Expr.cpp revision 1a31a18db9d657751f38c724adc0d62e86852bd7
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Support/raw_ostream.h"
26#include <algorithm>
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30// Primary Expressions.
31//===----------------------------------------------------------------------===//
32
33DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
34                         SourceRange QualifierRange,
35                         NamedDecl *D, SourceLocation NameLoc,
36                         bool HasExplicitTemplateArgumentList,
37                         SourceLocation LAngleLoc,
38                         const TemplateArgumentLoc *ExplicitTemplateArgs,
39                         unsigned NumExplicitTemplateArgs,
40                         SourceLocation RAngleLoc,
41                         QualType T, bool TD, bool VD)
42  : Expr(DeclRefExprClass, T, TD, VD),
43    DecoratedD(D,
44               (Qualifier? HasQualifierFlag : 0) |
45               (HasExplicitTemplateArgumentList?
46                                    HasExplicitTemplateArgumentListFlag : 0)),
47    Loc(NameLoc) {
48  if (Qualifier) {
49    NameQualifier *NQ = getNameQualifier();
50    NQ->NNS = Qualifier;
51    NQ->Range = QualifierRange;
52  }
53
54  if (HasExplicitTemplateArgumentList) {
55    ExplicitTemplateArgumentList *ETemplateArgs
56      = getExplicitTemplateArgumentList();
57    ETemplateArgs->LAngleLoc = LAngleLoc;
58    ETemplateArgs->RAngleLoc = RAngleLoc;
59    ETemplateArgs->NumTemplateArgs = NumExplicitTemplateArgs;
60
61    TemplateArgumentLoc *TemplateArgs = ETemplateArgs->getTemplateArgs();
62    for (unsigned I = 0; I < NumExplicitTemplateArgs; ++I)
63      new (TemplateArgs + I) TemplateArgumentLoc(ExplicitTemplateArgs[I]);
64  }
65}
66
67DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
68                                 NestedNameSpecifier *Qualifier,
69                                 SourceRange QualifierRange,
70                                 NamedDecl *D,
71                                 SourceLocation NameLoc,
72                                 QualType T, bool TD, bool VD) {
73  return Create(Context, Qualifier, QualifierRange, D, NameLoc,
74                false, SourceLocation(), 0, 0, SourceLocation(),
75                T, TD, VD);
76}
77
78DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
79                                 NestedNameSpecifier *Qualifier,
80                                 SourceRange QualifierRange,
81                                 NamedDecl *D,
82                                 SourceLocation NameLoc,
83                                 bool HasExplicitTemplateArgumentList,
84                                 SourceLocation LAngleLoc,
85                                 const TemplateArgumentLoc *ExplicitTemplateArgs,
86                                 unsigned NumExplicitTemplateArgs,
87                                 SourceLocation RAngleLoc,
88                                 QualType T, bool TD, bool VD) {
89  std::size_t Size = sizeof(DeclRefExpr);
90  if (Qualifier != 0)
91    Size += sizeof(NameQualifier);
92
93  if (HasExplicitTemplateArgumentList)
94    Size += sizeof(ExplicitTemplateArgumentList) +
95            sizeof(TemplateArgumentLoc) * NumExplicitTemplateArgs;
96
97  void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
98  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc,
99                               HasExplicitTemplateArgumentList,
100                               LAngleLoc,
101                               ExplicitTemplateArgs,
102                               NumExplicitTemplateArgs,
103                               RAngleLoc,
104                               T, TD, VD);
105}
106
107SourceRange DeclRefExpr::getSourceRange() const {
108  // FIXME: Does not handle multi-token names well, e.g., operator[].
109  SourceRange R(Loc);
110
111  if (hasQualifier())
112    R.setBegin(getQualifierRange().getBegin());
113  if (hasExplicitTemplateArgumentList())
114    R.setEnd(getRAngleLoc());
115  return R;
116}
117
118// FIXME: Maybe this should use DeclPrinter with a special "print predefined
119// expr" policy instead.
120std::string PredefinedExpr::ComputeName(ASTContext &Context, IdentType IT,
121                                        const Decl *CurrentDecl) {
122  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
123    if (IT != PrettyFunction)
124      return FD->getNameAsString();
125
126    llvm::SmallString<256> Name;
127    llvm::raw_svector_ostream Out(Name);
128
129    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
130      if (MD->isVirtual())
131        Out << "virtual ";
132    }
133
134    PrintingPolicy Policy(Context.getLangOptions());
135    Policy.SuppressTagKind = true;
136
137    std::string Proto = FD->getQualifiedNameAsString(Policy);
138
139    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
140    const FunctionProtoType *FT = 0;
141    if (FD->hasWrittenPrototype())
142      FT = dyn_cast<FunctionProtoType>(AFT);
143
144    Proto += "(";
145    if (FT) {
146      llvm::raw_string_ostream POut(Proto);
147      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
148        if (i) POut << ", ";
149        std::string Param;
150        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
151        POut << Param;
152      }
153
154      if (FT->isVariadic()) {
155        if (FD->getNumParams()) POut << ", ";
156        POut << "...";
157      }
158    }
159    Proto += ")";
160
161    AFT->getResultType().getAsStringInternal(Proto, Policy);
162
163    Out << Proto;
164
165    Out.flush();
166    return Name.str().str();
167  }
168  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
169    llvm::SmallString<256> Name;
170    llvm::raw_svector_ostream Out(Name);
171    Out << (MD->isInstanceMethod() ? '-' : '+');
172    Out << '[';
173    Out << MD->getClassInterface()->getNameAsString();
174    if (const ObjCCategoryImplDecl *CID =
175        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) {
176      Out << '(';
177      Out <<  CID->getNameAsString();
178      Out <<  ')';
179    }
180    Out <<  ' ';
181    Out << MD->getSelector().getAsString();
182    Out <<  ']';
183
184    Out.flush();
185    return Name.str().str();
186  }
187  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
188    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
189    return "top level";
190  }
191  return "";
192}
193
194/// getValueAsApproximateDouble - This returns the value as an inaccurate
195/// double.  Note that this may cause loss of precision, but is useful for
196/// debugging dumps, etc.
197double FloatingLiteral::getValueAsApproximateDouble() const {
198  llvm::APFloat V = getValue();
199  bool ignored;
200  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
201            &ignored);
202  return V.convertToDouble();
203}
204
205StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
206                                     unsigned ByteLength, bool Wide,
207                                     QualType Ty,
208                                     const SourceLocation *Loc,
209                                     unsigned NumStrs) {
210  // Allocate enough space for the StringLiteral plus an array of locations for
211  // any concatenated string tokens.
212  void *Mem = C.Allocate(sizeof(StringLiteral)+
213                         sizeof(SourceLocation)*(NumStrs-1),
214                         llvm::alignof<StringLiteral>());
215  StringLiteral *SL = new (Mem) StringLiteral(Ty);
216
217  // OPTIMIZE: could allocate this appended to the StringLiteral.
218  char *AStrData = new (C, 1) char[ByteLength];
219  memcpy(AStrData, StrData, ByteLength);
220  SL->StrData = AStrData;
221  SL->ByteLength = ByteLength;
222  SL->IsWide = Wide;
223  SL->TokLocs[0] = Loc[0];
224  SL->NumConcatenated = NumStrs;
225
226  if (NumStrs != 1)
227    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
228  return SL;
229}
230
231StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
232  void *Mem = C.Allocate(sizeof(StringLiteral)+
233                         sizeof(SourceLocation)*(NumStrs-1),
234                         llvm::alignof<StringLiteral>());
235  StringLiteral *SL = new (Mem) StringLiteral(QualType());
236  SL->StrData = 0;
237  SL->ByteLength = 0;
238  SL->NumConcatenated = NumStrs;
239  return SL;
240}
241
242void StringLiteral::DoDestroy(ASTContext &C) {
243  C.Deallocate(const_cast<char*>(StrData));
244  Expr::DoDestroy(C);
245}
246
247void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
248  if (StrData)
249    C.Deallocate(const_cast<char*>(StrData));
250
251  char *AStrData = new (C, 1) char[Str.size()];
252  memcpy(AStrData, Str.data(), Str.size());
253  StrData = AStrData;
254  ByteLength = Str.size();
255}
256
257/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
258/// corresponds to, e.g. "sizeof" or "[pre]++".
259const char *UnaryOperator::getOpcodeStr(Opcode Op) {
260  switch (Op) {
261  default: assert(0 && "Unknown unary operator");
262  case PostInc: return "++";
263  case PostDec: return "--";
264  case PreInc:  return "++";
265  case PreDec:  return "--";
266  case AddrOf:  return "&";
267  case Deref:   return "*";
268  case Plus:    return "+";
269  case Minus:   return "-";
270  case Not:     return "~";
271  case LNot:    return "!";
272  case Real:    return "__real";
273  case Imag:    return "__imag";
274  case Extension: return "__extension__";
275  case OffsetOf: return "__builtin_offsetof";
276  }
277}
278
279UnaryOperator::Opcode
280UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
281  switch (OO) {
282  default: assert(false && "No unary operator for overloaded function");
283  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
284  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
285  case OO_Amp:        return AddrOf;
286  case OO_Star:       return Deref;
287  case OO_Plus:       return Plus;
288  case OO_Minus:      return Minus;
289  case OO_Tilde:      return Not;
290  case OO_Exclaim:    return LNot;
291  }
292}
293
294OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
295  switch (Opc) {
296  case PostInc: case PreInc: return OO_PlusPlus;
297  case PostDec: case PreDec: return OO_MinusMinus;
298  case AddrOf: return OO_Amp;
299  case Deref: return OO_Star;
300  case Plus: return OO_Plus;
301  case Minus: return OO_Minus;
302  case Not: return OO_Tilde;
303  case LNot: return OO_Exclaim;
304  default: return OO_None;
305  }
306}
307
308
309//===----------------------------------------------------------------------===//
310// Postfix Operators.
