Expr.cpp revision 1a49af9681c350fef58e677f85ccb9a77e8e9d0a
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Basic/TargetInfo.h"
22using namespace clang;
23
24//===----------------------------------------------------------------------===//
25// Primary Expressions.
26//===----------------------------------------------------------------------===//
27
28/// getValueAsApproximateDouble - This returns the value as an inaccurate
29/// double.  Note that this may cause loss of precision, but is useful for
30/// debugging dumps, etc.
31double FloatingLiteral::getValueAsApproximateDouble() const {
32  llvm::APFloat V = getValue();
33  bool ignored;
34  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
35            &ignored);
36  return V.convertToDouble();
37}
38
39
40StringLiteral::StringLiteral(const char *strData, unsigned byteLength,
41                             bool Wide, QualType t, SourceLocation firstLoc,
42                             SourceLocation lastLoc) :
43  Expr(StringLiteralClass, t) {
44  // OPTIMIZE: could allocate this appended to the StringLiteral.
45  char *AStrData = new char[byteLength];
46  memcpy(AStrData, strData, byteLength);
47  StrData = AStrData;
48  ByteLength = byteLength;
49  IsWide = Wide;
50  firstTokLoc = firstLoc;
51  lastTokLoc = lastLoc;
52}
53
54StringLiteral::~StringLiteral() {
55  delete[] StrData;
56}
57
58bool UnaryOperator::isPostfix(Opcode Op) {
59  switch (Op) {
60  case PostInc:
61  case PostDec:
62    return true;
63  default:
64    return false;
65  }
66}
67
68bool UnaryOperator::isPrefix(Opcode Op) {
69  switch (Op) {
70    case PreInc:
71    case PreDec:
72      return true;
73    default:
74      return false;
75  }
76}
77
78/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
79/// corresponds to, e.g. "sizeof" or "[pre]++".
80const char *UnaryOperator::getOpcodeStr(Opcode Op) {
81  switch (Op) {
82  default: assert(0 && "Unknown unary operator");
83  case PostInc: return "++";
84  case PostDec: return "--";
85  case PreInc:  return "++";
86  case PreDec:  return "--";
87  case AddrOf:  return "&";
88  case Deref:   return "*";
89  case Plus:    return "+";
90  case Minus:   return "-";
91  case Not:     return "~";
92  case LNot:    return "!";
93  case Real:    return "__real";
94  case Imag:    return "__imag";
95  case Extension: return "__extension__";
96  case OffsetOf: return "__builtin_offsetof";
97  }
98}
99
100//===----------------------------------------------------------------------===//
101// Postfix Operators.
102//===----------------------------------------------------------------------===//
103
104CallExpr::CallExpr(StmtClass SC, Expr *fn, Expr **args, unsigned numargs,
105                   QualType t, SourceLocation rparenloc)
106  : Expr(SC, t,
107         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
108         fn->isValueDependent() || hasAnyValueDependentArguments(args, numargs)),
109    NumArgs(numargs) {
110  SubExprs = new Stmt*[numargs+1];
111  SubExprs[FN] = fn;
112  for (unsigned i = 0; i != numargs; ++i)
113    SubExprs[i+ARGS_START] = args[i];
114  RParenLoc = rparenloc;
115}
116
117CallExpr::CallExpr(Expr *fn, Expr **args, unsigned numargs, QualType t,
118                   SourceLocation rparenloc)
119  : Expr(CallExprClass, t,
120         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
121         fn->isValueDependent() || hasAnyValueDependentArguments(args, numargs)),
122    NumArgs(numargs) {
123  SubExprs = new Stmt*[numargs+1];
124  SubExprs[FN] = fn;
125  for (unsigned i = 0; i != numargs; ++i)
126    SubExprs[i+ARGS_START] = args[i];
127  RParenLoc = rparenloc;
128}
129
130/// setNumArgs - This changes the number of arguments present in this call.
131/// Any orphaned expressions are deleted by this, and any new operands are set
132/// to null.
133void CallExpr::setNumArgs(unsigned NumArgs) {
134  // No change, just return.
135  if (NumArgs == getNumArgs()) return;
136
137  // If shrinking # arguments, just delete the extras and forgot them.
138  if (NumArgs < getNumArgs()) {
139    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
140      delete getArg(i);
141    this->NumArgs = NumArgs;
142    return;
143  }
144
145  // Otherwise, we are growing the # arguments.  New an bigger argument array.
146  Stmt **NewSubExprs = new Stmt*[NumArgs+1];
147  // Copy over args.
148  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
149    NewSubExprs[i] = SubExprs[i];
150  // Null out new args.
151  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
152    NewSubExprs[i] = 0;
153
154  delete[] SubExprs;
155  SubExprs = NewSubExprs;
156  this->NumArgs = NumArgs;
157}
158
159/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
160/// not, return 0.
161unsigned CallExpr::isBuiltinCall() const {
162  // All simple function calls (e.g. func()) are implicitly cast to pointer to
163  // function. As a result, we try and obtain the DeclRefExpr from the
164  // ImplicitCastExpr.
165  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
166  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
167    return 0;
168
169  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
170  if (!DRE)
171    return 0;
172
173  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
174  if (!FDecl)
175    return 0;
176
177  if (!FDecl->getIdentifier())
178    return 0;
179
180  return FDecl->getIdentifier()->getBuiltinID();
181}
182
183
184/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
185/// corresponds to, e.g. "<<=".
186const char *BinaryOperator::getOpcodeStr(Opcode Op) {
187  switch (Op) {
188  default: assert(0 && "Unknown binary operator");
189  case Mul:       return "*";
190  case Div:       return "/";
191  case Rem:       return "%";
192  case Add:       return "+";
193  case Sub:       return "-";
194  case Shl:       return "<<";
195  case Shr:       return ">>";
196  case LT:        return "<";
197  case GT:        return ">";
198  case LE:        return "<=";
199  case GE:        return ">=";
200  case EQ:        return "==";
201  case NE:        return "!=";
202  case And:       return "&";
203  case Xor:       return "^";
204  case Or:        return "|";
205  case LAnd:      return "&&";
206  case LOr:       return "||";
207  case Assign:    return "=";
208  case MulAssign: return "*=";
209  case DivAssign: return "/=";
210  case RemAssign: return "%=";
211  case AddAssign: return "+=";
212  case SubAssign: return "-=";
213  case ShlAssign: return "<<=";
214  case ShrAssign: return ">>=";
215  case AndAssign: return "&=";
216  case XorAssign: return "^=";
217  case OrAssign:  return "|=";
218  case Comma:     return ",";
219  }
220}
221
222InitListExpr::InitListExpr(SourceLocation lbraceloc,
223                           Expr **initExprs, unsigned numInits,
224                           SourceLocation rbraceloc, bool hadDesignators)
225  : Expr(InitListExprClass, QualType()),
226    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), HadDesignators(hadDesignators) {
227
228  InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
229}
230
231/// getFunctionType - Return the underlying function type for this block.
