case BinaryOperator::AddAssign:
1671    case BinaryOperator::SubAssign:
1672    case BinaryOperator::ShlAssign:
1673    case BinaryOperator::ShrAssign:
1674    case BinaryOperator::AndAssign:
1675    case BinaryOperator::XorAssign:
1676    case BinaryOperator::OrAssign:
1677      return ICEDiag(2, E->getLocStart());
1678
1679    case BinaryOperator::Mul:
1680    case BinaryOperator::Div:
1681    case BinaryOperator::Rem:
1682    case BinaryOperator::Add:
1683    case BinaryOperator::Sub:
1684    case BinaryOperator::Shl:
1685    case BinaryOperator::Shr:
1686    case BinaryOperator::LT:
1687    case BinaryOperator::GT:
1688    case BinaryOperator::LE:
1689    case BinaryOperator::GE:
1690    case BinaryOperator::EQ:
1691    case BinaryOperator::NE:
1692    case BinaryOperator::And:
1693    case BinaryOperator::Xor:
1694    case BinaryOperator::Or:
1695    case BinaryOperator::Comma: {
1696      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1697      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1698      if (Exp->getOpcode() == BinaryOperator::Div ||
1699          Exp->getOpcode() == BinaryOperator::Rem) {
1700        // Evaluate gives an error for undefined Div/Rem, so make sure
1701        // we don't evaluate one.
1702        if (LHSResult.Val != 2 && RHSResult.Val != 2) {
1703          llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
1704          if (REval == 0)
1705            return ICEDiag(1, E->getLocStart());
1706          if (REval.isSigned() && REval.isAllOnesValue()) {
1707            llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
1708            if (LEval.isMinSignedValue())
1709              return ICEDiag(1, E->getLocStart());
1710          }
1711        }
1712      }
1713      if (Exp->getOpcode() == BinaryOperator::Comma) {
1714        if (Ctx.getLangOptions().C99) {
1715          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
1716          // if it isn't evaluated.
1717          if (LHSResult.Val == 0 && RHSResult.Val == 0)
1718            return ICEDiag(1, E->getLocStart());
1719        } else {
1720          // In both C89 and C++, commas in ICEs are illegal.
1721          return ICEDiag(2, E->getLocStart());
1722        }
1723      }
1724      if (LHSResult.Val >= RHSResult.Val)
1725        return LHSResult;
1726      return RHSResult;
1727    }
1728    case BinaryOperator::LAnd:
1729    case BinaryOperator::LOr: {
1730      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1731      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1732      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
1733        // Rare case where the RHS has a comma "side-effect"; we need
1734        // to actually check the condition to see whether the side
1735        // with the comma is evaluated.
1736        if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
1737            (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
1738          return RHSResult;
1739        return NoDiag();
1740      }
1741
1742      if (LHSResult.Val >= RHSResult.Val)
1743        return LHSResult;
1744      return RHSResult;
1745    }
1746    }
1747  }
1748  case Expr::CastExprClass:
1749  case Expr::ImplicitCastExprClass:
1750  case Expr::ExplicitCastExprClass:
1751  case Expr::CStyleCastExprClass:
1752  case Expr::CXXFunctionalCastExprClass:
1753  case Expr::CXXNamedCastExprClass:
1754  case Expr::CXXStaticCastExprClass:
1755  case Expr::CXXReinterpretCastExprClass:
1756  case Expr::CXXConstCastExprClass: {
1757    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
1758    if (SubExpr->getType()->isIntegralType())
1759      return CheckICE(SubExpr, Ctx);
1760    if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
1761      return NoDiag();
1762    return ICEDiag(2, E->getLocStart());
1763  }
1764  case Expr::ConditionalOperatorClass: {
1765    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
1766    // If the condition (ignoring parens) is a __builtin_constant_p call,
1767    // then only the true side is actually considered in an integer constant
1768    // expression, and it is fully evaluated.  This is an important GNU
1769    // extension.  See GCC PR38377 for discussion.
