Expr.cpp revision 3a1ce1ed0f5686384e712837bad28c576622e442
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// Primary Expressions.
32//===----------------------------------------------------------------------===//
33
34void ExplicitTemplateArgumentList::initializeFrom(
35                                      const TemplateArgumentListInfo &Info) {
36  LAngleLoc = Info.getLAngleLoc();
37  RAngleLoc = Info.getRAngleLoc();
38  NumTemplateArgs = Info.size();
39
40  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
41  for (unsigned i = 0; i != NumTemplateArgs; ++i)
42    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
43}
44
45void ExplicitTemplateArgumentList::copyInto(
46                                      TemplateArgumentListInfo &Info) const {
47  Info.setLAngleLoc(LAngleLoc);
48  Info.setRAngleLoc(RAngleLoc);
49  for (unsigned I = 0; I != NumTemplateArgs; ++I)
50    Info.addArgument(getTemplateArgs()[I]);
51}
52
53std::size_t ExplicitTemplateArgumentList::sizeFor(
54                                      const TemplateArgumentListInfo &Info) {
55  return sizeof(ExplicitTemplateArgumentList) +
56         sizeof(TemplateArgumentLoc) * Info.size();
57}
58
59void DeclRefExpr::computeDependence() {
60  TypeDependent = false;
61  ValueDependent = false;
62
63  NamedDecl *D = getDecl();
64
65  // (TD) C++ [temp.dep.expr]p3:
66  //   An id-expression is type-dependent if it contains:
67  //
68  // and
69  //
70  // (VD) C++ [temp.dep.constexpr]p2:
71  //  An identifier is value-dependent if it is:
72
73  //  (TD)  - an identifier that was declared with dependent type
74  //  (VD)  - a name declared with a dependent type,
75  if (getType()->isDependentType()) {
76    TypeDependent = true;
77    ValueDependent = true;
78  }
79  //  (TD)  - a conversion-function-id that specifies a dependent type
80  else if (D->getDeclName().getNameKind()
81                               == DeclarationName::CXXConversionFunctionName &&
82           D->getDeclName().getCXXNameType()->isDependentType()) {
83    TypeDependent = true;
84    ValueDependent = true;
85  }
86  //  (TD)  - a template-id that is dependent,
87  else if (hasExplicitTemplateArgumentList() &&
88           TemplateSpecializationType::anyDependentTemplateArguments(
89                                                       getTemplateArgs(),
90                                                       getNumTemplateArgs())) {
91    TypeDependent = true;
92    ValueDependent = true;
93  }
94  //  (VD)  - the name of a non-type template parameter,
95  else if (isa<NonTypeTemplateParmDecl>(D))
96    ValueDependent = true;
97  //  (VD) - a constant with integral or enumeration type and is
98  //         initialized with an expression that is value-dependent.
99  else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
100    if (Var->getType()->isIntegralType() &&
101        Var->getType().getCVRQualifiers() == Qualifiers::Const &&
102        Var->getInit() &&
103        Var->getInit()->isValueDependent())
104    ValueDependent = true;
105  }
106  //  (TD)  - a nested-name-specifier or a qualified-id that names a
107  //          member of an unknown specialization.
108  //        (handled by DependentScopeDeclRefExpr)
109}
110
111DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
112                         SourceRange QualifierRange,
113                         NamedDecl *D, SourceLocation NameLoc,
114                         const TemplateArgumentListInfo *TemplateArgs,
115                         QualType T)
116  : Expr(DeclRefExprClass, T, false, false),
117    DecoratedD(D,
118               (Qualifier? HasQualifierFlag : 0) |
119               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
120    Loc(NameLoc) {
121  if (Qualifier) {
122    NameQualifier *NQ = getNameQualifier();
123    NQ->NNS = Qualifier;
124    NQ->Range = QualifierRange;
125  }
126
127  if (TemplateArgs)
128    getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs);
129
130  computeDependence();
131}
132
133DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
134                                 NestedNameSpecifier *Qualifier,
135                                 SourceRange QualifierRange,
136                                 NamedDecl *D,
137                                 SourceLocation NameLoc,
138                                 QualType T,
139                                 const TemplateArgumentListInfo *TemplateArgs) {
140  std::size_t Size = sizeof(DeclRefExpr);
141  if (Qualifier != 0)
142    Size += sizeof(NameQualifier);
143
144  if (TemplateArgs)
145    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
146
147  void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
148  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc,
149                               TemplateArgs, T);
150}
151
152SourceRange DeclRefExpr::getSourceRange() const {
153  // FIXME: Does not handle multi-token names well, e.g., operator[].
154  SourceRange R(Loc);
155
156  if (hasQualifier())
157    R.setBegin(getQualifierRange().getBegin());
158  if (hasExplicitTemplateArgumentList())
159    R.setEnd(getRAngleLoc());
160  return R;
161}
162
163// FIXME: Maybe this should use DeclPrinter with a special "print predefined
164// expr" policy instead.
165std::string PredefinedExpr::ComputeName(ASTContext &Context, IdentType IT,
166                                        const Decl *CurrentDecl) {
167  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
168    if (IT != PrettyFunction)
169      return FD->getNameAsString();
170
171    llvm::SmallString<256> Name;
172    llvm::raw_svector_ostream Out(Name);
173
174    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
175      if (MD->isVirtual())
176        Out << "virtual ";
177    }
178
179    PrintingPolicy Policy(Context.getLangOptions());
180    Policy.SuppressTagKind = true;
181
182    std::string Proto = FD->getQualifiedNameAsString(Policy);
183
184    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
185    const FunctionProtoType *FT = 0;
186    if (FD->hasWrittenPrototype())
187      FT = dyn_cast<FunctionProtoType>(AFT);
188
189    Proto += "(";
190    if (FT) {
191      llvm::raw_string_ostream POut(Proto);
192      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
193        if (i) POut << ", ";
194        std::string Param;
195        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
196        POut << Param;
197      }
198
199      if (FT->isVariadic()) {
200        if (FD->getNumParams()) POut << ", ";
201        POut << "...";
202      }
203    }
204    Proto += ")";
205
206    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
207      AFT->getResultType().getAsStringInternal(Proto, Policy);
208
209    Out << Proto;
210
211    Out.flush();
212    return Name.str().str();
213  }
214  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
215    llvm::SmallString<256> Name;
216    llvm::raw_svector_ostream Out(Name);
217    Out << (MD->isInstanceMethod() ? '-' : '+');
218    Out << '[';
219    Out << MD->getClassInterface()->getNameAsString();
220    if (const ObjCCategoryImplDecl *CID =
221        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) {
222      Out << '(';
223      Out <<  CID->getNameAsString();
224      Out <<  ')';
225    }
226    Out <<  ' ';
227    Out << MD->getSelector().getAsString();
228    Out <<  ']';
229
230    Out.flush();
231    return Name.str().str();
232  }
233  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
234    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
235    return "top level";
236  }
237  return "";
238}
239
240/// getValueAsApproximateDouble - This returns the value as an inaccurate
241/// double.  Note that this may cause loss of precision, but is useful for
242/// debugging dumps, etc.
243double FloatingLiteral::getValueAsApproximateDouble() const {
244  llvm::APFloat V = getValue();
245  bool ignored;
246  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
247            &ignored);
248  return V.convertToDouble();
249}
250
251StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
252                                     unsigned ByteLength, bool Wide,
253                                     QualType Ty,
254                                     const SourceLocation *Loc,
255                                     unsigned NumStrs) {
256  // Allocate enough space for the StringLiteral plus an array of locations for
257  // any concatenated string tokens.
258  void *Mem = C.Allocate(sizeof(StringLiteral)+
259                         sizeof(SourceLocation)*(NumStrs-1),
260                         llvm::alignof<StringLiteral>());
261  StringLiteral *SL = new (Mem) StringLiteral(Ty);
262
263  // OPTIMIZE: could allocate this appended to the StringLiteral.
264  char *AStrData = new (C, 1) char[ByteLength];
265  memcpy(AStrData, StrData, ByteLength);
266  SL->StrData = AStrData;
267  SL->ByteLength = ByteLength;
268  SL->IsWide = Wide;
269  SL->TokLocs[0] = Loc[0];
270  SL->NumConcatenated = NumStrs;
271
272  if (NumStrs != 1)
273    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
274  return SL;
275}
276
277StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
278  void *Mem = C.Allocate(sizeof(StringLiteral)+
279                         sizeof(SourceLocation)*(NumStrs-1),
280                         llvm::alignof<StringLiteral>());
281  StringLiteral *SL = new (Mem) StringLiteral(QualType());
282  SL->StrData = 0;
283  SL->ByteLength = 0;
284  SL->NumConcatenated = NumStrs;
285  return SL;
286}
287
288void StringLiteral::DoDestroy(ASTContext &C) {
289  C.Deallocate(const_cast<char*>(StrData));
290  Expr::DoDestroy(C);
291}
292
293void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
294  if (StrData)
295    C.Deallocate(const_cast<char*>(StrData));
296
297  char *AStrData = new (C, 1) char[Str.size()];
298  memcpy(AStrData, Str.data(), Str.size());
299  StrData = AStrData;
300  ByteLength = Str.size();
301}
302
303/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
304/// corresponds to, e.g. "sizeof" or "[pre]++".
305const char *UnaryOperator::getOpcodeStr(Opcode Op) {
306  switch (Op) {
307  default: assert(0 && "Unknown unary operator");
308  case PostInc: return "++";
309  case PostDec: return "--";
310  case PreInc:  return "++";
311  case PreDec:  return "--";
312  case AddrOf:  return "&";
313  case Deref:   return "*";
314  case Plus:    return "+";
315  case Minus:   return "-";
316  case Not:     return "~";
317  case LNot:    return "!";
318  case Real:    return "__real";
319  case Imag:    return "__imag";
320  case Extension: return "__extension__";
321  case OffsetOf: return "__builtin_offsetof";
322  }
323}
324
325UnaryOperator::Opcode
326UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
327  switch (OO) {
328  default: assert(false && "No unary operator for overloaded function");
329  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
330  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
331  case OO_Amp:        return AddrOf;
332  case OO_Star:       return Deref;
333  case OO_Plus:       return Plus;
334  case OO_Minus:      return Minus;
335  case OO_Tilde:      return Not;
336  case OO_Exclaim:    return LNot;
337  }
338}
339
340OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
341  switch (Opc) {
342  case PostInc: case PreInc: return OO_PlusPlus;
343  case PostDec: case PreDec: return OO_MinusMinus;
344  case AddrOf: return OO_Amp;
345  case Deref: return OO_Star;
346  case Plus: return OO_Plus;
347  case Minus: return OO_Minus;
348  case Not: return OO_Tilde;
349  case LNot: return OO_Exclaim;
350  default: return OO_None;
351  }
352}
353
354
355//===----------------------------------------------------------------------===//
356// Postfix Operators.