232///
233const FunctionType *BlockExpr::getFunctionType() const {
234  return getType()->getAsBlockPointerType()->
235                    getPointeeType()->getAsFunctionType();
236}
237
238SourceLocation BlockExpr::getCaretLocation() const {
239  return TheBlock->getCaretLocation();
240}
241const Stmt *BlockExpr::getBody() const { return TheBlock->getBody(); }
242Stmt *BlockExpr::getBody() { return TheBlock->getBody(); }
243
244
245//===----------------------------------------------------------------------===//
246// Generic Expression Routines
247//===----------------------------------------------------------------------===//
248
249/// hasLocalSideEffect - Return true if this immediate expression has side
250/// effects, not counting any sub-expressions.
251bool Expr::hasLocalSideEffect() const {
252  switch (getStmtClass()) {
253  default:
254    return false;
255  case ParenExprClass:
256    return cast<ParenExpr>(this)->getSubExpr()->hasLocalSideEffect();
257  case UnaryOperatorClass: {
258    const UnaryOperator *UO = cast<UnaryOperator>(this);
259
260    switch (UO->getOpcode()) {
261    default: return false;
262    case UnaryOperator::PostInc:
263    case UnaryOperator::PostDec:
264    case UnaryOperator::PreInc:
265    case UnaryOperator::PreDec:
266      return true;                     // ++/--
267
268    case UnaryOperator::Deref:
269      // Dereferencing a volatile pointer is a side-effect.
270      return getType().isVolatileQualified();
271    case UnaryOperator::Real:
272    case UnaryOperator::Imag:
273      // accessing a piece of a volatile complex is a side-effect.
274      return UO->getSubExpr()->getType().isVolatileQualified();
275
276    case UnaryOperator::Extension:
277      return UO->getSubExpr()->hasLocalSideEffect();
278    }
279  }
280  case BinaryOperatorClass: {
281    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
282    // Consider comma to have side effects if the LHS and RHS both do.
283    if (BinOp->getOpcode() == BinaryOperator::Comma)
284      return BinOp->getLHS()->hasLocalSideEffect() &&
285             BinOp->getRHS()->hasLocalSideEffect();
286
287    return BinOp->isAssignmentOp();
288  }
289  case CompoundAssignOperatorClass:
290    return true;
291
292  case ConditionalOperatorClass: {
293    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
294    return Exp->getCond()->hasLocalSideEffect()
295           || (Exp->getLHS() && Exp->getLHS()->hasLocalSideEffect())
296           || (Exp->getRHS() && Exp->getRHS()->hasLocalSideEffect());
297  }
298
299  case MemberExprClass:
300  case ArraySubscriptExprClass:
301    // If the base pointer or element is to a volatile pointer/field, accessing
302    // if is a side effect.
303    return getType().isVolatileQualified();
304
305  case CallExprClass:
306  case CXXOperatorCallExprClass:
307    // TODO: check attributes for pure/const.   "void foo() { strlen("bar"); }"
308    // should warn.
309    return true;
310  case ObjCMessageExprClass:
311    return true;
312  case StmtExprClass: {
313    // Statement exprs don't logically have side effects themselves, but are
314    // sometimes used in macros in ways that give them a type that is unused.
315    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
316    // however, if the result of the stmt expr is dead, we don't want to emit a
317    // warning.
318    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
319    if (!CS->body_empty())
320      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
321        return E->hasLocalSideEffect();
322    return false;
323  }
324  case CStyleCastExprClass:
325  case CXXFunctionalCastExprClass:
326    // If this is a cast to void, check the operand.  Otherwise, the result of
327    // the cast is unused.
328    if (getType()->isVoidType())
329      return cast<CastExpr>(this)->getSubExpr()->hasLocalSideEffect();
330    return false;
331
332  case ImplicitCastExprClass:
333    // Check the operand, since implicit casts are inserted by Sema
334    return cast<ImplicitCastExpr>(this)->getSubExpr()->hasLocalSideEffect();
335
336  case CXXDefaultArgExprClass:
337    return cast<CXXDefaultArgExpr>(this)->getExpr()->hasLocalSideEffect();
338
339  case CXXNewExprClass:
340    // FIXME: In theory, there might be new expressions that don't have side
341    // effects (e.g. a placement new with an uninitialized POD).
342  case CXXDeleteExprClass:
343    return true;
344  }
345}
346
347/// DeclCanBeLvalue - Determine whether the given declaration can be
348/// an lvalue. This is a helper routine for isLvalue.
349static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
350  // C++ [temp.param]p6:
351  //   A non-type non-reference template-parameter is not an lvalue.
352  if (const NonTypeTemplateParmDecl *NTTParm
353        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
354    return NTTParm->getType()->isReferenceType();
355
356  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
357    // C++ 3.10p2: An lvalue refers to an object or function.
358    (Ctx.getLangOptions().CPlusPlus &&
359     (isa<FunctionDecl>(Decl) || isa<OverloadedFunctionDecl>(Decl)));
360}
361
362/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
363/// incomplete type other than void. Nonarray expressions that can be lvalues:
364///  - name, where name must be a variable
365///  - e[i]
366///  - (e), where e must be an lvalue
367///  - e.name, where e must be an lvalue
368///  - e->name
369///  - *e, the type of e cannot be a function type
370///  - string-constant
371///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
372///  - reference type [C++ [expr]]
373///
374Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
375  // first, check the type (C99 6.3.2.1). Expressions with function
376  // type in C are not lvalues, but they can be lvalues in C++.
377  if (!Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
378    return LV_NotObjectType;
379
380  // Allow qualified void which is an incomplete type other than void (yuck).
381  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).getCVRQualifiers())
382    return LV_IncompleteVoidType;
383
384  /// FIXME: Expressions can't have reference type, so the following
385  /// isn't needed.
386  if (TR->isReferenceType()) // C++ [expr]
387    return LV_Valid;
388
389  // the type looks fine, now check the expression
390  switch (getStmtClass()) {
391  case StringLiteralClass: // C99 6.5.1p4
392    return LV_Valid;
393  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
394    // For vectors, make sure base is an lvalue (i.e. not a function call).
395    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
396      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
397    return LV_Valid;
398  case DeclRefExprClass:
399  case QualifiedDeclRefExprClass: { // C99 6.5.1p2
400    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
401    if (DeclCanBeLvalue(RefdDecl, Ctx))
402      return LV_Valid;
403    break;
404  }
405  case BlockDeclRefExprClass: {
406    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
407    if (isa<VarDecl>(BDR->getDecl()))
408      return LV_Valid;
409    break;
410  }
411  case MemberExprClass: {
412    const MemberExpr *m = cast<MemberExpr>(this);
413    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
414      NamedDecl *Member = m->getMemberDecl();
415      // C++ [expr.ref]p4:
416      //   If E2 is declared to have type "reference to T", then E1.E2
417      //   is an lvalue.