1770    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
1771      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
1772        Expr::EvalResult EVResult;
1773        if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1774            !EVResult.Val.isInt()) {
1775          return ICEDiag(2, E->getLocStart());
1776        }
1777        return NoDiag();
1778      }
1779    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
1780    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
1781    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
1782    if (CondResult.Val == 2)
1783      return CondResult;
1784    if (TrueResult.Val == 2)
1785      return TrueResult;
1786    if (FalseResult.Val == 2)
1787      return FalseResult;
1788    if (CondResult.Val == 1)
1789      return CondResult;
1790    if (TrueResult.Val == 0 && FalseResult.Val == 0)
1791      return NoDiag();
1792    // Rare case where the diagnostics depend on which side is evaluated
1793    // Note that if we get here, CondResult is 0, and at least one of
1794    // TrueResult and FalseResult is non-zero.
1795    if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
1796      return FalseResult;
1797    }
1798    return TrueResult;
1799  }
1800  case Expr::CXXDefaultArgExprClass:
1801    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
1802  case Expr::ChooseExprClass: {
1803    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
1804  }
1805  }
1806
1807  // Silence a GCC warning
1808  return ICEDiag(2, E->getLocStart());
1809}
1810
1811bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
1812                                 SourceLocation *Loc, bool isEvaluated) const {
1813  ICEDiag d = CheckICE(this, Ctx);
1814  if (d.Val != 0) {
1815    if (Loc) *Loc = d.Loc;
1816    return false;
1817  }
1818  EvalResult EvalResult;
1819  if (!Evaluate(EvalResult, Ctx))
1820    llvm::llvm_unreachable("ICE cannot be evaluated!");
1821  assert(!EvalResult.HasSideEffects && "ICE with side effects!");
1822  assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
1823  Result = EvalResult.Val.getInt();
1824  return true;
1825}
1826
1827/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1828/// integer constant expression with the value zero, or if this is one that is
1829/// cast to void*.
1830bool Expr::isNullPointerConstant(ASTContext &Ctx,
1831                                 NullPointerConstantValueDependence NPC) const {
1832  if (isValueDependent()) {
1833    switch (NPC) {
1834    case NPC_NeverValueDependent:
1835      assert(false && "Unexpected value dependent expression!");
1836      // If the unthinkable happens, fall through to the safest alternative.
1837
1838    case NPC_ValueDependentIsNull:
1839      return isTypeDependent() || getType()->isIntegralType();
1840
1841    case NPC_ValueDependentIsNotNull:
1842      return false;
1843    }
1844  }
1845
1846  // Strip off a cast to void*, if it exists. Except in C++.
1847  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1848    if (!Ctx.getLangOptions().CPlusPlus) {
1849      // Check that it is a cast to void*.
1850      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
1851        QualType Pointee = PT->getPointeeType();
1852        if (!Pointee.hasQualifiers() &&
1853            Pointee->isVoidType() &&                              // to void*
1854            CE->getSubExpr()->getType()->isIntegerType())         // from int.
1855          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1856      }
1857    }
1858  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1859    // Ignore the ImplicitCastExpr type entirely.
1860    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1861  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1862    // Accept ((void*)0) as a null pointer constant, as many other
1863    // implementations do.
1864    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1865  } else if (const CXXDefaultArgExpr *DefaultArg
1866               = dyn_cast<CXXDefaultArgExpr>(this)) {
1867    // See through default argument expressions
1868    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
1869  } else if (isa<GNUNullExpr>(this)) {
1870    // The GNU __null extension is always a null pointer constant.
1871    return true;
1872  }
1873
1874  // C++0x nullptr_t is always a null pointer constant.
1875  if (getType()->isNullPtrType())
1876    return true;
1877
1878  // This expression must be an integer type.