357//===----------------------------------------------------------------------===//
358
359CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
360                   unsigned numargs, QualType t, SourceLocation rparenloc)
361  : Expr(SC, t,
362         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
363         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
364    NumArgs(numargs) {
365
366  SubExprs = new (C) Stmt*[numargs+1];
367  SubExprs[FN] = fn;
368  for (unsigned i = 0; i != numargs; ++i)
369    SubExprs[i+ARGS_START] = args[i];
370
371  RParenLoc = rparenloc;
372}
373
374CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
375                   QualType t, SourceLocation rparenloc)
376  : Expr(CallExprClass, t,
377         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
378         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
379    NumArgs(numargs) {
380
381  SubExprs = new (C) Stmt*[numargs+1];
382  SubExprs[FN] = fn;
383  for (unsigned i = 0; i != numargs; ++i)
384    SubExprs[i+ARGS_START] = args[i];
385
386  RParenLoc = rparenloc;
387}
388
389CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
390  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
391  SubExprs = new (C) Stmt*[1];
392}
393
394void CallExpr::DoDestroy(ASTContext& C) {
395  DestroyChildren(C);
396  if (SubExprs) C.Deallocate(SubExprs);
397  this->~CallExpr();
398  C.Deallocate(this);
399}
400
401FunctionDecl *CallExpr::getDirectCallee() {
402  Expr *CEE = getCallee()->IgnoreParenCasts();
403  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
404    return dyn_cast<FunctionDecl>(DRE->getDecl());
405
406  return 0;
407}
408
409/// setNumArgs - This changes the number of arguments present in this call.
410/// Any orphaned expressions are deleted by this, and any new operands are set
411/// to null.
412void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
413  // No change, just return.
414  if (NumArgs == getNumArgs()) return;
415
416  // If shrinking # arguments, just delete the extras and forgot them.
417  if (NumArgs < getNumArgs()) {
418    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
419      getArg(i)->Destroy(C);
420    this->NumArgs = NumArgs;
421    return;
422  }
423
424  // Otherwise, we are growing the # arguments.  New an bigger argument array.
425  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
426  // Copy over args.
427  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
428    NewSubExprs[i] = SubExprs[i];
429  // Null out new args.
430  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
431    NewSubExprs[i] = 0;
432
433  if (SubExprs) C.Deallocate(SubExprs);
434  SubExprs = NewSubExprs;
435  this->NumArgs = NumArgs;
436}
437
438/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
439/// not, return 0.
440unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
441  // All simple function calls (e.g. func()) are implicitly cast to pointer to
442  // function. As a result, we try and obtain the DeclRefExpr from the
443  // ImplicitCastExpr.
444  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
445  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
446    return 0;
447
448  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
449  if (!DRE)
450    return 0;
451
452  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
453  if (!FDecl)
454    return 0;
455
456  if (!FDecl->getIdentifier())
457    return 0;
458
459  return FDecl->getBuiltinID();
460}
461
462QualType CallExpr::getCallReturnType() const {
463  QualType CalleeType = getCallee()->getType();
464  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
465    CalleeType = FnTypePtr->getPointeeType();
466  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
467    CalleeType = BPT->getPointeeType();
468
469  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
470  return FnType->getResultType();
471}
472
473MemberExpr::MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
474                       SourceRange qualrange, ValueDecl *memberdecl,
475                       SourceLocation l, const TemplateArgumentListInfo *targs,
476                       QualType ty)
477  : Expr(MemberExprClass, ty,
478         base->isTypeDependent() || (qual && qual->isDependent()),
479         base->isValueDependent() || (qual && qual->isDependent())),
480    Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
481    HasQualifier(qual != 0), HasExplicitTemplateArgumentList(targs) {
482  // Initialize the qualifier, if any.
483  if (HasQualifier) {
484    NameQualifier *NQ = getMemberQualifier();
485    NQ->NNS = qual;
486    NQ->Range = qualrange;
487  }
488
489  // Initialize the explicit template argument list, if any.
490  if (targs)
491    getExplicitTemplateArgumentList()->initializeFrom(*targs);
492}
493
494MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
495                               NestedNameSpecifier *qual,
496                               SourceRange qualrange,
497                               ValueDecl *memberdecl,
498                               SourceLocation l,
499                               const TemplateArgumentListInfo *targs,
500                               QualType ty) {
501  std::size_t Size = sizeof(MemberExpr);
502  if (qual != 0)
503    Size += sizeof(NameQualifier);
504
505  if (targs)
506    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
507
508  void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>());
509  return new (Mem) MemberExpr(base, isarrow, qual, qualrange, memberdecl, l,
510                              targs, ty);
511}
512
513const char *CastExpr::getCastKindName() const {
514  switch (getCastKind()) {
515  case CastExpr::CK_Unknown:
516    return "Unknown";
517  case CastExpr::CK_BitCast:
518    return "BitCast";
519  case CastExpr::CK_NoOp:
520    return "NoOp";
521  case CastExpr::CK_BaseToDerived:
522    return "BaseToDerived";
523  case CastExpr::CK_DerivedToBase:
524    return "DerivedToBase";
525  case CastExpr::CK_Dynamic:
526    return "Dynamic";
527  case CastExpr::CK_ToUnion:
528    return "ToUnion";
529  case CastExpr::CK_ArrayToPointerDecay:
530    return "ArrayToPointerDecay";
531  case CastExpr::CK_FunctionToPointerDecay:
532    return "FunctionToPointerDecay";
533  case CastExpr::CK_NullToMemberPointer:
534    return "NullToMemberPointer";
535  case CastExpr::CK_BaseToDerivedMemberPointer:
536    return "BaseToDerivedMemberPointer";
537  case CastExpr::CK_DerivedToBaseMemberPointer:
538    return "DerivedToBaseMemberPointer";
539  case CastExpr::CK_UserDefinedConversion:
540    return "UserDefinedConversion";
541  case CastExpr::CK_ConstructorConversion:
542    return "ConstructorConversion";
543  case CastExpr::CK_IntegralToPointer:
544    return "IntegralToPointer";
545  case CastExpr::CK_PointerToIntegral:
546    return "PointerToIntegral";
547  case CastExpr::CK_ToVoid:
548    return "ToVoid";
549  case CastExpr::CK_VectorSplat:
550    return "VectorSplat";
551  case CastExpr::CK_IntegralCast:
552    return "IntegralCast";
553  case CastExpr::CK_IntegralToFloating:
554    return "IntegralToFloating";
555  case CastExpr::CK_FloatingToIntegral:
556    return "FloatingToIntegral";
557  case CastExpr::CK_FloatingCast:
558    return "FloatingCast";
559  case CastExpr::CK_MemberPointerToBoolean:
560    return "MemberPointerToBoolean";
561  }
562
563  assert(0 && "Unhandled cast kind!");
564  return 0;
565}
566
567/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
568/// corresponds to, e.g. "<<=".
569const char *BinaryOperator::getOpcodeStr(Opcode Op) {
570  switch (Op) {
571  case PtrMemD:   return ".*";
572  case PtrMemI:   return "->*";
573  case Mul:       return "*";
574  case Div:       return "/";
575  case Rem:       return "%";
576  case Add:       return "+";
577  case Sub:       return "-";
578  case Shl:       return "<<";
579  case Shr:       return ">>";
580  case LT:        return "<";
581  case GT:        return ">";
582  case LE:        return "<=";
583  case GE:        return ">=";
584  case EQ:        return "==";
585  case NE:        return "!=";
586  case And:       return "&";
587  case Xor:       return "^";
588  case Or:        return "|";
589  case LAnd:      return "&&";
590  case LOr:       return "||";
591  case Assign:    return "=";
592  case MulAssign: return "*=";
593  case DivAssign: return "/=";
594  case RemAssign: return "%=";
595  case AddAssign: return "+=";
596  case SubAssign: return "-=";
597  case ShlAssign: return "<<=";
598  case ShrAssign: return ">>=";
599  case AndAssign: return "&=";
600  case XorAssign: return "^=";
601  case OrAssign:  return "|=";
602  case Comma:     return ",";
603  }
604
605  return "";
606}
607
608BinaryOperator::Opcode
609BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
610  switch (OO) {
611  default: assert(false && "Not an overloadable binary operator");
612  case OO_Plus: return Add;
613  case OO_Minus: return Sub;
614  case OO_Star: return Mul;
615  case OO_Slash: return Div;
616  case OO_Percent: return Rem;
617  case OO_Caret: return Xor;
618  case OO_Amp: return And;
619  case OO_Pipe: return Or;
620  case OO_Equal: return Assign;
621  case OO_Less: return LT;
622  case OO_Greater: return GT;
623  case OO_PlusEqual: return AddAssign;
624  case OO_MinusEqual: return SubAssign;
625  case OO_StarEqual: return MulAssign;
626  case OO_SlashEqual: return DivAssign;
627  case OO_PercentEqual: return RemAssign;
628  case OO_CaretEqual: return XorAssign;
629  case OO_AmpEqual: return AndAssign;
630  case OO_PipeEqual: return OrAssign;
631  case OO_LessLess: return Shl;
632  case OO_GreaterGreater: return Shr;
633  case OO_LessLessEqual: return ShlAssign;
634  case OO_GreaterGreaterEqual: return ShrAssign;
635  case OO_EqualEqual: return EQ;
636  case OO_ExclaimEqual: return NE;
637  case OO_LessEqual: return LE;
638  case OO_GreaterEqual: return GE;
639  case OO_AmpAmp: return LAnd;
640  case OO_PipePipe: return LOr;
641  case OO_Comma: return Comma;
642  case OO_ArrowStar: return PtrMemI;
643  }
644}
645
646OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
647  static const OverloadedOperatorKind OverOps[] = {
648    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
649    OO_Star, OO_Slash, OO_Percent,
650    OO_Plus, OO_Minus,
651    OO_LessLess, OO_GreaterGreater,
652    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
653    OO_EqualEqual, OO_ExclaimEqual,
654    OO_Amp,
655    OO_Caret,
656    OO_Pipe,
657    OO_AmpAmp,
658    OO_PipePipe,
659    OO_Equal, OO_StarEqual,
660    OO_SlashEqual, OO_PercentEqual,
661    OO_PlusEqual, OO_MinusEqual,
662    OO_LessLessEqual, OO_GreaterGreaterEqual,
663    OO_AmpEqual, OO_CaretEqual,
664    OO_PipeEqual,
665    OO_Comma
666  };
667  return OverOps[Opc];
668}
669
670InitListExpr::InitListExpr(SourceLocation lbraceloc,
671                           Expr **initExprs, unsigned numInits,
672                           SourceLocation rbraceloc)
673  : Expr(InitListExprClass, QualType(), false, false),
674    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
675    UnionFieldInit(0), HadArrayRangeDesignator(false)
676{
677  for (unsigned I = 0; I != numInits; ++I) {
678    if (initExprs[I]->isTypeDependent())
679      TypeDependent = true;
680    if (initExprs[I]->isValueDependent())
681      ValueDependent = true;
682  }
683
684  InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
685}
686
687void InitListExpr::reserveInits(unsigned NumInits) {
688  if (NumInits > InitExprs.size())
689    InitExprs.reserve(NumInits);
690}
691
692void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) {
693  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
694       Idx < LastIdx; ++Idx)
695    InitExprs[Idx]->Destroy(Context);
696  InitExprs.resize(NumInits, 0);
697}
698
699Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
700  if (Init >= InitExprs.size()) {
701    InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0);
702    InitExprs.back() = expr;
703    return 0;
704  }
705
706  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
707  InitExprs[Init] = expr;
708  return Result;
709}
710
711/// getFunctionType - Return the underlying function type for this block.