418      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
419        if (Value->getType()->isReferenceType())
420          return LV_Valid;
421
422      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
423      if (isa<CXXClassVarDecl>(Member))
424        return LV_Valid;
425
426      //   -- If E2 is a non-static data member [...]. If E1 is an
427      //      lvalue, then E1.E2 is an lvalue.
428      if (isa<FieldDecl>(Member))
429        return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
430
431      //   -- If it refers to a static member function [...], then
432      //      E1.E2 is an lvalue.
433      //   -- Otherwise, if E1.E2 refers to a non-static member
434      //      function [...], then E1.E2 is not an lvalue.
435      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
436        return Method->isStatic()? LV_Valid : LV_MemberFunction;
437
438      //   -- If E2 is a member enumerator [...], the expression E1.E2
439      //      is not an lvalue.
440      if (isa<EnumConstantDecl>(Member))
441        return LV_InvalidExpression;
442
443        // Not an lvalue.
444      return LV_InvalidExpression;
445    }
446
447    // C99 6.5.2.3p4
448    return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
449  }
450  case UnaryOperatorClass:
451    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
452      return LV_Valid; // C99 6.5.3p4
453
454    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
455        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
456        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
457      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
458
459    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
460        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
461         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
462      return LV_Valid;
463    break;
464  case ImplicitCastExprClass:
465    return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid
466                                                       : LV_InvalidExpression;
467  case ParenExprClass: // C99 6.5.1p5
468    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
469  case BinaryOperatorClass:
470  case CompoundAssignOperatorClass: {
471    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
472
473    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
474        BinOp->getOpcode() == BinaryOperator::Comma)
475      return BinOp->getRHS()->isLvalue(Ctx);
476
477    if (!BinOp->isAssignmentOp())
478      return LV_InvalidExpression;
479
480    if (Ctx.getLangOptions().CPlusPlus)
481      // C++ [expr.ass]p1:
482      //   The result of an assignment operation [...] is an lvalue.
483      return LV_Valid;
484
485
486    // C99 6.5.16:
487    //   An assignment expression [...] is not an lvalue.
488    return LV_InvalidExpression;
489  }
490  case CallExprClass:
491  case CXXOperatorCallExprClass:
492  case CXXMemberCallExprClass: {
493    // C++ [expr.call]p10:
494    //   A function call is an lvalue if and only if the result type
495    //   is a reference.
496    QualType CalleeType = cast<CallExpr>(this)->getCallee()->getType();
497    if (const PointerType *FnTypePtr = CalleeType->getAsPointerType())
498      CalleeType = FnTypePtr->getPointeeType();
499    if (const FunctionType *FnType = CalleeType->getAsFunctionType())
500      if (FnType->getResultType()->isReferenceType())
501        return LV_Valid;
502
503    break;
504  }
505  case CompoundLiteralExprClass: // C99 6.5.2.5p5
506    return LV_Valid;
507  case ChooseExprClass:
508    // __builtin_choose_expr is an lvalue if the selected operand is.
509    if (cast<ChooseExpr>(this)->isConditionTrue(Ctx))
510      return cast<ChooseExpr>(this)->getLHS()->isLvalue(Ctx);
511    else
512      return cast<ChooseExpr>(this)->getRHS()->isLvalue(Ctx);
513
514  case ExtVectorElementExprClass:
515    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
516      return LV_DuplicateVectorComponents;
517    return LV_Valid;
518  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
519    return LV_Valid;
520  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
521    return LV_Valid;
522  case ObjCKVCRefExprClass: // FIXME: check if read-only property.
523    return LV_Valid;
524  case PredefinedExprClass:
525    return LV_Valid;
526  case VAArgExprClass:
527    return LV_Valid;
528  case CXXDefaultArgExprClass:
529    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
530  case CXXConditionDeclExprClass:
531    return LV_Valid;
532  case CStyleCastExprClass:
533  case CXXFunctionalCastExprClass:
534  case CXXStaticCastExprClass:
535  case CXXDynamicCastExprClass:
536  case CXXReinterpretCastExprClass:
537  case CXXConstCastExprClass:
538    // The result of an explicit cast is an lvalue if the type we are
539    // casting to is a reference type. See C++ [expr.cast]p1,
540    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
541    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
542    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->isReferenceType())
543      return LV_Valid;
544    break;
545  case CXXTypeidExprClass:
546    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
547    return LV_Valid;
548  default:
549    break;
550  }
551  return LV_InvalidExpression;
552}
553
554/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
555/// does not have an incomplete type, does not have a const-qualified type, and
556/// if it is a structure or union, does not have any member (including,
557/// recursively, any member or element of all contained aggregates or unions)
558/// with a const-qualified type.
559Expr::isModifiableLvalueResult Expr::isModifiableLvalue(ASTContext &Ctx) const {
560  isLvalueResult lvalResult = isLvalue(Ctx);
561
562  switch (lvalResult) {
563  case LV_Valid:
564    // C++ 3.10p11: Functions cannot be modified, but pointers to
565    // functions can be modifiable.
566    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
567      return MLV_NotObjectType;
568    break;
569
570  case LV_NotObjectType: return MLV_NotObjectType;
571  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
572  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
573  case LV_InvalidExpression:
574    // If the top level is a C-style cast, and the subexpression is a valid
575    // lvalue, then this is probably a use of the old-school "cast as lvalue"
576    // GCC extension.  We don't support it, but we want to produce good
577    // diagnostics when it happens so that the user knows why.
578    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(this))
579      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid)
580        return MLV_LValueCast;
581    return MLV_InvalidExpression;
582  case LV_MemberFunction: return MLV_MemberFunction;
583  }
584
585  QualType CT = Ctx.getCanonicalType(getType());
586
587  if (CT.isConstQualified())
588    return MLV_ConstQualified;
589  if (CT->isArrayType())
590    return MLV_ArrayType;
591  if (CT->isIncompleteType())
592    return MLV_IncompleteType;
593
594  if (const RecordType *r = CT->getAsRecordType()) {
595    if (r->hasConstFields())
596      return MLV_ConstQualified;
597  }
598  // The following is illegal:
599  //   void takeclosure(void (^C)(void));
600  //   void func() { int x = 1; takeclosure(^{ x = 7 }); }
601  //
602  if (getStmtClass() == BlockDeclRefExprClass) {
603    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
604    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
605      return MLV_NotBlockQualified;
606  }
607  // Assigning to a readonly property?
