Expr.cpp revision 5549976193e34417d4474a5f4a514268ef6666c7
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ExprObjC.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/StmtVisitor.h"
17#include "clang/Basic/IdentifierTable.h"
18#include "clang/Basic/TargetInfo.h"
19using namespace clang;
20
21//===----------------------------------------------------------------------===//
22// Primary Expressions.
23//===----------------------------------------------------------------------===//
24
25/// getValueAsApproximateDouble - This returns the value as an inaccurate
26/// double.  Note that this may cause loss of precision, but is useful for
27/// debugging dumps, etc.
28double FloatingLiteral::getValueAsApproximateDouble() const {
29  llvm::APFloat V = getValue();
30  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven);
31  return V.convertToDouble();
32}
33
34
35StringLiteral::StringLiteral(const char *strData, unsigned byteLength,
36                             bool Wide, QualType t, SourceLocation firstLoc,
37                             SourceLocation lastLoc) :
38  Expr(StringLiteralClass, t) {
39  // OPTIMIZE: could allocate this appended to the StringLiteral.
40  char *AStrData = new char[byteLength];
41  memcpy(AStrData, strData, byteLength);
42  StrData = AStrData;
43  ByteLength = byteLength;
44  IsWide = Wide;
45  firstTokLoc = firstLoc;
46  lastTokLoc = lastLoc;
47}
48
49StringLiteral::~StringLiteral() {
50  delete[] StrData;
51}
52
53bool UnaryOperator::isPostfix(Opcode Op) {
54  switch (Op) {
55  case PostInc:
56  case PostDec:
57    return true;
58  default:
59    return false;
60  }
61}
62
63/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
64/// corresponds to, e.g. "sizeof" or "[pre]++".
65const char *UnaryOperator::getOpcodeStr(Opcode Op) {
66  switch (Op) {
67  default: assert(0 && "Unknown unary operator");
68  case PostInc: return "++";
69  case PostDec: return "--";
70  case PreInc:  return "++";
71  case PreDec:  return "--";
72  case AddrOf:  return "&";
73  case Deref:   return "*";
74  case Plus:    return "+";
75  case Minus:   return "-";
76  case Not:     return "~";
77  case LNot:    return "!";
78  case Real:    return "__real";
79  case Imag:    return "__imag";
80  case SizeOf:  return "sizeof";
81  case AlignOf: return "alignof";
82  case Extension: return "__extension__";
83  case OffsetOf: return "__builtin_offsetof";
84  }
85}
86
87//===----------------------------------------------------------------------===//
88// Postfix Operators.
89//===----------------------------------------------------------------------===//
90
91
92CallExpr::CallExpr(Expr *fn, Expr **args, unsigned numargs, QualType t,
93                   SourceLocation rparenloc)
94  : Expr(CallExprClass, t), NumArgs(numargs) {
95  SubExprs = new Stmt*[numargs+1];
96  SubExprs[FN] = fn;
97  for (unsigned i = 0; i != numargs; ++i)
98    SubExprs[i+ARGS_START] = args[i];
99  RParenLoc = rparenloc;
100}
101
102/// setNumArgs - This changes the number of arguments present in this call.
103/// Any orphaned expressions are deleted by this, and any new operands are set
104/// to null.
105void CallExpr::setNumArgs(unsigned NumArgs) {
106  // No change, just return.
107  if (NumArgs == getNumArgs()) return;
108
109  // If shrinking # arguments, just delete the extras and forgot them.
110  if (NumArgs < getNumArgs()) {
111    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
112      delete getArg(i);
113    this->NumArgs = NumArgs;
114    return;
115  }
116
117  // Otherwise, we are growing the # arguments.  New an bigger argument array.
118  Stmt **NewSubExprs = new Stmt*[NumArgs+1];
119  // Copy over args.
120  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
121    NewSubExprs[i] = SubExprs[i];
122  // Null out new args.
123  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
124    NewSubExprs[i] = 0;
125
126  delete[] SubExprs;
127  SubExprs = NewSubExprs;
128  this->NumArgs = NumArgs;
129}
130
131bool CallExpr::isBuiltinConstantExpr() const {
132  // All simple function calls (e.g. func()) are implicitly cast to pointer to
133  // function. As a result, we try and obtain the DeclRefExpr from the
134  // ImplicitCastExpr.