311//===----------------------------------------------------------------------===//
312
313CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
314                   unsigned numargs, QualType t, SourceLocation rparenloc)
315  : Expr(SC, t,
316         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
317         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
318    NumArgs(numargs) {
319
320  SubExprs = new (C) Stmt*[numargs+1];
321  SubExprs[FN] = fn;
322  for (unsigned i = 0; i != numargs; ++i)
323    SubExprs[i+ARGS_START] = args[i];
324
325  RParenLoc = rparenloc;
326}
327
328CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
329                   QualType t, SourceLocation rparenloc)
330  : Expr(CallExprClass, t,
331         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
332         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
333    NumArgs(numargs) {
334
335  SubExprs = new (C) Stmt*[numargs+1];
336  SubExprs[FN] = fn;
337  for (unsigned i = 0; i != numargs; ++i)
338    SubExprs[i+ARGS_START] = args[i];
339
340  RParenLoc = rparenloc;
341}
342
343CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
344  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
345  SubExprs = new (C) Stmt*[1];
346}
347
348void CallExpr::DoDestroy(ASTContext& C) {
349  DestroyChildren(C);
350  if (SubExprs) C.Deallocate(SubExprs);
351  this->~CallExpr();
352  C.Deallocate(this);
353}
354
355FunctionDecl *CallExpr::getDirectCallee() {
356  Expr *CEE = getCallee()->IgnoreParenCasts();
357  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
358    return dyn_cast<FunctionDecl>(DRE->getDecl());
359
360  return 0;
361}
362
363/// setNumArgs - This changes the number of arguments present in this call.
364/// Any orphaned expressions are deleted by this, and any new operands are set
365/// to null.
366void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
367  // No change, just return.
368  if (NumArgs == getNumArgs()) return;
369
370  // If shrinking # arguments, just delete the extras and forgot them.
371  if (NumArgs < getNumArgs()) {
372    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
373      getArg(i)->Destroy(C);
374    this->NumArgs = NumArgs;
375    return;
376  }
377
378  // Otherwise, we are growing the # arguments.  New an bigger argument array.
379  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
380  // Copy over args.
381  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
382    NewSubExprs[i] = SubExprs[i];
383  // Null out new args.
384  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
385    NewSubExprs[i] = 0;
386
387  if (SubExprs) C.Deallocate(SubExprs);
388  SubExprs = NewSubExprs;
389  this->NumArgs = NumArgs;
390}
391
392/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
393/// not, return 0.
394unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
395  // All simple function calls (e.g. func()) are implicitly cast to pointer to
396  // function. As a result, we try and obtain the DeclRefExpr from the
397  // ImplicitCastExpr.
398  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
399  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
400    return 0;
401
402  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
403  if (!DRE)
404    return 0;
405
406  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
407  if (!FDecl)
408    return 0;
409
410  if (!FDecl->getIdentifier())
411    return 0;
412
413  return FDecl->getBuiltinID();
414}
415
416QualType CallExpr::getCallReturnType() const {
417  QualType CalleeType = getCallee()->getType();
418  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
419    CalleeType = FnTypePtr->getPointeeType();
420  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
421    CalleeType = BPT->getPointeeType();
422
423  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
424  return FnType->getResultType();
425}
426
427MemberExpr::MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
428                       SourceRange qualrange, NamedDecl *memberdecl,
429                       SourceLocation l, bool has_explicit,
430                       SourceLocation langle,
431                       const TemplateArgumentLoc *targs, unsigned numtargs,
432                       SourceLocation rangle, QualType ty)
433  : Expr(MemberExprClass, ty,
434         base->isTypeDependent() || (qual && qual->isDependent()),
435         base->isValueDependent() || (qual && qual->isDependent())),
436    Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
437    HasQualifier(qual != 0), HasExplicitTemplateArgumentList(has_explicit) {
438  // Initialize the qualifier, if any.
439  if (HasQualifier) {
440    NameQualifier *NQ = getMemberQualifier();
441    NQ->NNS = qual;
442    NQ->Range = qualrange;
443  }
444
445  // Initialize the explicit template argument list, if any.
446  if (HasExplicitTemplateArgumentList) {
447    ExplicitTemplateArgumentList *ETemplateArgs
448      = getExplicitTemplateArgumentList();
449    ETemplateArgs->LAngleLoc = langle;
450    ETemplateArgs->RAngleLoc = rangle;
451    ETemplateArgs->NumTemplateArgs = numtargs;
452
453    TemplateArgumentLoc *TemplateArgs = ETemplateArgs->getTemplateArgs();
454    for (unsigned I = 0; I < numtargs; ++I)
455      new (TemplateArgs + I) TemplateArgumentLoc(targs[I]);
456  }
457}
458
459MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
460                               NestedNameSpecifier *qual,
461                               SourceRange qualrange,
462                               NamedDecl *memberdecl,
463                               SourceLocation l,
464                               bool has_explicit,
465                               SourceLocation langle,
466                               const TemplateArgumentLoc *targs,
467                               unsigned numtargs,
468                               SourceLocation rangle,
469                               QualType ty) {
470  std::size_t Size = sizeof(MemberExpr);
471  if (qual != 0)
472    Size += sizeof(NameQualifier);
473
474  if (has_explicit)
475    Size += sizeof(ExplicitTemplateArgumentList) +
476    sizeof(TemplateArgumentLoc) * numtargs;
477
478  void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>());
479  return new (Mem) MemberExpr(base, isarrow, qual, qualrange, memberdecl, l,
480                              has_explicit, langle, targs, numtargs, rangle,
481                              ty);
482}
483
484const char *CastExpr::getCastKindName() const {
485  switch (getCastKind()) {
486  case CastExpr::CK_Unknown:
487    return "Unknown";
488  case CastExpr::CK_BitCast:
489    return "BitCast";
490  case CastExpr::CK_NoOp:
491    return "NoOp";
492  case CastExpr::CK_DerivedToBase:
493    return "DerivedToBase";
494  case CastExpr::CK_Dynamic:
495    return "Dynamic";
496  case CastExpr::CK_ToUnion:
497    return "ToUnion";
498  case CastExpr::CK_ArrayToPointerDecay:
499    return "ArrayToPointerDecay";
500  case CastExpr::CK_FunctionToPointerDecay:
501    return "FunctionToPointerDecay";
502  case CastExpr::CK_NullToMemberPointer:
503    return "NullToMemberPointer";
504  case CastExpr::CK_BaseToDerivedMemberPointer:
505    return "BaseToDerivedMemberPointer";
506  case CastExpr::CK_DerivedToBaseMemberPointer:
507    return "DerivedToBaseMemberPointer";
508  case CastExpr::CK_UserDefinedConversion:
509    return "UserDefinedConversion";
510  case CastExpr::CK_ConstructorConversion:
511    return "ConstructorConversion";
512  case CastExpr::CK_IntegralToPointer:
513    return "IntegralToPointer";
514  case CastExpr::CK_PointerToIntegral:
515    return "PointerToIntegral";
516  case CastExpr::CK_ToVoid:
517    return "ToVoid";
518  case CastExpr::CK_VectorSplat:
519    return "VectorSplat";
520  case CastExpr::CK_IntegralCast:
521    return "IntegralCast";
522  case CastExpr::CK_IntegralToFloating:
523    return "IntegralToFloating";
524  case CastExpr::CK_FloatingToIntegral:
525    return "FloatingToIntegral";
526  case CastExpr::CK_FloatingCast:
527    return "FloatingCast";
528  }
529
530  assert(0 && "Unhandled cast kind!");
531  return 0;
532}
533
534/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
535/// corresponds to, e.g. "<<=".
536const char *BinaryOperator::getOpcodeStr(Opcode Op) {
537  switch (Op) {
538  case PtrMemD:   return ".*";
539  case PtrMemI:   return "->*";
540  case Mul:       return "*";
541  case Div:       return "/";
542  case Rem:       return "%";
543  case Add:       return "+";
544  case Sub:       return "-";
545  case Shl:       return "<<";
546  case Shr:       return ">>";
547  case LT:        return "<";
548  case GT:        return ">";
549  case LE:        return "<=";
550  case GE:        return ">=";
551  case EQ:        return "==";
552  case NE:        return "!=";
553  case And:       return "&";
554  case Xor:       return "^";
555  case Or:        return "|";
556  case LAnd:      return "&&";
557  case LOr:       return "||";
558  case Assign:    return "=";
559  case MulAssign: return "*=";
560  case DivAssign: return "/=";
561  case RemAssign: return "%=";
562  case AddAssign: return "+=";
563  case SubAssign: return "-=";
564  case ShlAssign: return "<<=";
565  case ShrAssign: return ">>=";
566  case AndAssign: return "&=";
567  case XorAssign: return "^=";
568  case OrAssign:  return "|=";
569  case Comma:     return ",";
570  }
571
572  return "";
573}
574
575BinaryOperator::Opcode
576BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
577  switch (OO) {
578  default: assert(false && "Not an overloadable binary operator");
579  case OO_Plus: return Add;
580  case OO_Minus: return Sub;
581  case OO_Star: return Mul;
582  case OO_Slash: return Div;
583  case OO_Percent: return Rem;
584  case OO_Caret: return Xor;
585  case OO_Amp: return And;
586  case OO_Pipe: return Or;
587  case OO_Equal: return Assign;
588  case OO_Less: return LT;
589  case OO_Greater: return GT;
590  case OO_PlusEqual: return AddAssign;
591  case OO_MinusEqual: return SubAssign;
592  case OO_StarEqual: return MulAssign;
593  case OO_SlashEqual: return DivAssign;
594  case OO_PercentEqual: return RemAssign;
595  case OO_CaretEqual: return XorAssign;
596  case OO_AmpEqual: return AndAssign;
597  case OO_PipeEqual: return OrAssign;
598  case OO_LessLess: return Shl;
599  case OO_GreaterGreater: return Shr;
600  case OO_LessLessEqual: return ShlAssign;
601  case OO_GreaterGreaterEqual: return ShrAssign;
602  case OO_EqualEqual: return EQ;
603  case OO_ExclaimEqual: return NE;
604  case OO_LessEqual: return LE;
605  case OO_GreaterEqual: return GE;
606  case OO_AmpAmp: return LAnd;
607  case OO_PipePipe: return LOr;
608  case OO_Comma: return Comma;
609  case OO_ArrowStar: return PtrMemI;
610  }
611}
612
613OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
614  static const OverloadedOperatorKind OverOps[] = {
615    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
616    OO_Star, OO_Slash, OO_Percent,
617    OO_Plus, OO_Minus,
618    OO_LessLess, OO_GreaterGreater,
619    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
620    OO_EqualEqual, OO_ExclaimEqual,
621    OO_Amp,
622    OO_Caret,
623    OO_Pipe,
624    OO_AmpAmp,
625    OO_PipePipe,
626    OO_Equal, OO_StarEqual,
627    OO_SlashEqual, OO_PercentEqual,
628    OO_PlusEqual, OO_MinusEqual,
629    OO_LessLessEqual, OO_GreaterGreaterEqual,
630    OO_AmpEqual, OO_CaretEqual,
631    OO_PipeEqual,
632    OO_Comma
633  };
634  return OverOps[Opc];
635}
636
637InitListExpr::InitListExpr(SourceLocation lbraceloc,
638                           Expr **initExprs, unsigned numInits,
639                           SourceLocation rbraceloc)
640  : Expr(InitListExprClass, QualType(),
641         hasAnyTypeDependentArguments(initExprs, numInits),
642         hasAnyValueDependentArguments(initExprs, numInits)),
643    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
644    UnionFieldInit(0), HadArrayRangeDesignator(false) {
645
646  InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
647}
648
649void InitListExpr::reserveInits(unsigned NumInits) {
650  if (NumInits > InitExprs.size())
651    InitExprs.reserve(NumInits);
652}
653
654void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) {
655  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
656       Idx < LastIdx; ++Idx)
657    InitExprs[Idx]->Destroy(Context);
658  InitExprs.resize(NumInits, 0);
659}
660
661Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
662  if (Init >= InitExprs.size()) {
663    InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0);
664    InitExprs.back() = expr;
665    return 0;
666  }
667
668  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
669  InitExprs[Init] = expr;
670  return Result;
671}
672
673/// getFunctionType - Return the underlying function type for this block.
