Expr.cpp revision 1a42a2550a2db937ab3df863b771f13be34b66d6
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/StmtVisitor.h"
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/TargetInfo.h"
19using namespace clang;
20
21//===----------------------------------------------------------------------===//
22// Primary Expressions.
23//===----------------------------------------------------------------------===//
24
25StringLiteral::StringLiteral(const char *strData, unsigned byteLength,
26                             bool Wide, QualType t, SourceLocation firstLoc,
27                             SourceLocation lastLoc) :
28  Expr(StringLiteralClass, t) {
29  // OPTIMIZE: could allocate this appended to the StringLiteral.
30  char *AStrData = new char[byteLength];
31  memcpy(AStrData, strData, byteLength);
32  StrData = AStrData;
33  ByteLength = byteLength;
34  IsWide = Wide;
35  firstTokLoc = firstLoc;
36  lastTokLoc = lastLoc;
37}
38
39StringLiteral::~StringLiteral() {
40  delete[] StrData;
41}
42
43bool UnaryOperator::isPostfix(Opcode Op) {
44  switch (Op) {
45  case PostInc:
46  case PostDec:
47    return true;
48  default:
49    return false;
50  }
51}
52
53/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
54/// corresponds to, e.g. "sizeof" or "[pre]++".
55const char *UnaryOperator::getOpcodeStr(Opcode Op) {
56  switch (Op) {
57  default: assert(0 && "Unknown unary operator");
58  case PostInc: return "++";
59  case PostDec: return "--";
60  case PreInc:  return "++";
61  case PreDec:  return "--";
62  case AddrOf:  return "&";
63  case Deref:   return "*";
64  case Plus:    return "+";
65  case Minus:   return "-";
66  case Not:     return "~";
67  case LNot:    return "!";
68  case Real:    return "__real";
69  case Imag:    return "__imag";
70  case SizeOf:  return "sizeof";
71  case AlignOf: return "alignof";
72  case Extension: return "__extension__";
73  case OffsetOf: return "__builtin_offsetof";
74  }
75}
76
77//===----------------------------------------------------------------------===//
78// Postfix Operators.
79//===----------------------------------------------------------------------===//
80
81
82CallExpr::CallExpr(Expr *fn, Expr **args, unsigned numargs, QualType t,
83                   SourceLocation rparenloc)
84  : Expr(CallExprClass, t), NumArgs(numargs) {
85  SubExprs = new Expr*[numargs+1];
86  SubExprs[FN] = fn;
87  for (unsigned i = 0; i != numargs; ++i)
88    SubExprs[i+ARGS_START] = args[i];
89  RParenLoc = rparenloc;
90}
91
92/// setNumArgs - This changes the number of arguments present in this call.
93/// Any orphaned expressions are deleted by this, and any new operands are set
94/// to null.
95void CallExpr::setNumArgs(unsigned NumArgs) {
96  // No change, just return.
97  if (NumArgs == getNumArgs()) return;
98
99  // If shrinking # arguments, just delete the extras and forgot them.
100  if (NumArgs < getNumArgs()) {
101    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
102      delete getArg(i);
103    this->NumArgs = NumArgs;
104    return;
105  }
106
107  // Otherwise, we are growing the # arguments.  New an bigger argument array.
108  Expr **NewSubExprs = new Expr*[NumArgs+1];
109  // Copy over args.
110  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
111    NewSubExprs[i] = SubExprs[i];
112  // Null out new args.
113  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
114    NewSubExprs[i] = 0;
115
116  delete[] SubExprs;
117  SubExprs = NewSubExprs;
118  this->NumArgs = NumArgs;
119}
120
121bool CallExpr::isBuiltinConstantExpr() const {
122  // All simple function calls (e.g. func()) are implicitly cast to pointer to
123  // function. As a result, we try and obtain the DeclRefExpr from the
124  // ImplicitCastExpr.
125  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
126  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
127    return false;
128
129  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
130  if (!DRE)
131    return false;
132
133  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
134  if (!FDecl)
135    return false;
136
137  unsigned builtinID = FDecl->getIdentifier()->getBuiltinID();
138  if (!builtinID)
139    return false;
140
141  // We have a builtin that is a constant expression
142  if (builtinID == Builtin::BI__builtin___CFStringMakeConstantString)
143    return true;
144  return false;
145}
146
147bool CallExpr::isBuiltinClassifyType(llvm::APSInt &Result) const {
148  // The following enum mimics gcc's internal "typeclass.h" file.
149  enum gcc_type_class {
150    no_type_class = -1,
151    void_type_class, integer_type_class, char_type_class,
152    enumeral_type_class, boolean_type_class,
153    pointer_type_class, reference_type_class, offset_type_class,
154    real_type_class, complex_type_class,
155    function_type_class, method_type_class,
156    record_type_class, union_type_class,
157    array_type_class, string_type_class,
158    lang_type_class
159  };
160  Result.setIsSigned(true);
161
162  // All simple function calls (e.g. func()) are implicitly cast to pointer to
163  // function. As a result, we try and obtain the DeclRefExpr from the
164  // ImplicitCastExpr.
165  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
166  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
167    return false;
168  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
169  if (!DRE)
170    return false;
171
172  // We have a DeclRefExpr.
173  if (strcmp(DRE->getDecl()->getName(), "__builtin_classify_type") == 0) {
174    // If no argument was supplied, default to "no_type_class". This isn't
175    // ideal, however it's what gcc does.
176    Result = static_cast<uint64_t>(no_type_class);
177    if (NumArgs >= 1) {
178      QualType argType = getArg(0)->getType();
179
180      if (argType->isVoidType())
181        Result = void_type_class;
182      else if (argType->isEnumeralType())
183        Result = enumeral_type_class;
184      else if (argType->isBooleanType())
185        Result = boolean_type_class;
186      else if (argType->isCharType())
187        Result = string_type_class; // gcc doesn't appear to use char_type_class
188      else if (argType->isIntegerType())
189        Result = integer_type_class;
190      else if (argType->isPointerType())
191        Result = pointer_type_class;
192      else if (argType->isReferenceType())
193        Result = reference_type_class;
194      else if (argType->isRealType())
195        Result = real_type_class;
196      else if (argType->isComplexType())
197        Result = complex_type_class;
198      else if (argType->isFunctionType())
199        Result = function_type_class;
200      else if (argType->isStructureType())
201        Result = record_type_class;
202      else if (argType->isUnionType())
203        Result = union_type_class;
204      else if (argType->isArrayType())
205        Result = array_type_class;
206      else if (argType->isUnionType())
207        Result = union_type_class;
208      else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
209        assert(0 && "CallExpr::isBuiltinClassifyType(): unimplemented type");
210    }
211    return true;
212  }
213  return false;
214}
215
216/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
217/// corresponds to, e.g. "<<=".