712///
713const FunctionType *BlockExpr::getFunctionType() const {
714  return getType()->getAs<BlockPointerType>()->
715                    getPointeeType()->getAs<FunctionType>();
716}
717
718SourceLocation BlockExpr::getCaretLocation() const {
719  return TheBlock->getCaretLocation();
720}
721const Stmt *BlockExpr::getBody() const {
722  return TheBlock->getBody();
723}
724Stmt *BlockExpr::getBody() {
725  return TheBlock->getBody();
726}
727
728
729//===----------------------------------------------------------------------===//
730// Generic Expression Routines
731//===----------------------------------------------------------------------===//
732
733/// isUnusedResultAWarning - Return true if this immediate expression should
734/// be warned about if the result is unused.  If so, fill in Loc and Ranges
735/// with location to warn on and the source range[s] to report with the
736/// warning.
737bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
738                                  SourceRange &R2, ASTContext &Ctx) const {
739  // Don't warn if the expr is type dependent. The type could end up
740  // instantiating to void.
741  if (isTypeDependent())
742    return false;
743
744  switch (getStmtClass()) {
745  default:
746    Loc = getExprLoc();
747    R1 = getSourceRange();
748    return true;
749  case ParenExprClass:
750    return cast<ParenExpr>(this)->getSubExpr()->
751      isUnusedResultAWarning(Loc, R1, R2, Ctx);
752  case UnaryOperatorClass: {
753    const UnaryOperator *UO = cast<UnaryOperator>(this);
754
755    switch (UO->getOpcode()) {
756    default: break;
757    case UnaryOperator::PostInc:
758    case UnaryOperator::PostDec:
759    case UnaryOperator::PreInc:
760    case UnaryOperator::PreDec:                 // ++/--
761      return false;  // Not a warning.
762    case UnaryOperator::Deref:
763      // Dereferencing a volatile pointer is a side-effect.
764      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
765        return false;
766      break;
767    case UnaryOperator::Real:
768    case UnaryOperator::Imag:
769      // accessing a piece of a volatile complex is a side-effect.
770      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
771          .isVolatileQualified())
772        return false;
773      break;
774    case UnaryOperator::Extension:
775      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
776    }
777    Loc = UO->getOperatorLoc();
778    R1 = UO->getSubExpr()->getSourceRange();
779    return true;
780  }
781  case BinaryOperatorClass: {
782    const BinaryOperator *BO = cast<BinaryOperator>(this);
783    // Consider comma to have side effects if the LHS or RHS does.
784    if (BO->getOpcode() == BinaryOperator::Comma)
785      return (BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
786              BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
787
788    if (BO->isAssignmentOp())
789      return false;
790    Loc = BO->getOperatorLoc();
791    R1 = BO->getLHS()->getSourceRange();
792    R2 = BO->getRHS()->getSourceRange();
793    return true;
794  }
795  case CompoundAssignOperatorClass:
796    return false;
797
798  case ConditionalOperatorClass: {
799    // The condition must be evaluated, but if either the LHS or RHS is a
800    // warning, warn about them.
801    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
802    if (Exp->getLHS() &&
803        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
804      return true;
805    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
806  }
807
808  case MemberExprClass:
809    // If the base pointer or element is to a volatile pointer/field, accessing
810    // it is a side effect.
811    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
812      return false;
813    Loc = cast<MemberExpr>(this)->getMemberLoc();
814    R1 = SourceRange(Loc, Loc);
815    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
816    return true;
817
818  case ArraySubscriptExprClass:
819    // If the base pointer or element is to a volatile pointer/field, accessing
820    // it is a side effect.
821    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
822      return false;
823    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
824    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
825    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
826    return true;
827
828  case CallExprClass:
829  case CXXOperatorCallExprClass:
830  case CXXMemberCallExprClass: {
831    // If this is a direct call, get the callee.
832    const CallExpr *CE = cast<CallExpr>(this);
833    if (const FunctionDecl *FD = CE->getDirectCallee()) {
834      // If the callee has attribute pure, const, or warn_unused_result, warn
835      // about it. void foo() { strlen("bar"); } should warn.
836      //
837      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
838      // updated to match for QoI.
839      if (FD->getAttr<WarnUnusedResultAttr>() ||
840          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
841        Loc = CE->getCallee()->getLocStart();
842        R1 = CE->getCallee()->getSourceRange();
843
844        if (unsigned NumArgs = CE->getNumArgs())
845          R2 = SourceRange(CE->getArg(0)->getLocStart(),
846                           CE->getArg(NumArgs-1)->getLocEnd());
847        return true;
848      }
849    }
850    return false;
851  }
852
853  case CXXTemporaryObjectExprClass:
854  case CXXConstructExprClass:
855    return false;
856
857  case ObjCMessageExprClass:
858    return false;
859
860  case ObjCImplicitSetterGetterRefExprClass: {   // Dot syntax for message send.
861#if 0
862    const ObjCImplicitSetterGetterRefExpr *Ref =
863      cast<ObjCImplicitSetterGetterRefExpr>(this);
864    // FIXME: We really want the location of the '.' here.
865    Loc = Ref->getLocation();
866    R1 = SourceRange(Ref->getLocation(), Ref->getLocation());
867    if (Ref->getBase())
868      R2 = Ref->getBase()->getSourceRange();
869#else
870    Loc = getExprLoc();
871    R1 = getSourceRange();
872#endif
873    return true;
874  }
875  case StmtExprClass: {
876    // Statement exprs don't logically have side effects themselves, but are
877    // sometimes used in macros in ways that give them a type that is unused.
878    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
879    // however, if the result of the stmt expr is dead, we don't want to emit a
880    // warning.
881    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
882    if (!CS->body_empty())
883      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
884        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
885
886    Loc = cast<StmtExpr>(this)->getLParenLoc();
887    R1 = getSourceRange();
888    return true;
889  }
890  case CStyleCastExprClass:
891    // If this is an explicit cast to void, allow it.  People do this when they
892    // think they know what they're doing :).
893    if (getType()->isVoidType())
894      return false;
895    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
896    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
897    return true;
898  case CXXFunctionalCastExprClass: {
899    const CastExpr *CE = cast<CastExpr>(this);
900
901    // If this is a cast to void or a constructor conversion, check the operand.
902    // Otherwise, the result of the cast is unused.
903    if (CE->getCastKind() == CastExpr::CK_ToVoid ||
904        CE->getCastKind() == CastExpr::CK_ConstructorConversion)
905      return (cast<CastExpr>(this)->getSubExpr()
906              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
907    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
908    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
909    return true;
910  }
911
912  case ImplicitCastExprClass:
913    // Check the operand, since implicit casts are inserted by Sema
914    return (cast<ImplicitCastExpr>(this)
915            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
916
917  case CXXDefaultArgExprClass:
918    return (cast<CXXDefaultArgExpr>(this)
919            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
920
921  case CXXNewExprClass:
922    // FIXME: In theory, there might be new expressions that don't have side
923    // effects (e.g. a placement new with an uninitialized POD).
924  case CXXDeleteExprClass:
925    return false;
926  case CXXBindTemporaryExprClass:
927    return (cast<CXXBindTemporaryExpr>(this)
928            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
929  case CXXExprWithTemporariesClass:
930    return (cast<CXXExprWithTemporaries>(this)
931            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
932  }
933}
934
935/// DeclCanBeLvalue - Determine whether the given declaration can be
936/// an lvalue. This is a helper routine for isLvalue.
937static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
938  // C++ [temp.param]p6:
939  //   A non-type non-reference template-parameter is not an lvalue.
940  if (const NonTypeTemplateParmDecl *NTTParm
941        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
942    return NTTParm->getType()->isReferenceType();
943
944  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
945    // C++ 3.10p2: An lvalue refers to an object or function.
946    (Ctx.getLangOptions().CPlusPlus &&
947     (isa<FunctionDecl>(Decl) || isa<FunctionTemplateDecl>(Decl)));
948}
949
950/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
951/// incomplete type other than void. Nonarray expressions that can be lvalues:
952///  - name, where name must be a variable
953///  - e[i]
954///  - (e), where e must be an lvalue
955///  - e.name, where e must be an lvalue
956///  - e->name
957///  - *e, the type of e cannot be a function type
958///  - string-constant
959///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
960///  - reference type [C++ [expr]]
961///
962Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
963  assert(!TR->isReferenceType() && "Expressions can't have reference type.");
964
965  isLvalueResult Res = isLvalueInternal(Ctx);
966  if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
967    return Res;
968
969  // first, check the type (C99 6.3.2.1). Expressions with function
970  // type in C are not lvalues, but they can be lvalues in C++.