674///
675const FunctionType *BlockExpr::getFunctionType() const {
676  return getType()->getAs<BlockPointerType>()->
677                    getPointeeType()->getAs<FunctionType>();
678}
679
680SourceLocation BlockExpr::getCaretLocation() const {
681  return TheBlock->getCaretLocation();
682}
683const Stmt *BlockExpr::getBody() const {
684  return TheBlock->getBody();
685}
686Stmt *BlockExpr::getBody() {
687  return TheBlock->getBody();
688}
689
690
691//===----------------------------------------------------------------------===//
692// Generic Expression Routines
693//===----------------------------------------------------------------------===//
694
695/// isUnusedResultAWarning - Return true if this immediate expression should
696/// be warned about if the result is unused.  If so, fill in Loc and Ranges
697/// with location to warn on and the source range[s] to report with the
698/// warning.
699bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
700                                  SourceRange &R2) const {
701  // Don't warn if the expr is type dependent. The type could end up
702  // instantiating to void.
703  if (isTypeDependent())
704    return false;
705
706  switch (getStmtClass()) {
707  default:
708    Loc = getExprLoc();
709    R1 = getSourceRange();
710    return true;
711  case ParenExprClass:
712    return cast<ParenExpr>(this)->getSubExpr()->
713      isUnusedResultAWarning(Loc, R1, R2);
714  case UnaryOperatorClass: {
715    const UnaryOperator *UO = cast<UnaryOperator>(this);
716
717    switch (UO->getOpcode()) {
718    default: break;
719    case UnaryOperator::PostInc:
720    case UnaryOperator::PostDec:
721    case UnaryOperator::PreInc:
722    case UnaryOperator::PreDec:                 // ++/--
723      return false;  // Not a warning.
724    case UnaryOperator::Deref:
725      // Dereferencing a volatile pointer is a side-effect.
726      if (getType().isVolatileQualified())
727        return false;
728      break;
729    case UnaryOperator::Real:
730    case UnaryOperator::Imag:
731      // accessing a piece of a volatile complex is a side-effect.
732      if (UO->getSubExpr()->getType().isVolatileQualified())
733        return false;
734      break;
735    case UnaryOperator::Extension:
736      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2);
737    }
738    Loc = UO->getOperatorLoc();
739    R1 = UO->getSubExpr()->getSourceRange();
740    return true;
741  }
742  case BinaryOperatorClass: {
743    const BinaryOperator *BO = cast<BinaryOperator>(this);
744    // Consider comma to have side effects if the LHS or RHS does.
745    if (BO->getOpcode() == BinaryOperator::Comma)
746      return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2) ||
747             BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2);
748
749    if (BO->isAssignmentOp())
750      return false;
751    Loc = BO->getOperatorLoc();
752    R1 = BO->getLHS()->getSourceRange();
753    R2 = BO->getRHS()->getSourceRange();
754    return true;
755  }
756  case CompoundAssignOperatorClass:
757    return false;
758
759  case ConditionalOperatorClass: {
760    // The condition must be evaluated, but if either the LHS or RHS is a
761    // warning, warn about them.
762    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
763    if (Exp->getLHS() &&
764        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2))
765      return true;
766    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2);
767  }
768
769  case MemberExprClass:
770    // If the base pointer or element is to a volatile pointer/field, accessing
771    // it is a side effect.
772    if (getType().isVolatileQualified())
773      return false;
774    Loc = cast<MemberExpr>(this)->getMemberLoc();
775    R1 = SourceRange(Loc, Loc);
776    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
777    return true;
778
779  case ArraySubscriptExprClass:
780    // If the base pointer or element is to a volatile pointer/field, accessing
781    // it is a side effect.
782    if (getType().isVolatileQualified())
783      return false;
784    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
785    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
786    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
787    return true;
788
789  case CallExprClass:
790  case CXXOperatorCallExprClass:
791  case CXXMemberCallExprClass: {
792    // If this is a direct call, get the callee.
793    const CallExpr *CE = cast<CallExpr>(this);
794    if (const FunctionDecl *FD = CE->getDirectCallee()) {
795      // If the callee has attribute pure, const, or warn_unused_result, warn
796      // about it. void foo() { strlen("bar"); } should warn.
797      //
798      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
799      // updated to match for QoI.
800      if (FD->getAttr<WarnUnusedResultAttr>() ||
801          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
802        Loc = CE->getCallee()->getLocStart();
803        R1 = CE->getCallee()->getSourceRange();
804
805        if (unsigned NumArgs = CE->getNumArgs())
806          R2 = SourceRange(CE->getArg(0)->getLocStart(),
807                           CE->getArg(NumArgs-1)->getLocEnd());
808        return true;
809      }
810    }
811    return false;
812  }
813  case ObjCMessageExprClass:
814    return false;
815
816  case ObjCImplicitSetterGetterRefExprClass: {   // Dot syntax for message send.
817#if 0
818    const ObjCImplicitSetterGetterRefExpr *Ref =
819      cast<ObjCImplicitSetterGetterRefExpr>(this);
820    // FIXME: We really want the location of the '.' here.
821    Loc = Ref->getLocation();
822    R1 = SourceRange(Ref->getLocation(), Ref->getLocation());
823    if (Ref->getBase())
824      R2 = Ref->getBase()->getSourceRange();
825#else
826    Loc = getExprLoc();
827    R1 = getSourceRange();
828#endif
829    return true;
830  }
831  case StmtExprClass: {
832    // Statement exprs don't logically have side effects themselves, but are
833    // sometimes used in macros in ways that give them a type that is unused.
834    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
835    // however, if the result of the stmt expr is dead, we don't want to emit a
836    // warning.
837    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
838    if (!CS->body_empty())
839      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
840        return E->isUnusedResultAWarning(Loc, R1, R2);
841
842    Loc = cast<StmtExpr>(this)->getLParenLoc();
843    R1 = getSourceRange();
844    return true;
845  }
846  case CStyleCastExprClass:
847    // If this is an explicit cast to void, allow it.  People do this when they
848    // think they know what they're doing :).
849    if (getType()->isVoidType())
850      return false;
851    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
852    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
853    return true;
854  case CXXFunctionalCastExprClass:
855    // If this is a cast to void, check the operand.  Otherwise, the result of
856    // the cast is unused.
857    if (getType()->isVoidType())
858      return cast<CastExpr>(this)->getSubExpr()
859               ->isUnusedResultAWarning(Loc, R1, R2);
860    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
861    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
862    return true;
863
864  case ImplicitCastExprClass:
865    // Check the operand, since implicit casts are inserted by Sema
866    return cast<ImplicitCastExpr>(this)
867      ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2);
868
869  case CXXDefaultArgExprClass:
870    return cast<CXXDefaultArgExpr>(this)
871      ->getExpr()->isUnusedResultAWarning(Loc, R1, R2);
872
873  case CXXNewExprClass:
874    // FIXME: In theory, there might be new expressions that don't have side
875    // effects (e.g. a placement new with an uninitialized POD).
876  case CXXDeleteExprClass:
877    return false;
878  case CXXBindTemporaryExprClass:
879    return cast<CXXBindTemporaryExpr>(this)
880      ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2);
881  case CXXExprWithTemporariesClass:
882    return cast<CXXExprWithTemporaries>(this)
883      ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2);
884  }
885}
886
887/// DeclCanBeLvalue - Determine whether the given declaration can be
888/// an lvalue. This is a helper routine for isLvalue.
889static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
890  // C++ [temp.param]p6:
891  //   A non-type non-reference template-parameter is not an lvalue.
892  if (const NonTypeTemplateParmDecl *NTTParm
893        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
894    return NTTParm->getType()->isReferenceType();
895
896  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
897    // C++ 3.10p2: An lvalue refers to an object or function.
898    (Ctx.getLangOptions().CPlusPlus &&
899     (isa<FunctionDecl>(Decl) || isa<OverloadedFunctionDecl>(Decl) ||
900      isa<FunctionTemplateDecl>(Decl)));
901}
902
903/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
904/// incomplete type other than void. Nonarray expressions that can be lvalues:
905///  - name, where name must be a variable
906///  - e[i]
907///  - (e), where e must be an lvalue
908///  - e.name, where e must be an lvalue
909///  - e->name
910///  - *e, the type of e cannot be a function type
911///  - string-constant
912///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
913///  - reference type [C++ [expr]]
914///
915Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
916  assert(!TR->isReferenceType() && "Expressions can't have reference type.");
917
918  isLvalueResult Res = isLvalueInternal(Ctx);
919  if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
920    return Res;
921
922  // first, check the type (C99 6.3.2.1). Expressions with function
923  // type in C are not lvalues, but they can be lvalues in C++.