218const char *BinaryOperator::getOpcodeStr(Opcode Op) {
219  switch (Op) {
220  default: assert(0 && "Unknown binary operator");
221  case Mul:       return "*";
222  case Div:       return "/";
223  case Rem:       return "%";
224  case Add:       return "+";
225  case Sub:       return "-";
226  case Shl:       return "<<";
227  case Shr:       return ">>";
228  case LT:        return "<";
229  case GT:        return ">";
230  case LE:        return "<=";
231  case GE:        return ">=";
232  case EQ:        return "==";
233  case NE:        return "!=";
234  case And:       return "&";
235  case Xor:       return "^";
236  case Or:        return "|";
237  case LAnd:      return "&&";
238  case LOr:       return "||";
239  case Assign:    return "=";
240  case MulAssign: return "*=";
241  case DivAssign: return "/=";
242  case RemAssign: return "%=";
243  case AddAssign: return "+=";
244  case SubAssign: return "-=";
245  case ShlAssign: return "<<=";
246  case ShrAssign: return ">>=";
247  case AndAssign: return "&=";
248  case XorAssign: return "^=";
249  case OrAssign:  return "|=";
250  case Comma:     return ",";
251  }
252}
253
254InitListExpr::InitListExpr(SourceLocation lbraceloc,
255                           Expr **initexprs, unsigned numinits,
256                           SourceLocation rbraceloc)
257  : Expr(InitListExprClass, QualType()),
258    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc)
259{
260  for (unsigned i = 0; i != numinits; i++)
261    InitExprs.push_back(initexprs[i]);
262}
263
264//===----------------------------------------------------------------------===//
265// Generic Expression Routines
266//===----------------------------------------------------------------------===//
267
268/// hasLocalSideEffect - Return true if this immediate expression has side
269/// effects, not counting any sub-expressions.
270bool Expr::hasLocalSideEffect() const {
271  switch (getStmtClass()) {
272  default:
273    return false;
274  case ParenExprClass:
275    return cast<ParenExpr>(this)->getSubExpr()->hasLocalSideEffect();
276  case UnaryOperatorClass: {
277    const UnaryOperator *UO = cast<UnaryOperator>(this);
278
279    switch (UO->getOpcode()) {
280    default: return false;
281    case UnaryOperator::PostInc:
282    case UnaryOperator::PostDec:
283    case UnaryOperator::PreInc:
284    case UnaryOperator::PreDec:
285      return true;                     // ++/--
286
287    case UnaryOperator::Deref:
288      // Dereferencing a volatile pointer is a side-effect.
289      return getType().isVolatileQualified();
290    case UnaryOperator::Real:
291    case UnaryOperator::Imag:
292      // accessing a piece of a volatile complex is a side-effect.
293      return UO->getSubExpr()->getType().isVolatileQualified();
294
295    case UnaryOperator::Extension:
296      return UO->getSubExpr()->hasLocalSideEffect();
297    }
298  }
299  case BinaryOperatorClass: {
300    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
301    // Consider comma to have side effects if the LHS and RHS both do.
302    if (BinOp->getOpcode() == BinaryOperator::Comma)
303      return BinOp->getLHS()->hasLocalSideEffect() &&
304             BinOp->getRHS()->hasLocalSideEffect();
305
306    return BinOp->isAssignmentOp();
307  }
308  case CompoundAssignOperatorClass:
309    return true;
310
311  case ConditionalOperatorClass: {
312    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
313    return Exp->getCond()->hasLocalSideEffect()
314           || (Exp->getLHS() && Exp->getLHS()->hasLocalSideEffect())
315           || (Exp->getRHS() && Exp->getRHS()->hasLocalSideEffect());
316  }
317
318  case MemberExprClass:
319  case ArraySubscriptExprClass:
320    // If the base pointer or element is to a volatile pointer/field, accessing
321    // if is a side effect.
322    return getType().isVolatileQualified();
323
324  case CallExprClass:
325    // TODO: check attributes for pure/const.   "void foo() { strlen("bar"); }"
326    // should warn.
327    return true;
328  case ObjCMessageExprClass:
329    return true;
330
331  case CastExprClass:
332    // If this is a cast to void, check the operand.  Otherwise, the result of
333    // the cast is unused.
334    if (getType()->isVoidType())
335      return cast<CastExpr>(this)->getSubExpr()->hasLocalSideEffect();
336    return false;
337
338  case CXXDefaultArgExprClass:
339    return cast<CXXDefaultArgExpr>(this)->getExpr()->hasLocalSideEffect();
340  }
341}
342
343/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
344/// incomplete type other than void. Nonarray expressions that can be lvalues:
345///  - name, where name must be a variable
346///  - e[i]
347///  - (e), where e must be an lvalue
348///  - e.name, where e must be an lvalue
349///  - e->name
350///  - *e, the type of e cannot be a function type
351///  - string-constant
352///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
353///  - reference type [C++ [expr]]
354///
355Expr::isLvalueResult Expr::isLvalue() const {
356  // first, check the type (C99 6.3.2.1)
357  if (TR->isFunctionType()) // from isObjectType()
358    return LV_NotObjectType;
359
360  // Allow qualified void which is an incomplete type other than void (yuck).
361  if (TR->isVoidType() && !TR.getCanonicalType().getCVRQualifiers())
362    return LV_IncompleteVoidType;
363
364  if (TR->isReferenceType()) // C++ [expr]
365    return LV_Valid;
366
367  // the type looks fine, now check the expression
368  switch (getStmtClass()) {
369  case StringLiteralClass: // C99 6.5.1p4
370    return LV_Valid;
371  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
372    // For vectors, make sure base is an lvalue (i.e. not a function call).
373    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
374      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue();
375    return LV_Valid;
376  case DeclRefExprClass: // C99 6.5.1p2
377    if (isa<VarDecl>(cast<DeclRefExpr>(this)->getDecl()))
378      return LV_Valid;
379    break;
380  case MemberExprClass: { // C99 6.5.2.3p4
381    const MemberExpr *m = cast<MemberExpr>(this);
382    return m->isArrow() ? LV_Valid : m->getBase()->isLvalue();
383  }
384  case UnaryOperatorClass:
385    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
386      return LV_Valid; // C99 6.5.3p4
387
388    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
389        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag)
390      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue();  // GNU.