608  if (getStmtClass() == ObjCPropertyRefExprClass) {
609    const ObjCPropertyRefExpr* PropExpr = cast<ObjCPropertyRefExpr>(this);
610    if (ObjCPropertyDecl *PDecl = PropExpr->getProperty()) {
611      QualType BaseType = PropExpr->getBase()->getType();
612      if (const PointerType *PTy = BaseType->getAsPointerType())
613        if (const ObjCInterfaceType *IFTy =
614            PTy->getPointeeType()->getAsObjCInterfaceType())
615          if (ObjCInterfaceDecl *IFace = IFTy->getDecl())
616            if (IFace->isPropertyReadonly(PDecl))
617              return MLV_ReadonlyProperty;
618    }
619  }
620  // Assigning to an 'implicit' property?
621  else if (getStmtClass() == ObjCKVCRefExprClass) {
622    const ObjCKVCRefExpr* KVCExpr = cast<ObjCKVCRefExpr>(this);
623    if (KVCExpr->getSetterMethod() == 0)
624      return MLV_NoSetterProperty;
625  }
626  return MLV_Valid;
627}
628
629/// hasGlobalStorage - Return true if this expression has static storage
630/// duration.  This means that the address of this expression is a link-time
631/// constant.
632bool Expr::hasGlobalStorage() const {
633  switch (getStmtClass()) {
634  default:
635    return false;
636  case ParenExprClass:
637    return cast<ParenExpr>(this)->getSubExpr()->hasGlobalStorage();
638  case ImplicitCastExprClass:
639    return cast<ImplicitCastExpr>(this)->getSubExpr()->hasGlobalStorage();
640  case CompoundLiteralExprClass:
641    return cast<CompoundLiteralExpr>(this)->isFileScope();
642  case DeclRefExprClass:
643  case QualifiedDeclRefExprClass: {
644    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
645    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
646      return VD->hasGlobalStorage();
647    if (isa<FunctionDecl>(D))
648      return true;
649    return false;
650  }
651  case MemberExprClass: {
652    const MemberExpr *M = cast<MemberExpr>(this);
653    return !M->isArrow() && M->getBase()->hasGlobalStorage();
654  }
655  case ArraySubscriptExprClass:
656    return cast<ArraySubscriptExpr>(this)->getBase()->hasGlobalStorage();
657  case PredefinedExprClass:
658    return true;
659  case CXXDefaultArgExprClass:
660    return cast<CXXDefaultArgExpr>(this)->getExpr()->hasGlobalStorage();
661  }
662}
663
664Expr* Expr::IgnoreParens() {
665  Expr* E = this;
666  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
667    E = P->getSubExpr();
668
669  return E;
670}
671
672/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
673/// or CastExprs or ImplicitCastExprs, returning their operand.
674Expr *Expr::IgnoreParenCasts() {
675  Expr *E = this;
676  while (true) {
677    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
678      E = P->getSubExpr();
679    else if (CastExpr *P = dyn_cast<CastExpr>(E))
680      E = P->getSubExpr();
681    else
682      return E;
683  }
684}
685
686/// hasAnyTypeDependentArguments - Determines if any of the expressions
687/// in Exprs is type-dependent.
688bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
689  for (unsigned I = 0; I < NumExprs; ++I)
690    if (Exprs[I]->isTypeDependent())
691      return true;
692
693  return false;
694}
695
696/// hasAnyValueDependentArguments - Determines if any of the expressions
697/// in Exprs is value-dependent.
698bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
699  for (unsigned I = 0; I < NumExprs; ++I)
700    if (Exprs[I]->isValueDependent())
701      return true;
702
703  return false;
704}
705
706bool Expr::isConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
707  switch (getStmtClass()) {
708  default:
709    if (!isEvaluatable(Ctx)) {
710      if (Loc) *Loc = getLocStart();
711      return false;
712    }
713    break;
714  case StringLiteralClass:
715    return true;
716  case InitListExprClass: {
717    const InitListExpr *Exp = cast<InitListExpr>(this);
718    unsigned numInits = Exp->getNumInits();
719    for (unsigned i = 0; i < numInits; i++) {
720      if (!Exp->getInit(i)->isConstantExpr(Ctx, Loc))
721        return false;
722    }
723  }
724  }
725
726  return true;
727}
728
729/// isIntegerConstantExpr - this recursive routine will test if an expression is
730/// an integer constant expression. Note: With the introduction of VLA's in
731/// C99 the result of the sizeof operator is no longer always a constant
732/// expression. The generalization of the wording to include any subexpression
733/// that is not evaluated (C99 6.6p3) means that nonconstant subexpressions
734/// can appear as operands to other operators (e.g. &&, ||, ?:). For instance,
735/// "0 || f()" can be treated as a constant expression. In C90 this expression,
736/// occurring in a context requiring a constant, would have been a constraint
737/// violation. FIXME: This routine currently implements C90 semantics.
738/// To properly implement C99 semantics this routine will need to evaluate
739/// expressions involving operators previously mentioned.
740
741/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
742/// comma, etc
743///
744/// FIXME: This should ext-warn on overflow during evaluation!  ISO C does not
745/// permit this.  This includes things like (int)1e1000
746///
747/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
748/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
749/// cast+dereference.
750bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
751                                 SourceLocation *Loc, bool isEvaluated) const {
752  // Pretest for integral type; some parts of the code crash for types that
753  // can't be sized.
754  if (!getType()->isIntegralType()) {
755    if (Loc) *Loc = getLocStart();
756    return false;
757  }
758  switch (getStmtClass()) {
759  default:
760    if (Loc) *Loc = getLocStart();
761    return false;
762  case ParenExprClass:
763    return cast<ParenExpr>(this)->getSubExpr()->
764                     isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
765  case IntegerLiteralClass:
766    Result = cast<IntegerLiteral>(this)->getValue();
767    break;
768  case CharacterLiteralClass: {
769    const CharacterLiteral *CL = cast<CharacterLiteral>(this);
770    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
771    Result = CL->getValue();
772    Result.setIsUnsigned(!getType()->isSignedIntegerType());
773    break;
774  }
775  case CXXBoolLiteralExprClass: {
776    const CXXBoolLiteralExpr *BL = cast<CXXBoolLiteralExpr>(this);
777    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
778    Result = BL->getValue();
779    Result.setIsUnsigned(!getType()->isSignedIntegerType());
780    break;
781  }
782  case CXXZeroInitValueExprClass:
783    Result.clear();
784    break;
785  case TypesCompatibleExprClass: {
786    const TypesCompatibleExpr *TCE = cast<TypesCompatibleExpr>(this);
787    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
788    // Per gcc docs "this built-in function ignores top level
789    // qualifiers".  We need to use the canonical version to properly
790    // be able to strip CRV qualifiers from the type.