924  if (TR->isFunctionType() || TR == Ctx.OverloadTy)
925    return LV_NotObjectType;
926
927  // Allow qualified void which is an incomplete type other than void (yuck).
928  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers())
929    return LV_IncompleteVoidType;
930
931  return LV_Valid;
932}
933
934// Check whether the expression can be sanely treated like an l-value
935Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
936  switch (getStmtClass()) {
937  case StringLiteralClass:  // C99 6.5.1p4
938  case ObjCEncodeExprClass: // @encode behaves like its string in every way.
939    return LV_Valid;
940  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
941    // For vectors, make sure base is an lvalue (i.e. not a function call).
942    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
943      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
944    return LV_Valid;
945  case DeclRefExprClass: { // C99 6.5.1p2
946    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
947    if (DeclCanBeLvalue(RefdDecl, Ctx))
948      return LV_Valid;
949    break;
950  }
951  case BlockDeclRefExprClass: {
952    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
953    if (isa<VarDecl>(BDR->getDecl()))
954      return LV_Valid;
955    break;
956  }
957  case MemberExprClass: {
958    const MemberExpr *m = cast<MemberExpr>(this);
959    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
960      NamedDecl *Member = m->getMemberDecl();
961      // C++ [expr.ref]p4:
962      //   If E2 is declared to have type "reference to T", then E1.E2
963      //   is an lvalue.
964      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
965        if (Value->getType()->isReferenceType())
966          return LV_Valid;
967
968      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
969      if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
970        return LV_Valid;
971
972      //   -- If E2 is a non-static data member [...]. If E1 is an
973      //      lvalue, then E1.E2 is an lvalue.
974      if (isa<FieldDecl>(Member))
975        return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
976
977      //   -- If it refers to a static member function [...], then
978      //      E1.E2 is an lvalue.
979      //   -- Otherwise, if E1.E2 refers to a non-static member
980      //      function [...], then E1.E2 is not an lvalue.
981      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
982        return Method->isStatic()? LV_Valid : LV_MemberFunction;
983
984      //   -- If E2 is a member enumerator [...], the expression E1.E2
985      //      is not an lvalue.
986      if (isa<EnumConstantDecl>(Member))
987        return LV_InvalidExpression;
988
989        // Not an lvalue.
990      return LV_InvalidExpression;
991    }
992
993    // C99 6.5.2.3p4
994    return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
995  }
996  case UnaryOperatorClass:
997    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
998      return LV_Valid; // C99 6.5.3p4
999
1000    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
1001        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
1002        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
1003      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
1004
1005    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
1006        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
1007         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
1008      return LV_Valid;
1009    break;
1010  case ImplicitCastExprClass:
1011    return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid
1012                                                       : LV_InvalidExpression;
1013  case ParenExprClass: // C99 6.5.1p5
1014    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
1015  case BinaryOperatorClass:
1016  case CompoundAssignOperatorClass: {
1017    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
1018
1019    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
1020        BinOp->getOpcode() == BinaryOperator::Comma)
1021      return BinOp->getRHS()->isLvalue(Ctx);
1022
1023    // C++ [expr.mptr.oper]p6
1024    // The result of a .* expression is an lvalue only if its first operand is
1025    // an lvalue and its second operand is a pointer to data member.
1026    if (BinOp->getOpcode() == BinaryOperator::PtrMemD &&
1027        !BinOp->getType()->isFunctionType())
1028      return BinOp->getLHS()->isLvalue(Ctx);
1029
1030    // The result of an ->* expression is an lvalue only if its second operand
1031    // is a pointer to data member.
1032    if (BinOp->getOpcode() == BinaryOperator::PtrMemI &&
1033        !BinOp->getType()->isFunctionType()) {
1034      QualType Ty = BinOp->getRHS()->getType();
1035      if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType())
1036        return LV_Valid;
1037    }
1038
1039    if (!BinOp->isAssignmentOp())
1040      return LV_InvalidExpression;
1041
1042    if (Ctx.getLangOptions().CPlusPlus)
1043      // C++ [expr.ass]p1:
1044      //   The result of an assignment operation [...] is an lvalue.
1045      return LV_Valid;
1046
1047
1048    // C99 6.5.16:
1049    //   An assignment expression [...] is not an lvalue.
1050    return LV_InvalidExpression;
1051  }
1052  case CallExprClass:
1053  case CXXOperatorCallExprClass:
1054  case CXXMemberCallExprClass: {
1055    // C++0x [expr.call]p10
1056    //   A function call is an lvalue if and only if the result type
1057    //   is an lvalue reference.
1058    QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
1059    if (ReturnType->isLValueReferenceType())
1060      return LV_Valid;
1061
1062    break;
1063  }
1064  case CompoundLiteralExprClass: // C99 6.5.2.5p5
1065    return LV_Valid;
1066  case ChooseExprClass:
1067    // __builtin_choose_expr is an lvalue if the selected operand is.
1068    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
1069  case ExtVectorElementExprClass:
1070    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
1071      return LV_DuplicateVectorComponents;
1072    return LV_Valid;
1073  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
1074    return LV_Valid;
1075  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
1076    return LV_Valid;
1077  case ObjCImplicitSetterGetterRefExprClass: // FIXME: check if read-only property.
1078    return LV_Valid;
1079  case PredefinedExprClass:
1080    return LV_Valid;
1081  case CXXDefaultArgExprClass:
1082    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
1083  case CXXConditionDeclExprClass:
1084    return LV_Valid;
1085  case CStyleCastExprClass:
1086  case CXXFunctionalCastExprClass:
1087  case CXXStaticCastExprClass:
1088  case CXXDynamicCastExprClass:
1089  case CXXReinterpretCastExprClass:
1090  case CXXConstCastExprClass:
1091    // The result of an explicit cast is an lvalue if the type we are
1092    // casting to is an lvalue reference type. See C++ [expr.cast]p1,
1093    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
1094    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
1095    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
1096          isLValueReferenceType())
1097      return LV_Valid;
1098    break;
1099  case CXXTypeidExprClass:
1100    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
1101    return LV_Valid;
1102  case CXXBindTemporaryExprClass:
1103    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()->
1104      isLvalueInternal(Ctx);
1105  case ConditionalOperatorClass: {
1106    // Complicated handling is only for C++.
1107    if (!Ctx.getLangOptions().CPlusPlus)
1108      return LV_InvalidExpression;
1109
1110    // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
1111    // everywhere there's an object converted to an rvalue. Also, any other
1112    // casts should be wrapped by ImplicitCastExprs. There's just the special
1113    // case involving throws to work out.
1114    const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
1115    Expr *True = Cond->getTrueExpr();
1116    Expr *False = Cond->getFalseExpr();
1117    // C++0x 5.16p2
1118    //   If either the second or the third operand has type (cv) void, [...]
1119    //   the result [...] is an rvalue.
1120    if (True->getType()->isVoidType() || False->getType()->isVoidType())
1121      return LV_InvalidExpression;
1122
1123    // Both sides must be lvalues for the result to be an lvalue.
1124    if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
1125      return LV_InvalidExpression;
1126
1127    // That's it.
1128    return LV_Valid;
1129  }
1130
1131  case TemplateIdRefExprClass: {
1132    const TemplateIdRefExpr *TID = cast<TemplateIdRefExpr>(this);
1133    TemplateName Template = TID->getTemplateName();
1134    NamedDecl *ND = Template.getAsTemplateDecl();
1135    if (!ND)
1136      ND = Template.getAsOverloadedFunctionDecl();
1137    if (ND && DeclCanBeLvalue(ND, Ctx))
1138      return LV_Valid;
1139
1140    break;
1141  }
1142
1143  default:
1144    break;
1145  }
1146  return LV_InvalidExpression;
1147}
1148
1149/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
1150/// does not have an incomplete type, does not have a const-qualified type, and
1151/// if it is a structure or union, does not have any member (including,
1152/// recursively, any member or element of all contained aggregates or unions)
1153/// with a const-qualified type.
1154Expr::isModifiableLvalueResult
1155Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
1156  isLvalueResult lvalResult = isLvalue(Ctx);
1157
1158  switch (lvalResult) {
1159  case LV_Valid:
1160    // C++ 3.10p11: Functions cannot be modified, but pointers to
1161    // functions can be modifiable.
1162    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
1163      return MLV_NotObjectType;
1164    break;
1165
1166  case LV_NotObjectType: return MLV_NotObjectType;
1167  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
1168  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
1169  case LV_InvalidExpression:
1170    // If the top level is a C-style cast, and the subexpression is a valid
1171    // lvalue, then this is probably a use of the old-school "cast as lvalue"
1172    // GCC extension.  We don't support it, but we want to produce good
1173    // diagnostics when it happens so that the user knows why.
1174    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
1175      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
1176        if (Loc)
1177          *Loc = CE->getLParenLoc();
1178        return MLV_LValueCast;
1179      }
1180    }
1181    return MLV_InvalidExpression;
1182  case LV_MemberFunction: return MLV_MemberFunction;
1183  }
1184
1185  // The following is illegal:
1186  //   void takeclosure(void (^C)(void));
1187  //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
1188  //
1189  if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) {
1190    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
1191      return MLV_NotBlockQualified;
1192  }
1193
1194  // Assigning to an 'implicit' property?
1195  if (const ObjCImplicitSetterGetterRefExpr* Expr =
1196        dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) {
1197    if (Expr->getSetterMethod() == 0)
1198      return MLV_NoSetterProperty;
1199  }
1200
1201  QualType CT = Ctx.getCanonicalType(getType());
1202
1203  if (CT.isConstQualified())
1204    return MLV_ConstQualified;
1205  if (CT->isArrayType())
1206    return MLV_ArrayType;
1207  if (CT->isIncompleteType())
1208    return MLV_IncompleteType;
1209
1210  if (const RecordType *r = CT->getAs<RecordType>()) {
1211    if (r->hasConstFields())
1212      return MLV_ConstQualified;
1213  }
1214
1215  return MLV_Valid;
1216}
1217
1218/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1219/// returns true, if it is; false otherwise.