391    break;
392  case ParenExprClass: // C99 6.5.1p5
393    return cast<ParenExpr>(this)->getSubExpr()->isLvalue();
394  case CompoundLiteralExprClass: // C99 6.5.2.5p5
395    return LV_Valid;
396  case ExtVectorElementExprClass:
397    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
398      return LV_DuplicateVectorComponents;
399    return LV_Valid;
400  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
401    return LV_Valid;
402  case PreDefinedExprClass:
403    return LV_Valid;
404  case CXXDefaultArgExprClass:
405    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue();
406  default:
407    break;
408  }
409  return LV_InvalidExpression;
410}
411
412/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
413/// does not have an incomplete type, does not have a const-qualified type, and
414/// if it is a structure or union, does not have any member (including,
415/// recursively, any member or element of all contained aggregates or unions)
416/// with a const-qualified type.
417Expr::isModifiableLvalueResult Expr::isModifiableLvalue() const {
418  isLvalueResult lvalResult = isLvalue();
419
420  switch (lvalResult) {
421  case LV_Valid: break;
422  case LV_NotObjectType: return MLV_NotObjectType;
423  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
424  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
425  case LV_InvalidExpression: return MLV_InvalidExpression;
426  }
427  if (TR.isConstQualified())
428    return MLV_ConstQualified;
429  if (TR->isArrayType())
430    return MLV_ArrayType;
431  if (TR->isIncompleteType())
432    return MLV_IncompleteType;
433
434  if (const RecordType *r = dyn_cast<RecordType>(TR.getCanonicalType())) {
435    if (r->hasConstFields())
436      return MLV_ConstQualified;
437  }
438  return MLV_Valid;
439}
440
441/// hasGlobalStorage - Return true if this expression has static storage
442/// duration.  This means that the address of this expression is a link-time
443/// constant.
444bool Expr::hasGlobalStorage() const {
445  switch (getStmtClass()) {
446  default:
447    return false;
448  case ParenExprClass:
449    return cast<ParenExpr>(this)->getSubExpr()->hasGlobalStorage();
450  case ImplicitCastExprClass:
451    return cast<ImplicitCastExpr>(this)->getSubExpr()->hasGlobalStorage();
452  case CompoundLiteralExprClass:
453    return cast<CompoundLiteralExpr>(this)->isFileScope();
454  case DeclRefExprClass: {
455    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
456    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
457      return VD->hasGlobalStorage();
458    if (isa<FunctionDecl>(D))
459      return true;
460    return false;
461  }
462  case MemberExprClass: {
463    const MemberExpr *M = cast<MemberExpr>(this);
464    return !M->isArrow() && M->getBase()->hasGlobalStorage();
465  }
466  case ArraySubscriptExprClass:
467    return cast<ArraySubscriptExpr>(this)->getBase()->hasGlobalStorage();
468  case PreDefinedExprClass:
469    return true;
470  case CXXDefaultArgExprClass:
471    return cast<CXXDefaultArgExpr>(this)->getExpr()->hasGlobalStorage();
472  }
473}
474
475Expr* Expr::IgnoreParens() {
476  Expr* E = this;
477  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
478    E = P->getSubExpr();
479
480  return E;
481}
482
483/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
484/// or CastExprs or ImplicitCastExprs, returning their operand.
485Expr *Expr::IgnoreParenCasts() {
486  Expr *E = this;
487  while (true) {
488    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
489      E = P->getSubExpr();
490    else if (CastExpr *P = dyn_cast<CastExpr>(E))
491      E = P->getSubExpr();
492    else if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E))
493      E = P->getSubExpr();
494    else
495      return E;
496  }
497}
498
499
500bool Expr::isConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
501  switch (getStmtClass()) {
502  default:
503    if (Loc) *Loc = getLocStart();
504    return false;
505  case ParenExprClass:
506    return cast<ParenExpr>(this)->getSubExpr()->isConstantExpr(Ctx, Loc);
507  case StringLiteralClass:
508  case ObjCStringLiteralClass:
509  case FloatingLiteralClass:
510  case IntegerLiteralClass:
511  case CharacterLiteralClass:
512  case ImaginaryLiteralClass:
513  case TypesCompatibleExprClass:
514  case CXXBoolLiteralExprClass:
515    return true;
516  case CallExprClass: {
517    const CallExpr *CE = cast<CallExpr>(this);
518    llvm::APSInt Result(32);
519    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
520    if (CE->isBuiltinClassifyType(Result))
521      return true;
522    if (CE->isBuiltinConstantExpr())
523      return true;
524    if (Loc) *Loc = getLocStart();
525    return false;
526  }
527  case DeclRefExprClass: {
528    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
529    // Accept address of function.
530    if (isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D))
531      return true;
532    if (Loc) *Loc = getLocStart();
533    if (isa<VarDecl>(D))
534      return TR->isArrayType();
535    return false;
536  }
537  case CompoundLiteralExprClass:
538    if (Loc) *Loc = getLocStart();
539    // Allow "(int []){2,4}", since the array will be converted to a pointer.
540    // Allow "(vector type){2,4}" since the elements are all constant.
541    return TR->isArrayType() || TR->isVectorType();
542  case UnaryOperatorClass: {
543    const UnaryOperator *Exp = cast<UnaryOperator>(this);
544
545    // C99 6.6p9
546    if (Exp->getOpcode() == UnaryOperator::AddrOf) {
547      if (!Exp->getSubExpr()->hasGlobalStorage()) {
548        if (Loc) *Loc = getLocStart();
549        return false;
550      }
551      return true;
552    }
553
554    // Get the operand value.  If this is sizeof/alignof, do not evalute the
555    // operand.  This affects C99 6.6p3.
556    if (!Exp->isSizeOfAlignOfOp() &&
557        Exp->getOpcode() != UnaryOperator::OffsetOf &&
558        !Exp->getSubExpr()->isConstantExpr(Ctx, Loc))
559      return false;
560
561    switch (Exp->getOpcode()) {
562    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
563    // See C99 6.6p3.
564    default:
565      if (Loc) *Loc = Exp->getOperatorLoc();
566      return false;
567    case UnaryOperator::Extension:
568      return true;  // FIXME: this is wrong.