135  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
136  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
137    return false;
138
139  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
140  if (!DRE)
141    return false;
142
143  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
144  if (!FDecl)
145    return false;
146
147  unsigned builtinID = FDecl->getIdentifier()->getBuiltinID();
148  if (!builtinID)
149    return false;
150
151  // We have a builtin that is a constant expression
152  return builtinID == Builtin::BI__builtin___CFStringMakeConstantString ||
153         builtinID == Builtin::BI__builtin_classify_type;
154}
155
156bool CallExpr::isBuiltinClassifyType(llvm::APSInt &Result) const {
157  // The following enum mimics gcc's internal "typeclass.h" file.
158  enum gcc_type_class {
159    no_type_class = -1,
160    void_type_class, integer_type_class, char_type_class,
161    enumeral_type_class, boolean_type_class,
162    pointer_type_class, reference_type_class, offset_type_class,
163    real_type_class, complex_type_class,
164    function_type_class, method_type_class,
165    record_type_class, union_type_class,
166    array_type_class, string_type_class,
167    lang_type_class
168  };
169  Result.setIsSigned(true);
170
171  // All simple function calls (e.g. func()) are implicitly cast to pointer to
172  // function. As a result, we try and obtain the DeclRefExpr from the
173  // ImplicitCastExpr.
174  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
175  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
176    return false;
177  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
178  if (!DRE)
179    return false;
180
181  // We have a DeclRefExpr.
182  if (strcmp(DRE->getDecl()->getName(), "__builtin_classify_type") == 0) {
183    // If no argument was supplied, default to "no_type_class". This isn't
184    // ideal, however it's what gcc does.
185    Result = static_cast<uint64_t>(no_type_class);
186    if (NumArgs >= 1) {
187      QualType argType = getArg(0)->getType();
188
189      if (argType->isVoidType())
190        Result = void_type_class;
191      else if (argType->isEnumeralType())
192        Result = enumeral_type_class;
193      else if (argType->isBooleanType())
194        Result = boolean_type_class;
195      else if (argType->isCharType())
196        Result = string_type_class; // gcc doesn't appear to use char_type_class
197      else if (argType->isIntegerType())
198        Result = integer_type_class;
199      else if (argType->isPointerType())
200        Result = pointer_type_class;
201      else if (argType->isReferenceType())
202        Result = reference_type_class;
203      else if (argType->isRealType())
204        Result = real_type_class;
205      else if (argType->isComplexType())
206        Result = complex_type_class;
207      else if (argType->isFunctionType())
208        Result = function_type_class;
209      else if (argType->isStructureType())
210        Result = record_type_class;
211      else if (argType->isUnionType())
212        Result = union_type_class;
213      else if (argType->isArrayType())
214        Result = array_type_class;
215      else if (argType->isUnionType())
216        Result = union_type_class;
217      else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
218        assert(0 && "CallExpr::isBuiltinClassifyType(): unimplemented type");
219    }
220    return true;
221  }
222  return false;
223}
224
225/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
226/// corresponds to, e.g. "<<=".