1220bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1221  switch (getStmtClass()) {
1222  default:
1223    return false;
1224  case ObjCIvarRefExprClass:
1225    return true;
1226  case Expr::UnaryOperatorClass:
1227    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1228  case ParenExprClass:
1229    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1230  case ImplicitCastExprClass:
1231    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1232  case CStyleCastExprClass:
1233    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1234  case DeclRefExprClass: {
1235    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1236    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1237      if (VD->hasGlobalStorage())
1238        return true;
1239      QualType T = VD->getType();
1240      // dereferencing to a  pointer is always a gc'able candidate,
1241      // unless it is __weak.
1242      return T->isPointerType() &&
1243             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1244    }
1245    return false;
1246  }
1247  case MemberExprClass: {
1248    const MemberExpr *M = cast<MemberExpr>(this);
1249    return M->getBase()->isOBJCGCCandidate(Ctx);
1250  }
1251  case ArraySubscriptExprClass:
1252    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1253  }
1254}
1255Expr* Expr::IgnoreParens() {
1256  Expr* E = this;
1257  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
1258    E = P->getSubExpr();
1259
1260  return E;
1261}
1262
1263/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1264/// or CastExprs or ImplicitCastExprs, returning their operand.
1265Expr *Expr::IgnoreParenCasts() {
1266  Expr *E = this;
1267  while (true) {
1268    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1269      E = P->getSubExpr();
1270    else if (CastExpr *P = dyn_cast<CastExpr>(E))
1271      E = P->getSubExpr();
1272    else
1273      return E;
1274  }
1275}
1276
1277/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1278/// value (including ptr->int casts of the same size).  Strip off any
1279/// ParenExpr or CastExprs, returning their operand.
1280Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1281  Expr *E = this;
1282  while (true) {
1283    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1284      E = P->getSubExpr();
1285      continue;
1286    }
1287
1288    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1289      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1290      // ptr<->int casts of the same width.  We also ignore all identify casts.
1291      Expr *SE = P->getSubExpr();
1292
1293      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1294        E = SE;
1295        continue;
1296      }
1297
1298      if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
1299          (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
1300          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1301        E = SE;
1302        continue;
1303      }
1304    }
1305
1306    return E;
1307  }
1308}
1309
1310
1311/// hasAnyTypeDependentArguments - Determines if any of the expressions
1312/// in Exprs is type-dependent.
1313bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1314  for (unsigned I = 0; I < NumExprs; ++I)
1315    if (Exprs[I]->isTypeDependent())
1316      return true;
1317
1318  return false;
1319}
1320
1321/// hasAnyValueDependentArguments - Determines if any of the expressions
1322/// in Exprs is value-dependent.
1323bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1324  for (unsigned I = 0; I < NumExprs; ++I)
1325    if (Exprs[I]->isValueDependent())
1326      return true;
1327
1328  return false;
1329}
1330
1331bool Expr::isConstantInitializer(ASTContext &Ctx) const {
1332  // This function is attempting whether an expression is an initializer
1333  // which can be evaluated at compile-time.  isEvaluatable handles most
1334  // of the cases, but it can't deal with some initializer-specific
1335  // expressions, and it can't deal with aggregates; we deal with those here,
1336  // and fall back to isEvaluatable for the other cases.
1337
1338  // FIXME: This function assumes the variable being assigned to
1339  // isn't a reference type!
1340
1341  switch (getStmtClass()) {
1342  default: break;
1343  case StringLiteralClass:
1344  case ObjCStringLiteralClass:
1345  case ObjCEncodeExprClass:
1346    return true;
1347  case CompoundLiteralExprClass: {
1348    // This handles gcc's extension that allows global initializers like
1349    // "struct x {int x;} x = (struct x) {};".
1350    // FIXME: This accepts other cases it shouldn't!
1351    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1352    return Exp->isConstantInitializer(Ctx);
1353  }
1354  case InitListExprClass: {
1355    // FIXME: This doesn't deal with fields with reference types correctly.
1356    // FIXME: This incorrectly allows pointers cast to integers to be assigned
1357    // to bitfields.
1358    const InitListExpr *Exp = cast<InitListExpr>(this);
1359    unsigned numInits = Exp->getNumInits();
1360    for (unsigned i = 0; i < numInits; i++) {
1361      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
1362        return false;
1363    }
1364    return true;
1365  }
1366  case ImplicitValueInitExprClass:
1367    return true;
1368  case ParenExprClass:
1369    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1370  case UnaryOperatorClass: {
1371    const UnaryOperator* Exp = cast<UnaryOperator>(this);
1372    if (Exp->getOpcode() == UnaryOperator::Extension)
1373      return Exp->getSubExpr()->isConstantInitializer(Ctx);
1374    break;
1375  }
1376  case BinaryOperatorClass: {
1377    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
1378    // but this handles the common case.
1379    const BinaryOperator *Exp = cast<BinaryOperator>(this);
1380    if (Exp->getOpcode() == BinaryOperator::Sub &&
1381        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
1382        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
1383      return true;
1384    break;
1385  }
1386  case ImplicitCastExprClass:
1387  case CStyleCastExprClass:
1388    // Handle casts with a destination that's a struct or union; this
1389    // deals with both the gcc no-op struct cast extension and the
1390    // cast-to-union extension.
1391    if (getType()->isRecordType())
1392      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1393
1394    // Integer->integer casts can be handled here, which is important for
1395    // things like (int)(&&x-&&y).  Scary but true.
1396    if (getType()->isIntegerType() &&
1397        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
1398      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1399
1400    break;
1401  }
1402  return isEvaluatable(Ctx);
1403}
1404
1405/// isIntegerConstantExpr - this recursive routine will test if an expression is
1406/// an integer constant expression.
1407
1408/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
1409/// comma, etc
1410///
1411/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
1412/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
1413/// cast+dereference.
1414
1415// CheckICE - This function does the fundamental ICE checking: the returned
1416// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
1417// Note that to reduce code duplication, this helper does no evaluation
1418// itself; the caller checks whether the expression is evaluatable, and
1419// in the rare cases where CheckICE actually cares about the evaluated
1420// value, it calls into Evalute.
1421//
1422// Meanings of Val:
1423// 0: This expression is an ICE if it can be evaluated by Evaluate.
1424// 1: This expression is not an ICE, but if it isn't evaluated, it's
1425//    a legal subexpression for an ICE. This return value is used to handle
1426//    the comma operator in C99 mode.
1427// 2: This expression is not an ICE, and is not a legal subexpression for one.
1428
1429struct ICEDiag {
1430  unsigned Val;
1431  SourceLocation Loc;
1432
1433  public:
1434  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
1435  ICEDiag() : Val(0) {}
1436};
1437
1438ICEDiag NoDiag() { return ICEDiag(); }
1439
1440static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
1441  Expr::EvalResult EVResult;
1442  if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1443      !EVResult.Val.isInt()) {
1444    return ICEDiag(2, E->getLocStart());
1445  }
1446  return NoDiag();
1447}
1448
1449static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
1450  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
1451  if (!E->getType()->isIntegralType()) {
1452    return ICEDiag(2, E->getLocStart());
1453  }
1454
1455  switch (E->getStmtClass()) {
1456#define STMT(Node, Base) case Expr::Node##Class:
1457#define EXPR(Node, Base)
1458#include "clang/AST/StmtNodes.def"
1459  case Expr::PredefinedExprClass:
1460  case Expr::FloatingLiteralClass:
1461  case Expr::ImaginaryLiteralClass:
1462  case Expr::StringLiteralClass:
1463  case Expr::ArraySubscriptExprClass:
1464  case Expr::MemberExprClass:
1465  case Expr::CompoundAssignOperatorClass:
1466  case Expr::CompoundLiteralExprClass:
1467  case Expr::ExtVectorElementExprClass:
1468  case Expr::InitListExprClass:
1469  case Expr::DesignatedInitExprClass:
1470  case Expr::ImplicitValueInitExprClass:
1471  case Expr::ParenListExprClass:
1472  case Expr::VAArgExprClass:
1473  case Expr::AddrLabelExprClass:
1474  case Expr::StmtExprClass:
1475  case Expr::CXXMemberCallExprClass:
1476  case Expr::CXXDynamicCastExprClass:
1477  case Expr::CXXTypeidExprClass:
1478  case Expr::CXXNullPtrLiteralExprClass:
1479  case Expr::CXXThisExprClass:
1480  case Expr::CXXThrowExprClass:
1481  case Expr::CXXConditionDeclExprClass: // FIXME: is this correct?
1482  case Expr::CXXNewExprClass:
1483  case Expr::CXXDeleteExprClass:
1484  case Expr::CXXPseudoDestructorExprClass:
1485  case Expr::UnresolvedFunctionNameExprClass:
1486  case Expr::UnresolvedDeclRefExprClass:
1487  case Expr::TemplateIdRefExprClass:
1488  case Expr::CXXConstructExprClass:
1489  case Expr::CXXBindTemporaryExprClass:
1490  case Expr::CXXExprWithTemporariesClass:
1491  case Expr::CXXTemporaryObjectExprClass:
1492  case Expr::CXXUnresolvedConstructExprClass:
1493  case Expr::CXXUnresolvedMemberExprClass:
1494  case Expr::ObjCStringLiteralClass:
1495  case Expr::ObjCEncodeExprClass:
1496  case Expr::ObjCMessageExprClass:
1497  case Expr::ObjCSelectorExprClass:
1498  case Expr::ObjCProtocolExprClass:
1499  case Expr::ObjCIvarRefExprClass:
1500  case Expr::ObjCPropertyRefExprClass:
1501  case Expr::ObjCImplicitSetterGetterRefExprClass:
1502  case Expr::ObjCSuperExprClass:
1503  case Expr::ObjCIsaExprClass:
1504  case Expr::ShuffleVectorExprClass:
1505  case Expr::BlockExprClass:
1506  case Expr::BlockDeclRefExprClass:
1507  case Expr::NoStmtClass:
1508  case Expr::ExprClass:
1509    return ICEDiag(2, E->getLocStart());
1510
1511  case Expr::GNUNullExprClass:
1512    // GCC considers the GNU __null value to be an integral constant expression.