569    case UnaryOperator::SizeOf:
570    case UnaryOperator::AlignOf:
571    case UnaryOperator::OffsetOf:
572      // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
573      if (!Exp->getSubExpr()->getType()->isConstantSizeType()) {
574        if (Loc) *Loc = Exp->getOperatorLoc();
575        return false;
576      }
577      return true;
578    case UnaryOperator::LNot:
579    case UnaryOperator::Plus:
580    case UnaryOperator::Minus:
581    case UnaryOperator::Not:
582      return true;
583    }
584  }
585  case SizeOfAlignOfTypeExprClass: {
586    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(this);
587    // alignof always evaluates to a constant.
588    if (Exp->isSizeOf() && !Exp->getArgumentType()->isVoidType() &&
589        !Exp->getArgumentType()->isConstantSizeType()) {
590      if (Loc) *Loc = Exp->getOperatorLoc();
591      return false;
592    }
593    return true;
594  }
595  case BinaryOperatorClass: {
596    const BinaryOperator *Exp = cast<BinaryOperator>(this);
597
598    // The LHS of a constant expr is always evaluated and needed.
599    if (!Exp->getLHS()->isConstantExpr(Ctx, Loc))
600      return false;
601
602    if (!Exp->getRHS()->isConstantExpr(Ctx, Loc))
603      return false;
604    return true;
605  }
606  case ImplicitCastExprClass:
607  case CastExprClass: {
608    const Expr *SubExpr;
609    SourceLocation CastLoc;
610    if (const CastExpr *C = dyn_cast<CastExpr>(this)) {
611      SubExpr = C->getSubExpr();
612      CastLoc = C->getLParenLoc();
613    } else {
614      SubExpr = cast<ImplicitCastExpr>(this)->getSubExpr();
615      CastLoc = getLocStart();
616    }
617    if (!SubExpr->isConstantExpr(Ctx, Loc)) {
618      if (Loc) *Loc = SubExpr->getLocStart();
619      return false;
620    }
621    return true;
622  }
623  case ConditionalOperatorClass: {
624    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
625    if (!Exp->getCond()->isConstantExpr(Ctx, Loc) ||
626        // Handle the GNU extension for missing LHS.
627        !(Exp->getLHS() && Exp->getLHS()->isConstantExpr(Ctx, Loc)) ||
628        !Exp->getRHS()->isConstantExpr(Ctx, Loc))
629      return false;
630    return true;
631  }
632  case InitListExprClass: {
633    const InitListExpr *Exp = cast<InitListExpr>(this);
634    unsigned numInits = Exp->getNumInits();
635    for (unsigned i = 0; i < numInits; i++) {
636      if (!Exp->getInit(i)->isConstantExpr(Ctx, Loc)) {
637        if (Loc) *Loc = Exp->getInit(i)->getLocStart();
638        return false;
639      }
640    }
641    return true;
642  }
643  case CXXDefaultArgExprClass:
644    return cast<CXXDefaultArgExpr>(this)->getExpr()->isConstantExpr(Ctx, Loc);
645  }
646}
647
648/// isIntegerConstantExpr - this recursive routine will test if an expression is
649/// an integer constant expression. Note: With the introduction of VLA's in
650/// C99 the result of the sizeof operator is no longer always a constant
651/// expression. The generalization of the wording to include any subexpression
652/// that is not evaluated (C99 6.6p3) means that nonconstant subexpressions
653/// can appear as operands to other operators (e.g. &&, ||, ?:). For instance,
654/// "0 || f()" can be treated as a constant expression. In C90 this expression,
655/// occurring in a context requiring a constant, would have been a constraint
656/// violation. FIXME: This routine currently implements C90 semantics.
657/// To properly implement C99 semantics this routine will need to evaluate
658/// expressions involving operators previously mentioned.
659
660/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
661/// comma, etc
662///
663/// FIXME: This should ext-warn on overflow during evaluation!  ISO C does not
664/// permit this.  This includes things like (int)1e1000
665///
666/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
667/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
668/// cast+dereference.
669bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
670                                 SourceLocation *Loc, bool isEvaluated) const {
671  switch (getStmtClass()) {
672  default:
673    if (Loc) *Loc = getLocStart();
674    return false;
675  case ParenExprClass:
676    return cast<ParenExpr>(this)->getSubExpr()->
677                     isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
678  case IntegerLiteralClass:
679    Result = cast<IntegerLiteral>(this)->getValue();
680    break;
681  case CharacterLiteralClass: {
682    const CharacterLiteral *CL = cast<CharacterLiteral>(this);
683    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
684    Result = CL->getValue();
685    Result.setIsUnsigned(!getType()->isSignedIntegerType());
686    break;
687  }
688  case TypesCompatibleExprClass: {
689    const TypesCompatibleExpr *TCE = cast<TypesCompatibleExpr>(this);
690    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
691    Result = Ctx.typesAreCompatible(TCE->getArgType1(), TCE->getArgType2());
692    break;
693  }
694  case CallExprClass: {
695    const CallExpr *CE = cast<CallExpr>(this);
696    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
697    if (CE->isBuiltinClassifyType(Result))
698      break;
699    if (Loc) *Loc = getLocStart();
700    return false;
701  }
702  case DeclRefExprClass:
703    if (const EnumConstantDecl *D =
704          dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(this)->getDecl())) {
705      Result = D->getInitVal();
706      break;
707    }
708    if (Loc) *Loc = getLocStart();
709    return false;
710  case UnaryOperatorClass: {
711    const UnaryOperator *Exp = cast<UnaryOperator>(this);
712
713    // Get the operand value.  If this is sizeof/alignof, do not evalute the
714    // operand.  This affects C99 6.6p3.
715    if (!Exp->isSizeOfAlignOfOp() && !Exp->isOffsetOfOp() &&
716        !Exp->getSubExpr()->isIntegerConstantExpr(Result, Ctx, Loc,isEvaluated))
717      return false;
718
719    switch (Exp->getOpcode()) {
720    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
721    // See C99 6.6p3.
722    default:
723      if (Loc) *Loc = Exp->getOperatorLoc();
724      return false;
725    case UnaryOperator::Extension:
726      return true;  // FIXME: this is wrong.
727    case UnaryOperator::SizeOf:
728    case UnaryOperator::AlignOf:
729      // Return the result in the right width.
730      Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
731
732      // sizeof(void) and __alignof__(void) = 1 as a gcc extension.