791    QualType T0 = Ctx.getCanonicalType(TCE->getArgType1());
792    QualType T1 = Ctx.getCanonicalType(TCE->getArgType2());
793    Result = Ctx.typesAreCompatible(T0.getUnqualifiedType(),
794                                    T1.getUnqualifiedType());
795    break;
796  }
797  case CallExprClass:
798  case CXXOperatorCallExprClass: {
799    const CallExpr *CE = cast<CallExpr>(this);
800    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
801
802    // If this is a call to a builtin function, constant fold it otherwise
803    // reject it.
804    if (CE->isBuiltinCall()) {
805      EvalResult EvalResult;
806      if (CE->Evaluate(EvalResult, Ctx)) {
807        assert(!EvalResult.HasSideEffects &&
808               "Foldable builtin call should not have side effects!");
809        Result = EvalResult.Val.getInt();
810        break;  // It is a constant, expand it.
811      }
812    }
813
814    if (Loc) *Loc = getLocStart();
815    return false;
816  }
817  case DeclRefExprClass:
818  case QualifiedDeclRefExprClass:
819    if (const EnumConstantDecl *D =
820          dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(this)->getDecl())) {
821      Result = D->getInitVal();
822      break;
823    }
824    if (Loc) *Loc = getLocStart();
825    return false;
826  case UnaryOperatorClass: {
827    const UnaryOperator *Exp = cast<UnaryOperator>(this);
828
829    // Get the operand value.  If this is offsetof, do not evalute the
830    // operand.  This affects C99 6.6p3.
831    if (!Exp->isOffsetOfOp() && !Exp->getSubExpr()->
832                        isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
833      return false;
834
835    switch (Exp->getOpcode()) {
836    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
837    // See C99 6.6p3.
838    default:
839      if (Loc) *Loc = Exp->getOperatorLoc();
840      return false;
841    case UnaryOperator::Extension:
842      return true;  // FIXME: this is wrong.
843    case UnaryOperator::LNot: {
844      bool Val = Result == 0;
845      Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
846      Result = Val;
847      break;
848    }
849    case UnaryOperator::Plus:
850      break;
851    case UnaryOperator::Minus:
852      Result = -Result;
853      break;
854    case UnaryOperator::Not:
855      Result = ~Result;
856      break;
857    case UnaryOperator::OffsetOf:
858      Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
859      Result = Exp->evaluateOffsetOf(Ctx);
860    }
861    break;
862  }
863  case SizeOfAlignOfExprClass: {
864    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(this);
865
866    // Return the result in the right width.
867    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
868
869    QualType ArgTy = Exp->getTypeOfArgument();
870    // sizeof(void) and __alignof__(void) = 1 as a gcc extension.
871    if (ArgTy->isVoidType()) {
872      Result = 1;
873      break;
874    }
875
876    // alignof always evaluates to a constant, sizeof does if arg is not VLA.
877    if (Exp->isSizeOf() && !ArgTy->isConstantSizeType()) {
878      if (Loc) *Loc = Exp->getOperatorLoc();
879      return false;
880    }
881
882    // Get information about the size or align.
883    if (ArgTy->isFunctionType()) {
884      // GCC extension: sizeof(function) = 1.
885      Result = Exp->isSizeOf() ? 1 : 4;
886    } else {
887      unsigned CharSize = Ctx.Target.getCharWidth();
888      if (Exp->isSizeOf())
889        Result = Ctx.getTypeSize(ArgTy) / CharSize;
890      else
891        Result = Ctx.getTypeAlign(ArgTy) / CharSize;
892    }
893    break;
894  }
895  case BinaryOperatorClass: {
896    const BinaryOperator *Exp = cast<BinaryOperator>(this);
897    llvm::APSInt LHS, RHS;
898
899    // Initialize result to have correct signedness and width.
900    Result = llvm::APSInt(static_cast<uint32_t>(Ctx.getTypeSize(getType())),
901                          !getType()->isSignedIntegerType());
902
903    // The LHS of a constant expr is always evaluated and needed.
904    if (!Exp->getLHS()->isIntegerConstantExpr(LHS, Ctx, Loc, isEvaluated))
905      return false;
906
907    // The short-circuiting &&/|| operators don't necessarily evaluate their
908    // RHS.  Make sure to pass isEvaluated down correctly.
909    if (Exp->isLogicalOp()) {
910      bool RHSEval;
911      if (Exp->getOpcode() == BinaryOperator::LAnd)
912        RHSEval = LHS != 0;
913      else {
914        assert(Exp->getOpcode() == BinaryOperator::LOr &&"Unexpected logical");
915        RHSEval = LHS == 0;
916      }
917
918      if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc,
919                                                isEvaluated & RHSEval))
920        return false;
921    } else {
922      if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc, isEvaluated))
923        return false;
924    }
925
926    switch (Exp->getOpcode()) {
927    default:
928      if (Loc) *Loc = getLocStart();
929      return false;
930    case BinaryOperator::Mul:
931      Result = LHS * RHS;
932      break;
933    case BinaryOperator::Div:
934      if (RHS == 0) {
935        if (!isEvaluated) break;
936        if (Loc) *Loc = getLocStart();
937        return false;
938      }
939      Result = LHS / RHS;
940      break;
941    case BinaryOperator::Rem:
942      if (RHS == 0) {
943        if (!isEvaluated) break;
944        if (Loc) *Loc = getLocStart();
945        return false;
946      }
947      Result = LHS % RHS;
948      break;
949    case BinaryOperator::Add: Result = LHS + RHS; break;
950    case BinaryOperator::Sub: Result = LHS - RHS; break;
951    case BinaryOperator::Shl:
952      Result = LHS <<
953        static_cast<uint32_t>(RHS.getLimitedValue(LHS.getBitWidth()-1));
954    break;
955    case BinaryOperator::Shr:
956      Result = LHS >>
957        static_cast<uint32_t>(RHS.getLimitedValue(LHS.getBitWidth()-1));
958      break;
959    case BinaryOperator::LT:  Result = LHS < RHS; break;
960    case BinaryOperator::GT:  Result = LHS > RHS; break;
961    case BinaryOperator::LE:  Result = LHS <= RHS; break;
962    case BinaryOperator::GE:  Result = LHS >= RHS; break;
963    case BinaryOperator::EQ:  Result = LHS == RHS; break;
964    case BinaryOperator::NE:  Result = LHS != RHS; break;
965    case BinaryOperator::And: Result = LHS & RHS; break;
966    case BinaryOperator::Xor: Result = LHS ^ RHS; break;
967    case BinaryOperator::Or:  Result = LHS | RHS; break;
968    case BinaryOperator::LAnd:
969      Result = LHS != 0 && RHS != 0;
970      break;
971    case BinaryOperator::LOr:
972      Result = LHS != 0 || RHS != 0;
973      break;
974
975    case BinaryOperator::Comma:
976      // C99 6.6p3: "shall not contain assignment, ..., or comma operators,
977      // *except* when they are contained within a subexpression that is not
978      // evaluated".  Note that Assignment can never happen due to constraints
979      // on the LHS subexpr, so we don't need to check it here.