227const char *BinaryOperator::getOpcodeStr(Opcode Op) {
228  switch (Op) {
229  default: assert(0 && "Unknown binary operator");
230  case Mul:       return "*";
231  case Div:       return "/";
232  case Rem:       return "%";
233  case Add:       return "+";
234  case Sub:       return "-";
235  case Shl:       return "<<";
236  case Shr:       return ">>";
237  case LT:        return "<";
238  case GT:        return ">";
239  case LE:        return "<=";
240  case GE:        return ">=";
241  case EQ:        return "==";
242  case NE:        return "!=";
243  case And:       return "&";
244  case Xor:       return "^";
245  case Or:        return "|";
246  case LAnd:      return "&&";
247  case LOr:       return "||";
248  case Assign:    return "=";
249  case MulAssign: return "*=";
250  case DivAssign: return "/=";
251  case RemAssign: return "%=";
252  case AddAssign: return "+=";
253  case SubAssign: return "-=";
254  case ShlAssign: return "<<=";
255  case ShrAssign: return ">>=";
256  case AndAssign: return "&=";
257  case XorAssign: return "^=";
258  case OrAssign:  return "|=";
259  case Comma:     return ",";
260  }
261}
262
263InitListExpr::InitListExpr(SourceLocation lbraceloc,
264                           Expr **initexprs, unsigned numinits,
265                           SourceLocation rbraceloc)
266  : Expr(InitListExprClass, QualType()),
267    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc)
268{
269  for (unsigned i = 0; i != numinits; i++)
270    InitExprs.push_back(initexprs[i]);
271}
272
273//===----------------------------------------------------------------------===//
274// Generic Expression Routines
275//===----------------------------------------------------------------------===//
276
277/// hasLocalSideEffect - Return true if this immediate expression has side
278/// effects, not counting any sub-expressions.
279bool Expr::hasLocalSideEffect() const {
280  switch (getStmtClass()) {
281  default:
282    return false;
283  case ParenExprClass:
284    return cast<ParenExpr>(this)->getSubExpr()->hasLocalSideEffect();
285  case UnaryOperatorClass: {
286    const UnaryOperator *UO = cast<UnaryOperator>(this);
287
288    switch (UO->getOpcode()) {
289    default: return false;
290    case UnaryOperator::PostInc:
291    case UnaryOperator::PostDec:
292    case UnaryOperator::PreInc:
293    case UnaryOperator::PreDec:
294      return true;                     // ++/--
295
296    case UnaryOperator::Deref:
297      // Dereferencing a volatile pointer is a side-effect.
298      return getType().isVolatileQualified();
299    case UnaryOperator::Real:
300    case UnaryOperator::Imag:
301      // accessing a piece of a volatile complex is a side-effect.
302      return UO->getSubExpr()->getType().isVolatileQualified();
303
304    case UnaryOperator::Extension:
305      return UO->getSubExpr()->hasLocalSideEffect();
306    }
307  }
308  case BinaryOperatorClass: {
309    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
310    // Consider comma to have side effects if the LHS and RHS both do.
311    if (BinOp->getOpcode() == BinaryOperator::Comma)
312      return BinOp->getLHS()->hasLocalSideEffect() &&
313             BinOp->getRHS()->hasLocalSideEffect();
314
315    return BinOp->isAssignmentOp();
316  }
317  case CompoundAssignOperatorClass:
318    return true;
319
320  case ConditionalOperatorClass: {
321    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
322    return Exp->getCond()->hasLocalSideEffect()
323           || (Exp->getLHS() && Exp->getLHS()->hasLocalSideEffect())
324           || (Exp->getRHS() && Exp->getRHS()->hasLocalSideEffect());
325  }
326
327  case MemberExprClass:
328  case ArraySubscriptExprClass:
329    // If the base pointer or element is to a volatile pointer/field, accessing
330    // if is a side effect.
331    return getType().isVolatileQualified();
332
333  case CallExprClass:
334    // TODO: check attributes for pure/const.   "void foo() { strlen("bar"); }"
335    // should warn.
336    return true;
337  case ObjCMessageExprClass:
338    return true;
339  case StmtExprClass:
340    // TODO: check the inside of the statement expression
341    return true;
342
343  case CastExprClass:
344    // If this is a cast to void, check the operand.  Otherwise, the result of
345    // the cast is unused.
346    if (getType()->isVoidType())
347      return cast<CastExpr>(this)->getSubExpr()->hasLocalSideEffect();
348    return false;
349
350  case ImplicitCastExprClass:
351    // Check the operand, since implicit casts are inserted by Sema
352    return cast<ImplicitCastExpr>(this)->getSubExpr()->hasLocalSideEffect();
353
354  case CXXDefaultArgExprClass:
355    return cast<CXXDefaultArgExpr>(this)->getExpr()->hasLocalSideEffect();
356  }
357}
358
359/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
360/// incomplete type other than void. Nonarray expressions that can be lvalues:
361///  - name, where name must be a variable
362///  - e[i]
363///  - (e), where e must be an lvalue
364///  - e.name, where e must be an lvalue
365///  - e->name
366///  - *e, the type of e cannot be a function type
367///  - string-constant
368///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
369///  - reference type [C++ [expr]]
370///
371Expr::isLvalueResult Expr::isLvalue() const {
372  // first, check the type (C99 6.3.2.1)
373  if (TR->isFunctionType()) // from isObjectType()
374    return LV_NotObjectType;
375
376  // Allow qualified void which is an incomplete type other than void (yuck).
