Expr.cpp revision 2ea2b5e2b044739f4f5840bc1271abfa15a3101d
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/DeclObjC.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/RecordLayout.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/Basic/TargetInfo.h"
20using namespace clang;
21
22//===----------------------------------------------------------------------===//
23// Primary Expressions.
24//===----------------------------------------------------------------------===//
25
26/// getValueAsApproximateDouble - This returns the value as an inaccurate
27/// double.  Note that this may cause loss of precision, but is useful for
28/// debugging dumps, etc.
29double FloatingLiteral::getValueAsApproximateDouble() const {
30  llvm::APFloat V = getValue();
31  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven);
32  return V.convertToDouble();
33}
34
35
36StringLiteral::StringLiteral(const char *strData, unsigned byteLength,
37                             bool Wide, QualType t, SourceLocation firstLoc,
38                             SourceLocation lastLoc) :
39  Expr(StringLiteralClass, t) {
40  // OPTIMIZE: could allocate this appended to the StringLiteral.
41  char *AStrData = new char[byteLength];
42  memcpy(AStrData, strData, byteLength);
43  StrData = AStrData;
44  ByteLength = byteLength;
45  IsWide = Wide;
46  firstTokLoc = firstLoc;
47  lastTokLoc = lastLoc;
48}
49
50StringLiteral::~StringLiteral() {
51  delete[] StrData;
52}
53
54bool UnaryOperator::isPostfix(Opcode Op) {
55  switch (Op) {
56  case PostInc:
57  case PostDec:
58    return true;
59  default:
60    return false;
61  }
62}
63
64bool UnaryOperator::isPrefix(Opcode Op) {
65  switch (Op) {
66    case PreInc:
67    case PreDec:
68      return true;
69    default:
70      return false;
71  }
72}
73
74/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
75/// corresponds to, e.g. "sizeof" or "[pre]++".
76const char *UnaryOperator::getOpcodeStr(Opcode Op) {
77  switch (Op) {
78  default: assert(0 && "Unknown unary operator");
79  case PostInc: return "++";
80  case PostDec: return "--";
81  case PreInc:  return "++";
82  case PreDec:  return "--";
83  case AddrOf:  return "&";
84  case Deref:   return "*";
85  case Plus:    return "+";
86  case Minus:   return "-";
87  case Not:     return "~";
88  case LNot:    return "!";
89  case Real:    return "__real";
90  case Imag:    return "__imag";
91  case SizeOf:  return "sizeof";
92  case AlignOf: return "alignof";
93  case Extension: return "__extension__";
94  case OffsetOf: return "__builtin_offsetof";
95  }
96}
97
98//===----------------------------------------------------------------------===//
99// Postfix Operators.
100//===----------------------------------------------------------------------===//
101
102
103CallExpr::CallExpr(Expr *fn, Expr **args, unsigned numargs, QualType t,
104                   SourceLocation rparenloc)
105  : Expr(CallExprClass, t), NumArgs(numargs) {
106  SubExprs = new Stmt*[numargs+1];
107  SubExprs[FN] = fn;
108  for (unsigned i = 0; i != numargs; ++i)
109    SubExprs[i+ARGS_START] = args[i];
110  RParenLoc = rparenloc;
111}
112
113/// setNumArgs - This changes the number of arguments present in this call.
114/// Any orphaned expressions are deleted by this, and any new operands are set
115/// to null.
116void CallExpr::setNumArgs(unsigned NumArgs) {
117  // No change, just return.
118  if (NumArgs == getNumArgs()) return;
119
120  // If shrinking # arguments, just delete the extras and forgot them.
121  if (NumArgs < getNumArgs()) {
122    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
123      delete getArg(i);
124    this->NumArgs = NumArgs;
125    return;
126  }
127
128  // Otherwise, we are growing the # arguments.  New an bigger argument array.
129  Stmt **NewSubExprs = new Stmt*[NumArgs+1];
130  // Copy over args.
131  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
132    NewSubExprs[i] = SubExprs[i];
133  // Null out new args.
134  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
135    NewSubExprs[i] = 0;
136
137  delete[] SubExprs;
138  SubExprs = NewSubExprs;
139  this->NumArgs = NumArgs;
140}
141
142bool CallExpr::isBuiltinConstantExpr() const {
143  // All simple function calls (e.g. func()) are implicitly cast to pointer to
144  // function. As a result, we try and obtain the DeclRefExpr from the
145  // ImplicitCastExpr.
146  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
147  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
148    return false;
149
150  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
151  if (!DRE)
152    return false;
153
154  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
155  if (!FDecl)
156    return false;
157
158  unsigned builtinID = FDecl->getIdentifier()->getBuiltinID();
159  if (!builtinID)
160    return false;
161
162  // We have a builtin that is a constant expression
163  return builtinID == Builtin::BI__builtin___CFStringMakeConstantString ||
164         builtinID == Builtin::BI__builtin_classify_type ||
165         builtinID == Builtin::BI__builtin_huge_valf;
166}
167
168bool CallExpr::isBuiltinClassifyType(llvm::APSInt &Result) const {
169  // The following enum mimics gcc's internal "typeclass.h" file.
170  enum gcc_type_class {
171    no_type_class = -1,
172    void_type_class, integer_type_class, char_type_class,
173    enumeral_type_class, boolean_type_class,
174    pointer_type_class, reference_type_class, offset_type_class,
175    real_type_class, complex_type_class,
176    function_type_class, method_type_class,
177    record_type_class, union_type_class,
178    array_type_class, string_type_class,
179    lang_type_class
180  };
181  Result.setIsSigned(true);
182
183  // All simple function calls (e.g. func()) are implicitly cast to pointer to
184  // function. As a result, we try and obtain the DeclRefExpr from the
185  // ImplicitCastExpr.
186  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
187  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
188    return false;
189  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
190  if (!DRE)
191    return false;
192
193  // We have a DeclRefExpr.
194  if (strcmp(DRE->getDecl()->getName(), "__builtin_classify_type") == 0) {
195    // If no argument was supplied, default to "no_type_class". This isn't
196    // ideal, however it's what gcc does.