980      if (isEvaluated) {
981        if (Loc) *Loc = getLocStart();
982        return false;
983      }
984
985      // The result of the constant expr is the RHS.
986      Result = RHS;
987      return true;
988    }
989
990    assert(!Exp->isAssignmentOp() && "LHS can't be a constant expr!");
991    break;
992  }
993  case ImplicitCastExprClass:
994  case CStyleCastExprClass:
995  case CXXFunctionalCastExprClass: {
996    const Expr *SubExpr = cast<CastExpr>(this)->getSubExpr();
997    SourceLocation CastLoc = getLocStart();
998
999    // C99 6.6p6: shall only convert arithmetic types to integer types.
1000    if (!SubExpr->getType()->isArithmeticType() ||
1001        !getType()->isIntegerType()) {
1002      if (Loc) *Loc = SubExpr->getLocStart();
1003      return false;
1004    }
1005
1006    uint32_t DestWidth = static_cast<uint32_t>(Ctx.getTypeSize(getType()));
1007
1008    // Handle simple integer->integer casts.
1009    if (SubExpr->getType()->isIntegerType()) {
1010      if (!SubExpr->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
1011        return false;
1012
1013      // Figure out if this is a truncate, extend or noop cast.
1014      // If the input is signed, do a sign extend, noop, or truncate.
1015      if (getType()->isBooleanType()) {
1016        // Conversion to bool compares against zero.
1017        Result = Result != 0;
1018        Result.zextOrTrunc(DestWidth);
1019      } else if (SubExpr->getType()->isSignedIntegerType())
1020        Result.sextOrTrunc(DestWidth);
1021      else  // If the input is unsigned, do a zero extend, noop, or truncate.
1022        Result.zextOrTrunc(DestWidth);
1023      break;
1024    }
1025
1026    // Allow floating constants that are the immediate operands of casts or that
1027    // are parenthesized.
1028    const Expr *Operand = SubExpr;
1029    while (const ParenExpr *PE = dyn_cast<ParenExpr>(Operand))
1030      Operand = PE->getSubExpr();
1031
1032    // If this isn't a floating literal, we can't handle it.
1033    const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(Operand);
1034    if (!FL) {
1035      if (Loc) *Loc = Operand->getLocStart();
1036      return false;
1037    }
1038
1039    // If the destination is boolean, compare against zero.
1040    if (getType()->isBooleanType()) {
1041      Result = !FL->getValue().isZero();
1042      Result.zextOrTrunc(DestWidth);
1043      break;
1044    }
1045
1046    // Determine whether we are converting to unsigned or signed.
1047    bool DestSigned = getType()->isSignedIntegerType();
1048
1049    // TODO: Warn on overflow, but probably not here: isIntegerConstantExpr can
1050    // be called multiple times per AST.
1051    uint64_t Space[4];
1052    bool ignored;
1053    (void)FL->getValue().convertToInteger(Space, DestWidth, DestSigned,
1054                                          llvm::APFloat::rmTowardZero,
1055                                          &ignored);
1056    Result = llvm::APInt(DestWidth, 4, Space);
1057    break;
1058  }
1059  case ConditionalOperatorClass: {
1060    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1061
1062    const Expr *Cond = Exp->getCond();
1063
1064    if (!Cond->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
1065      return false;
1066
1067    const Expr *TrueExp  = Exp->getLHS();
1068    const Expr *FalseExp = Exp->getRHS();
1069    if (Result == 0) std::swap(TrueExp, FalseExp);
1070
1071    // If the condition (ignoring parens) is a __builtin_constant_p call,
1072    // then only the true side is actually considered in an integer constant
1073    // expression, and it is fully evaluated.  This is an important GNU
1074    // extension.  See GCC PR38377 for discussion.
1075    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Cond->IgnoreParenCasts()))
1076      if (CallCE->isBuiltinCall() == Builtin::BI__builtin_constant_p) {
1077        EvalResult EVResult;
1078        if (!Evaluate(EVResult, Ctx) || EVResult.HasSideEffects)
1079          return false;
1080        assert(EVResult.Val.isInt() && "FP conditional expr not expected");
1081        Result = EVResult.Val.getInt();
1082        if (Loc) *Loc = EVResult.DiagLoc;
1083        return true;
1084      }
1085
1086    // Evaluate the false one first, discard the result.
1087    if (FalseExp && !FalseExp->isIntegerConstantExpr(Result, Ctx, Loc, false))
1088      return false;
1089    // Evalute the true one, capture the result.
1090    if (TrueExp &&
1091        !TrueExp->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
1092      return false;
1093    break;
1094  }
1095  case CXXDefaultArgExprClass:
1096    return cast<CXXDefaultArgExpr>(this)
1097             ->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
1098
1099  case UnaryTypeTraitExprClass:
1100    Result = cast<UnaryTypeTraitExpr>(this)->Evaluate();
1101    return true;
1102  }
1103
1104  // Cases that are valid constant exprs fall through to here.
1105  Result.setIsUnsigned(getType()->isUnsignedIntegerType());
1106  return true;
1107}
1108
1109/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1110/// integer constant expression with the value zero, or if this is one that is
1111/// cast to void*.
1112bool Expr::isNullPointerConstant(ASTContext &Ctx) const
1113{
1114  // Strip off a cast to void*, if it exists. Except in C++.
1115  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1116    if (!Ctx.getLangOptions().CPlusPlus) {
1117      // Check that it is a cast to void*.
1118      if (const PointerType *PT = CE->getType()->getAsPointerType()) {
1119        QualType Pointee = PT->getPointeeType();
1120        if (Pointee.getCVRQualifiers() == 0 &&
1121            Pointee->isVoidType() &&                              // to void*
1122            CE->getSubExpr()->getType()->isIntegerType())         // from int.
1123          return CE->getSubExpr()->isNullPointerConstant(Ctx);
1124      }
1125    }
1126  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1127    // Ignore the ImplicitCastExpr type entirely.
1128    return ICE->getSubExpr()->isNullPointerConstant(Ctx);
1129  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1130    // Accept ((void*)0) as a null pointer constant, as many other
1131    // implementations do.
1132    return PE->getSubExpr()->isNullPointerConstant(Ctx);
1133  } else if (const CXXDefaultArgExpr *DefaultArg
1134               = dyn_cast<CXXDefaultArgExpr>(this)) {
1135    // See through default argument expressions
1136    return DefaultArg->getExpr()->isNullPointerConstant(Ctx);
1137  } else if (isa<GNUNullExpr>(this)) {
1138    // The GNU __null extension is always a null pointer constant.