1879  if (!getType()->isIntegerType() ||
1880      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
1881    return false;
1882
1883  // If we have an integer constant expression, we need to *evaluate* it and
1884  // test for the value 0.
1885  llvm::APSInt Result;
1886  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
1887}
1888
1889FieldDecl *Expr::getBitField() {
1890  Expr *E = this->IgnoreParens();
1891
1892  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
1893    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
1894      if (Field->isBitField())
1895        return Field;
1896
1897  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
1898    if (BinOp->isAssignmentOp() && BinOp->getLHS())
1899      return BinOp->getLHS()->getBitField();
1900
1901  return 0;
1902}
1903
1904/// isArrow - Return true if the base expression is a pointer to vector,
1905/// return false if the base expression is a vector.
1906bool ExtVectorElementExpr::isArrow() const {
1907  return getBase()->getType()->isPointerType();
1908}
1909
1910unsigned ExtVectorElementExpr::getNumElements() const {
1911  if (const VectorType *VT = getType()->getAs<VectorType>())
1912    return VT->getNumElements();
1913  return 1;
1914}
1915
1916/// containsDuplicateElements - Return true if any element access is repeated.
1917bool ExtVectorElementExpr::containsDuplicateElements() const {
1918  // FIXME: Refactor this code to an accessor on the AST node which returns the
1919  // "type" of component access, and share with code below and in Sema.
1920  llvm::StringRef Comp = Accessor->getName();
1921
1922  // Halving swizzles do not contain duplicate elements.
1923  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
1924    return false;
1925
1926  // Advance past s-char prefix on hex swizzles.
1927  if (Comp[0] == 's' || Comp[0] == 'S')
1928    Comp = Comp.substr(1);
1929
1930  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
1931    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
1932        return true;
1933
1934  return false;
1935}
1936
1937/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
1938void ExtVectorElementExpr::getEncodedElementAccess(
1939                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
1940  llvm::StringRef Comp = Accessor->getName();
1941  if (Comp[0] == 's' || Comp[0] == 'S')
1942    Comp = Comp.substr(1);
1943
1944  bool isHi =   Comp == "hi";
1945  bool isLo =   Comp == "lo";
1946  bool isEven = Comp == "even";
1947  bool isOdd  = Comp == "odd";
1948
1949  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
1950    uint64_t Index;
1951
1952    if (isHi)
1953      Index = e + i;
1954    else if (isLo)
1955      Index = i;
1956    else if (isEven)
1957      Index = 2 * i;
1958    else if (isOdd)
1959      Index = 2 * i + 1;
1960    else
1961      Index = ExtVectorType::getAccessorIdx(Comp[i]);
1962
1963    Elts.push_back(Index);
1964  }
1965}
1966
1967// constructor for instance messages.
1968ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
1969                QualType retType, ObjCMethodDecl *mproto,
1970                SourceLocation LBrac, SourceLocation RBrac,
1971                Expr **ArgExprs, unsigned nargs)
1972  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1973    MethodProto(mproto) {
1974  NumArgs = nargs;
1975  SubExprs = new Stmt*[NumArgs+1];
1976  SubExprs[RECEIVER] = receiver;
1977  if (NumArgs) {
1978    for (unsigned i = 0; i != NumArgs; ++i)
1979      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1980  }
1981  LBracloc = LBrac;
1982  RBracloc = RBrac;
1983}
1984
1985// constructor for class messages.
1986// FIXME: clsName should be typed to ObjCInterfaceType
1987ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
1988                QualType retType, ObjCMethodDecl *mproto,
1989                SourceLocation LBrac, SourceLocation RBrac,
1990                Expr **ArgExprs, unsigned nargs)
1991  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1992    MethodProto(mproto) {
1993  NumArgs = nargs;
1994  SubExprs = new Stmt*[NumArgs+1];
1995  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
1996  if (NumArgs) {
1997    for (unsigned i = 0; i != NumArgs; ++i)
1998      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1999  }
2000  LBracloc = LBrac;
2001  RBracloc = RBrac;
2002}
2003
2004// constructor for class messages.