197    Result = static_cast<uint64_t>(no_type_class);
198    if (NumArgs >= 1) {
199      QualType argType = getArg(0)->getType();
200
201      if (argType->isVoidType())
202        Result = void_type_class;
203      else if (argType->isEnumeralType())
204        Result = enumeral_type_class;
205      else if (argType->isBooleanType())
206        Result = boolean_type_class;
207      else if (argType->isCharType())
208        Result = string_type_class; // gcc doesn't appear to use char_type_class
209      else if (argType->isIntegerType())
210        Result = integer_type_class;
211      else if (argType->isPointerType())
212        Result = pointer_type_class;
213      else if (argType->isReferenceType())
214        Result = reference_type_class;
215      else if (argType->isRealType())
216        Result = real_type_class;
217      else if (argType->isComplexType())
218        Result = complex_type_class;
219      else if (argType->isFunctionType())
220        Result = function_type_class;
221      else if (argType->isStructureType())
222        Result = record_type_class;
223      else if (argType->isUnionType())
224        Result = union_type_class;
225      else if (argType->isArrayType())
226        Result = array_type_class;
227      else if (argType->isUnionType())
228        Result = union_type_class;
229      else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
230        assert(0 && "CallExpr::isBuiltinClassifyType(): unimplemented type");
231    }
232    return true;
233  }
234  return false;
235}
236
237/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
238/// corresponds to, e.g. "<<=".
239const char *BinaryOperator::getOpcodeStr(Opcode Op) {
240  switch (Op) {
241  default: assert(0 && "Unknown binary operator");
242  case Mul:       return "*";
243  case Div:       return "/";
244  case Rem:       return "%";
245  case Add:       return "+";
246  case Sub:       return "-";
247  case Shl:       return "<<";
248  case Shr:       return ">>";
249  case LT:        return "<";
250  case GT:        return ">";
251  case LE:        return "<=";
252  case GE:        return ">=";
253  case EQ:        return "==";
254  case NE:        return "!=";
255  case And:       return "&";
256  case Xor:       return "^";
257  case Or:        return "|";
258  case LAnd:      return "&&";
259  case LOr:       return "||";
260  case Assign:    return "=";
261  case MulAssign: return "*=";
262  case DivAssign: return "/=";
263  case RemAssign: return "%=";
264  case AddAssign: return "+=";
265  case SubAssign: return "-=";
266  case ShlAssign: return "<<=";
267  case ShrAssign: return ">>=";
268  case AndAssign: return "&=";
269  case XorAssign: return "^=";
270  case OrAssign:  return "|=";
271  case Comma:     return ",";
272  }
273}
274
275InitListExpr::InitListExpr(SourceLocation lbraceloc,
276                           Expr **initexprs, unsigned numinits,
277                           SourceLocation rbraceloc)
278  : Expr(InitListExprClass, QualType()),
279    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc)
280{
281  for (unsigned i = 0; i != numinits; i++)
282    InitExprs.push_back(initexprs[i]);
283}
284
285//===----------------------------------------------------------------------===//
286// Generic Expression Routines
287//===----------------------------------------------------------------------===//
288
289/// hasLocalSideEffect - Return true if this immediate expression has side
290/// effects, not counting any sub-expressions.
291bool Expr::hasLocalSideEffect() const {
292  switch (getStmtClass()) {
293  default:
294    return false;
295  case ParenExprClass:
296    return cast<ParenExpr>(this)->getSubExpr()->hasLocalSideEffect();
297  case UnaryOperatorClass: {
298    const UnaryOperator *UO = cast<UnaryOperator>(this);
299
300    switch (UO->getOpcode()) {
301    default: return false;
302    case UnaryOperator::PostInc:
303    case UnaryOperator::PostDec:
304    case UnaryOperator::PreInc:
305    case UnaryOperator::PreDec:
306      return true;                     // ++/--
307
308    case UnaryOperator::Deref:
309      // Dereferencing a volatile pointer is a side-effect.
310      return getType().isVolatileQualified();
311    case UnaryOperator::Real:
312    case UnaryOperator::Imag:
313      // accessing a piece of a volatile complex is a side-effect.
314      return UO->getSubExpr()->getType().isVolatileQualified();
315
316    case UnaryOperator::Extension:
317      return UO->getSubExpr()->hasLocalSideEffect();
318    }
319  }
320  case BinaryOperatorClass: {
321    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
322    // Consider comma to have side effects if the LHS and RHS both do.
323    if (BinOp->getOpcode() == BinaryOperator::Comma)
324      return BinOp->getLHS()->hasLocalSideEffect() &&
325             BinOp->getRHS()->hasLocalSideEffect();
326
327    return BinOp->isAssignmentOp();
328  }
329  case CompoundAssignOperatorClass:
330    return true;
331
332  case ConditionalOperatorClass: {
333    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
334    return Exp->getCond()->hasLocalSideEffect()
335           || (Exp->getLHS() && Exp->getLHS()->hasLocalSideEffect())
336           || (Exp->getRHS() && Exp->getRHS()->hasLocalSideEffect());
337  }
338
339  case MemberExprClass:
340  case ArraySubscriptExprClass:
341    // If the base pointer or element is to a volatile pointer/field, accessing
342    // if is a side effect.
343    return getType().isVolatileQualified();
344
345  case CallExprClass:
346    // TODO: check attributes for pure/const.   "void foo() { strlen("bar"); }"
347    // should warn.
348    return true;
349  case ObjCMessageExprClass:
350    return true;
351  case StmtExprClass: {
352    // Statement exprs don't logically have side effects themselves, but are
353    // sometimes used in macros in ways that give them a type that is unused.
354    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
355    // however, if the result of the stmt expr is dead, we don't want to emit a
356    // warning.
357    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
358    if (!CS->body_empty())
359      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
360        return E->hasLocalSideEffect();
361    return false;
362  }
363  case ExplicitCastExprClass:
364  case CXXFunctionalCastExprClass:
365    // If this is a cast to void, check the operand.  Otherwise, the result of
366    // the cast is unused.