971  if (TR->isFunctionType() || TR == Ctx.OverloadTy)
972    return LV_NotObjectType;
973
974  // Allow qualified void which is an incomplete type other than void (yuck).
975  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers())
976    return LV_IncompleteVoidType;
977
978  return LV_Valid;
979}
980
981// Check whether the expression can be sanely treated like an l-value
982Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
983  switch (getStmtClass()) {
984  case StringLiteralClass:  // C99 6.5.1p4
985  case ObjCEncodeExprClass: // @encode behaves like its string in every way.
986    return LV_Valid;
987  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
988    // For vectors, make sure base is an lvalue (i.e. not a function call).
989    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
990      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
991    return LV_Valid;
992  case DeclRefExprClass: { // C99 6.5.1p2
993    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
994    if (DeclCanBeLvalue(RefdDecl, Ctx))
995      return LV_Valid;
996    break;
997  }
998  case BlockDeclRefExprClass: {
999    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
1000    if (isa<VarDecl>(BDR->getDecl()))
1001      return LV_Valid;
1002    break;
1003  }
1004  case MemberExprClass: {
1005    const MemberExpr *m = cast<MemberExpr>(this);
1006    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
1007      NamedDecl *Member = m->getMemberDecl();
1008      // C++ [expr.ref]p4:
1009      //   If E2 is declared to have type "reference to T", then E1.E2
1010      //   is an lvalue.
1011      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
1012        if (Value->getType()->isReferenceType())
1013          return LV_Valid;
1014
1015      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
1016      if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
1017        return LV_Valid;
1018
1019      //   -- If E2 is a non-static data member [...]. If E1 is an
1020      //      lvalue, then E1.E2 is an lvalue.
1021      if (isa<FieldDecl>(Member))
1022        return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
1023
1024      //   -- If it refers to a static member function [...], then
1025      //      E1.E2 is an lvalue.
1026      //   -- Otherwise, if E1.E2 refers to a non-static member
1027      //      function [...], then E1.E2 is not an lvalue.
1028      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
1029        return Method->isStatic()? LV_Valid : LV_MemberFunction;
1030
1031      //   -- If E2 is a member enumerator [...], the expression E1.E2
1032      //      is not an lvalue.
1033      if (isa<EnumConstantDecl>(Member))
1034        return LV_InvalidExpression;
1035
1036        // Not an lvalue.
1037      return LV_InvalidExpression;
1038    }
1039
1040    // C99 6.5.2.3p4
1041    return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
1042  }
1043  case UnaryOperatorClass:
1044    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
1045      return LV_Valid; // C99 6.5.3p4
1046
1047    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
1048        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
1049        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
1050      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
1051
1052    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
1053        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
1054         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
1055      return LV_Valid;
1056    break;
1057  case ImplicitCastExprClass:
1058    return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid
1059                                                       : LV_InvalidExpression;
1060  case ParenExprClass: // C99 6.5.1p5
1061    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
1062  case BinaryOperatorClass:
1063  case CompoundAssignOperatorClass: {
1064    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
1065
1066    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
1067        BinOp->getOpcode() == BinaryOperator::Comma)
1068      return BinOp->getRHS()->isLvalue(Ctx);
1069
1070    // C++ [expr.mptr.oper]p6
1071    // The result of a .* expression is an lvalue only if its first operand is
1072    // an lvalue and its second operand is a pointer to data member.
1073    if (BinOp->getOpcode() == BinaryOperator::PtrMemD &&
1074        !BinOp->getType()->isFunctionType())
1075      return BinOp->getLHS()->isLvalue(Ctx);
1076
1077    // The result of an ->* expression is an lvalue only if its second operand
1078    // is a pointer to data member.
1079    if (BinOp->getOpcode() == BinaryOperator::PtrMemI &&
1080        !BinOp->getType()->isFunctionType()) {
1081      QualType Ty = BinOp->getRHS()->getType();
1082      if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType())
1083        return LV_Valid;
1084    }
1085
1086    if (!BinOp->isAssignmentOp())
1087      return LV_InvalidExpression;
1088
1089    if (Ctx.getLangOptions().CPlusPlus)
1090      // C++ [expr.ass]p1:
1091      //   The result of an assignment operation [...] is an lvalue.
1092      return LV_Valid;
1093
1094
1095    // C99 6.5.16:
1096    //   An assignment expression [...] is not an lvalue.
1097    return LV_InvalidExpression;
1098  }
1099  case CallExprClass:
1100  case CXXOperatorCallExprClass:
1101  case CXXMemberCallExprClass: {
1102    // C++0x [expr.call]p10
1103    //   A function call is an lvalue if and only if the result type
1104    //   is an lvalue reference.
1105    QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
1106    if (ReturnType->isLValueReferenceType())
1107      return LV_Valid;
1108
1109    break;
1110  }
1111  case CompoundLiteralExprClass: // C99 6.5.2.5p5
1112    return LV_Valid;
1113  case ChooseExprClass:
1114    // __builtin_choose_expr is an lvalue if the selected operand is.
1115    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
1116  case ExtVectorElementExprClass:
1117    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
1118      return LV_DuplicateVectorComponents;
1119    return LV_Valid;
1120  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
1121    return LV_Valid;
1122  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
1123    return LV_Valid;
1124  case ObjCImplicitSetterGetterRefExprClass: // FIXME: check if read-only property.
1125    return LV_Valid;
1126  case PredefinedExprClass:
1127    return LV_Valid;
1128  case UnresolvedLookupExprClass:
1129    return LV_Valid;
1130  case CXXDefaultArgExprClass:
1131    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
1132  case CStyleCastExprClass:
1133  case CXXFunctionalCastExprClass:
1134  case CXXStaticCastExprClass:
1135  case CXXDynamicCastExprClass:
1136  case CXXReinterpretCastExprClass:
1137  case CXXConstCastExprClass:
1138    // The result of an explicit cast is an lvalue if the type we are
1139    // casting to is an lvalue reference type. See C++ [expr.cast]p1,
1140    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
1141    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
1142    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
1143          isLValueReferenceType())
1144      return LV_Valid;
1145    break;
1146  case CXXTypeidExprClass:
1147    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
1148    return LV_Valid;
1149  case CXXBindTemporaryExprClass:
1150    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()->
1151      isLvalueInternal(Ctx);
1152  case ConditionalOperatorClass: {
1153    // Complicated handling is only for C++.
1154    if (!Ctx.getLangOptions().CPlusPlus)
1155      return LV_InvalidExpression;
1156
1157    // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
1158    // everywhere there's an object converted to an rvalue. Also, any other
1159    // casts should be wrapped by ImplicitCastExprs. There's just the special
1160    // case involving throws to work out.
1161    const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
1162    Expr *True = Cond->getTrueExpr();
1163    Expr *False = Cond->getFalseExpr();
1164    // C++0x 5.16p2
1165    //   If either the second or the third operand has type (cv) void, [...]
1166    //   the result [...] is an rvalue.
1167    if (True->getType()->isVoidType() || False->getType()->isVoidType())
1168      return LV_InvalidExpression;
1169
1170    // Both sides must be lvalues for the result to be an lvalue.
1171    if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
1172      return LV_InvalidExpression;
1173
1174    // That's it.
1175    return LV_Valid;
1176  }
1177
1178  default:
1179    break;
1180  }
1181  return LV_InvalidExpression;
1182}
1183
1184/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
1185/// does not have an incomplete type, does not have a const-qualified type, and
1186/// if it is a structure or union, does not have any member (including,
1187/// recursively, any member or element of all contained aggregates or unions)
1188/// with a const-qualified type.
1189Expr::isModifiableLvalueResult
1190Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
1191  isLvalueResult lvalResult = isLvalue(Ctx);
1192
1193  switch (lvalResult) {
1194  case LV_Valid:
1195    // C++ 3.10p11: Functions cannot be modified, but pointers to
1196    // functions can be modifiable.
1197    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
1198      return MLV_NotObjectType;
1199    break;
1200
1201  case LV_NotObjectType: return MLV_NotObjectType;
1202  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
1203  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
1204  case LV_InvalidExpression:
1205    // If the top level is a C-style cast, and the subexpression is a valid
1206    // lvalue, then this is probably a use of the old-school "cast as lvalue"
1207    // GCC extension.  We don't support it, but we want to produce good
1208    // diagnostics when it happens so that the user knows why.
1209    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
1210      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
1211        if (Loc)
1212          *Loc = CE->getLParenLoc();
1213        return MLV_LValueCast;
1214      }
1215    }
1216    return MLV_InvalidExpression;
1217  case LV_MemberFunction: return MLV_MemberFunction;
1218  }
1219
1220  // The following is illegal:
1221  //   void takeclosure(void (^C)(void));
1222  //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
1223  //
1224  if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) {
1225    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
1226      return MLV_NotBlockQualified;
1227  }
1228
1229  // Assigning to an 'implicit' property?
1230  if (const ObjCImplicitSetterGetterRefExpr* Expr =
1231        dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) {
1232    if (Expr->getSetterMethod() == 0)
1233      return MLV_NoSetterProperty;
1234  }
1235
1236  QualType CT = Ctx.getCanonicalType(getType());
1237
1238  if (CT.isConstQualified())
1239    return MLV_ConstQualified;
1240  if (CT->isArrayType())
1241    return MLV_ArrayType;
1242  if (CT->isIncompleteType())
1243    return MLV_IncompleteType;
1244
1245  if (const RecordType *r = CT->getAs<RecordType>()) {
1246    if (r->hasConstFields())
1247      return MLV_ConstQualified;
1248  }
1249
1250  return MLV_Valid;
1251}
1252
1253/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1254/// returns true, if it is; false otherwise.