733      if (Exp->getSubExpr()->getType()->isVoidType()) {
734        Result = 1;
735        break;
736      }
737
738      // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
739      if (!Exp->getSubExpr()->getType()->isConstantSizeType()) {
740        if (Loc) *Loc = Exp->getOperatorLoc();
741        return false;
742      }
743
744      // Get information about the size or align.
745      if (Exp->getSubExpr()->getType()->isFunctionType()) {
746        // GCC extension: sizeof(function) = 1.
747        Result = Exp->getOpcode() == UnaryOperator::AlignOf ? 4 : 1;
748      } else {
749        unsigned CharSize = Ctx.Target.getCharWidth();
750        if (Exp->getOpcode() == UnaryOperator::AlignOf)
751          Result = Ctx.getTypeAlign(Exp->getSubExpr()->getType()) / CharSize;
752        else
753          Result = Ctx.getTypeSize(Exp->getSubExpr()->getType()) / CharSize;
754      }
755      break;
756    case UnaryOperator::LNot: {
757      bool Val = Result == 0;
758      Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
759      Result = Val;
760      break;
761    }
762    case UnaryOperator::Plus:
763      break;
764    case UnaryOperator::Minus:
765      Result = -Result;
766      break;
767    case UnaryOperator::Not:
768      Result = ~Result;
769      break;
770    case UnaryOperator::OffsetOf:
771      Result = Exp->evaluateOffsetOf(Ctx);
772    }
773    break;
774  }
775  case SizeOfAlignOfTypeExprClass: {
776    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(this);
777
778    // Return the result in the right width.
779    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
780
781    // sizeof(void) and __alignof__(void) = 1 as a gcc extension.
782    if (Exp->getArgumentType()->isVoidType()) {
783      Result = 1;
784      break;
785    }
786
787    // alignof always evaluates to a constant, sizeof does if arg is not VLA.
788    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
789      if (Loc) *Loc = Exp->getOperatorLoc();
790      return false;
791    }
792
793    // Get information about the size or align.
794    if (Exp->getArgumentType()->isFunctionType()) {
795      // GCC extension: sizeof(function) = 1.
796      Result = Exp->isSizeOf() ? 1 : 4;
797    } else {
798      unsigned CharSize = Ctx.Target.getCharWidth();
799      if (Exp->isSizeOf())
800        Result = Ctx.getTypeSize(Exp->getArgumentType()) / CharSize;
801      else
802        Result = Ctx.getTypeAlign(Exp->getArgumentType()) / CharSize;
803    }
804    break;
805  }
806  case BinaryOperatorClass: {
807    const BinaryOperator *Exp = cast<BinaryOperator>(this);
808
809    // The LHS of a constant expr is always evaluated and needed.
810    if (!Exp->getLHS()->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
811      return false;
812
813    llvm::APSInt RHS(Result);
814
815    // The short-circuiting &&/|| operators don't necessarily evaluate their
816    // RHS.  Make sure to pass isEvaluated down correctly.
817    if (Exp->isLogicalOp()) {
818      bool RHSEval;
819      if (Exp->getOpcode() == BinaryOperator::LAnd)
820        RHSEval = Result != 0;
821      else {
822        assert(Exp->getOpcode() == BinaryOperator::LOr &&"Unexpected logical");
823        RHSEval = Result == 0;
824      }
825
826      if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc,
827                                                isEvaluated & RHSEval))
828        return false;
829    } else {
830      if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc, isEvaluated))
831        return false;
832    }
833
834    switch (Exp->getOpcode()) {
835    default:
836      if (Loc) *Loc = getLocStart();
837      return false;
838    case BinaryOperator::Mul:
839      Result *= RHS;
840      break;
841    case BinaryOperator::Div:
842      if (RHS == 0) {
843        if (!isEvaluated) break;
844        if (Loc) *Loc = getLocStart();
845        return false;
846      }
847      Result /= RHS;
848      break;
849    case BinaryOperator::Rem:
850      if (RHS == 0) {
851        if (!isEvaluated) break;
852        if (Loc) *Loc = getLocStart();
853        return false;
854      }
855      Result %= RHS;
856      break;
857    case BinaryOperator::Add: Result += RHS; break;
858    case BinaryOperator::Sub: Result -= RHS; break;
859    case BinaryOperator::Shl:
860      Result <<=
861        static_cast<uint32_t>(RHS.getLimitedValue(Result.getBitWidth()-1));
862      break;
863    case BinaryOperator::Shr:
864      Result >>=
865        static_cast<uint32_t>(RHS.getLimitedValue(Result.getBitWidth()-1));
866      break;
867    case BinaryOperator::LT:  Result = Result < RHS; break;
868    case BinaryOperator::GT:  Result = Result > RHS; break;
869    case BinaryOperator::LE:  Result = Result <= RHS; break;
870    case BinaryOperator::GE:  Result = Result >= RHS; break;
871    case BinaryOperator::EQ:  Result = Result == RHS; break;
872    case BinaryOperator::NE:  Result = Result != RHS; break;
873    case BinaryOperator::And: Result &= RHS; break;
874    case BinaryOperator::Xor: Result ^= RHS; break;
875    case BinaryOperator::Or:  Result |= RHS; break;
876    case BinaryOperator::LAnd:
877      Result = Result != 0 && RHS != 0;
878      break;
879    case BinaryOperator::LOr:
880      Result = Result != 0 || RHS != 0;
881      break;
882
883    case BinaryOperator::Comma:
884      // C99 6.6p3: "shall not contain assignment, ..., or comma operators,
885      // *except* when they are contained within a subexpression that is not
886      // evaluated".  Note that Assignment can never happen due to constraints
887      // on the LHS subexpr, so we don't need to check it here.
888      if (isEvaluated) {
889        if (Loc) *Loc = getLocStart();
890        return false;
891      }
892
893      // The result of the constant expr is the RHS.
894      Result = RHS;
895      return true;
896    }
897
898    assert(!Exp->isAssignmentOp() && "LHS can't be a constant expr!");
899    break;
900  }
901  case ImplicitCastExprClass:
902  case CastExprClass: {
903    const Expr *SubExpr;
904    SourceLocation CastLoc;
905    if (const CastExpr *C = dyn_cast<CastExpr>(this)) {
906      SubExpr = C->getSubExpr();
907      CastLoc = C->getLParenLoc();
908    } else {
909      SubExpr = cast<ImplicitCastExpr>(this)->getSubExpr();
910      CastLoc = getLocStart();
911    }
912
913    // C99 6.6p6: shall only convert arithmetic types to integer types.