367    if (getType()->isVoidType())
368      return cast<CastExpr>(this)->getSubExpr()->hasLocalSideEffect();
369    return false;
370
371  case ImplicitCastExprClass:
372    // Check the operand, since implicit casts are inserted by Sema
373    return cast<ImplicitCastExpr>(this)->getSubExpr()->hasLocalSideEffect();
374
375  case CXXDefaultArgExprClass:
376    return cast<CXXDefaultArgExpr>(this)->getExpr()->hasLocalSideEffect();
377  }
378}
379
380/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
381/// incomplete type other than void. Nonarray expressions that can be lvalues:
382///  - name, where name must be a variable
383///  - e[i]
384///  - (e), where e must be an lvalue
385///  - e.name, where e must be an lvalue
386///  - e->name
387///  - *e, the type of e cannot be a function type
388///  - string-constant
389///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
390///  - reference type [C++ [expr]]
391///
392Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
393  // first, check the type (C99 6.3.2.1)
394  if (TR->isFunctionType()) // from isObjectType()
395    return LV_NotObjectType;
396
397  // Allow qualified void which is an incomplete type other than void (yuck).
398  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).getCVRQualifiers())
399    return LV_IncompleteVoidType;
400
401  if (TR->isReferenceType()) // C++ [expr]
402    return LV_Valid;
403
404  // the type looks fine, now check the expression
405  switch (getStmtClass()) {
406  case StringLiteralClass: // C99 6.5.1p4
407    return LV_Valid;
408  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
409    // For vectors, make sure base is an lvalue (i.e. not a function call).
410    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
411      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
412    return LV_Valid;
413  case DeclRefExprClass: { // C99 6.5.1p2
414    const Decl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
415    if (isa<VarDecl>(RefdDecl) || isa<ImplicitParamDecl>(RefdDecl))
416      return LV_Valid;
417    break;
418  }
419  case MemberExprClass: { // C99 6.5.2.3p4
420    const MemberExpr *m = cast<MemberExpr>(this);
421    return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
422  }
423  case UnaryOperatorClass:
424    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
425      return LV_Valid; // C99 6.5.3p4
426
427    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
428        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
429        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
430      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
431    break;
432  case ParenExprClass: // C99 6.5.1p5
433    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
434  case CompoundLiteralExprClass: // C99 6.5.2.5p5
435    return LV_Valid;
436  case ExtVectorElementExprClass:
437    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
438      return LV_DuplicateVectorComponents;
439    return LV_Valid;
440  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
441    return LV_Valid;
442  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
443    return LV_Valid;
444  case PredefinedExprClass:
445    return (cast<PredefinedExpr>(this)->getIdentType()
446               == PredefinedExpr::CXXThis
447            ? LV_InvalidExpression : LV_Valid);
448  case CXXDefaultArgExprClass:
449    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
450  default:
451    break;
452  }
453  return LV_InvalidExpression;
454}
455
456/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
457/// does not have an incomplete type, does not have a const-qualified type, and
458/// if it is a structure or union, does not have any member (including,
459/// recursively, any member or element of all contained aggregates or unions)
460/// with a const-qualified type.
461Expr::isModifiableLvalueResult Expr::isModifiableLvalue(ASTContext &Ctx) const {
462  isLvalueResult lvalResult = isLvalue(Ctx);
463
464  switch (lvalResult) {
465  case LV_Valid: break;
466  case LV_NotObjectType: return MLV_NotObjectType;
467  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
468  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
469  case LV_InvalidExpression: return MLV_InvalidExpression;
470  }
471
472  QualType CT = Ctx.getCanonicalType(getType());
473
474  if (CT.isConstQualified())
475    return MLV_ConstQualified;
476  if (CT->isArrayType())
477    return MLV_ArrayType;
478  if (CT->isIncompleteType())
479    return MLV_IncompleteType;
480
481  if (const RecordType *r = CT->getAsRecordType()) {
482    if (r->hasConstFields())
483      return MLV_ConstQualified;
484  }
485  return MLV_Valid;
486}
487
488/// hasGlobalStorage - Return true if this expression has static storage
489/// duration.  This means that the address of this expression is a link-time
490/// constant.
491bool Expr::hasGlobalStorage() const {
492  switch (getStmtClass()) {
493  default:
494    return false;
495  case ParenExprClass:
496    return cast<ParenExpr>(this)->getSubExpr()->hasGlobalStorage();
497  case ImplicitCastExprClass:
498    return cast<ImplicitCastExpr>(this)->getSubExpr()->hasGlobalStorage();
499  case CompoundLiteralExprClass:
500    return cast<CompoundLiteralExpr>(this)->isFileScope();
501  case DeclRefExprClass: {
502    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
503    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
504      return VD->hasGlobalStorage();
505    if (isa<FunctionDecl>(D))
506      return true;
507    return false;
508  }
509  case MemberExprClass: {
510    const MemberExpr *M = cast<MemberExpr>(this);
511    return !M->isArrow() && M->getBase()->hasGlobalStorage();
512  }
513  case ArraySubscriptExprClass:
514    return cast<ArraySubscriptExpr>(this)->getBase()->hasGlobalStorage();
515  case PredefinedExprClass:
516    return true;
517  case CXXDefaultArgExprClass:
518    return cast<CXXDefaultArgExpr>(this)->getExpr()->hasGlobalStorage();
519  }
520}
521
522Expr* Expr::IgnoreParens() {
523  Expr* E = this;
524  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
525    E = P->getSubExpr();
526
527  return E;
528}
529
530/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
531/// or CastExprs or ImplicitCastExprs, returning their operand.
532Expr *Expr::IgnoreParenCasts() {
533  Expr *E = this;
534  while (true) {
535    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
536      E = P->getSubExpr();
537    else if (CastExpr *P = dyn_cast<CastExpr>(E))
538      E = P->getSubExpr();
539    else
540      return E;
541  }
542}
543
544
545bool Expr::isConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
546  switch (getStmtClass()) {
547  default:
548    if (Loc) *Loc = getLocStart();
549    return false;
550  case ParenExprClass:
551    return cast<ParenExpr>(this)->getSubExpr()->isConstantExpr(Ctx, Loc);
552  case StringLiteralClass:
553  case ObjCStringLiteralClass:
554  case FloatingLiteralClass:
555  case IntegerLiteralClass:
556  case CharacterLiteralClass:
557  case ImaginaryLiteralClass:
558  case TypesCompatibleExprClass:
559  case CXXBoolLiteralExprClass:
560  case AddrLabelExprClass:
561    return true;
562  case CallExprClass: {
563    const CallExpr *CE = cast<CallExpr>(this);
564    if (CE->isBuiltinConstantExpr())
565      return true;
566    if (Loc) *Loc = getLocStart();
567    return false;
568  }
569  case DeclRefExprClass: {
570    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
571    // Accept address of function.