1255bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1256  switch (getStmtClass()) {
1257  default:
1258    return false;
1259  case ObjCIvarRefExprClass:
1260    return true;
1261  case Expr::UnaryOperatorClass:
1262    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1263  case ParenExprClass:
1264    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1265  case ImplicitCastExprClass:
1266    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1267  case CStyleCastExprClass:
1268    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1269  case DeclRefExprClass: {
1270    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1271    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1272      if (VD->hasGlobalStorage())
1273        return true;
1274      QualType T = VD->getType();
1275      // dereferencing to a  pointer is always a gc'able candidate,
1276      // unless it is __weak.
1277      return T->isPointerType() &&
1278             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1279    }
1280    return false;
1281  }
1282  case MemberExprClass: {
1283    const MemberExpr *M = cast<MemberExpr>(this);
1284    return M->getBase()->isOBJCGCCandidate(Ctx);
1285  }
1286  case ArraySubscriptExprClass:
1287    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1288  }
1289}
1290Expr* Expr::IgnoreParens() {
1291  Expr* E = this;
1292  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
1293    E = P->getSubExpr();
1294
1295  return E;
1296}
1297
1298/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1299/// or CastExprs or ImplicitCastExprs, returning their operand.
1300Expr *Expr::IgnoreParenCasts() {
1301  Expr *E = this;
1302  while (true) {
1303    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1304      E = P->getSubExpr();
1305    else if (CastExpr *P = dyn_cast<CastExpr>(E))
1306      E = P->getSubExpr();
1307    else
1308      return E;
1309  }
1310}
1311
1312/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1313/// value (including ptr->int casts of the same size).  Strip off any
1314/// ParenExpr or CastExprs, returning their operand.
1315Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1316  Expr *E = this;
1317  while (true) {
1318    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1319      E = P->getSubExpr();
1320      continue;
1321    }
1322
1323    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1324      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1325      // ptr<->int casts of the same width.  We also ignore all identify casts.
1326      Expr *SE = P->getSubExpr();
1327
1328      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1329        E = SE;
1330        continue;
1331      }
1332
1333      if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
1334          (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
1335          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1336        E = SE;
1337        continue;
1338      }
1339    }
1340
1341    return E;
1342  }
1343}
1344
1345
1346/// hasAnyTypeDependentArguments - Determines if any of the expressions
1347/// in Exprs is type-dependent.
1348bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1349  for (unsigned I = 0; I < NumExprs; ++I)
1350    if (Exprs[I]->isTypeDependent())
1351      return true;
1352
1353  return false;
1354}
1355
1356/// hasAnyValueDependentArguments - Determines if any of the expressions
1357/// in Exprs is value-dependent.
1358bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1359  for (unsigned I = 0; I < NumExprs; ++I)
1360    if (Exprs[I]->isValueDependent())
1361      return true;
1362
1363  return false;
1364}
1365
1366bool Expr::isConstantInitializer(ASTContext &Ctx) const {
1367  // This function is attempting whether an expression is an initializer
1368  // which can be evaluated at compile-time.  isEvaluatable handles most
1369  // of the cases, but it can't deal with some initializer-specific
1370  // expressions, and it can't deal with aggregates; we deal with those here,
1371  // and fall back to isEvaluatable for the other cases.
1372
1373  // FIXME: This function assumes the variable being assigned to
1374  // isn't a reference type!
1375
1376  switch (getStmtClass()) {
1377  default: break;
1378  case StringLiteralClass:
1379  case ObjCStringLiteralClass:
1380  case ObjCEncodeExprClass:
1381    return true;
1382  case CompoundLiteralExprClass: {
1383    // This handles gcc's extension that allows global initializers like
1384    // "struct x {int x;} x = (struct x) {};".
1385    // FIXME: This accepts other cases it shouldn't!
1386    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1387    return Exp->isConstantInitializer(Ctx);
1388  }
1389  case InitListExprClass: {
1390    // FIXME: This doesn't deal with fields with reference types correctly.
1391    // FIXME: This incorrectly allows pointers cast to integers to be assigned
1392    // to bitfields.
1393    const InitListExpr *Exp = cast<InitListExpr>(this);
1394    unsigned numInits = Exp->getNumInits();
1395    for (unsigned i = 0; i < numInits; i++) {
1396      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
1397        return false;
1398    }
1399    return true;
1400  }
1401  case ImplicitValueInitExprClass:
1402    return true;
1403  case ParenExprClass:
1404    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1405  case UnaryOperatorClass: {
1406    const UnaryOperator* Exp = cast<UnaryOperator>(this);
1407    if (Exp->getOpcode() == UnaryOperator::Extension)
1408      return Exp->getSubExpr()->isConstantInitializer(Ctx);
1409    break;
1410  }
1411  case BinaryOperatorClass: {
1412    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
1413    // but this handles the common case.
1414    const BinaryOperator *Exp = cast<BinaryOperator>(this);
1415    if (Exp->getOpcode() == BinaryOperator::Sub &&
1416        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
1417        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
1418      return true;
1419    break;
1420  }
1421  case ImplicitCastExprClass:
1422  case CStyleCastExprClass:
1423    // Handle casts with a destination that's a struct or union; this
1424    // deals with both the gcc no-op struct cast extension and the
1425    // cast-to-union extension.
1426    if (getType()->isRecordType())
1427      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1428
1429    // Integer->integer casts can be handled here, which is important for
1430    // things like (int)(&&x-&&y).  Scary but true.
1431    if (getType()->isIntegerType() &&
1432        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
1433      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1434
1435    break;
1436  }
1437  return isEvaluatable(Ctx);
1438}
1439
1440/// isIntegerConstantExpr - this recursive routine will test if an expression is
1441/// an integer constant expression.
1442
1443/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
1444/// comma, etc
1445///
1446/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
1447/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
1448/// cast+dereference.
1449
1450// CheckICE - This function does the fundamental ICE checking: the returned
1451// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
1452// Note that to reduce code duplication, this helper does no evaluation
1453// itself; the caller checks whether the expression is evaluatable, and
1454// in the rare cases where CheckICE actually cares about the evaluated
1455// value, it calls into Evalute.
1456//
1457// Meanings of Val:
1458// 0: This expression is an ICE if it can be evaluated by Evaluate.
1459// 1: This expression is not an ICE, but if it isn't evaluated, it's
1460//    a legal subexpression for an ICE. This return value is used to handle
1461//    the comma operator in C99 mode.
1462// 2: This expression is not an ICE, and is not a legal subexpression for one.
1463
1464struct ICEDiag {
1465  unsigned Val;
1466  SourceLocation Loc;
1467
1468  public:
1469  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
1470  ICEDiag() : Val(0) {}
1471};
1472
1473ICEDiag NoDiag() { return ICEDiag(); }
1474
1475static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
1476  Expr::EvalResult EVResult;
1477  if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1478      !EVResult.Val.isInt()) {
1479    return ICEDiag(2, E->getLocStart());
1480  }
1481  return NoDiag();
1482}
1483
1484static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
1485  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
1486  if (!E->getType()->isIntegralType()) {
1487    return ICEDiag(2, E->getLocStart());
1488  }
1489
1490  switch (E->getStmtClass()) {
1491#define STMT(Node, Base) case Expr::Node##Class:
1492#define EXPR(Node, Base)
1493#include "clang/AST/StmtNodes.def"
1494  case Expr::PredefinedExprClass:
1495  case Expr::FloatingLiteralClass:
1496  case Expr::ImaginaryLiteralClass:
1497  case Expr::StringLiteralClass:
1498  case Expr::ArraySubscriptExprClass:
1499  case Expr::MemberExprClass:
1500  case Expr::CompoundAssignOperatorClass:
1501  case Expr::CompoundLiteralExprClass:
1502  case Expr::ExtVectorElementExprClass:
1503  case Expr::InitListExprClass:
1504  case Expr::DesignatedInitExprClass:
1505  case Expr::ImplicitValueInitExprClass:
1506  case Expr::ParenListExprClass:
1507  case Expr::VAArgExprClass:
1508  case Expr::AddrLabelExprClass:
1509  case Expr::StmtExprClass:
1510  case Expr::CXXMemberCallExprClass:
1511  case Expr::CXXDynamicCastExprClass:
1512  case Expr::CXXTypeidExprClass:
1513  case Expr::CXXNullPtrLiteralExprClass:
1514  case Expr::CXXThisExprClass:
1515  case Expr::CXXThrowExprClass:
1516  case Expr::CXXNewExprClass:
1517  case Expr::CXXDeleteExprClass:
1518  case Expr::CXXPseudoDestructorExprClass:
1519  case Expr::UnresolvedLookupExprClass:
1520  case Expr::DependentScopeDeclRefExprClass:
1521  case Expr::CXXConstructExprClass:
1522  case Expr::CXXBindTemporaryExprClass:
1523  case Expr::CXXExprWithTemporariesClass:
1524  case Expr::CXXTemporaryObjectExprClass:
1525  case Expr::CXXUnresolvedConstructExprClass:
1526  case Expr::CXXDependentScopeMemberExprClass:
1527  case Expr::UnresolvedMemberExprClass:
1528  case Expr::ObjCStringLiteralClass:
1529  case Expr::ObjCEncodeExprClass:
1530  case Expr::ObjCMessageExprClass:
1531  case Expr::ObjCSelectorExprClass:
1532  case Expr::ObjCProtocolExprClass:
1533  case Expr::ObjCIvarRefExprClass:
1534  case Expr::ObjCPropertyRefExprClass:
1535  case Expr::ObjCImplicitSetterGetterRefExprClass:
1536  case Expr::ObjCSuperExprClass:
1537  case Expr::ObjCIsaExprClass:
1538  case Expr::ShuffleVectorExprClass:
1539  case Expr::BlockExprClass:
1540  case Expr::BlockDeclRefExprClass:
1541  case Expr::NoStmtClass:
1542  case Expr::ExprClass:
1543    return ICEDiag(2, E->getLocStart());
1544
1545  case Expr::GNUNullExprClass:
1546    // GCC considers the GNU __null value to be an integral constant expression.