2005ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
2006                                 QualType retType, ObjCMethodDecl *mproto,
2007                                 SourceLocation LBrac, SourceLocation RBrac,
2008                                 Expr **ArgExprs, unsigned nargs)
2009: Expr(ObjCMessageExprClass, retType), SelName(selInfo),
2010MethodProto(mproto) {
2011  NumArgs = nargs;
2012  SubExprs = new Stmt*[NumArgs+1];
2013  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
2014  if (NumArgs) {
2015    for (unsigned i = 0; i != NumArgs; ++i)
2016      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2017  }
2018  LBracloc = LBrac;
2019  RBracloc = RBrac;
2020}
2021
2022ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
2023  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
2024  switch (x & Flags) {
2025    default:
2026      assert(false && "Invalid ObjCMessageExpr.");
2027    case IsInstMeth:
2028      return ClassInfo(0, 0);
2029    case IsClsMethDeclUnknown:
2030      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
2031    case IsClsMethDeclKnown: {
2032      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
2033      return ClassInfo(D, D->getIdentifier());
2034    }
2035  }
2036}
2037
2038void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) {
2039  if (CI.first == 0 && CI.second == 0)
2040    SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth);
2041  else if (CI.first == 0)
2042    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.second | IsClsMethDeclUnknown);
2043  else
2044    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.first | IsClsMethDeclKnown);
2045}
2046
2047
2048bool ChooseExpr::isConditionTrue(ASTContext &C) const {
2049  return getCond()->EvaluateAsInt(C) != 0;
2050}
2051
2052void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
2053                                 unsigned NumExprs) {
2054  if (SubExprs) C.Deallocate(SubExprs);
2055
2056  SubExprs = new (C) Stmt* [NumExprs];
2057  this->NumExprs = NumExprs;
2058  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
2059}
2060
2061void ShuffleVectorExpr::DoDestroy(ASTContext& C) {
2062  DestroyChildren(C);
2063  if (SubExprs) C.Deallocate(SubExprs);
2064  this->~ShuffleVectorExpr();
2065  C.Deallocate(this);
2066}
2067
2068void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) {
2069  // Override default behavior of traversing children. If this has a type
2070  // operand and the type is a variable-length array, the child iteration
2071  // will iterate over the size expression. However, this expression belongs
2072  // to the type, not to this, so we don't want to delete it.
2073  // We still want to delete this expression.
2074  if (isArgumentType()) {
2075    this->~SizeOfAlignOfExpr();
2076    C.Deallocate(this);
2077  }
2078  else
2079    Expr::DoDestroy(C);
2080}
2081
2082//===----------------------------------------------------------------------===//
2083//  DesignatedInitExpr
2084//===----------------------------------------------------------------------===//
2085
2086IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2087  assert(Kind == FieldDesignator && "Only valid on a field designator");
2088  if (Field.NameOrField & 0x01)
2089    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2090  else
2091    return getField()->getIdentifier();
2092}
2093
2094DesignatedInitExpr::DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
2095                                       const Designator *Designators,
2096                                       SourceLocation EqualOrColonLoc,
2097                                       bool GNUSyntax,
2098                                       Expr **IndexExprs,
2099                                       unsigned NumIndexExprs,
2100                                       Expr *Init)
2101  : Expr(DesignatedInitExprClass, Ty,
2102         Init->isTypeDependent(), Init->isValueDependent()),
2103    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2104    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2105  this->Designators = new Designator[NumDesignators];
2106
2107  // Record the initializer itself.
2108  child_iterator Child = child_begin();
2109  *Child++ = Init;
2110
2111  // Copy the designators and their subexpressions, computing
2112  // value-dependence along the way.
2113  unsigned IndexIdx = 0;
2114  for (unsigned I = 0; I != NumDesignators; ++I) {
2115    this->Designators[I] = Designators[I];
2116
2117    if (this->Designators[I].isArrayDesignator()) {
2118      // Compute type- and value-dependence.