914    if (!SubExpr->getType()->isArithmeticType() ||
915        !getType()->isIntegerType()) {
916      if (Loc) *Loc = SubExpr->getLocStart();
917      return false;
918    }
919
920    uint32_t DestWidth = static_cast<uint32_t>(Ctx.getTypeSize(getType()));
921
922    // Handle simple integer->integer casts.
923    if (SubExpr->getType()->isIntegerType()) {
924      if (!SubExpr->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
925        return false;
926
927      // Figure out if this is a truncate, extend or noop cast.
928      // If the input is signed, do a sign extend, noop, or truncate.
929      if (getType()->isBooleanType()) {
930        // Conversion to bool compares against zero.
931        Result = Result != 0;
932        Result.zextOrTrunc(DestWidth);
933      } else if (SubExpr->getType()->isSignedIntegerType())
934        Result.sextOrTrunc(DestWidth);
935      else  // If the input is unsigned, do a zero extend, noop, or truncate.
936        Result.zextOrTrunc(DestWidth);
937      break;
938    }
939
940    // Allow floating constants that are the immediate operands of casts or that
941    // are parenthesized.
942    const Expr *Operand = SubExpr;
943    while (const ParenExpr *PE = dyn_cast<ParenExpr>(Operand))
944      Operand = PE->getSubExpr();
945
946    // If this isn't a floating literal, we can't handle it.
947    const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(Operand);
948    if (!FL) {
949      if (Loc) *Loc = Operand->getLocStart();
950      return false;
951    }
952
953    // If the destination is boolean, compare against zero.
954    if (getType()->isBooleanType()) {
955      Result = !FL->getValue().isZero();
956      Result.zextOrTrunc(DestWidth);
957      break;
958    }
959
960    // Determine whether we are converting to unsigned or signed.
961    bool DestSigned = getType()->isSignedIntegerType();
962
963    // TODO: Warn on overflow, but probably not here: isIntegerConstantExpr can
964    // be called multiple times per AST.
965    uint64_t Space[4];
966    (void)FL->getValue().convertToInteger(Space, DestWidth, DestSigned,
967                                          llvm::APFloat::rmTowardZero);
968    Result = llvm::APInt(DestWidth, 4, Space);
969    break;
970  }
971  case ConditionalOperatorClass: {
972    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
973
974    if (!Exp->getCond()->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
975      return false;
976
977    const Expr *TrueExp  = Exp->getLHS();
978    const Expr *FalseExp = Exp->getRHS();
979    if (Result == 0) std::swap(TrueExp, FalseExp);
980
981    // Evaluate the false one first, discard the result.
982    if (FalseExp && !FalseExp->isIntegerConstantExpr(Result, Ctx, Loc, false))
983      return false;
984    // Evalute the true one, capture the result.
985    if (TrueExp &&
986        !TrueExp->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
987      return false;
988    break;
989  }
990  case CXXDefaultArgExprClass:
991    return cast<CXXDefaultArgExpr>(this)
992             ->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
993  }
994
995  // Cases that are valid constant exprs fall through to here.
996  Result.setIsUnsigned(getType()->isUnsignedIntegerType());
997  return true;
998}
999
1000/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1001/// integer constant expression with the value zero, or if this is one that is
1002/// cast to void*.
1003bool Expr::isNullPointerConstant(ASTContext &Ctx) const {
1004  // Strip off a cast to void*, if it exists.
1005  if (const CastExpr *CE = dyn_cast<CastExpr>(this)) {
1006    // Check that it is a cast to void*.
1007    if (const PointerType *PT = CE->getType()->getAsPointerType()) {
1008      QualType Pointee = PT->getPointeeType();
1009      if (Pointee.getCVRQualifiers() == 0 &&
1010          Pointee->isVoidType() &&                                 // to void*
1011          CE->getSubExpr()->getType()->isIntegerType())            // from int.
1012        return CE->getSubExpr()->isNullPointerConstant(Ctx);
1013    }
1014  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1015    // Ignore the ImplicitCastExpr type entirely.
1016    return ICE->getSubExpr()->isNullPointerConstant(Ctx);
1017  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1018    // Accept ((void*)0) as a null pointer constant, as many other
1019    // implementations do.
1020    return PE->getSubExpr()->isNullPointerConstant(Ctx);
1021  } else if (const CXXDefaultArgExpr *DefaultArg
1022               = dyn_cast<CXXDefaultArgExpr>(this)) {
1023    // See through default argument expressions
1024    return DefaultArg->getExpr()->isNullPointerConstant(Ctx);
1025  }
1026
1027  // This expression must be an integer type.
1028  if (!getType()->isIntegerType())
1029    return false;
1030
1031  // If we have an integer constant expression, we need to *evaluate* it and
1032  // test for the value 0.
1033  llvm::APSInt Val(32);
1034  return isIntegerConstantExpr(Val, Ctx, 0, true) && Val == 0;
1035}
1036
1037unsigned ExtVectorElementExpr::getNumElements() const {
1038  return strlen(Accessor.getName());
1039}
1040
1041
1042/// getComponentType - Determine whether the components of this access are
1043/// "point" "color" or "texture" elements.
1044ExtVectorElementExpr::ElementType
1045ExtVectorElementExpr::getElementType() const {
1046  // derive the component type, no need to waste space.
1047  const char *compStr = Accessor.getName();
1048
1049  if (ExtVectorType::getPointAccessorIdx(*compStr) != -1) return Point;
1050  if (ExtVectorType::getColorAccessorIdx(*compStr) != -1) return Color;
1051
1052  assert(ExtVectorType::getTextureAccessorIdx(*compStr) != -1 &&
1053         "getComponentType(): Illegal accessor");
1054  return Texture;
1055}
1056
1057/// containsDuplicateElements - Return true if any element access is
1058/// repeated.
1059bool ExtVectorElementExpr::containsDuplicateElements() const {
1060  const char *compStr = Accessor.getName();
1061  unsigned length = strlen(compStr);
1062
1063  for (unsigned i = 0; i < length-1; i++) {
1064    const char *s = compStr+i;
1065    for (const char c = *s++; *s; s++)
1066      if (c == *s)
1067        return true;
1068  }
1069  return false;
1070}
1071
1072/// getEncodedElementAccess - We encode fields with two bits per component.