572    if (isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D))
573      return true;
574    if (Loc) *Loc = getLocStart();
575    if (isa<VarDecl>(D))
576      return TR->isArrayType();
577    return false;
578  }
579  case CompoundLiteralExprClass:
580    if (Loc) *Loc = getLocStart();
581    // Allow "(int []){2,4}", since the array will be converted to a pointer.
582    // Allow "(vector type){2,4}" since the elements are all constant.
583    return TR->isArrayType() || TR->isVectorType();
584  case UnaryOperatorClass: {
585    const UnaryOperator *Exp = cast<UnaryOperator>(this);
586
587    // C99 6.6p9
588    if (Exp->getOpcode() == UnaryOperator::AddrOf) {
589      if (!Exp->getSubExpr()->hasGlobalStorage()) {
590        if (Loc) *Loc = getLocStart();
591        return false;
592      }
593      return true;
594    }
595
596    // Get the operand value.  If this is sizeof/alignof, do not evalute the
597    // operand.  This affects C99 6.6p3.
598    if (!Exp->isSizeOfAlignOfOp() &&
599        Exp->getOpcode() != UnaryOperator::OffsetOf &&
600        !Exp->getSubExpr()->isConstantExpr(Ctx, Loc))
601      return false;
602
603    switch (Exp->getOpcode()) {
604    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
605    // See C99 6.6p3.
606    default:
607      if (Loc) *Loc = Exp->getOperatorLoc();
608      return false;
609    case UnaryOperator::Extension:
610      return true;  // FIXME: this is wrong.
611    case UnaryOperator::SizeOf:
612    case UnaryOperator::AlignOf:
613    case UnaryOperator::OffsetOf:
614      // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
615      if (!Exp->getSubExpr()->getType()->isConstantSizeType()) {
616        if (Loc) *Loc = Exp->getOperatorLoc();
617        return false;
618      }
619      return true;
620    case UnaryOperator::LNot:
621    case UnaryOperator::Plus:
622    case UnaryOperator::Minus:
623    case UnaryOperator::Not:
624      return true;
625    }
626  }
627  case SizeOfAlignOfTypeExprClass: {
628    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(this);
629    // alignof always evaluates to a constant.
630    if (Exp->isSizeOf() && !Exp->getArgumentType()->isVoidType() &&
631        !Exp->getArgumentType()->isConstantSizeType()) {
632      if (Loc) *Loc = Exp->getOperatorLoc();
633      return false;
634    }
635    return true;
636  }
637  case BinaryOperatorClass: {
638    const BinaryOperator *Exp = cast<BinaryOperator>(this);
639
640    // The LHS of a constant expr is always evaluated and needed.
641    if (!Exp->getLHS()->isConstantExpr(Ctx, Loc))
642      return false;
643
644    if (!Exp->getRHS()->isConstantExpr(Ctx, Loc))
645      return false;
646    return true;
647  }
648  case ImplicitCastExprClass:
649  case ExplicitCastExprClass:
650  case CXXFunctionalCastExprClass: {
651    const Expr *SubExpr = cast<CastExpr>(this)->getSubExpr();
652    SourceLocation CastLoc = getLocStart();
653    if (!SubExpr->isConstantExpr(Ctx, Loc)) {
654      if (Loc) *Loc = SubExpr->getLocStart();
655      return false;
656    }
657    return true;
658  }
659  case ConditionalOperatorClass: {
660    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
661    if (!Exp->getCond()->isConstantExpr(Ctx, Loc) ||
662        // Handle the GNU extension for missing LHS.
663        !(Exp->getLHS() && Exp->getLHS()->isConstantExpr(Ctx, Loc)) ||
664        !Exp->getRHS()->isConstantExpr(Ctx, Loc))
665      return false;
666    return true;
667  }
668  case InitListExprClass: {
669    const InitListExpr *Exp = cast<InitListExpr>(this);
670    unsigned numInits = Exp->getNumInits();
671    for (unsigned i = 0; i < numInits; i++) {
672      if (!Exp->getInit(i)->isConstantExpr(Ctx, Loc)) {
673        if (Loc) *Loc = Exp->getInit(i)->getLocStart();
674        return false;
675      }
676    }
677    return true;
678  }
679  case CXXDefaultArgExprClass:
680    return cast<CXXDefaultArgExpr>(this)->getExpr()->isConstantExpr(Ctx, Loc);
681  }
682}
683
684/// isIntegerConstantExpr - this recursive routine will test if an expression is
685/// an integer constant expression. Note: With the introduction of VLA's in
686/// C99 the result of the sizeof operator is no longer always a constant
687/// expression. The generalization of the wording to include any subexpression
688/// that is not evaluated (C99 6.6p3) means that nonconstant subexpressions
689/// can appear as operands to other operators (e.g. &&, ||, ?:). For instance,
690/// "0 || f()" can be treated as a constant expression. In C90 this expression,
691/// occurring in a context requiring a constant, would have been a constraint
692/// violation. FIXME: This routine currently implements C90 semantics.
693/// To properly implement C99 semantics this routine will need to evaluate
694/// expressions involving operators previously mentioned.
695
696/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
697/// comma, etc
698///
699/// FIXME: This should ext-warn on overflow during evaluation!  ISO C does not
700/// permit this.  This includes things like (int)1e1000
701///
702/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
703/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
704/// cast+dereference.
705bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
706                                 SourceLocation *Loc, bool isEvaluated) const {
707  switch (getStmtClass()) {
708  default:
709    if (Loc) *Loc = getLocStart();
710    return false;
711  case ParenExprClass:
712    return cast<ParenExpr>(this)->getSubExpr()->
713                     isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
714  case IntegerLiteralClass:
715    Result = cast<IntegerLiteral>(this)->getValue();
716    break;
717  case CharacterLiteralClass: {
718    const CharacterLiteral *CL = cast<CharacterLiteral>(this);
719    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
720    Result = CL->getValue();
721    Result.setIsUnsigned(!getType()->isSignedIntegerType());
722    break;
723  }
724  case CXXBoolLiteralExprClass: {
725    const CXXBoolLiteralExpr *BL = cast<CXXBoolLiteralExpr>(this);
726    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
727    Result = BL->getValue();
728    Result.setIsUnsigned(!getType()->isSignedIntegerType());
729    break;
730  }
731  case CXXZeroInitValueExprClass:
732    Result.clear();
733    break;
734  case TypesCompatibleExprClass: {
735    const TypesCompatibleExpr *TCE = cast<TypesCompatibleExpr>(this);
736    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
737    Result = Ctx.typesAreCompatible(TCE->getArgType1(), TCE->getArgType2());
738    break;
739  }
740  case CallExprClass: {
741    const CallExpr *CE = cast<CallExpr>(this);
742    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
743    if (CE->isBuiltinClassifyType(Result))
744      break;
745    if (Loc) *Loc = getLocStart();
746    return false;
747  }
748  case DeclRefExprClass:
749    if (const EnumConstantDecl *D =
750          dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(this)->getDecl())) {
751      Result = D->getInitVal();
752      break;
753    }
754    if (Loc) *Loc = getLocStart();
755    return false;
756  case UnaryOperatorClass: {
757    const UnaryOperator *Exp = cast<UnaryOperator>(this);
758
759    // Get the operand value.  If this is sizeof/alignof, do not evalute the
760    // operand.  This affects C99 6.6p3.
761    if (!Exp->isSizeOfAlignOfOp() && !Exp->isOffsetOfOp() &&
762        !Exp->getSubExpr()->isIntegerConstantExpr(Result, Ctx, Loc,isEvaluated))
763      return false;
764
765    switch (Exp->getOpcode()) {
766    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
767    // See C99 6.6p3.
768    default:
769      if (Loc) *Loc = Exp->getOperatorLoc();
770      return false;
771    case UnaryOperator::Extension:
772      return true;  // FIXME: this is wrong.
773    case UnaryOperator::SizeOf:
774    case UnaryOperator::AlignOf:
775      // Return the result in the right width.
776      Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
777
778      // sizeof(void) and __alignof__(void) = 1 as a gcc extension.
779      if (Exp->getSubExpr()->getType()->isVoidType()) {
780        Result = 1;
781        break;
782      }
783
784      // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
785      if (!Exp->getSubExpr()->getType()->isConstantSizeType()) {
786        if (Loc) *Loc = Exp->getOperatorLoc();
787        return false;
788      }
789
790      // Get information about the size or align.
791      if (Exp->getSubExpr()->getType()->isFunctionType()) {
792        // GCC extension: sizeof(function) = 1.
793        Result = Exp->getOpcode() == UnaryOperator::AlignOf ? 4 : 1;
794      } else {
795        unsigned CharSize = Ctx.Target.getCharWidth();
796        if (Exp->getOpcode() == UnaryOperator::AlignOf)
797          Result = Ctx.getTypeAlign(Exp->getSubExpr()->getType()) / CharSize;
798        else
799          Result = Ctx.getTypeSize(Exp->getSubExpr()->getType()) / CharSize;
800      }
801      break;
802    case UnaryOperator::LNot: {
803      bool Val = Result == 0;
804      Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
805      Result = Val;
806      break;
807    }
808    case UnaryOperator::Plus:
809      break;
810    case UnaryOperator::Minus:
811      Result = -Result;
812      break;
813    case UnaryOperator::Not:
814      Result = ~Result;
815      break;
816    case UnaryOperator::OffsetOf:
817      Result = Exp->evaluateOffsetOf(Ctx);
818    }
819    break;
820  }
821  case SizeOfAlignOfTypeExprClass: {
822    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(this);
823
824    // Return the result in the right width.
825    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
826
827    // sizeof(void) and __alignof__(void) = 1 as a gcc extension.
828    if (Exp->getArgumentType()->isVoidType()) {
829      Result = 1;
830      break;
831    }
832
833    // alignof always evaluates to a constant, sizeof does if arg is not VLA.
834    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
835      if (Loc) *Loc = Exp->getOperatorLoc();
836      return false;
837    }
838
839    // Get information about the size or align.
840    if (Exp->getArgumentType()->isFunctionType()) {
841      // GCC extension: sizeof(function) = 1.
842      Result = Exp->isSizeOf() ? 1 : 4;
843    } else {
844      unsigned CharSize = Ctx.Target.getCharWidth();
845      if (Exp->isSizeOf())
846        Result = Ctx.getTypeSize(Exp->getArgumentType()) / CharSize;
847      else
848        Result = Ctx.getTypeAlign(Exp->getArgumentType()) / CharSize;
849    }
850    break;
851  }
852  case BinaryOperatorClass: {
853    const BinaryOperator *Exp = cast<BinaryOperator>(this);
854
855    // The LHS of a constant expr is always evaluated and needed.
856    if (!Exp->getLHS()->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
857      return false;
858
859    llvm::APSInt RHS(Result);
860
861    // The short-circuiting &&/|| operators don't necessarily evaluate their
862    // RHS.  Make sure to pass isEvaluated down correctly.