2119      Expr *Index = IndexExprs[IndexIdx];
2120      ValueDependent = ValueDependent ||
2121        Index->isTypeDependent() || Index->isValueDependent();
2122
2123      // Copy the index expressions into permanent storage.
2124      *Child++ = IndexExprs[IndexIdx++];
2125    } else if (this->Designators[I].isArrayRangeDesignator()) {
2126      // Compute type- and value-dependence.
2127      Expr *Start = IndexExprs[IndexIdx];
2128      Expr *End = IndexExprs[IndexIdx + 1];
2129      ValueDependent = ValueDependent ||
2130        Start->isTypeDependent() || Start->isValueDependent() ||
2131        End->isTypeDependent() || End->isValueDependent();
2132
2133      // Copy the start/end expressions into permanent storage.
2134      *Child++ = IndexExprs[IndexIdx++];
2135      *Child++ = IndexExprs[IndexIdx++];
2136    }
2137  }
2138
2139  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2140}
2141
2142DesignatedInitExpr *
2143DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2144                           unsigned NumDesignators,
2145                           Expr **IndexExprs, unsigned NumIndexExprs,
2146                           SourceLocation ColonOrEqualLoc,
2147                           bool UsesColonSyntax, Expr *Init) {
2148  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2149                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2150  return new (Mem) DesignatedInitExpr(C.VoidTy, NumDesignators, Designators,
2151                                      ColonOrEqualLoc, UsesColonSyntax,
2152                                      IndexExprs, NumIndexExprs, Init);
2153}
2154
2155DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2156                                                    unsigned NumIndexExprs) {
2157  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2158                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2159  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2160}
2161
2162void DesignatedInitExpr::setDesignators(const Designator *Desigs,
2163                                        unsigned NumDesigs) {
2164  if (Designators)
2165    delete [] Designators;
2166
2167  Designators = new Designator[NumDesigs];
2168  NumDesignators = NumDesigs;
2169  for (unsigned I = 0; I != NumDesigs; ++I)
2170    Designators[I] = Desigs[I];
2171}
2172
2173SourceRange DesignatedInitExpr::getSourceRange() const {
2174  SourceLocation StartLoc;
2175  Designator &First =
2176    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2177  if (First.isFieldDesignator()) {
2178    if (GNUSyntax)
2179      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2180    else
2181      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2182  } else
2183    StartLoc =
2184      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2185  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2186}
2187
2188Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2189  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2190  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2191  Ptr += sizeof(DesignatedInitExpr);
2192  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2193  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2194}
2195
2196Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2197  assert(D.Kind == Designator::ArrayRangeDesignator &&
2198         "Requires array range designator");
2199  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2200  Ptr += sizeof(DesignatedInitExpr);
2201  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2202  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2203}
2204
2205Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2206  assert(D.Kind == Designator::ArrayRangeDesignator &&
2207         "Requires array range designator");
2208  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2209  Ptr += sizeof(DesignatedInitExpr);
2210  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2211  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2212}
2213
2214/// \brief Replaces the designator at index @p Idx with the series
2215/// of designators in [First, Last).