1139    return true;
1140  }
1141
1142  // This expression must be an integer type.
1143  if (!getType()->isIntegerType())
1144    return false;
1145
1146  // If we have an integer constant expression, we need to *evaluate* it and
1147  // test for the value 0.
1148  // FIXME: We should probably return false if we're compiling in strict mode
1149  // and Diag is not null (this indicates that the value was foldable but not
1150  // an ICE.
1151  EvalResult Result;
1152  return Evaluate(Result, Ctx) && !Result.HasSideEffects &&
1153        Result.Val.isInt() && Result.Val.getInt() == 0;
1154}
1155
1156/// isBitField - Return true if this expression is a bit-field.
1157bool Expr::isBitField() {
1158  Expr *E = this->IgnoreParenCasts();
1159  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
1160    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
1161        return Field->isBitField();
1162  return false;
1163}
1164
1165unsigned ExtVectorElementExpr::getNumElements() const {
1166  if (const VectorType *VT = getType()->getAsVectorType())
1167    return VT->getNumElements();
1168  return 1;
1169}
1170
1171/// containsDuplicateElements - Return true if any element access is repeated.
1172bool ExtVectorElementExpr::containsDuplicateElements() const {
1173  const char *compStr = Accessor.getName();
1174  unsigned length = Accessor.getLength();
1175
1176  for (unsigned i = 0; i != length-1; i++) {
1177    const char *s = compStr+i;
1178    for (const char c = *s++; *s; s++)
1179      if (c == *s)
1180        return true;
1181  }
1182  return false;
1183}
1184
1185/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
1186void ExtVectorElementExpr::getEncodedElementAccess(
1187                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
1188  bool isHi =   Accessor.isStr("hi");
1189  bool isLo =   Accessor.isStr("lo");
1190  bool isEven = Accessor.isStr("e");
1191  bool isOdd  = Accessor.isStr("o");
1192
1193  const char *compStr = Accessor.getName();
1194  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
1195    uint64_t Index;
1196
1197    if (isHi)
1198      Index = e + i;
1199    else if (isLo)
1200      Index = i;
1201    else if (isEven)
1202      Index = 2 * i;
1203    else if (isOdd)
1204      Index = 2 * i + 1;
1205    else
1206      Index = ExtVectorType::getAccessorIdx(compStr[i]);
1207
1208    Elts.push_back(Index);
1209  }
1210}
1211
1212// constructor for instance messages.
1213ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
1214                QualType retType, ObjCMethodDecl *mproto,
1215                SourceLocation LBrac, SourceLocation RBrac,
1216                Expr **ArgExprs, unsigned nargs)
1217  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1218    MethodProto(mproto) {
1219  NumArgs = nargs;
1220  SubExprs = new Stmt*[NumArgs+1];
1221  SubExprs[RECEIVER] = receiver;
1222  if (NumArgs) {
1223    for (unsigned i = 0; i != NumArgs; ++i)
1224      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1225  }
1226  LBracloc = LBrac;
1227  RBracloc = RBrac;
1228}
1229
1230// constructor for class messages.
1231// FIXME: clsName should be typed to ObjCInterfaceType
1232ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
1233                QualType retType, ObjCMethodDecl *mproto,
1234                SourceLocation LBrac, SourceLocation RBrac,
1235                Expr **ArgExprs, unsigned nargs)
1236  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1237    MethodProto(mproto) {
1238  NumArgs = nargs;
1239  SubExprs = new Stmt*[NumArgs+1];
1240  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
1241  if (NumArgs) {
1242    for (unsigned i = 0; i != NumArgs; ++i)
1243      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1244  }
1245  LBracloc = LBrac;
1246  RBracloc = RBrac;
1247}
1248
1249// constructor for class messages.
1250ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
1251                                 QualType retType, ObjCMethodDecl *mproto,
1252                                 SourceLocation LBrac, SourceLocation RBrac,
1253                                 Expr **ArgExprs, unsigned nargs)
1254: Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1255MethodProto(mproto) {
1256  NumArgs = nargs;
1257  SubExprs = new Stmt*[NumArgs+1];
1258  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
1259  if (NumArgs) {
1260    for (unsigned i = 0; i != NumArgs; ++i)
1261      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1262  }
1263  LBracloc = LBrac;
1264  RBracloc = RBrac;
1265}
1266
1267ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
1268  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
1269  switch (x & Flags) {
1270    default:
1271      assert(false && "Invalid ObjCMessageExpr.");
1272    case IsInstMeth:
1273      return ClassInfo(0, 0);
1274    case IsClsMethDeclUnknown:
1275      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
1276    case IsClsMethDeclKnown: {
1277      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
1278      return ClassInfo(D, D->getIdentifier());
1279    }
1280  }
1281}
1282
1283bool ChooseExpr::isConditionTrue(ASTContext &C) const {
1284  return getCond()->getIntegerConstantExprValue(C) != 0;
1285}
1286
1287static int64_t evaluateOffsetOf(ASTContext& C, const Expr *E) {
1288  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1289    QualType Ty = ME->getBase()->getType();
1290
1291    RecordDecl *RD = Ty->getAsRecordType()->getDecl();
1292    const ASTRecordLayout &RL = C.getASTRecordLayout(RD);
1293    if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
1294      // FIXME: This is linear time. And the fact that we're indexing
1295      // into the layout by position in the record means that we're
1296      // either stuck numbering the fields in the AST or we have to keep
1297      // the linear search (yuck and yuck).
1298      unsigned i = 0;
1299      for (RecordDecl::field_iterator Field = RD->field_begin(),
1300                                   FieldEnd = RD->field_end();
1301           Field != FieldEnd; (void)++Field, ++i) {
1302        if (*Field == FD)
1303          break;
1304      }
1305
1306      return RL.getFieldOffset(i) + evaluateOffsetOf(C, ME->getBase());
1307    }
1308  } else if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
1309    const Expr *Base = ASE->getBase();
1310
1311    int64_t size = C.getTypeSize(ASE->getType());
1312    size *= ASE->getIdx()->getIntegerConstantExprValue(C).getSExtValue();
1313
1314    return size + evaluateOffsetOf(C, Base);
1315  } else if (isa<CompoundLiteralExpr>(E))
1316    return 0;
1317
1318  assert(0 && "Unknown offsetof subexpression!");
1319  return 0;
1320}
1321
1322int64_t UnaryOperator::evaluateOffsetOf(ASTContext& C) const
1323{
1324  assert(Opc == OffsetOf && "Unary operator not offsetof!");
1325
1326  unsigned CharSize = C.Target.getCharWidth();
1327  return ::evaluateOffsetOf(C, cast<Expr>(Val)) / CharSize;
1328}
1329
1330void SizeOfAlignOfExpr::Destroy(ASTContext& C) {
1331  // Override default behavior of traversing children. If this has a type
1332  // operand and the type is a variable-length array, the child iteration
1333  // will iterate over the size expression. However, this expression belongs
1334  // to the type, not to this, so we don't want to delete it.