1547    return NoDiag();
1548
1549  case Expr::ParenExprClass:
1550    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
1551  case Expr::IntegerLiteralClass:
1552  case Expr::CharacterLiteralClass:
1553  case Expr::CXXBoolLiteralExprClass:
1554  case Expr::CXXZeroInitValueExprClass:
1555  case Expr::TypesCompatibleExprClass:
1556  case Expr::UnaryTypeTraitExprClass:
1557    return NoDiag();
1558  case Expr::CallExprClass:
1559  case Expr::CXXOperatorCallExprClass: {
1560    const CallExpr *CE = cast<CallExpr>(E);
1561    if (CE->isBuiltinCall(Ctx))
1562      return CheckEvalInICE(E, Ctx);
1563    return ICEDiag(2, E->getLocStart());
1564  }
1565  case Expr::DeclRefExprClass:
1566    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
1567      return NoDiag();
1568    if (Ctx.getLangOptions().CPlusPlus &&
1569        E->getType().getCVRQualifiers() == Qualifiers::Const) {
1570      // C++ 7.1.5.1p2
1571      //   A variable of non-volatile const-qualified integral or enumeration
1572      //   type initialized by an ICE can be used in ICEs.
1573      if (const VarDecl *Dcl =
1574              dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
1575        Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers();
1576        if (Quals.hasVolatile() || !Quals.hasConst())
1577          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1578
1579        // Look for the definition of this variable, which will actually have
1580        // an initializer.
1581        const VarDecl *Def = 0;
1582        const Expr *Init = Dcl->getDefinition(Def);
1583        if (Init) {
1584          if (Def->isInitKnownICE()) {
1585            // We have already checked whether this subexpression is an
1586            // integral constant expression.
1587            if (Def->isInitICE())
1588              return NoDiag();
1589            else
1590              return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1591          }
1592
1593          // C++ [class.static.data]p4:
1594          //   If a static data member is of const integral or const
1595          //   enumeration type, its declaration in the class definition can
1596          //   specify a constant-initializer which shall be an integral
1597          //   constant expression (5.19). In that case, the member can appear
1598          //   in integral constant expressions.
1599          if (Def->isOutOfLine()) {
1600            Dcl->setInitKnownICE(false);
1601            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1602          }
1603
1604          if (Dcl->isCheckingICE()) {
1605            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1606          }
1607
1608          Dcl->setCheckingICE();
1609          ICEDiag Result = CheckICE(Init, Ctx);
1610          // Cache the result of the ICE test.
1611          Dcl->setInitKnownICE(Result.Val == 0);
1612          return Result;
1613        }
1614      }
1615    }
1616    return ICEDiag(2, E->getLocStart());
1617  case Expr::UnaryOperatorClass: {
1618    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1619    switch (Exp->getOpcode()) {
1620    case UnaryOperator::PostInc:
1621    case UnaryOperator::PostDec:
1622    case UnaryOperator::PreInc:
1623    case UnaryOperator::PreDec:
1624    case UnaryOperator::AddrOf:
1625    case UnaryOperator::Deref:
1626      return ICEDiag(2, E->getLocStart());
1627
1628    case UnaryOperator::Extension:
1629    case UnaryOperator::LNot:
1630    case UnaryOperator::Plus:
1631    case UnaryOperator::Minus:
1632    case UnaryOperator::Not:
1633    case UnaryOperator::Real:
1634    case UnaryOperator::Imag:
1635      return CheckICE(Exp->getSubExpr(), Ctx);
1636    case UnaryOperator::OffsetOf:
1637      // Note that per C99, offsetof must be an ICE. And AFAIK, using
1638      // Evaluate matches the proposed gcc behavior for cases like
1639      // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect
1640      // compliance: we should warn earlier for offsetof expressions with
1641      // array subscripts that aren't ICEs, and if the array subscripts
1642      // are ICEs, the value of the offsetof must be an integer constant.
1643      return CheckEvalInICE(E, Ctx);
1644    }
1645  }
1646  case Expr::SizeOfAlignOfExprClass: {
1647    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
1648    if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
1649      return ICEDiag(2, E->getLocStart());
1650    return NoDiag();
1651  }
1652  case Expr::BinaryOperatorClass: {
1653    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1654    switch (Exp->getOpcode()) {
1655    case BinaryOperator::PtrMemD:
1656    case BinaryOperator::PtrMemI:
1657    case BinaryOperator::Assign:
1658    case BinaryOperator::MulAssign:
1659    case BinaryOperator::DivAssign:
1660    case BinaryOperator::RemAssign:
1661    case BinaryOperator::AddAssign:
1662    case BinaryOperator::SubAssign:
1663    case BinaryOperator::ShlAssign:
1664    case BinaryOperator::ShrAssign:
1665    case BinaryOperator::AndAssign:
1666    case BinaryOperator::XorAssign:
1667    case BinaryOperator::OrAssign:
1668      return ICEDiag(2, E->getLocStart());
1669
1670    case BinaryOperator::Mul:
1671    case BinaryOperator::Div:
1672    case BinaryOperator::Rem:
1673    case BinaryOperator::Add:
1674    case BinaryOperator::Sub:
1675    case BinaryOperator::Shl:
1676    case BinaryOperator::Shr:
1677    case BinaryOperator::LT:
1678    case BinaryOperator::GT:
1679    case BinaryOperator::LE:
1680    case BinaryOperator::GE:
1681    case BinaryOperator::EQ:
1682    case BinaryOperator::NE:
1683    case BinaryOperator::And:
1684    case BinaryOperator::Xor:
1685    case BinaryOperator::Or:
1686    case BinaryOperator::Comma: {
1687      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1688      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1689      if (Exp->getOpcode() == BinaryOperator::Div ||
1690          Exp->getOpcode() == BinaryOperator::Rem) {
1691        // Evaluate gives an error for undefined Div/Rem, so make sure
1692        // we don't evaluate one.
1693        if (LHSResult.Val != 2 && RHSResult.Val != 2) {
1694          llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
1695          if (REval == 0)
1696            return ICEDiag(1, E->getLocStart());
1697          if (REval.isSigned() && REval.isAllOnesValue()) {
1698            llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
1699            if (LEval.isMinSignedValue())
1700              return ICEDiag(1, E->getLocStart());
1701          }
1702        }
1703      }
1704      if (Exp->getOpcode() == BinaryOperator::Comma) {
1705        if (Ctx.getLangOptions().C99) {
1706          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
1707          // if it isn't evaluated.
1708          if (LHSResult.Val == 0 && RHSResult.Val == 0)
1709            return ICEDiag(1, E->getLocStart());
1710        } else {
1711          // In both C89 and C++, commas in ICEs are illegal.
1712          return ICEDiag(2, E->getLocStart());
1713        }
1714      }
1715      if (LHSResult.Val >= RHSResult.Val)
1716        return LHSResult;
1717      return RHSResult;
1718    }
1719    case BinaryOperator::LAnd:
1720    case BinaryOperator::LOr: {
1721      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1722      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1723      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
1724        // Rare case where the RHS has a comma "side-effect"; we need
1725        // to actually check the condition to see whether the side
1726        // with the comma is evaluated.
1727        if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
1728            (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
1729          return RHSResult;
1730        return NoDiag();
1731      }
1732
1733      if (LHSResult.Val >= RHSResult.Val)
1734        return LHSResult;
1735      return RHSResult;
1736    }
1737    }
1738  }
1739  case Expr::CastExprClass:
1740  case Expr::ImplicitCastExprClass:
1741  case Expr::ExplicitCastExprClass:
1742  case Expr::CStyleCastExprClass:
1743  case Expr::CXXFunctionalCastExprClass:
1744  case Expr::CXXNamedCastExprClass:
1745  case Expr::CXXStaticCastExprClass:
1746  case Expr::CXXReinterpretCastExprClass:
1747  case Expr::CXXConstCastExprClass: {
1748    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
1749    if (SubExpr->getType()->isIntegralType())
1750      return CheckICE(SubExpr, Ctx);
1751    if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
1752      return NoDiag();
1753    return ICEDiag(2, E->getLocStart());
1754  }
1755  case Expr::ConditionalOperatorClass: {
1756    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
1757    // If the condition (ignoring parens) is a __builtin_constant_p call,
1758    // then only the true side is actually considered in an integer constant
1759    // expression, and it is fully evaluated.  This is an important GNU
1760    // extension.  See GCC PR38377 for discussion.
1761    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
1762      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
1763        Expr::EvalResult EVResult;
1764        if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1765            !EVResult.Val.isInt()) {
1766          return ICEDiag(2, E->getLocStart());
1767        }
1768        return NoDiag();
1769      }
1770    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
1771    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
1772    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
1773    if (CondResult.Val == 2)
1774      return CondResult;
1775    if (TrueResult.Val == 2)
1776      return TrueResult;
1777    if (FalseResult.Val == 2)
1778      return FalseResult;
1779    if (CondResult.Val == 1)
1780      return CondResult;
1781    if (TrueResult.Val == 0 && FalseResult.Val == 0)
1782      return NoDiag();
1783    // Rare case where the diagnostics depend on which side is evaluated
1784    // Note that if we get here, CondResult is 0, and at least one of
1785    // TrueResult and FalseResult is non-zero.
1786    if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
1787      return FalseResult;
1788    }
1789    return TrueResult;
1790  }
1791  case Expr::CXXDefaultArgExprClass:
1792    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
1793  case Expr::ChooseExprClass: {
1794    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
1795  }
1796  }
1797
1798  // Silence a GCC warning
1799  return ICEDiag(2, E->getLocStart());
1800}
1801
1802bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
1803                                 SourceLocation *Loc, bool isEvaluated) const {
1804  ICEDiag d = CheckICE(this, Ctx);
1805  if (d.Val != 0) {
1806    if (Loc) *Loc = d.Loc;
1807    return false;
1808  }
1809  EvalResult EvalResult;
1810  if (!Evaluate(EvalResult, Ctx))
1811    llvm::llvm_unreachable("ICE cannot be evaluated!");
1812  assert(!EvalResult.HasSideEffects && "ICE with side effects!");
1813  assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
1814  Result = EvalResult.Val.getInt();
1815  return true;
1816}
1817
1818/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1819/// integer constant expression with the value zero, or if this is one that is
1820/// cast to void*.
1821bool Expr::isNullPointerConstant(ASTContext &Ctx,
1822                                 NullPointerConstantValueDependence NPC) const {
1823  if (isValueDependent()) {
1824    switch (NPC) {
1825    case NPC_NeverValueDependent:
1826      assert(false && "Unexpected value dependent expression!");
1827      // If the unthinkable happens, fall through to the safest alternative.