377  if (TR->isVoidType() && !TR.getCanonicalType().getCVRQualifiers())
378    return LV_IncompleteVoidType;
379
380  if (TR->isReferenceType()) // C++ [expr]
381    return LV_Valid;
382
383  // the type looks fine, now check the expression
384  switch (getStmtClass()) {
385  case StringLiteralClass: // C99 6.5.1p4
386    return LV_Valid;
387  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
388    // For vectors, make sure base is an lvalue (i.e. not a function call).
389    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
390      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue();
391    return LV_Valid;
392  case DeclRefExprClass: // C99 6.5.1p2
393    if (isa<VarDecl>(cast<DeclRefExpr>(this)->getDecl()))
394      return LV_Valid;
395    break;
396  case MemberExprClass: { // C99 6.5.2.3p4
397    const MemberExpr *m = cast<MemberExpr>(this);
398    return m->isArrow() ? LV_Valid : m->getBase()->isLvalue();
399  }
400  case UnaryOperatorClass:
401    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
402      return LV_Valid; // C99 6.5.3p4
403
404    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
405        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag)
406      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue();  // GNU.
407    break;
408  case ParenExprClass: // C99 6.5.1p5
409    return cast<ParenExpr>(this)->getSubExpr()->isLvalue();
410  case CompoundLiteralExprClass: // C99 6.5.2.5p5
411    return LV_Valid;
412  case ExtVectorElementExprClass:
413    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
414      return LV_DuplicateVectorComponents;
415    return LV_Valid;
416  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
417    return LV_Valid;
418  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
419    return LV_Valid;
420  case PreDefinedExprClass:
421    return LV_Valid;
422  case CXXDefaultArgExprClass:
423    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue();
424  default:
425    break;
426  }
427  return LV_InvalidExpression;
428}
429
430/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
431/// does not have an incomplete type, does not have a const-qualified type, and
432/// if it is a structure or union, does not have any member (including,
433/// recursively, any member or element of all contained aggregates or unions)
434/// with a const-qualified type.
435Expr::isModifiableLvalueResult Expr::isModifiableLvalue() const {
436  isLvalueResult lvalResult = isLvalue();
437
438  switch (lvalResult) {
439  case LV_Valid: break;
440  case LV_NotObjectType: return MLV_NotObjectType;
441  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
442  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
443  case LV_InvalidExpression: return MLV_InvalidExpression;
444  }
445  if (TR.isConstQualified())
446    return MLV_ConstQualified;
447  if (TR->isArrayType())
448    return MLV_ArrayType;
449  if (TR->isIncompleteType())
450    return MLV_IncompleteType;
451
452  if (const RecordType *r = dyn_cast<RecordType>(TR.getCanonicalType())) {
453    if (r->hasConstFields())
454      return MLV_ConstQualified;
455  }
456  return MLV_Valid;
457}
458
459/// hasGlobalStorage - Return true if this expression has static storage
460/// duration.  This means that the address of this expression is a link-time
461/// constant.