1335  // We still want to delete this expression.
1336  // FIXME: Same as in Stmt::Destroy - will be eventually in ASTContext's
1337  // pool allocator.
1338  if (isArgumentType())
1339    delete this;
1340  else
1341    Expr::Destroy(C);
1342}
1343
1344//===----------------------------------------------------------------------===//
1345//  ExprIterator.
1346//===----------------------------------------------------------------------===//
1347
1348Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
1349Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
1350Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
1351const Expr* ConstExprIterator::operator[](size_t idx) const {
1352  return cast<Expr>(I[idx]);
1353}
1354const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
1355const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
1356
1357//===----------------------------------------------------------------------===//
1358//  Child Iterators for iterating over subexpressions/substatements
1359//===----------------------------------------------------------------------===//
1360
1361// DeclRefExpr
1362Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
1363Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
1364
1365// ObjCIvarRefExpr
1366Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
1367Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
1368
1369// ObjCPropertyRefExpr
1370Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
1371Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
1372
1373// ObjCKVCRefExpr
1374Stmt::child_iterator ObjCKVCRefExpr::child_begin() { return &Base; }
1375Stmt::child_iterator ObjCKVCRefExpr::child_end() { return &Base+1; }
1376
1377// ObjCSuperExpr
1378Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
1379Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
1380
1381// PredefinedExpr
1382Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
1383Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
1384
1385// IntegerLiteral
1386Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
1387Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
1388
1389// CharacterLiteral
1390Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator(); }
1391Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
1392
1393// FloatingLiteral
1394Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
1395Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
1396
1397// ImaginaryLiteral
1398Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
1399Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
1400
1401// StringLiteral
1402Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
1403Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
1404
1405// ParenExpr
1406Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
1407Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
1408
1409// UnaryOperator
1410Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
1411Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
1412
1413// SizeOfAlignOfExpr
1414Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
1415  // If this is of a type and the type is a VLA type (and not a typedef), the
1416  // size expression of the VLA needs to be treated as an executable expression.
1417  // Why isn't this weirdness documented better in StmtIterator?
1418  if (isArgumentType()) {
1419    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
1420                                   getArgumentType().getTypePtr()))
1421      return child_iterator(T);
1422    return child_iterator();
1423  }
1424  return child_iterator(&Argument.Ex);
1425}
1426Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
1427  if (isArgumentType())
1428    return child_iterator();
1429  return child_iterator(&Argument.Ex + 1);
1430}
1431
1432// ArraySubscriptExpr
1433Stmt::child_iterator ArraySubscriptExpr::child_begin() {
1434  return &SubExprs[0];
1435}
1436Stmt::child_iterator ArraySubscriptExpr::child_end() {
1437  return &SubExprs[0]+END_EXPR;
1438}
1439
1440// CallExpr
1441Stmt::child_iterator CallExpr::child_begin() {
1442  return &SubExprs[0];
1443}
1444Stmt::child_iterator CallExpr::child_end() {
1445  return &SubExprs[0]+NumArgs+ARGS_START;
1446}
1447
1448// MemberExpr
1449Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
1450Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
1451
1452// ExtVectorElementExpr
1453Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
1454Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
1455
1456// CompoundLiteralExpr
1457Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
1458Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
1459
1460// CastExpr
1461Stmt::child_iterator CastExpr::child_begin() { return &Op; }
1462Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
1463
1464// BinaryOperator
1465Stmt::child_iterator BinaryOperator::child_begin() {
1466  return &SubExprs[0];
1467}
1468Stmt::child_iterator BinaryOperator::child_end() {
1469  return &SubExprs[0]+END_EXPR;
1470}
1471
1472// ConditionalOperator
1473Stmt::child_iterator ConditionalOperator::child_begin() {
1474  return &SubExprs[0];
1475}
1476Stmt::child_iterator ConditionalOperator::child_end() {
1477  return &SubExprs[0]+END_EXPR;
1478}
1479
1480// AddrLabelExpr
1481Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
1482Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
1483
1484// StmtExpr
1485Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
1486Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
1487
1488// TypesCompatibleExpr
1489Stmt::child_iterator TypesCompatibleExpr::child_begin() {
1490  return child_iterator();
1491}
1492
1493Stmt::child_iterator TypesCompatibleExpr::child_end() {
1494  return child_iterator();
1495}
1496
1497// ChooseExpr
1498Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
1499Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
1500
1501// GNUNullExpr
1502Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
1503Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
1504
1505// OverloadExpr
1506Stmt::child_iterator OverloadExpr::child_begin() { return &SubExprs[0]; }
1507Stmt::child_iterator OverloadExpr::child_end() { return &SubExprs[0]+NumExprs; }
1508
1509// ShuffleVectorExpr
1510Stmt::child_iterator ShuffleVectorExpr::child_begin() {
1511  return &SubExprs[0];
1512}
1513Stmt::child_iterator ShuffleVectorExpr::child_end() {
1514  return &SubExprs[0]+NumExprs;
1515}
1516
1517// VAArgExpr
1518Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
1519Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
1520
1521// InitListExpr
1522Stmt::child_iterator InitListExpr::child_begin() {
1523  return InitExprs.size() ? &InitExprs[0] : 0;
1524}
1525Stmt::child_iterator InitListExpr::child_end() {
1526  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
1527}
1528
1529// ObjCStringLiteral
1530Stmt::child_iterator ObjCStringLiteral::child_begin() {
1531  return child_iterator();
1532}
1533Stmt::child_iterator ObjCStringLiteral::child_end() {
1534  return child_iterator();
1535}
1536
1537// ObjCEncodeExpr
1538Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
1539Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
1540
1541// ObjCSelectorExpr
1542Stmt::child_iterator ObjCSelectorExpr::child_begin() {
1543  return child_iterator();
1544}
1545Stmt::child_iterator ObjCSelectorExpr::child_end() {
1546  return child_iterator();
1547}
1548
1549// ObjCProtocolExpr
1550Stmt::child_iterator ObjCProtocolExpr::child_begin() {
1551  return child_iterator();
1552}
1553Stmt::child_iterator ObjCProtocolExpr::child_end() {
1554  return child_iterator();
1555}
1556
1557// ObjCMessageExpr
1558Stmt::child_iterator ObjCMessageExpr::child_begin() {
1559  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
1560}
1561Stmt::child_iterator ObjCMessageExpr::child_end() {
1562  return &SubExprs[0]+ARGS_START+getNumArgs();
1563}
1564
1565// Blocks
1566Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
1567Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
1568
1569Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
1570Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
1571