1828
1829    case NPC_ValueDependentIsNull:
1830      return isTypeDependent() || getType()->isIntegralType();
1831
1832    case NPC_ValueDependentIsNotNull:
1833      return false;
1834    }
1835  }
1836
1837  // Strip off a cast to void*, if it exists. Except in C++.
1838  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1839    if (!Ctx.getLangOptions().CPlusPlus) {
1840      // Check that it is a cast to void*.
1841      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
1842        QualType Pointee = PT->getPointeeType();
1843        if (!Pointee.hasQualifiers() &&
1844            Pointee->isVoidType() &&                              // to void*
1845            CE->getSubExpr()->getType()->isIntegerType())         // from int.
1846          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1847      }
1848    }
1849  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1850    // Ignore the ImplicitCastExpr type entirely.
1851    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1852  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1853    // Accept ((void*)0) as a null pointer constant, as many other
1854    // implementations do.
1855    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1856  } else if (const CXXDefaultArgExpr *DefaultArg
1857               = dyn_cast<CXXDefaultArgExpr>(this)) {
1858    // See through default argument expressions
1859    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
1860  } else if (isa<GNUNullExpr>(this)) {
1861    // The GNU __null extension is always a null pointer constant.
1862    return true;
1863  }
1864
1865  // C++0x nullptr_t is always a null pointer constant.
1866  if (getType()->isNullPtrType())
1867    return true;
1868
1869  // This expression must be an integer type.
1870  if (!getType()->isIntegerType() ||
1871      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
1872    return false;
1873
1874  // If we have an integer constant expression, we need to *evaluate* it and
1875  // test for the value 0.
1876  llvm::APSInt Result;
1877  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
1878}
1879
1880FieldDecl *Expr::getBitField() {
1881  Expr *E = this->IgnoreParens();
1882
1883  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
1884    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
1885      if (Field->isBitField())
1886        return Field;
1887
1888  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
1889    if (BinOp->isAssignmentOp() && BinOp->getLHS())
1890      return BinOp->getLHS()->getBitField();
1891
1892  return 0;
1893}
1894
1895/// isArrow - Return true if the base expression is a pointer to vector,
1896/// return false if the base expression is a vector.
1897bool ExtVectorElementExpr::isArrow() const {
1898  return getBase()->getType()->isPointerType();
1899}
1900
1901unsigned ExtVectorElementExpr::getNumElements() const {
1902  if (const VectorType *VT = getType()->getAs<VectorType>())
1903    return VT->getNumElements();
1904  return 1;
1905}
1906
1907/// containsDuplicateElements - Return true if any element access is repeated.
1908bool ExtVectorElementExpr::containsDuplicateElements() const {
1909  // FIXME: Refactor this code to an accessor on the AST node which returns the
1910  // "type" of component access, and share with code below and in Sema.
1911  llvm::StringRef Comp = Accessor->getName();
1912
1913  // Halving swizzles do not contain duplicate elements.
1914  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
1915    return false;
1916
1917  // Advance past s-char prefix on hex swizzles.
1918  if (Comp[0] == 's' || Comp[0] == 'S')
1919    Comp = Comp.substr(1);
1920
1921  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
1922    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
1923        return true;
1924
1925  return false;
1926}
1927
1928/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
1929void ExtVectorElementExpr::getEncodedElementAccess(
1930                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
1931  llvm::StringRef Comp = Accessor->getName();
1932  if (Comp[0] == 's' || Comp[0] == 'S')
1933    Comp = Comp.substr(1);
1934
1935  bool isHi =   Comp == "hi";
1936  bool isLo =   Comp == "lo";
1937  bool isEven = Comp == "even";
1938  bool isOdd  = Comp == "odd";
1939
1940  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
1941    uint64_t Index;
1942
1943    if (isHi)
1944      Index = e + i;
1945    else if (isLo)
1946      Index = i;
1947    else if (isEven)
1948      Index = 2 * i;
1949    else if (isOdd)
1950      Index = 2 * i + 1;
1951    else
1952      Index = ExtVectorType::getAccessorIdx(Comp[i]);
1953
1954    Elts.push_back(Index);
1955  }
1956}
1957
1958// constructor for instance messages.
1959ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
1960                QualType retType, ObjCMethodDecl *mproto,
1961                SourceLocation LBrac, SourceLocation RBrac,
1962                Expr **ArgExprs, unsigned nargs)
1963  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1964    MethodProto(mproto) {
1965  NumArgs = nargs;
1966  SubExprs = new Stmt*[NumArgs+1];
1967  SubExprs[RECEIVER] = receiver;
1968  if (NumArgs) {
1969    for (unsigned i = 0; i != NumArgs; ++i)
1970      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1971  }
1972  LBracloc = LBrac;
1973  RBracloc = RBrac;
1974}
1975
1976// constructor for class messages.
1977// FIXME: clsName should be typed to ObjCInterfaceType
1978ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
1979                QualType retType, ObjCMethodDecl *mproto,
1980                SourceLocation LBrac, SourceLocation RBrac,
1981                Expr **ArgExprs, unsigned nargs)
1982  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1983    MethodProto(mproto) {
1984  NumArgs = nargs;
1985  SubExprs = new Stmt*[NumArgs+1];
1986  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
1987  if (NumArgs) {
1988    for (unsigned i = 0; i != NumArgs; ++i)
1989      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1990  }
1991  LBracloc = LBrac;
1992  RBracloc = RBrac;
1993}
1994
1995// constructor for class messages.
1996ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
1997                                 QualType retType, ObjCMethodDecl *mproto,
1998                                 SourceLocation LBrac, SourceLocation RBrac,
1999                                 Expr **ArgExprs, unsigned nargs)
2000: Expr(ObjCMessageExprClass, retType), SelName(selInfo),
2001MethodProto(mproto) {
2002  NumArgs = nargs;
2003  SubExprs = new Stmt*[NumArgs+1];
2004  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
2005  if (NumArgs) {
2006    for (unsigned i = 0; i != NumArgs; ++i)
2007      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2008  }
2009  LBracloc = LBrac;
2010  RBracloc = RBrac;
2011}
2012
2013ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
2014  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
2015  switch (x & Flags) {
2016    default:
2017      assert(false && "Invalid ObjCMessageExpr.");
2018    case IsInstMeth:
2019      return ClassInfo(0, 0);
2020    case IsClsMethDeclUnknown:
2021      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
2022    case IsClsMethDeclKnown: {
2023      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
2024      return ClassInfo(D, D->getIdentifier());
2025    }
2026  }
2027}
2028
2029void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) {
2030  if (CI.first == 0 && CI.second == 0)
2031    SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth);
2032  else if (CI.first == 0)
2033    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.second | IsClsMethDeclUnknown);
2034  else
2035    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.first | IsClsMethDeclKnown);
2036}
2037
2038
2039bool ChooseExpr::isConditionTrue(ASTContext &C) const {
2040  return getCond()->EvaluateAsInt(C) != 0;
2041}
2042
2043void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
2044                                 unsigned NumExprs) {
2045  if (SubExprs) C.Deallocate(SubExprs);
2046
2047  SubExprs = new (C) Stmt* [NumExprs];
2048  this->NumExprs = NumExprs;
2049  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
2050}
2051
2052void ShuffleVectorExpr::DoDestroy(ASTContext& C) {
2053  DestroyChildren(C);
2054  if (SubExprs) C.Deallocate(SubExprs);
2055  this->~ShuffleVectorExpr();
2056  C.Deallocate(this);
2057}
2058
2059void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) {
2060  // Override default behavior of traversing children. If this has a type
2061  // operand and the type is a variable-length array, the child iteration
2062  // will iterate over the size expression. However, this expression belongs
2063  // to the type, not to this, so we don't want to delete it.
2064  // We still want to delete this expression.
2065  if (isArgumentType()) {
2066    this->~SizeOfAlignOfExpr();
2067    C.Deallocate(this);
2068  }
2069  else
2070    Expr::DoDestroy(C);
2071}
2072
2073//===----------------------------------------------------------------------===//
2074//  DesignatedInitExpr
2075//===----------------------------------------------------------------------===//
2076
2077IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2078  assert(Kind == FieldDesignator && "Only valid on a field designator");
2079  if (Field.NameOrField & 0x01)
2080    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2081  else
2082    return getField()->getIdentifier();
2083}
2084
2085DesignatedInitExpr::DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
2086                                       const Designator *Designators,
2087                                       SourceLocation EqualOrColonLoc,
2088                                       bool GNUSyntax,
2089                                       Expr **IndexExprs,
2090                                       unsigned NumIndexExprs,
2091                                       Expr *Init)
2092  : Expr(DesignatedInitExprClass, Ty,
2093         Init->isTypeDependent(), Init->isValueDependent()),
2094    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2095    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2096  this->Designators = new Designator[NumDesignators];
2097
2098  // Record the initializer itself.
2099  child_iterator Child = child_begin();
2100  *Child++ = Init;
2101
2102  // Copy the designators and their subexpressions, computing
2103  // value-dependence along the way.
2104  unsigned IndexIdx = 0;
2105  for (unsigned I = 0; I != NumDesignators; ++I) {
2106    this->Designators[I] = Designators[I];
2107
2108    if (this->Designators[I].isArrayDesignator()) {
2109      // Compute type- and value-dependence.
2110      Expr *Index = IndexExprs[IndexIdx];
2111      ValueDependent = ValueDependent ||
2112        Index->isTypeDependent() || Index->isValueDependent();
2113
2114      // Copy the index expressions into permanent storage.
2115      *Child++ = IndexExprs[IndexIdx++];
2116    } else if (this->Designators[I].isArrayRangeDesignator()) {
2117      // Compute type- and value-dependence.
2118      Expr *Start = IndexExprs[IndexIdx];
2119      Expr *End = IndexExprs[IndexIdx + 1];
2120      ValueDependent = ValueDependent ||
2121        Start->isTypeDependent() || Start->isValueDependent() ||
2122        End->isTypeDependent() || End->isValueDependent();
2123
2124      // Copy the start/end expressions into permanent storage.