1073unsigned ExtVectorElementExpr::getEncodedElementAccess() const {
1074  const char *compStr = Accessor.getName();
1075  unsigned length = getNumElements();
1076
1077  unsigned Result = 0;
1078
1079  while (length--) {
1080    Result <<= 2;
1081    int Idx = ExtVectorType::getAccessorIdx(compStr[length]);
1082    assert(Idx != -1 && "Invalid accessor letter");
1083    Result |= Idx;
1084  }
1085  return Result;
1086}
1087
1088// constructor for instance messages.
1089ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
1090                QualType retType, ObjCMethodDecl *mproto,
1091                SourceLocation LBrac, SourceLocation RBrac,
1092                Expr **ArgExprs, unsigned nargs)
1093  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1094    MethodProto(mproto) {
1095  NumArgs = nargs;
1096  SubExprs = new Expr*[NumArgs+1];
1097  SubExprs[RECEIVER] = receiver;
1098  if (NumArgs) {
1099    for (unsigned i = 0; i != NumArgs; ++i)
1100      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1101  }
1102  LBracloc = LBrac;
1103  RBracloc = RBrac;
1104}
1105
1106// constructor for class messages.
1107// FIXME: clsName should be typed to ObjCInterfaceType
1108ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
1109                QualType retType, ObjCMethodDecl *mproto,
1110                SourceLocation LBrac, SourceLocation RBrac,
1111                Expr **ArgExprs, unsigned nargs)
1112  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1113    MethodProto(mproto) {
1114  NumArgs = nargs;
1115  SubExprs = new Expr*[NumArgs+1];
1116  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | 0x1);
1117  if (NumArgs) {
1118    for (unsigned i = 0; i != NumArgs; ++i)
1119      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1120  }
1121  LBracloc = LBrac;
1122  RBracloc = RBrac;
1123}
1124
1125bool ChooseExpr::isConditionTrue(ASTContext &C) const {
1126  llvm::APSInt CondVal(32);
1127  bool IsConst = getCond()->isIntegerConstantExpr(CondVal, C);
1128  assert(IsConst && "Condition of choose expr must be i-c-e"); IsConst=IsConst;
1129  return CondVal != 0;
1130}
1131
1132static int64_t evaluateOffsetOf(ASTContext& C, const Expr *E)
1133{
1134  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1135    QualType Ty = ME->getBase()->getType();
1136
1137    RecordDecl *RD = Ty->getAsRecordType()->getDecl();
1138    const ASTRecordLayout &RL = C.getASTRecordLayout(RD);
1139    FieldDecl *FD = ME->getMemberDecl();
1140
1141    // FIXME: This is linear time.
1142    unsigned i = 0, e = 0;
1143    for (i = 0, e = RD->getNumMembers(); i != e; i++) {
1144      if (RD->getMember(i) == FD)
1145        break;
1146    }
1147
1148    return RL.getFieldOffset(i) + evaluateOffsetOf(C, ME->getBase());
1149  } else if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
1150    const Expr *Base = ASE->getBase();
1151    llvm::APSInt Idx(32);
1152    bool ICE = ASE->getIdx()->isIntegerConstantExpr(Idx, C);
1153    assert(ICE && "Array index is not a constant integer!");
1154
1155    int64_t size = C.getTypeSize(ASE->getType());
1156    size *= Idx.getSExtValue();
1157
1158    return size + evaluateOffsetOf(C, Base);
1159  } else if (isa<CompoundLiteralExpr>(E))
1160    return 0;
1161
1162  assert(0 && "Unknown offsetof subexpression!");
1163  return 0;
1164}
1165
1166int64_t UnaryOperator::evaluateOffsetOf(ASTContext& C) const
1167{
1168  assert(Opc == OffsetOf && "Unary operator not offsetof!");
1169
1170  unsigned CharSize = C.Target.getCharWidth();
1171  return ::evaluateOffsetOf(C, Val) / CharSize;
1172}
1173
1174//===----------------------------------------------------------------------===//
1175//  Child Iterators for iterating over subexpressions/substatements
1176//===----------------------------------------------------------------------===//
1177
1178// DeclRefExpr
1179Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
1180Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
1181
1182// ObjCIvarRefExpr
1183Stmt::child_iterator ObjCIvarRefExpr::child_begin() {
1184  return reinterpret_cast<Stmt**>(&Base);
1185}
1186
1187Stmt::child_iterator ObjCIvarRefExpr::child_end() {
1188  return reinterpret_cast<Stmt**>(&Base)+1;
1189}
1190
1191// PreDefinedExpr
1192Stmt::child_iterator PreDefinedExpr::child_begin() { return child_iterator(); }
1193Stmt::child_iterator PreDefinedExpr::child_end() { return child_iterator(); }
1194
1195// IntegerLiteral
1196Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
1197Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
1198
1199// CharacterLiteral
1200Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator(); }
1201Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
1202
1203// FloatingLiteral
1204Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
1205Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
1206
1207// ImaginaryLiteral
1208Stmt::child_iterator ImaginaryLiteral::child_begin() {
1209  return reinterpret_cast<Stmt**>(&Val);
1210}
1211Stmt::child_iterator ImaginaryLiteral::child_end() {
1212  return reinterpret_cast<Stmt**>(&Val)+1;
1213}
1214
1215// StringLiteral
1216Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
1217Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
1218
1219// ParenExpr
1220Stmt::child_iterator ParenExpr::child_begin() {
1221  return reinterpret_cast<Stmt**>(&Val);
1222}
1223Stmt::child_iterator ParenExpr::child_end() {
1224  return reinterpret_cast<Stmt**>(&Val)+1;
1225}
1226
1227// UnaryOperator
1228Stmt::child_iterator UnaryOperator::child_begin() {
1229  return reinterpret_cast<Stmt**>(&Val);
1230}
1231Stmt::child_iterator UnaryOperator::child_end() {
1232  return reinterpret_cast<Stmt**>(&Val+1);
1233}
1234
1235// SizeOfAlignOfTypeExpr
1236Stmt::child_iterator SizeOfAlignOfTypeExpr::child_begin() {
1237  // If the type is a VLA type (and not a typedef), the size expression of the
1238  // VLA needs to be treated as an executable expression.