462bool Expr::hasGlobalStorage() const {
463  switch (getStmtClass()) {
464  default:
465    return false;
466  case ParenExprClass:
467    return cast<ParenExpr>(this)->getSubExpr()->hasGlobalStorage();
468  case ImplicitCastExprClass:
469    return cast<ImplicitCastExpr>(this)->getSubExpr()->hasGlobalStorage();
470  case CompoundLiteralExprClass:
471    return cast<CompoundLiteralExpr>(this)->isFileScope();
472  case DeclRefExprClass: {
473    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
474    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
475      return VD->hasGlobalStorage();
476    if (isa<FunctionDecl>(D))
477      return true;
478    return false;
479  }
480  case MemberExprClass: {
481    const MemberExpr *M = cast<MemberExpr>(this);
482    return !M->isArrow() && M->getBase()->hasGlobalStorage();
483  }
484  case ArraySubscriptExprClass:
485    return cast<ArraySubscriptExpr>(this)->getBase()->hasGlobalStorage();
486  case PreDefinedExprClass:
487    return true;
488  case CXXDefaultArgExprClass:
489    return cast<CXXDefaultArgExpr>(this)->getExpr()->hasGlobalStorage();
490  }
491}
492
493Expr* Expr::IgnoreParens() {
494  Expr* E = this;
495  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
496    E = P->getSubExpr();
497
498  return E;
499}
500
501/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
502/// or CastExprs or ImplicitCastExprs, returning their operand.
503Expr *Expr::IgnoreParenCasts() {
504  Expr *E = this;
505  while (true) {
506    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
507      E = P->getSubExpr();
508    else if (CastExpr *P = dyn_cast<CastExpr>(E))
509      E = P->getSubExpr();
510    else if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E))
511      E = P->getSubExpr();
512    else
513      return E;
514  }
515}
516
517
518bool Expr::isConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
519  switch (getStmtClass()) {
520  default:
521    if (Loc) *Loc = getLocStart();
522    return false;
523  case ParenExprClass:
524    return cast<ParenExpr>(this)->getSubExpr()->isConstantExpr(Ctx, Loc);
525  case StringLiteralClass:
526  case ObjCStringLiteralClass:
527  case FloatingLiteralClass:
528  case IntegerLiteralClass:
529  case CharacterLiteralClass:
530  case ImaginaryLiteralClass:
531  case TypesCompatibleExprClass:
532  case CXXBoolLiteralExprClass:
533    return true;
534  case CallExprClass: {
535    const CallExpr *CE = cast<CallExpr>(this);
536    if (CE->isBuiltinConstantExpr())
537      return true;
538    if (Loc) *Loc = getLocStart();
539    return false;
540  }
541  case DeclRefExprClass: {
542    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
543    // Accept address of function.
544    if (isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D))
545      return true;
546    if (Loc) *Loc = getLocStart();
547    if (isa<VarDecl>(D))
548      return TR->isArrayType();
549    return false;
550  }
551  case CompoundLiteralExprClass:
552    if (Loc) *Loc = getLocStart();
553    // Allow "(int []){2,4}", since the array will be converted to a pointer.
554    // Allow "(vector type){2,4}" since the elements are all constant.
555    return TR->isArrayType() || TR->isVectorType();
556  case UnaryOperatorClass: {
557    const UnaryOperator *Exp = cast<UnaryOperator>(this);
558
559    // C99 6.6p9
560    if (Exp->getOpcode() == UnaryOperator::AddrOf) {
561      if (!Exp->getSubExpr()->hasGlobalStorage()) {
562        if (Loc) *Loc = getLocStart();
563        return false;
564      }
565      return true;
566    }
567
568    // Get the operand value.  If this is sizeof/alignof, do not evalute the
569    // operand.  This affects C99 6.6p3.
570    if (!Exp->isSizeOfAlignOfOp() &&
571        Exp->getOpcode() != UnaryOperator::OffsetOf &&
572        !Exp->getSubExpr()->isConstantExpr(Ctx, Loc))
573      return false;
574
575    switch (Exp->getOpcode()) {
576    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
577    // See C99 6.6p3.
578    default:
579      if (Loc) *Loc = Exp->getOperatorLoc();
580      return false;
581    case UnaryOperator::Extension:
582      return true;  // FIXME: this is wrong.
583    case UnaryOperator::SizeOf:
584    case UnaryOperator::AlignOf:
585    case UnaryOperator::OffsetOf:
586      // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
587      if (!Exp->getSubExpr()->getType()->isConstantSizeType()) {
588        if (Loc) *Loc = Exp->getOperatorLoc();
589        return false;
590      }
591      return true;
592    case UnaryOperator::LNot:
593    case UnaryOperator::Plus:
594    case UnaryOperator::Minus:
595    case UnaryOperator::Not:
596      return true;
597    }
598  }
599  case SizeOfAlignOfTypeExprClass: {
600    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(this);
601    // alignof always evaluates to a constant.