2125      *Child++ = IndexExprs[IndexIdx++];
2126      *Child++ = IndexExprs[IndexIdx++];
2127    }
2128  }
2129
2130  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2131}
2132
2133DesignatedInitExpr *
2134DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2135                           unsigned NumDesignators,
2136                           Expr **IndexExprs, unsigned NumIndexExprs,
2137                           SourceLocation ColonOrEqualLoc,
2138                           bool UsesColonSyntax, Expr *Init) {
2139  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2140                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2141  return new (Mem) DesignatedInitExpr(C.VoidTy, NumDesignators, Designators,
2142                                      ColonOrEqualLoc, UsesColonSyntax,
2143                                      IndexExprs, NumIndexExprs, Init);
2144}
2145
2146DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2147                                                    unsigned NumIndexExprs) {
2148  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2149                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2150  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2151}
2152
2153void DesignatedInitExpr::setDesignators(const Designator *Desigs,
2154                                        unsigned NumDesigs) {
2155  if (Designators)
2156    delete [] Designators;
2157
2158  Designators = new Designator[NumDesigs];
2159  NumDesignators = NumDesigs;
2160  for (unsigned I = 0; I != NumDesigs; ++I)
2161    Designators[I] = Desigs[I];
2162}
2163
2164SourceRange DesignatedInitExpr::getSourceRange() const {
2165  SourceLocation StartLoc;
2166  Designator &First =
2167    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2168  if (First.isFieldDesignator()) {
2169    if (GNUSyntax)
2170      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2171    else
2172      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2173  } else
2174    StartLoc =
2175      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2176  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2177}
2178
2179Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2180  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2181  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2182  Ptr += sizeof(DesignatedInitExpr);
2183  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2184  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2185}
2186
2187Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2188  assert(D.Kind == Designator::ArrayRangeDesignator &&
2189         "Requires array range designator");
2190  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2191  Ptr += sizeof(DesignatedInitExpr);
2192  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2193  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2194}
2195
2196Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2197  assert(D.Kind == Designator::ArrayRangeDesignator &&
2198         "Requires array range designator");
2199  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2200  Ptr += sizeof(DesignatedInitExpr);
2201  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2202  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2203}
2204
2205/// \brief Replaces the designator at index @p Idx with the series
2206/// of designators in [First, Last).
2207void DesignatedInitExpr::ExpandDesignator(unsigned Idx,
2208                                          const Designator *First,
2209                                          const Designator *Last) {
2210  unsigned NumNewDesignators = Last - First;
2211  if (NumNewDesignators == 0) {
2212    std::copy_backward(Designators + Idx + 1,
2213                       Designators + NumDesignators,
2214                       Designators + Idx);
2215    --NumNewDesignators;
2216    return;
2217  } else if (NumNewDesignators == 1) {
2218    Designators[Idx] = *First;
2219    return;
2220  }
2221
2222  Designator *NewDesignators
2223    = new Designator[NumDesignators - 1 + NumNewDesignators];
2224  std::copy(Designators, Designators + Idx, NewDesignators);
2225  std::copy(First, Last, NewDesignators + Idx);
2226  std::copy(Designators + Idx + 1, Designators + NumDesignators,
2227            NewDesignators + Idx + NumNewDesignators);
2228  delete [] Designators;
2229  Designators = NewDesignators;
2230  NumDesignators = NumDesignators - 1 + NumNewDesignators;
2231}
2232
2233void DesignatedInitExpr::DoDestroy(ASTContext &C) {
2234  delete [] Designators;
2235  Expr::DoDestroy(C);
2236}
2237
2238ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2239                             Expr **exprs, unsigned nexprs,
2240                             SourceLocation rparenloc)
2241: Expr(ParenListExprClass, QualType(),
2242       hasAnyTypeDependentArguments(exprs, nexprs),
2243       hasAnyValueDependentArguments(exprs, nexprs)),
2244  NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2245
2246  Exprs = new (C) Stmt*[nexprs];
2247  for (unsigned i = 0; i != nexprs; ++i)
2248    Exprs[i] = exprs[i];
2249}
2250
2251void ParenListExpr::DoDestroy(ASTContext& C) {
2252  DestroyChildren(C);
2253  if (Exprs) C.Deallocate(Exprs);
2254  this->~ParenListExpr();
2255  C.Deallocate(this);
2256}
2257
2258//===----------------------------------------------------------------------===//
2259//  ExprIterator.
2260//===----------------------------------------------------------------------===//
2261
2262Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2263Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2264Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2265const Expr* ConstExprIterator::operator[](size_t idx) const {
2266  return cast<Expr>(I[idx]);
2267}
2268const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2269const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2270
2271//===----------------------------------------------------------------------===//
2272//  Child Iterators for iterating over subexpressions/substatements
2273//===----------------------------------------------------------------------===//
2274
2275// DeclRefExpr
2276Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
2277Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
2278
2279// ObjCIvarRefExpr
2280Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
2281Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
2282
2283// ObjCPropertyRefExpr
2284Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
2285Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
2286
2287// ObjCImplicitSetterGetterRefExpr
2288Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() {
2289  return &Base;
2290}
2291Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() {
2292  return &Base+1;
2293}
2294
2295// ObjCSuperExpr
2296Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
2297Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
2298
2299// ObjCIsaExpr
2300Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
2301Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
2302
2303// PredefinedExpr
2304Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
2305Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
2306
2307// IntegerLiteral
2308Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
2309Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
2310
2311// CharacterLiteral
2312Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
2313Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
2314
2315// FloatingLiteral
2316Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
2317Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
2318
2319// ImaginaryLiteral
2320Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
2321Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
2322
2323// StringLiteral
2324Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
2325Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
2326
2327// ParenExpr
2328Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
2329Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
2330
2331// UnaryOperator
2332Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
2333Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
2334
2335// SizeOfAlignOfExpr
2336Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
2337  // If this is of a type and the type is a VLA type (and not a typedef), the
2338  // size expression of the VLA needs to be treated as an executable expression.
2339  // Why isn't this weirdness documented better in StmtIterator?
2340  if (isArgumentType()) {
2341    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
2342                                   getArgumentType().getTypePtr()))
2343      return child_iterator(T);
2344    return child_iterator();
2345  }
2346  return child_iterator(&Argument.Ex);
2347}
2348Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
2349  if (isArgumentType())
2350    return child_iterator();
2351  return child_iterator(&Argument.Ex + 1);
2352}
2353
2354// ArraySubscriptExpr
2355Stmt::child_iterator ArraySubscriptExpr::child_begin() {
2356  return &SubExprs[0];
2357}
2358Stmt::child_iterator ArraySubscriptExpr::child_end() {
2359  return &SubExprs[0]+END_EXPR;
2360}
2361
2362// CallExpr
2363Stmt::child_iterator CallExpr::child_begin() {
2364  return &SubExprs[0];
2365}
2366Stmt::child_iterator CallExpr::child_end() {
2367  return &SubExprs[0]+NumArgs+ARGS_START;
2368}
2369
2370// MemberExpr
2371Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
2372Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
2373
2374// ExtVectorElementExpr
2375Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
2376Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
2377
2378// CompoundLiteralExpr
2379Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
2380Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
2381
2382// CastExpr
2383Stmt::child_iterator CastExpr::child_begin() { return &Op; }
2384Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
2385
2386// BinaryOperator
2387Stmt::child_iterator BinaryOperator::child_begin() {
2388  return &SubExprs[0];
2389}
2390Stmt::child_iterator BinaryOperator::child_end() {
2391  return &SubExprs[0]+END_EXPR;
2392}
2393
2394// ConditionalOperator
2395Stmt::child_iterator ConditionalOperator::child_begin() {
2396  return &SubExprs[0];
2397}
2398Stmt::child_iterator ConditionalOperator::child_end() {
2399  return &SubExprs[0]+END_EXPR;
2400}
2401
2402// AddrLabelExpr
2403Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
2404Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
2405
2406// StmtExpr
2407Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
2408Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
2409
2410// TypesCompatibleExpr
2411Stmt::child_iterator TypesCompatibleExpr::child_begin() {
2412  return child_iterator();
2413}
2414
2415Stmt::child_iterator TypesCompatibleExpr::child_end() {
2416  return child_iterator();
2417}
2418
2419// ChooseExpr
2420Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2421Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2422
2423// GNUNullExpr
2424Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2425Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2426
2427// ShuffleVectorExpr
2428Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2429  return &SubExprs[0];
2430}
2431Stmt::child_iterator ShuffleVectorExpr::child_end() {
2432  return &SubExprs[0]+NumExprs;
2433}
2434
2435// VAArgExpr
2436Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2437Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2438
2439// InitListExpr
2440Stmt::child_iterator InitListExpr::child_begin() {
2441  return InitExprs.size() ? &InitExprs[0] : 0;
2442}
2443Stmt::child_iterator InitListExpr::child_end() {
2444  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2445}
2446
2447// DesignatedInitExpr
2448Stmt::child_iterator DesignatedInitExpr::child_begin() {
2449  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2450  Ptr += sizeof(DesignatedInitExpr);
2451  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2452}
2453Stmt::child_iterator DesignatedInitExpr::child_end() {
2454  return child_iterator(&*child_begin() + NumSubExprs);
2455}
2456
2457// ImplicitValueInitExpr
2458Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2459  return child_iterator();
2460}
2461
2462Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2463  return child_iterator();
2464}
2465
2466// ParenListExpr
2467Stmt::child_iterator ParenListExpr::child_begin() {
2468  return &Exprs[0];
2469}
2470Stmt::child_iterator ParenListExpr::child_end() {
2471  return &Exprs[0]+NumExprs;
2472}
2473
2474// ObjCStringLiteral
2475Stmt::child_iterator ObjCStringLiteral::child_begin() {
2476  return &String;
2477}
2478Stmt::child_iterator ObjCStringLiteral::child_end() {
2479  return &String+1;
2480}
2481
2482// ObjCEncodeExpr
2483Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2484Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2485
2486// ObjCSelectorExpr
2487Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2488  return child_iterator();
2489}
2490Stmt::child_iterator ObjCSelectorExpr::child_end() {
2491  return child_iterator();
2492}
2493
2494// ObjCProtocolExpr
2495Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2496  return child_iterator();
2497}
2498Stmt::child_iterator ObjCProtocolExpr::child_end() {
2499  return child_iterator();
2500}
2501
2502// ObjCMessageExpr
2503Stmt::child_iterator ObjCMessageExpr::child_begin() {
2504  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
2505}
2506Stmt::child_iterator ObjCMessageExpr::child_end() {
2507  return &SubExprs[0]+ARGS_START+getNumArgs();
2508}
2509
2510// Blocks
2511Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2512Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2513
2514Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2515Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2516