863    if (Exp->isLogicalOp()) {
864      bool RHSEval;
865      if (Exp->getOpcode() == BinaryOperator::LAnd)
866        RHSEval = Result != 0;
867      else {
868        assert(Exp->getOpcode() == BinaryOperator::LOr &&"Unexpected logical");
869        RHSEval = Result == 0;
870      }
871
872      if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc,
873                                                isEvaluated & RHSEval))
874        return false;
875    } else {
876      if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc, isEvaluated))
877        return false;
878    }
879
880    switch (Exp->getOpcode()) {
881    default:
882      if (Loc) *Loc = getLocStart();
883      return false;
884    case BinaryOperator::Mul:
885      Result *= RHS;
886      break;
887    case BinaryOperator::Div:
888      if (RHS == 0) {
889        if (!isEvaluated) break;
890        if (Loc) *Loc = getLocStart();
891        return false;
892      }
893      Result /= RHS;
894      break;
895    case BinaryOperator::Rem:
896      if (RHS == 0) {
897        if (!isEvaluated) break;
898        if (Loc) *Loc = getLocStart();
899        return false;
900      }
901      Result %= RHS;
902      break;
903    case BinaryOperator::Add: Result += RHS; break;
904    case BinaryOperator::Sub: Result -= RHS; break;
905    case BinaryOperator::Shl:
906      Result <<=
907        static_cast<uint32_t>(RHS.getLimitedValue(Result.getBitWidth()-1));
908      break;
909    case BinaryOperator::Shr:
910      Result >>=
911        static_cast<uint32_t>(RHS.getLimitedValue(Result.getBitWidth()-1));
912      break;
913    case BinaryOperator::LT:  Result = Result < RHS; break;
914    case BinaryOperator::GT:  Result = Result > RHS; break;
915    case BinaryOperator::LE:  Result = Result <= RHS; break;
916    case BinaryOperator::GE:  Result = Result >= RHS; break;
917    case BinaryOperator::EQ:  Result = Result == RHS; break;
918    case BinaryOperator::NE:  Result = Result != RHS; break;
919    case BinaryOperator::And: Result &= RHS; break;
920    case BinaryOperator::Xor: Result ^= RHS; break;
921    case BinaryOperator::Or:  Result |= RHS; break;
922    case BinaryOperator::LAnd:
923      Result = Result != 0 && RHS != 0;
924      break;
925    case BinaryOperator::LOr:
926      Result = Result != 0 || RHS != 0;
927      break;
928
929    case BinaryOperator::Comma:
930      // C99 6.6p3: "shall not contain assignment, ..., or comma operators,
931      // *except* when they are contained within a subexpression that is not
932      // evaluated".  Note that Assignment can never happen due to constraints
933      // on the LHS subexpr, so we don't need to check it here.
934      if (isEvaluated) {
935        if (Loc) *Loc = getLocStart();
936        return false;
937      }
938
939      // The result of the constant expr is the RHS.
940      Result = RHS;
941      return true;
942    }
943
944    assert(!Exp->isAssignmentOp() && "LHS can't be a constant expr!");
945    break;
946  }
947  case ImplicitCastExprClass:
948  case ExplicitCastExprClass:
949  case CXXFunctionalCastExprClass: {
950    const Expr *SubExpr = cast<CastExpr>(this)->getSubExpr();
951    SourceLocation CastLoc = getLocStart();
952
953    // C99 6.6p6: shall only convert arithmetic types to integer types.
954    if (!SubExpr->getType()->isArithmeticType() ||
955        !getType()->isIntegerType()) {
956      if (Loc) *Loc = SubExpr->getLocStart();
957      return false;
958    }
959
960    uint32_t DestWidth = static_cast<uint32_t>(Ctx.getTypeSize(getType()));
961
962    // Handle simple integer->integer casts.
963    if (SubExpr->getType()->isIntegerType()) {
964      if (!SubExpr->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
965        return false;
966
967      // Figure out if this is a truncate, extend or noop cast.
968      // If the input is signed, do a sign extend, noop, or truncate.
969      if (getType()->isBooleanType()) {
970        // Conversion to bool compares against zero.
971        Result = Result != 0;
972        Result.zextOrTrunc(DestWidth);
973      } else if (SubExpr->getType()->isSignedIntegerType())
974        Result.sextOrTrunc(DestWidth);
975      else  // If the input is unsigned, do a zero extend, noop, or truncate.
976        Result.zextOrTrunc(DestWidth);
977      break;
978    }
979
980    // Allow floating constants that are the immediate operands of casts or that
981    // are parenthesized.
982    const Expr *Operand = SubExpr;
983    while (const ParenExpr *PE = dyn_cast<ParenExpr>(Operand))
984      Operand = PE->getSubExpr();
985
986    // If this isn't a floating literal, we can't handle it.
987    const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(Operand);
988    if (!FL) {
989      if (Loc) *Loc = Operand->getLocStart();
990      return false;
991    }
992
993    // If the destination is boolean, compare against zero.
994    if (getType()->isBooleanType()) {
995      Result = !FL->getValue().isZero();
996      Result.zextOrTrunc(DestWidth);
997      break;
998    }
999
1000    // Determine whether we are converting to unsigned or signed.
1001    bool DestSigned = getType()->isSignedIntegerType();
1002
1003    // TODO: Warn on overflow, but probably not here: isIntegerConstantExpr can
1004    // be called multiple times per AST.
1005    uint64_t Space[4];
1006    (void)FL->getValue().convertToInteger(Space, DestWidth, DestSigned,
1007                                          llvm::APFloat::rmTowardZero);
1008    Result = llvm::APInt(DestWidth, 4, Space);
1009    break;
1010  }
1011  case ConditionalOperatorClass: {
1012    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1013
1014    if (!Exp->getCond()->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
1015      return false;
1016
1017    const Expr *TrueExp  = Exp->getLHS();
1018    const Expr *FalseExp = Exp->getRHS();
1019    if (Result == 0) std::swap(TrueExp, FalseExp);
1020
1021    // Evaluate the false one first, discard the result.
1022    if (FalseExp && !FalseExp->isIntegerConstantExpr(Result, Ctx, Loc, false))
1023      return false;
1024    // Evalute the true one, capture the result.
1025    if (TrueExp &&
1026        !TrueExp->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
1027      return false;
1028    break;
1029  }
1030  case CXXDefaultArgExprClass:
1031    return cast<CXXDefaultArgExpr>(this)
1032             ->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
1033  }
1034
1035  // Cases that are valid constant exprs fall through to here.
1036  Result.setIsUnsigned(getType()->isUnsignedIntegerType());
1037  return true;
1038}
1039
1040/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1041/// integer constant expression with the value zero, or if this is one that is
1042/// cast to void*.
1043bool Expr::isNullPointerConstant(ASTContext &Ctx) const {
1044  // Strip off a cast to void*, if it exists.
1045  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1046    // Check that it is a cast to void*.