2216void DesignatedInitExpr::ExpandDesignator(unsigned Idx,
2217                                          const Designator *First,
2218                                          const Designator *Last) {
2219  unsigned NumNewDesignators = Last - First;
2220  if (NumNewDesignators == 0) {
2221    std::copy_backward(Designators + Idx + 1,
2222                       Designators + NumDesignators,
2223                       Designators + Idx);
2224    --NumNewDesignators;
2225    return;
2226  } else if (NumNewDesignators == 1) {
2227    Designators[Idx] = *First;
2228    return;
2229  }
2230
2231  Designator *NewDesignators
2232    = new Designator[NumDesignators - 1 + NumNewDesignators];
2233  std::copy(Designators, Designators + Idx, NewDesignators);
2234  std::copy(First, Last, NewDesignators + Idx);
2235  std::copy(Designators + Idx + 1, Designators + NumDesignators,
2236            NewDesignators + Idx + NumNewDesignators);
2237  delete [] Designators;
2238  Designators = NewDesignators;
2239  NumDesignators = NumDesignators - 1 + NumNewDesignators;
2240}
2241
2242void DesignatedInitExpr::DoDestroy(ASTContext &C) {
2243  delete [] Designators;
2244  Expr::DoDestroy(C);
2245}
2246
2247ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2248                             Expr **exprs, unsigned nexprs,
2249                             SourceLocation rparenloc)
2250: Expr(ParenListExprClass, QualType(),
2251       hasAnyTypeDependentArguments(exprs, nexprs),
2252       hasAnyValueDependentArguments(exprs, nexprs)),
2253  NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2254
2255  Exprs = new (C) Stmt*[nexprs];
2256  for (unsigned i = 0; i != nexprs; ++i)
2257    Exprs[i] = exprs[i];
2258}
2259
2260void ParenListExpr::DoDestroy(ASTContext& C) {
2261  DestroyChildren(C);
2262  if (Exprs) C.Deallocate(Exprs);
2263  this->~ParenListExpr();
2264  C.Deallocate(this);
2265}
2266
2267//===----------------------------------------------------------------------===//
2268//  ExprIterator.
2269//===----------------------------------------------------------------------===//
2270
2271Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2272Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2273Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2274const Expr* ConstExprIterator::operator[](size_t idx) const {
2275  return cast<Expr>(I[idx]);
2276}
2277const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2278const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2279
2280//===----------------------------------------------------------------------===//
2281//  Child Iterators for iterating over subexpressions/substatements
2282//===----------------------------------------------------------------------===//
2283
2284// DeclRefExpr
2285Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
2286Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
2287
2288// ObjCIvarRefExpr
2289Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
2290Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
2291
2292// ObjCPropertyRefExpr
2293Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
2294Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
2295
2296// ObjCImplicitSetterGetterRefExpr
2297Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() {
2298  return &Base;
2299}
2300Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() {
2301  return &Base+1;
2302}
2303
2304// ObjCSuperExpr
2305Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
2306Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
2307
2308// ObjCIsaExpr
2309Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
2310Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
2311
2312// PredefinedExpr
2313Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
2314Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
2315
2316// IntegerLiteral
2317Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
2318Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
2319
2320// CharacterLiteral
2321Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
2322Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
2323
2324// FloatingLiteral
2325Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
2326Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
2327
2328// ImaginaryLiteral
2329Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
2330Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
2331
2332// StringLiteral
2333Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
2334Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
2335
2336// ParenExpr
2337Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
2338Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
2339
2340// UnaryOperator
2341Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
2342Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
2343
2344// SizeOfAlignOfExpr
2345Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
2346  // If this is of a type and the type is a VLA type (and not a typedef), the
2347  // size expression of the VLA needs to be treated as an executable expression.
2348  // Why isn't this weirdness documented better in StmtIterator?