1513    return NoDiag();
1514
1515  case Expr::ParenExprClass:
1516    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
1517  case Expr::IntegerLiteralClass:
1518  case Expr::CharacterLiteralClass:
1519  case Expr::CXXBoolLiteralExprClass:
1520  case Expr::CXXZeroInitValueExprClass:
1521  case Expr::TypesCompatibleExprClass:
1522  case Expr::UnaryTypeTraitExprClass:
1523    return NoDiag();
1524  case Expr::CallExprClass:
1525  case Expr::CXXOperatorCallExprClass: {
1526    const CallExpr *CE = cast<CallExpr>(E);
1527    if (CE->isBuiltinCall(Ctx))
1528      return CheckEvalInICE(E, Ctx);
1529    return ICEDiag(2, E->getLocStart());
1530  }
1531  case Expr::DeclRefExprClass:
1532    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
1533      return NoDiag();
1534    if (Ctx.getLangOptions().CPlusPlus &&
1535        E->getType().getCVRQualifiers() == Qualifiers::Const) {
1536      // C++ 7.1.5.1p2
1537      //   A variable of non-volatile const-qualified integral or enumeration
1538      //   type initialized by an ICE can be used in ICEs.
1539      if (const VarDecl *Dcl =
1540              dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
1541        if (Dcl->isInitKnownICE()) {
1542          // We have already checked whether this subexpression is an
1543          // integral constant expression.
1544          if (Dcl->isInitICE())
1545            return NoDiag();
1546          else
1547            return ICEDiag(2, E->getLocStart());
1548        }
1549
1550        if (const Expr *Init = Dcl->getInit()) {
1551          ICEDiag Result = CheckICE(Init, Ctx);
1552          // Cache the result of the ICE test.
1553          Dcl->setInitKnownICE(Ctx, Result.Val == 0);
1554          return Result;
1555        }
1556      }
1557    }
1558    return ICEDiag(2, E->getLocStart());
1559  case Expr::UnaryOperatorClass: {
1560    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1561    switch (Exp->getOpcode()) {
1562    case UnaryOperator::PostInc:
1563    case UnaryOperator::PostDec:
1564    case UnaryOperator::PreInc:
1565    case UnaryOperator::PreDec:
1566    case UnaryOperator::AddrOf:
1567    case UnaryOperator::Deref:
1568      return ICEDiag(2, E->getLocStart());
1569
1570    case UnaryOperator::Extension:
1571    case UnaryOperator::LNot:
1572    case UnaryOperator::Plus:
1573    case UnaryOperator::Minus:
1574    case UnaryOperator::Not:
1575    case UnaryOperator::Real:
1576    case UnaryOperator::Imag:
1577      return CheckICE(Exp->getSubExpr(), Ctx);
1578    case UnaryOperator::OffsetOf:
1579      // Note that per C99, offsetof must be an ICE. And AFAIK, using
1580      // Evaluate matches the proposed gcc behavior for cases like
1581      // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect
1582      // compliance: we should warn earlier for offsetof expressions with
1583      // array subscripts that aren't ICEs, and if the array subscripts
1584      // are ICEs, the value of the offsetof must be an integer constant.
1585      return CheckEvalInICE(E, Ctx);
1586    }
1587  }
1588  case Expr::SizeOfAlignOfExprClass: {
1589    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
1590    if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
1591      return ICEDiag(2, E->getLocStart());
1592    return NoDiag();
1593  }
1594  case Expr::BinaryOperatorClass: {
1595    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1596    switch (Exp->getOpcode()) {
1597    case BinaryOperator::PtrMemD:
1598    case BinaryOperator::PtrMemI:
1599    case BinaryOperator::Assign:
1600    case BinaryOperator::MulAssign:
1601    case BinaryOperator::DivAssign:
1602    case BinaryOperator::RemAssign:
1603    case BinaryOperator::AddAssign:
1604    case BinaryOperator::SubAssign:
1605    case BinaryOperator::ShlAssign:
1606    case BinaryOperator::ShrAssign:
1607    case BinaryOperator::AndAssign:
1608    case BinaryOperator::XorAssign:
1609    case BinaryOperator::OrAssign:
1610      return ICEDiag(2, E->getLocStart());
1611
1612    case BinaryOperator::Mul:
1613    case BinaryOperator::Div:
1614    case BinaryOperator::Rem:
1615    case BinaryOperator::Add:
1616    case BinaryOperator::Sub:
1617    case BinaryOperator::Shl:
1618    case BinaryOperator::Shr:
1619    case BinaryOperator::LT:
1620    case BinaryOperator::GT:
1621    case BinaryOperator::LE:
1622    case BinaryOperator::GE:
1623    case BinaryOperator::EQ:
1624    case BinaryOperator::NE:
1625    case BinaryOperator::And:
1626    case BinaryOperator::Xor:
1627    case BinaryOperator::Or:
1628    case BinaryOperator::Comma: {
1629      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1630      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1631      if (Exp->getOpcode() == BinaryOperator::Div ||
1632          Exp->getOpcode() == BinaryOperator::Rem) {
1633        // Evaluate gives an error for undefined Div/Rem, so make sure
1634        // we don't evaluate one.
1635        if (LHSResult.Val != 2 && RHSResult.Val != 2) {
1636          llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
1637          if (REval == 0)
1638            return ICEDiag(1, E->getLocStart());
1639          if (REval.isSigned() && REval.isAllOnesValue()) {
1640            llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
1641            if (LEval.isMinSignedValue())
1642              return ICEDiag(1, E->getLocStart());
1643          }
1644        }
1645      }
1646      if (Exp->getOpcode() == BinaryOperator::Comma) {
1647        if (Ctx.getLangOptions().C99) {
1648          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
1649          // if it isn't evaluated.
1650          if (LHSResult.Val == 0 && RHSResult.Val == 0)
1651            return ICEDiag(1, E->getLocStart());
1652        } else {
1653          // In both C89 and C++, commas in ICEs are illegal.
1654          return ICEDiag(2, E->getLocStart());
1655        }
1656      }
1657      if (LHSResult.Val >= RHSResult.Val)
1658        return LHSResult;
1659      return RHSResult;
1660    }
1661    case BinaryOperator::LAnd:
1662    case BinaryOperator::LOr: {
1663      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1664      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1665      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
1666        // Rare case where the RHS has a comma "side-effect"; we need
1667        // to actually check the condition to see whether the side
1668        // with the comma is evaluated.
1669        if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
1670            (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
1671          return RHSResult;
1672        return NoDiag();
1673      }
1674
1675      if (LHSResult.Val >= RHSResult.Val)
1676        return LHSResult;
1677      return RHSResult;
1678    }
1679    }
1680  }
1681  case Expr::CastExprClass:
1682  case Expr::ImplicitCastExprClass:
1683  case Expr::ExplicitCastExprClass:
1684  case Expr::CStyleCastExprClass:
1685  case Expr::CXXFunctionalCastExprClass:
1686  case Expr::CXXNamedCastExprClass:
1687  case Expr::CXXStaticCastExprClass:
1688  case Expr::CXXReinterpretCastExprClass:
1689  case Expr::CXXConstCastExprClass: {
1690    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
1691    if (SubExpr->getType()->isIntegralType())
1692      return CheckICE(SubExpr, Ctx);
1693    if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
1694      return NoDiag();
1695    return ICEDiag(2, E->getLocStart());
1696  }
1697  case Expr::ConditionalOperatorClass: {
1698    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
1699    // If the condition (ignoring parens) is a __builtin_constant_p call,
1700    // then only the true side is actually considered in an integer constant
1701    // expression, and it is fully evaluated.  This is an important GNU
1702    // extension.  See GCC PR38377 for discussion.
1703    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
1704      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
1705        Expr::EvalResult EVResult;
1706        if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1707            !EVResult.Val.isInt()) {
1708          return ICEDiag(2, E->getLocStart());
1709        }
1710        return NoDiag();
1711      }
1712    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
1713    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
1714    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
1715    if (CondResult.Val == 2)
1716      return CondResult;
1717    if (TrueResult.Val == 2)
1718      return TrueResult;
1719    if (FalseResult.Val == 2)
1720      return FalseResult;
1721    if (CondResult.Val == 1)
1722      return CondResult;
1723    if (TrueResult.Val == 0 && FalseResult.Val == 0)
1724      return NoDiag();
1725    // Rare case where the diagnostics depend on which side is evaluated
1726    // Note that if we get here, CondResult is 0, and at least one of
1727    // TrueResult and FalseResult is non-zero.
1728    if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
1729      return FalseResult;
1730    }
1731    return TrueResult;
1732  }
1733  case Expr::CXXDefaultArgExprClass:
1734    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
1735  case Expr::ChooseExprClass: {
1736    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
1737  }
1738  }
1739
1740  // Silence a GCC warning
1741  return ICEDiag(2, E->getLocStart());
1742}
1743
1744bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
1745                                 SourceLocation *Loc, bool isEvaluated) const {
1746  ICEDiag d = CheckICE(this, Ctx);
1747  if (d.Val != 0) {
1748    if (Loc) *Loc = d.Loc;
1749    return false;
1750  }
1751  EvalResult EvalResult;
1752  if (!Evaluate(EvalResult, Ctx))
1753    assert(0 && "ICE cannot be evaluated!");
1754  assert(!EvalResult.HasSideEffects && "ICE with side effects!");
1755  assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
1756  Result = EvalResult.Val.getInt();
1757  return true;
1758}
1759
1760/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1761/// integer constant expression with the value zero, or if this is one that is
1762/// cast to void*.
1763bool Expr::isNullPointerConstant(ASTContext &Ctx,
1764                                 NullPointerConstantValueDependence NPC) const {
1765  if (isValueDependent()) {
1766    switch (NPC) {
1767    case NPC_NeverValueDependent:
1768      assert(false && "Unexpected value dependent expression!");
1769      // If the unthinkable happens, fall through to the safest alternative.
1770
1771    case NPC_ValueDependentIsNull:
1772      return isTypeDependent() || getType()->isIntegralType();
1773
1774    case NPC_ValueDependentIsNotNull:
1775      return false;
1776    }
1777  }
1778
1779  // Strip off a cast to void*, if it exists. Except in C++.