1239  if (VariableArrayType* T = dyn_cast<VariableArrayType>(Ty.getTypePtr()))
1240    return child_iterator(T);
1241  else
1242    return child_iterator();
1243}
1244Stmt::child_iterator SizeOfAlignOfTypeExpr::child_end() {
1245  return child_iterator();
1246}
1247
1248// ArraySubscriptExpr
1249Stmt::child_iterator ArraySubscriptExpr::child_begin() {
1250  return reinterpret_cast<Stmt**>(&SubExprs);
1251}
1252Stmt::child_iterator ArraySubscriptExpr::child_end() {
1253  return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR;
1254}
1255
1256// CallExpr
1257Stmt::child_iterator CallExpr::child_begin() {
1258  return reinterpret_cast<Stmt**>(&SubExprs[0]);
1259}
1260Stmt::child_iterator CallExpr::child_end() {
1261  return reinterpret_cast<Stmt**>(&SubExprs[NumArgs+ARGS_START]);
1262}
1263
1264// MemberExpr
1265Stmt::child_iterator MemberExpr::child_begin() {
1266  return reinterpret_cast<Stmt**>(&Base);
1267}
1268Stmt::child_iterator MemberExpr::child_end() {
1269  return reinterpret_cast<Stmt**>(&Base)+1;
1270}
1271
1272// ExtVectorElementExpr
1273Stmt::child_iterator ExtVectorElementExpr::child_begin() {
1274  return reinterpret_cast<Stmt**>(&Base);
1275}
1276Stmt::child_iterator ExtVectorElementExpr::child_end() {
1277  return reinterpret_cast<Stmt**>(&Base)+1;
1278}
1279
1280// CompoundLiteralExpr
1281Stmt::child_iterator CompoundLiteralExpr::child_begin() {
1282  return reinterpret_cast<Stmt**>(&Init);
1283}
1284Stmt::child_iterator CompoundLiteralExpr::child_end() {
1285  return reinterpret_cast<Stmt**>(&Init)+1;
1286}
1287
1288// ImplicitCastExpr
1289Stmt::child_iterator ImplicitCastExpr::child_begin() {
1290  return reinterpret_cast<Stmt**>(&Op);
1291}
1292Stmt::child_iterator ImplicitCastExpr::child_end() {
1293  return reinterpret_cast<Stmt**>(&Op)+1;
1294}
1295
1296// CastExpr
1297Stmt::child_iterator CastExpr::child_begin() {
1298  return reinterpret_cast<Stmt**>(&Op);
1299}
1300Stmt::child_iterator CastExpr::child_end() {
1301  return reinterpret_cast<Stmt**>(&Op)+1;
1302}
1303
1304// BinaryOperator
1305Stmt::child_iterator BinaryOperator::child_begin() {
1306  return reinterpret_cast<Stmt**>(&SubExprs);
1307}
1308Stmt::child_iterator BinaryOperator::child_end() {
1309  return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR;
1310}
1311
1312// ConditionalOperator
1313Stmt::child_iterator ConditionalOperator::child_begin() {
1314  return reinterpret_cast<Stmt**>(&SubExprs);
1315}
1316Stmt::child_iterator ConditionalOperator::child_end() {
1317  return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR;
1318}
1319
1320// AddrLabelExpr
1321Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
1322Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
1323
1324// StmtExpr
1325Stmt::child_iterator StmtExpr::child_begin() {
1326  return reinterpret_cast<Stmt**>(&SubStmt);
1327}
1328Stmt::child_iterator StmtExpr::child_end() {
1329  return reinterpret_cast<Stmt**>(&SubStmt)+1;
1330}
1331
1332// TypesCompatibleExpr
1333Stmt::child_iterator TypesCompatibleExpr::child_begin() {
1334  return child_iterator();
1335}
1336
1337Stmt::child_iterator TypesCompatibleExpr::child_end() {
1338  return child_iterator();
1339}
1340
1341// ChooseExpr
1342Stmt::child_iterator ChooseExpr::child_begin() {
1343  return reinterpret_cast<Stmt**>(&SubExprs);
1344}
1345
1346Stmt::child_iterator ChooseExpr::child_end() {
1347  return reinterpret_cast<Stmt**>(&SubExprs)+END_EXPR;
1348}
1349
1350// OverloadExpr
1351Stmt::child_iterator OverloadExpr::child_begin() {
1352  return reinterpret_cast<Stmt**>(&SubExprs[0]);
1353}
1354Stmt::child_iterator OverloadExpr::child_end() {
1355  return reinterpret_cast<Stmt**>(&SubExprs[NumExprs]);
1356}
1357
1358// VAArgExpr
1359Stmt::child_iterator VAArgExpr::child_begin() {
1360  return reinterpret_cast<Stmt**>(&Val);
1361}
1362
1363Stmt::child_iterator VAArgExpr::child_end() {
1364  return reinterpret_cast<Stmt**>(&Val)+1;
1365}
1366
1367// InitListExpr
1368Stmt::child_iterator InitListExpr::child_begin() {
1369  return reinterpret_cast<Stmt**>(InitExprs.size() ?
1370                                  &InitExprs[0] : 0);
1371}
1372Stmt::child_iterator InitListExpr::child_end() {
1373  return reinterpret_cast<Stmt**>(InitExprs.size() ?
1374                                  &InitExprs[0] + InitExprs.size() : 0);
1375}
1376
1377// ObjCStringLiteral
1378Stmt::child_iterator ObjCStringLiteral::child_begin() {
1379  return child_iterator();
1380}
1381Stmt::child_iterator ObjCStringLiteral::child_end() {
1382  return child_iterator();
1383}
1384
1385// ObjCEncodeExpr
1386Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
1387Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
1388
1389// ObjCSelectorExpr
1390Stmt::child_iterator ObjCSelectorExpr::child_begin() {
1391  return child_iterator();
1392}
1393Stmt::child_iterator ObjCSelectorExpr::child_end() {
1394  return child_iterator();
1395}
1396
1397// ObjCProtocolExpr
1398Stmt::child_iterator ObjCProtocolExpr::child_begin() {
1399  return child_iterator();
1400}
1401Stmt::child_iterator ObjCProtocolExpr::child_end() {
1402  return child_iterator();
1403}
1404
1405// ObjCMessageExpr
1406Stmt::child_iterator ObjCMessageExpr::child_begin() {
1407  return reinterpret_cast<Stmt**>(&SubExprs[ getReceiver() ? 0 : ARGS_START ]);
1408}
1409Stmt::child_iterator ObjCMessageExpr::child_end() {
1410  return reinterpret_cast<Stmt**>(&SubExprs[getNumArgs()+ARGS_START]);
1411}
1412
1413