2349  if (isArgumentType()) {
2350    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
2351                                   getArgumentType().getTypePtr()))
2352      return child_iterator(T);
2353    return child_iterator();
2354  }
2355  return child_iterator(&Argument.Ex);
2356}
2357Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
2358  if (isArgumentType())
2359    return child_iterator();
2360  return child_iterator(&Argument.Ex + 1);
2361}
2362
2363// ArraySubscriptExpr
2364Stmt::child_iterator ArraySubscriptExpr::child_begin() {
2365  return &SubExprs[0];
2366}
2367Stmt::child_iterator ArraySubscriptExpr::child_end() {
2368  return &SubExprs[0]+END_EXPR;
2369}
2370
2371// CallExpr
2372Stmt::child_iterator CallExpr::child_begin() {
2373  return &SubExprs[0];
2374}
2375Stmt::child_iterator CallExpr::child_end() {
2376  return &SubExprs[0]+NumArgs+ARGS_START;
2377}
2378
2379// MemberExpr
2380Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
2381Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
2382
2383// ExtVectorElementExpr
2384Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
2385Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
2386
2387// CompoundLiteralExpr
2388Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
2389Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
2390
2391// CastExpr
2392Stmt::child_iterator CastExpr::child_begin() { return &Op; }
2393Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
2394
2395// BinaryOperator
2396Stmt::child_iterator BinaryOperator::child_begin() {
2397  return &SubExprs[0];
2398}
2399Stmt::child_iterator BinaryOperator::child_end() {
2400  return &SubExprs[0]+END_EXPR;
2401}
2402
2403// ConditionalOperator
2404Stmt::child_iterator ConditionalOperator::child_begin() {
2405  return &SubExprs[0];
2406}
2407Stmt::child_iterator ConditionalOperator::child_end() {
2408  return &SubExprs[0]+END_EXPR;
2409}
2410
2411// AddrLabelExpr
2412Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
2413Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
2414
2415// StmtExpr
2416Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
2417Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
2418
2419// TypesCompatibleExpr
2420Stmt::child_iterator TypesCompatibleExpr::child_begin() {
2421  return child_iterator();
2422}
2423
2424Stmt::child_iterator TypesCompatibleExpr::child_end() {
2425  return child_iterator();
2426}
2427
2428// ChooseExpr
2429Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2430Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2431
2432// GNUNullExpr
2433Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2434Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2435
2436// ShuffleVectorExpr
2437Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2438  return &SubExprs[0];
2439}
2440Stmt::child_iterator ShuffleVectorExpr::child_end() {
2441  return &SubExprs[0]+NumExprs;
2442}
2443
2444// VAArgExpr
2445Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2446Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2447
2448// InitListExpr
2449Stmt::child_iterator InitListExpr::child_begin() {
2450  return InitExprs.size() ? &InitExprs[0] : 0;
2451}
2452Stmt::child_iterator InitListExpr::child_end() {
2453  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2454}
2455
2456// DesignatedInitExpr
2457Stmt::child_iterator DesignatedInitExpr::child_begin() {
2458  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2459  Ptr += sizeof(DesignatedInitExpr);
2460  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2461}
2462Stmt::child_iterator DesignatedInitExpr::child_end() {
2463  return child_iterator(&*child_begin() + NumSubExprs);
2464}
2465
2466// ImplicitValueInitExpr
2467Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2468  return child_iterator();
2469}
2470
2471Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2472  return child_iterator();
2473}
2474
2475// ParenListExpr
2476Stmt::child_iterator ParenListExpr::child_begin() {
2477  return &Exprs[0];
2478}
2479Stmt::child_iterator ParenListExpr::child_end() {
2480  return &Exprs[0]+NumExprs;
2481}
2482
2483// ObjCStringLiteral
2484Stmt::child_iterator ObjCStringLiteral::child_begin() {
2485  return &String;
2486}
2487Stmt::child_iterator ObjCStringLiteral::child_end() {
2488  return &String+1;
2489}
2490
2491// ObjCEncodeExpr
2492Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2493Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2494
2495// ObjCSelectorExpr
2496Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2497  return child_iterator();
2498}
2499Stmt::child_iterator ObjCSelectorExpr::child_end() {
2500  return child_iterator();
2501}
2502
2503// ObjCProtocolExpr
2504Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2505  return child_iterator();
2506}
2507Stmt::child_iterator ObjCProtocolExpr::child_end() {
2508  return child_iterator();
2509}
2510
2511// ObjCMessageExpr
2512Stmt::child_iterator ObjCMessageExpr::child_begin() {
2513  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
2514}
2515Stmt::child_iterator ObjCMessageExpr::child_end() {
2516  return &SubExprs[0]+ARGS_START+getNumArgs();
2517}
2518
2519// Blocks
2520Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2521Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2522
2523Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2524Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2525