1780  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1781    if (!Ctx.getLangOptions().CPlusPlus) {
1782      // Check that it is a cast to void*.
1783      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
1784        QualType Pointee = PT->getPointeeType();
1785        if (!Pointee.hasQualifiers() &&
1786            Pointee->isVoidType() &&                              // to void*
1787            CE->getSubExpr()->getType()->isIntegerType())         // from int.
1788          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1789      }
1790    }
1791  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1792    // Ignore the ImplicitCastExpr type entirely.
1793    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1794  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1795    // Accept ((void*)0) as a null pointer constant, as many other
1796    // implementations do.
1797    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1798  } else if (const CXXDefaultArgExpr *DefaultArg
1799               = dyn_cast<CXXDefaultArgExpr>(this)) {
1800    // See through default argument expressions
1801    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
1802  } else if (isa<GNUNullExpr>(this)) {
1803    // The GNU __null extension is always a null pointer constant.
1804    return true;
1805  }
1806
1807  // C++0x nullptr_t is always a null pointer constant.
1808  if (getType()->isNullPtrType())
1809    return true;
1810
1811  // This expression must be an integer type.
1812  if (!getType()->isIntegerType() ||
1813      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
1814    return false;
1815
1816  // If we have an integer constant expression, we need to *evaluate* it and
1817  // test for the value 0.
1818  llvm::APSInt Result;
1819  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
1820}
1821
1822FieldDecl *Expr::getBitField() {
1823  Expr *E = this->IgnoreParens();
1824
1825  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
1826    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
1827      if (Field->isBitField())
1828        return Field;
1829
1830  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
1831    if (BinOp->isAssignmentOp() && BinOp->getLHS())
1832      return BinOp->getLHS()->getBitField();
1833
1834  return 0;
1835}
1836
1837/// isArrow - Return true if the base expression is a pointer to vector,
1838/// return false if the base expression is a vector.
1839bool ExtVectorElementExpr::isArrow() const {
1840  return getBase()->getType()->isPointerType();
1841}
1842
1843unsigned ExtVectorElementExpr::getNumElements() const {
1844  if (const VectorType *VT = getType()->getAs<VectorType>())
1845    return VT->getNumElements();
1846  return 1;
1847}
1848
1849/// containsDuplicateElements - Return true if any element access is repeated.
1850bool ExtVectorElementExpr::containsDuplicateElements() const {
1851  // FIXME: Refactor this code to an accessor on the AST node which returns the
1852  // "type" of component access, and share with code below and in Sema.
1853  llvm::StringRef Comp = Accessor->getName();
1854
1855  // Halving swizzles do not contain duplicate elements.
1856  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
1857    return false;
1858
1859  // Advance past s-char prefix on hex swizzles.
1860  if (Comp[0] == 's' || Comp[0] == 'S')
1861    Comp = Comp.substr(1);
1862
1863  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
1864    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
1865        return true;
1866
1867  return false;
1868}
1869
1870/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
1871void ExtVectorElementExpr::getEncodedElementAccess(
1872                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
1873  llvm::StringRef Comp = Accessor->getName();
1874  if (Comp[0] == 's' || Comp[0] == 'S')
1875    Comp = Comp.substr(1);
1876
1877  bool isHi =   Comp == "hi";
1878  bool isLo =   Comp == "lo";
1879  bool isEven = Comp == "even";
1880  bool isOdd  = Comp == "odd";
1881
1882  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
1883    uint64_t Index;
1884
1885    if (isHi)
1886      Index = e + i;
1887    else if (isLo)
1888      Index = i;
1889    else if (isEven)
1890      Index = 2 * i;
1891    else if (isOdd)
1892      Index = 2 * i + 1;
1893    else
1894      Index = ExtVectorType::getAccessorIdx(Comp[i]);
1895
1896    Elts.push_back(Index);
1897  }
1898}
1899
1900// constructor for instance messages.
1901ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
1902                QualType retType, ObjCMethodDecl *mproto,
1903                SourceLocation LBrac, SourceLocation RBrac,
1904                Expr **ArgExprs, unsigned nargs)
1905  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1906    MethodProto(mproto) {
1907  NumArgs = nargs;
1908  SubExprs = new Stmt*[NumArgs+1];
1909  SubExprs[RECEIVER] = receiver;
1910  if (NumArgs) {
1911    for (unsigned i = 0; i != NumArgs; ++i)
1912      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1913  }
1914  LBracloc = LBrac;
1915  RBracloc = RBrac;
1916}
1917
1918// constructor for class messages.
1919// FIXME: clsName should be typed to ObjCInterfaceType
1920ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
1921                QualType retType, ObjCMethodDecl *mproto,
1922                SourceLocation LBrac, SourceLocation RBrac,
1923                Expr **ArgExprs, unsigned nargs)
1924  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1925    MethodProto(mproto) {
1926  NumArgs = nargs;
1927  SubExprs = new Stmt*[NumArgs+1];
1928  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
1929  if (NumArgs) {
1930    for (unsigned i = 0; i != NumArgs; ++i)
1931      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1932  }
1933  LBracloc = LBrac;
1934  RBracloc = RBrac;
1935}
1936
1937// constructor for class messages.
1938ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
1939                                 QualType retType, ObjCMethodDecl *mproto,
1940                                 SourceLocation LBrac, SourceLocation RBrac,
1941                                 Expr **ArgExprs, unsigned nargs)
1942: Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1943MethodProto(mproto) {
1944  NumArgs = nargs;
1945  SubExprs = new Stmt*[NumArgs+1];
1946  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
1947  if (NumArgs) {
1948    for (unsigned i = 0; i != NumArgs; ++i)
1949      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1950  }
1951  LBracloc = LBrac;
1952  RBracloc = RBrac;
1953}
1954
1955ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
1956  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
1957  switch (x & Flags) {
1958    default:
1959      assert(false && "Invalid ObjCMessageExpr.");
1960    case IsInstMeth:
1961      return ClassInfo(0, 0);
1962    case IsClsMethDeclUnknown:
1963      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
1964    case IsClsMethDeclKnown: {
1965      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
1966      return ClassInfo(D, D->getIdentifier());
1967    }
1968  }
1969}
1970
1971void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) {
1972  if (CI.first == 0 && CI.second == 0)
1973    SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth);
1974  else if (CI.first == 0)
1975    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.second | IsClsMethDeclUnknown);
1976  else
1977    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.first | IsClsMethDeclKnown);
1978}
1979
1980
1981bool ChooseExpr::isConditionTrue(ASTContext &C) const {
1982  return getCond()->EvaluateAsInt(C) != 0;
1983}
1984
1985void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
1986                                 unsigned NumExprs) {
1987  if (SubExprs) C.Deallocate(SubExprs);
1988
1989  SubExprs = new (C) Stmt* [NumExprs];
1990  this->NumExprs = NumExprs;
1991  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
1992}
1993
1994void ShuffleVectorExpr::DoDestroy(ASTContext& C) {
1995  DestroyChildren(C);
1996  if (SubExprs) C.Deallocate(SubExprs);
1997  this->~ShuffleVectorExpr();
1998  C.Deallocate(this);
1999}
2000
2001void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) {
2002  // Override default behavior of traversing children. If this has a type
2003  // operand and the type is a variable-length array, the child iteration
2004  // will iterate over the size expression. However, this expression belongs
2005  // to the type, not to this, so we don't want to delete it.
2006  // We still want to delete this expression.
2007  if (isArgumentType()) {
2008    this->~SizeOfAlignOfExpr();
2009    C.Deallocate(this);
2010  }
2011  else
2012    Expr::DoDestroy(C);
2013}
2014
2015//===----------------------------------------------------------------------===//
2016//  DesignatedInitExpr
2017//===----------------------------------------------------------------------===//
2018
2019IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2020  assert(Kind == FieldDesignator && "Only valid on a field designator");
2021  if (Field.NameOrField & 0x01)
2022    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2023  else
2024    return getField()->getIdentifier();
2025}
2026
2027DesignatedInitExpr::DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
2028                                       const Designator *Designators,
2029                                       SourceLocation EqualOrColonLoc,
2030                                       bool GNUSyntax,
2031                                       Expr **IndexExprs,
2032                                       unsigned NumIndexExprs,
2033                                       Expr *Init)
2034  : Expr(DesignatedInitExprClass, Ty,
2035         Init->isTypeDependent(), Init->isValueDependent()),
2036    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2037    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2038  this->Designators = new Designator[NumDesignators];
2039
2040  // Record the initializer itself.
2041  child_iterator Child = child_begin();
2042  *Child++ = Init;
2043
2044  // Copy the designators and their subexpressions, computing
2045  // value-dependence along the way.
2046  unsigned IndexIdx = 0;
2047  for (unsigned I = 0; I != NumDesignators; ++I) {
2048    this->Designators[I] = Designators[I];
2049
2050    if (this->Designators[I].isArrayDesignator()) {
2051      // Compute type- and value-dependence.
2052      Expr *Index = IndexExprs[IndexIdx];
2053      ValueDependent = ValueDependent ||
2054        Index->isTypeDependent() || Index->isValueDependent();
2055
2056      // Copy the index expressions into permanent storage.
2057      *Child++ = IndexExprs[IndexIdx++];
2058    } else if (this->Designators[I].isArrayRangeDesignator()) {
2059      // Compute type- and value-dependence.
2060      Expr *Start = IndexExprs[IndexIdx];
2061      Expr *End = IndexExprs[IndexIdx + 1];
2062      ValueDependent = ValueDependent ||
2063        Start->isTypeDependent() || Start->isValueDependent() ||
2064        End->isTypeDependent() || End->isValueDependent();
2065
2066      // Copy the start/end expressions into permanent storage.