1047    if (const PointerType *PT = CE->getType()->getAsPointerType()) {
1048      QualType Pointee = PT->getPointeeType();
1049      if (Pointee.getCVRQualifiers() == 0 &&
1050          Pointee->isVoidType() &&                                 // to void*
1051          CE->getSubExpr()->getType()->isIntegerType())            // from int.
1052        return CE->getSubExpr()->isNullPointerConstant(Ctx);
1053    }
1054  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1055    // Ignore the ImplicitCastExpr type entirely.
1056    return ICE->getSubExpr()->isNullPointerConstant(Ctx);
1057  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1058    // Accept ((void*)0) as a null pointer constant, as many other
1059    // implementations do.
1060    return PE->getSubExpr()->isNullPointerConstant(Ctx);
1061  } else if (const CXXDefaultArgExpr *DefaultArg
1062               = dyn_cast<CXXDefaultArgExpr>(this)) {
1063    // See through default argument expressions
1064    return DefaultArg->getExpr()->isNullPointerConstant(Ctx);
1065  }
1066
1067  // This expression must be an integer type.
1068  if (!getType()->isIntegerType())
1069    return false;
1070
1071  // If we have an integer constant expression, we need to *evaluate* it and
1072  // test for the value 0.
1073  llvm::APSInt Val(32);
1074  return isIntegerConstantExpr(Val, Ctx, 0, true) && Val == 0;
1075}
1076
1077unsigned ExtVectorElementExpr::getNumElements() const {
1078  if (const VectorType *VT = getType()->getAsVectorType())
1079    return VT->getNumElements();
1080  return 1;
1081}
1082
1083/// containsDuplicateElements - Return true if any element access is repeated.
1084bool ExtVectorElementExpr::containsDuplicateElements() const {
1085  const char *compStr = Accessor.getName();
1086  unsigned length = strlen(compStr);
1087
1088  for (unsigned i = 0; i < length-1; i++) {
1089    const char *s = compStr+i;
1090    for (const char c = *s++; *s; s++)
1091      if (c == *s)
1092        return true;
1093  }
1094  return false;
1095}
1096
1097/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
1098void ExtVectorElementExpr::getEncodedElementAccess(
1099                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
1100  const char *compStr = Accessor.getName();
1101
1102  bool isHi =   !strcmp(compStr, "hi");
1103  bool isLo =   !strcmp(compStr, "lo");
1104  bool isEven = !strcmp(compStr, "e");
1105  bool isOdd  = !strcmp(compStr, "o");
1106
1107  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
1108    uint64_t Index;
1109
1110    if (isHi)
1111      Index = e + i;
1112    else if (isLo)
1113      Index = i;
1114    else if (isEven)
1115      Index = 2 * i;
1116    else if (isOdd)
1117      Index = 2 * i + 1;
1118    else
1119      Index = ExtVectorType::getAccessorIdx(compStr[i]);
1120
1121    Elts.push_back(Index);
1122  }
1123}
1124
1125// constructor for instance messages.
1126ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
1127                QualType retType, ObjCMethodDecl *mproto,
1128                SourceLocation LBrac, SourceLocation RBrac,
1129                Expr **ArgExprs, unsigned nargs)
1130  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1131    MethodProto(mproto) {
1132  NumArgs = nargs;
1133  SubExprs = new Stmt*[NumArgs+1];
1134  SubExprs[RECEIVER] = receiver;
1135  if (NumArgs) {
1136    for (unsigned i = 0; i != NumArgs; ++i)
1137      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1138  }
1139  LBracloc = LBrac;
1140  RBracloc = RBrac;
1141}
1142
1143// constructor for class messages.
1144// FIXME: clsName should be typed to ObjCInterfaceType
1145ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
1146                QualType retType, ObjCMethodDecl *mproto,
1147                SourceLocation LBrac, SourceLocation RBrac,
1148                Expr **ArgExprs, unsigned nargs)
1149  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1150    MethodProto(mproto) {
1151  NumArgs = nargs;
1152  SubExprs = new Stmt*[NumArgs+1];
1153  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
1154  if (NumArgs) {
1155    for (unsigned i = 0; i != NumArgs; ++i)
1156      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1157  }
1158  LBracloc = LBrac;
1159  RBracloc = RBrac;
1160}
1161
1162// constructor for class messages.
1163ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
1164                                 QualType retType, ObjCMethodDecl *mproto,
1165                                 SourceLocation LBrac, SourceLocation RBrac,
1166                                 Expr **ArgExprs, unsigned nargs)
1167: Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1168MethodProto(mproto) {
1169  NumArgs = nargs;
1170  SubExprs = new Stmt*[NumArgs+1];
1171  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
1172  if (NumArgs) {
1173    for (unsigned i = 0; i != NumArgs; ++i)
1174      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1175  }
1176  LBracloc = LBrac;
1177  RBracloc = RBrac;
1178}
1179
1180ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
1181  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
1182  switch (x & Flags) {
1183    default:
1184      assert(false && "Invalid ObjCMessageExpr.");
1185    case IsInstMeth:
1186      return ClassInfo(0, 0);
1187    case IsClsMethDeclUnknown:
1188      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
1189    case IsClsMethDeclKnown: {
1190      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
1191      return ClassInfo(D, D->getIdentifier());
1192    }
1193  }
1194}
1195
1196bool ChooseExpr::isConditionTrue(ASTContext &C) const {
1197  return getCond()->getIntegerConstantExprValue(C) != 0;
1198}
1199
1200static int64_t evaluateOffsetOf(ASTContext& C, const Expr *E)
1201{
1202  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1203    QualType Ty = ME->getBase()->getType();
1204
1205    RecordDecl *RD = Ty->getAsRecordType()->getDecl();
1206    const ASTRecordLayout &RL = C.getASTRecordLayout(RD);
1207    FieldDecl *FD = ME->getMemberDecl();
1208
1209    // FIXME: This is linear time.