2067      *Child++ = IndexExprs[IndexIdx++];
2068      *Child++ = IndexExprs[IndexIdx++];
2069    }
2070  }
2071
2072  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2073}
2074
2075DesignatedInitExpr *
2076DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2077                           unsigned NumDesignators,
2078                           Expr **IndexExprs, unsigned NumIndexExprs,
2079                           SourceLocation ColonOrEqualLoc,
2080                           bool UsesColonSyntax, Expr *Init) {
2081  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2082                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2083  return new (Mem) DesignatedInitExpr(C.VoidTy, NumDesignators, Designators,
2084                                      ColonOrEqualLoc, UsesColonSyntax,
2085                                      IndexExprs, NumIndexExprs, Init);
2086}
2087
2088DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2089                                                    unsigned NumIndexExprs) {
2090  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2091                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2092  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2093}
2094
2095void DesignatedInitExpr::setDesignators(const Designator *Desigs,
2096                                        unsigned NumDesigs) {
2097  if (Designators)
2098    delete [] Designators;
2099
2100  Designators = new Designator[NumDesigs];
2101  NumDesignators = NumDesigs;
2102  for (unsigned I = 0; I != NumDesigs; ++I)
2103    Designators[I] = Desigs[I];
2104}
2105
2106SourceRange DesignatedInitExpr::getSourceRange() const {
2107  SourceLocation StartLoc;
2108  Designator &First =
2109    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2110  if (First.isFieldDesignator()) {
2111    if (GNUSyntax)
2112      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2113    else
2114      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2115  } else
2116    StartLoc =
2117      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2118  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2119}
2120
2121Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2122  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2123  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2124  Ptr += sizeof(DesignatedInitExpr);
2125  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2126  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2127}
2128
2129Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2130  assert(D.Kind == Designator::ArrayRangeDesignator &&
2131         "Requires array range designator");
2132  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2133  Ptr += sizeof(DesignatedInitExpr);
2134  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2135  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2136}
2137
2138Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2139  assert(D.Kind == Designator::ArrayRangeDesignator &&
2140         "Requires array range designator");
2141  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2142  Ptr += sizeof(DesignatedInitExpr);
2143  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2144  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2145}
2146
2147/// \brief Replaces the designator at index @p Idx with the series
2148/// of designators in [First, Last).
2149void DesignatedInitExpr::ExpandDesignator(unsigned Idx,
2150                                          const Designator *First,
2151                                          const Designator *Last) {
2152  unsigned NumNewDesignators = Last - First;
2153  if (NumNewDesignators == 0) {
2154    std::copy_backward(Designators + Idx + 1,
2155                       Designators + NumDesignators,
2156                       Designators + Idx);
2157    --NumNewDesignators;
2158    return;
2159  } else if (NumNewDesignators == 1) {
2160    Designators[Idx] = *First;
2161    return;
2162  }
2163
2164  Designator *NewDesignators
2165    = new Designator[NumDesignators - 1 + NumNewDesignators];
2166  std::copy(Designators, Designators + Idx, NewDesignators);
2167  std::copy(First, Last, NewDesignators + Idx);
2168  std::copy(Designators + Idx + 1, Designators + NumDesignators,
2169            NewDesignators + Idx + NumNewDesignators);
2170  delete [] Designators;
2171  Designators = NewDesignators;
2172  NumDesignators = NumDesignators - 1 + NumNewDesignators;
2173}
2174
2175void DesignatedInitExpr::DoDestroy(ASTContext &C) {
2176  delete [] Designators;
2177  Expr::DoDestroy(C);
2178}
2179
2180ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2181                             Expr **exprs, unsigned nexprs,
2182                             SourceLocation rparenloc)
2183: Expr(ParenListExprClass, QualType(),
2184       hasAnyTypeDependentArguments(exprs, nexprs),
2185       hasAnyValueDependentArguments(exprs, nexprs)),
2186  NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2187
2188  Exprs = new (C) Stmt*[nexprs];
2189  for (unsigned i = 0; i != nexprs; ++i)
2190    Exprs[i] = exprs[i];
2191}
2192
2193void ParenListExpr::DoDestroy(ASTContext& C) {
2194  DestroyChildren(C);
2195  if (Exprs) C.Deallocate(Exprs);
2196  this->~ParenListExpr();
2197  C.Deallocate(this);
2198}
2199
2200//===----------------------------------------------------------------------===//
2201//  ExprIterator.
2202//===----------------------------------------------------------------------===//
2203
2204Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2205Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2206Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2207const Expr* ConstExprIterator::operator[](size_t idx) const {
2208  return cast<Expr>(I[idx]);
2209}
2210const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2211const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2212
2213//===----------------------------------------------------------------------===//
2214//  Child Iterators for iterating over subexpressions/substatements
2215//===----------------------------------------------------------------------===//
2216
2217// DeclRefExpr
2218Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
2219Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
2220
2221// ObjCIvarRefExpr
2222Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
2223Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
2224
2225// ObjCPropertyRefExpr
2226Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
2227Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
2228
2229// ObjCImplicitSetterGetterRefExpr
2230Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() {
2231  return &Base;
2232}
2233Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() {
2234  return &Base+1;
2235}
2236
2237// ObjCSuperExpr
2238Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
2239Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
2240
2241// ObjCIsaExpr
2242Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
2243Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
2244
2245// PredefinedExpr
2246Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
2247Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
2248
2249// IntegerLiteral
2250Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
2251Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
2252
2253// CharacterLiteral
2254Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
2255Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
2256
2257// FloatingLiteral
2258Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
2259Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
2260
2261// ImaginaryLiteral
2262Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
2263Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
2264
2265// StringLiteral
2266Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
2267Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
2268
2269// ParenExpr
2270Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
2271Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
2272
2273// UnaryOperator
2274Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
2275Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
2276
2277// SizeOfAlignOfExpr
2278Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
2279  // If this is of a type and the type is a VLA type (and not a typedef), the
2280  // size expression of the VLA needs to be treated as an executable expression.
2281  // Why isn't this weirdness documented better in StmtIterator?
2282  if (isArgumentType()) {
2283    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
2284                                   getArgumentType().getTypePtr()))
2285      return child_iterator(T);
2286    return child_iterator();
2287  }
2288  return child_iterator(&Argument.Ex);
2289}
2290Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
2291  if (isArgumentType())
2292    return child_iterator();
2293  return child_iterator(&Argument.Ex + 1);
2294}
2295
2296// ArraySubscriptExpr
2297Stmt::child_iterator ArraySubscriptExpr::child_begin() {
2298  return &SubExprs[0];
2299}
2300Stmt::child_iterator ArraySubscriptExpr::child_end() {
2301  return &SubExprs[0]+END_EXPR;
2302}
2303
2304// CallExpr
2305Stmt::child_iterator CallExpr::child_begin() {
2306  return &SubExprs[0];
2307}
2308Stmt::child_iterator CallExpr::child_end() {
2309  return &SubExprs[0]+NumArgs+ARGS_START;
2310}
2311
2312// MemberExpr
2313Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
2314Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
2315
2316// ExtVectorElementExpr
2317Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
2318Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
2319
2320// CompoundLiteralExpr
2321Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
2322Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
2323
2324// CastExpr
2325Stmt::child_iterator CastExpr::child_begin() { return &Op; }
2326Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
2327
2328// BinaryOperator
2329Stmt::child_iterator BinaryOperator::child_begin() {
2330  return &SubExprs[0];
2331}
2332Stmt::child_iterator BinaryOperator::child_end() {
2333  return &SubExprs[0]+END_EXPR;
2334}
2335
2336// ConditionalOperator
2337Stmt::child_iterator ConditionalOperator::child_begin() {
2338  return &SubExprs[0];
2339}
2340Stmt::child_iterator ConditionalOperator::child_end() {
2341  return &SubExprs[0]+END_EXPR;
2342}
2343
2344// AddrLabelExpr
2345Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
2346Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
2347
2348// StmtExpr
2349Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
2350Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
2351
2352// TypesCompatibleExpr
2353Stmt::child_iterator TypesCompatibleExpr::child_begin() {
2354  return child_iterator();
2355}
2356
2357Stmt::child_iterator TypesCompatibleExpr::child_end() {
2358  return child_iterator();
2359}
2360
2361// ChooseExpr
2362Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2363Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2364
2365// GNUNullExpr
2366Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2367Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2368
2369// ShuffleVectorExpr
2370Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2371  return &SubExprs[0];
2372}
2373Stmt::child_iterator ShuffleVectorExpr::child_end() {
2374  return &SubExprs[0]+NumExprs;
2375}
2376
2377// VAArgExpr
2378Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2379Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2380
2381// InitListExpr
2382Stmt::child_iterator InitListExpr::child_begin() {
2383  return InitExprs.size() ? &InitExprs[0] : 0;
2384}
2385Stmt::child_iterator InitListExpr::child_end() {
2386  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2387}
2388
2389// DesignatedInitExpr
2390Stmt::child_iterator DesignatedInitExpr::child_begin() {
2391  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2392  Ptr += sizeof(DesignatedInitExpr);
2393  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2394}
2395Stmt::child_iterator DesignatedInitExpr::child_end() {
2396  return child_iterator(&*child_begin() + NumSubExprs);
2397}
2398
2399// ImplicitValueInitExpr
2400Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2401  return child_iterator();
2402}
2403
2404Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2405  return child_iterator();
2406}
2407
2408// ParenListExpr
2409Stmt::child_iterator ParenListExpr::child_begin() {
2410  return &Exprs[0];
2411}
2412Stmt::child_iterator ParenListExpr::child_end() {
2413  return &Exprs[0]+NumExprs;
2414}
2415
2416// ObjCStringLiteral
2417Stmt::child_iterator ObjCStringLiteral::child_begin() {
2418  return &String;
2419}
2420Stmt::child_iterator ObjCStringLiteral::child_end() {
2421  return &String+1;
2422}
2423
2424// ObjCEncodeExpr
2425Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2426Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2427
2428// ObjCSelectorExpr
2429Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2430  return child_iterator();
2431}
2432Stmt::child_iterator ObjCSelectorExpr::child_end() {
2433  return child_iterator();
2434}
2435
2436// ObjCProtocolExpr
2437Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2438  return child_iterator();
2439}
2440Stmt::child_iterator ObjCProtocolExpr::child_end() {
2441  return child_iterator();
2442}
2443
2444// ObjCMessageExpr
2445Stmt::child_iterator ObjCMessageExpr::child_begin() {
2446  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
2447}
2448Stmt::child_iterator ObjCMessageExpr::child_end() {
2449  return &SubExprs[0]+ARGS_START+getNumArgs();
2450}
2451
2452// Blocks
2453Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2454Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2455
2456Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2457Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2458