1210    unsigned i = 0, e = 0;
1211    for (i = 0, e = RD->getNumMembers(); i != e; i++) {
1212      if (RD->getMember(i) == FD)
1213        break;
1214    }
1215
1216    return RL.getFieldOffset(i) + evaluateOffsetOf(C, ME->getBase());
1217  } else if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
1218    const Expr *Base = ASE->getBase();
1219
1220    int64_t size = C.getTypeSize(ASE->getType());
1221    size *= ASE->getIdx()->getIntegerConstantExprValue(C).getSExtValue();
1222
1223    return size + evaluateOffsetOf(C, Base);
1224  } else if (isa<CompoundLiteralExpr>(E))
1225    return 0;
1226
1227  assert(0 && "Unknown offsetof subexpression!");
1228  return 0;
1229}
1230
1231int64_t UnaryOperator::evaluateOffsetOf(ASTContext& C) const
1232{
1233  assert(Opc == OffsetOf && "Unary operator not offsetof!");
1234
1235  unsigned CharSize = C.Target.getCharWidth();
1236  return ::evaluateOffsetOf(C, cast<Expr>(Val)) / CharSize;
1237}
1238
1239//===----------------------------------------------------------------------===//
1240//  Child Iterators for iterating over subexpressions/substatements
1241//===----------------------------------------------------------------------===//
1242
1243// DeclRefExpr
1244Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
1245Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
1246
1247// ObjCIvarRefExpr
1248Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
1249Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
1250
1251// ObjCPropertyRefExpr
1252Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
1253Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
1254
1255// PredefinedExpr
1256Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
1257Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
1258
1259// IntegerLiteral
1260Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
1261Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
1262
1263// CharacterLiteral
1264Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator(); }
1265Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
1266
1267// FloatingLiteral
1268Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
1269Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
1270
1271// ImaginaryLiteral
1272Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
1273Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
1274
1275// StringLiteral
1276Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
1277Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
1278
1279// ParenExpr
1280Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
1281Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
1282
1283// UnaryOperator
1284Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
1285Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
1286
1287// SizeOfAlignOfTypeExpr
1288Stmt::child_iterator SizeOfAlignOfTypeExpr::child_begin() {
1289  // If the type is a VLA type (and not a typedef), the size expression of the
1290  // VLA needs to be treated as an executable expression.
1291  if (VariableArrayType* T = dyn_cast<VariableArrayType>(Ty.getTypePtr()))
1292    return child_iterator(T);
1293  else
1294    return child_iterator();
1295}
1296Stmt::child_iterator SizeOfAlignOfTypeExpr::child_end() {
1297  return child_iterator();
1298}
1299
1300// ArraySubscriptExpr
1301Stmt::child_iterator ArraySubscriptExpr::child_begin() {
1302  return &SubExprs[0];
1303}
1304Stmt::child_iterator ArraySubscriptExpr::child_end() {
1305  return &SubExprs[0]+END_EXPR;
1306}
1307
1308// CallExpr
1309Stmt::child_iterator CallExpr::child_begin() {
1310  return &SubExprs[0];
1311}
1312Stmt::child_iterator CallExpr::child_end() {
1313  return &SubExprs[0]+NumArgs+ARGS_START;
1314}
1315
1316// MemberExpr
1317Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
1318Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
1319
1320// ExtVectorElementExpr
1321Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
1322Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
1323
1324// CompoundLiteralExpr
1325Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
1326Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
1327
1328// CastExpr
1329Stmt::child_iterator CastExpr::child_begin() { return &Op; }
1330Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
1331
1332// BinaryOperator
1333Stmt::child_iterator BinaryOperator::child_begin() {
1334  return &SubExprs[0];
1335}
1336Stmt::child_iterator BinaryOperator::child_end() {
1337  return &SubExprs[0]+END_EXPR;
1338}
1339
1340// ConditionalOperator
1341Stmt::child_iterator ConditionalOperator::child_begin() {
1342  return &SubExprs[0];
1343}
1344Stmt::child_iterator ConditionalOperator::child_end() {
1345  return &SubExprs[0]+END_EXPR;
1346}
1347
1348// AddrLabelExpr
1349Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
1350Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
1351
1352// StmtExpr
1353Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
1354Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
1355
1356// TypesCompatibleExpr
1357Stmt::child_iterator TypesCompatibleExpr::child_begin() {
1358  return child_iterator();
1359}
1360
1361Stmt::child_iterator TypesCompatibleExpr::child_end() {
1362  return child_iterator();
1363}
1364
1365// ChooseExpr
1366Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
1367Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
1368
1369// OverloadExpr
1370Stmt::child_iterator OverloadExpr::child_begin() { return &SubExprs[0]; }
1371Stmt::child_iterator OverloadExpr::child_end() { return &SubExprs[0]+NumExprs; }
1372
1373// ShuffleVectorExpr
1374Stmt::child_iterator ShuffleVectorExpr::child_begin() {
1375  return &SubExprs[0];
1376}
1377Stmt::child_iterator ShuffleVectorExpr::child_end() {
1378  return &SubExprs[0]+NumExprs;
1379}
1380
1381// VAArgExpr
1382Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
1383Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
1384
1385// InitListExpr
1386Stmt::child_iterator InitListExpr::child_begin() {
1387  return InitExprs.size() ? &InitExprs[0] : 0;
1388}
1389Stmt::child_iterator InitListExpr::child_end() {
1390  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
1391}
1392
1393// ObjCStringLiteral
1394Stmt::child_iterator ObjCStringLiteral::child_begin() {
1395  return child_iterator();
1396}
1397Stmt::child_iterator ObjCStringLiteral::child_end() {
1398  return child_iterator();
1399}
1400
1401// ObjCEncodeExpr
1402Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
1403Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
1404
1405// ObjCSelectorExpr
1406Stmt::child_iterator ObjCSelectorExpr::child_begin() {
1407  return child_iterator();
1408}
1409Stmt::child_iterator ObjCSelectorExpr::child_end() {
1410  return child_iterator();
1411}
1412
1413// ObjCProtocolExpr
1414Stmt::child_iterator ObjCProtocolExpr::child_begin() {
1415  return child_iterator();
1416}
1417Stmt::child_iterator ObjCProtocolExpr::child_end() {
1418  return child_iterator();
1419}
1420
1421// ObjCMessageExpr
1422Stmt::child_iterator ObjCMessageExpr::child_begin() {
1423  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
1424}
1425Stmt::child_iterator ObjCMessageExpr::child_end() {
1426  return &SubExprs[0]+ARGS_START+getNumArgs();
1427}
1428
1429