602    if (Exp->isSizeOf() && !Exp->getArgumentType()->isVoidType() &&
603        !Exp->getArgumentType()->isConstantSizeType()) {
604      if (Loc) *Loc = Exp->getOperatorLoc();
605      return false;
606    }
607    return true;
608  }
609  case BinaryOperatorClass: {
610    const BinaryOperator *Exp = cast<BinaryOperator>(this);
611
612    // The LHS of a constant expr is always evaluated and needed.
613    if (!Exp->getLHS()->isConstantExpr(Ctx, Loc))
614      return false;
615
616    if (!Exp->getRHS()->isConstantExpr(Ctx, Loc))
617      return false;
618    return true;
619  }
620  case ImplicitCastExprClass:
621  case CastExprClass: {
622    const Expr *SubExpr;
623    SourceLocation CastLoc;
624    if (const CastExpr *C = dyn_cast<CastExpr>(this)) {
625      SubExpr = C->getSubExpr();
626      CastLoc = C->getLParenLoc();
627    } else {
628      SubExpr = cast<ImplicitCastExpr>(this)->getSubExpr();
629      CastLoc = getLocStart();
630    }
631    if (!SubExpr->isConstantExpr(Ctx, Loc)) {
632      if (Loc) *Loc = SubExpr->getLocStart();
633      return false;
634    }
635    return true;
636  }
637  case ConditionalOperatorClass: {
638    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
639    if (!Exp->getCond()->isConstantExpr(Ctx, Loc) ||
640        // Handle the GNU extension for missing LHS.
641        !(Exp->getLHS() && Exp->getLHS()->isConstantExpr(Ctx, Loc)) ||
642        !Exp->getRHS()->isConstantExpr(Ctx, Loc))
643      return false;
644    return true;
645  }
646  case InitListExprClass: {
647    const InitListExpr *Exp = cast<InitListExpr>(this);
648    unsigned numInits = Exp->getNumInits();
649    for (unsigned i = 0; i < numInits; i++) {
650      if (!Exp->getInit(i)->isConstantExpr(Ctx, Loc)) {
651        if (Loc) *Loc = Exp->getInit(i)->getLocStart();
652        return false;
653      }
654    }
655    return true;
656  }
657  case CXXDefaultArgExprClass:
658    return cast<CXXDefaultArgExpr>(this)->getExpr()->isConstantExpr(Ctx, Loc);
659  }
660}
661
662/// isIntegerConstantExpr - this recursive routine will test if an expression is
663/// an integer constant expression. Note: With the introduction of VLA's in
664/// C99 the result of the sizeof operator is no longer always a constant
665/// expression. The generalization of the wording to include any subexpression
666/// that is not evaluated (C99 6.6p3) means that nonconstant subexpressions
667/// can appear as operands to other operators (e.g. &&, ||, ?:). For instance,
668/// "0 || f()" can be treated as a constant expression. In C90 this expression,
669/// occurring in a context requiring a constant, would have been a constraint
670/// violation. FIXME: This routine currently implements C90 semantics.
671/// To properly implement C99 semantics this routine will need to evaluate
672/// expressions involving operators previously mentioned.
673
674/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
675/// comma, etc
676///
677/// FIXME: This should ext-warn on overflow during evaluation!  ISO C does not
678/// permit this.  This includes things like (int)1e1000
679///
680/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
681/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
682/// cast+dereference.
683bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
684                                 SourceLocation *Loc, bool isEvaluated) const {
685  switch (getStmtClass()) {
686  default:
687    if (Loc) *Loc = getLocStart();
688    return false;
689  case ParenExprClass:
690    return cast<ParenExpr>(this)->getSubExpr()->
691                     isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
692  case IntegerLiteralClass:
693    Result = cast<IntegerLiteral>(this)->getValue();
694    break;
695  case CharacterLiteralClass: {
696    const CharacterLiteral *CL = cast<CharacterLiteral>(this);
697    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
698    Result = CL->getValue();
699    Result.setIsUnsigned(!getType()->isSignedIntegerType());
700    break;
701  }
702  case TypesCompatibleExprClass: {
703    const TypesCompatibleExpr *TCE = cast<TypesCompatibleExpr>(this);
704    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
705    Result = Ctx.typesAreCompatible(TCE->getArgType1(), TCE->getArgType2());
706    break;
707  }
708  case CallExprClass: {
709    const CallExpr *CE = cast<CallExpr>(this);
710    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
711    if (CE->isBuiltinClassifyType(Result))
712      break;
713    if (Loc) *Loc = getLocStart();
714    return false;
715  }
716  case DeclRefExprClass:
717    if (const EnumConstantDecl *D =
718          dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(this)->getDecl())) {
719      Result = D->getInitVal();
720      break;
721    }
722    if (Loc) *Loc = getLocStart();
723    return false;
724  case UnaryOperatorClass: {
725    const UnaryOperator *Exp = cast<UnaryOperator>(this);
726
727    // Get the operand value.  If this is sizeof/alignof, do not evalute the
728    // operand.  This affects C99 6.6p3.
729    if (!Exp->isSizeOfAlignOfOp() && !Exp->isOffsetOfOp() &&
730        !Exp->getSubExpr()->isIntegerConstantExpr(Result, Ctx, Loc,isEvaluated))
731      return false;
732
733    switch (Exp->getOpcode()) {
734    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
735    // See C99 6.6p3.
736    default:
737      if (Loc) *Loc = Exp->getOperatorLoc();
738      return false;
739    case UnaryOperator::Extension:
740      return true;  // FIXME: this is wrong.
741    case UnaryOperator::SizeOf:
742    case UnaryOperator::AlignOf:
743      // Return the result in the right width.
744      Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
745
746      // sizeof(void) and __alignof__(void) = 1 as a gcc extension.
747      if (Exp->getSubExpr()->getType()->isVoidType()) {
748        Result = 1;
749        break;
750      }
751
752      // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
753      if (!Exp->getSubExpr()->getType()->isConstantSizeType()) {
754        if (Loc) *Loc = Exp->getOperatorLoc();
755        return false;
756      }
757
758      // Get information about the size or align.
759      if (Exp->getSubExpr()->getType()->isFunctionType()) {
760        // GCC extension: sizeof(function) = 1.
761        Result = Exp->getOpcode() == UnaryOperator::AlignOf ? 4 : 1;
762      } else {
763        unsigned CharSize = Ctx.Target.getCharWidth();
764        if (Exp->getOpcode() == UnaryOperator::AlignOf)
765          Result = Ctx.getTypeAlign(Exp->getSubExpr()->getType()) / CharSize;
766        else
767          Result = Ctx.getTypeSize(Exp->getSubExpr()->getType()) / CharSize;
768      }
769      break;
770    case UnaryOperator::LNot: {
771      bool Val = Result == 0;
772      Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
773      Result = Val;
774      break;
775    }
776    case UnaryOperator::Plus:
777      break;
778    case UnaryOperator::Minus:
779      Result = -Result;
780      break;
781    case UnaryOperator::Not:
782      Result = ~Result;
783      break;
784    case UnaryOperator::OffsetOf:
785      Result = Exp->evaluateOffsetOf(Ctx);
786    }
787    break;
788  }
789  case SizeOfAlignOfTypeExprClass: {
790    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(this);
791
792    // Return the result in the right width.
793    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
794
795    // sizeof(void) and __alignof__(void) = 1 as a gcc extension.
796    if (Exp->getArgumentType()->isVoidType()) {
797      Result = 1;
798      break;
799    }
800
801    // alignof always evaluates to a constant, sizeof does if arg is not VLA.
802    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
803      if (Loc) *Loc = Exp->getOperatorLoc();
804      return false;
805    }
806
807    // Get information about the size or align.
808    if (Exp->getArgumentType()->isFunctionType()) {
809      // GCC extension: sizeof(function) = 1.
810      Result = Exp->isSizeOf() ? 1 : 4;
811    } else {
812      unsigned CharSize = Ctx.Target.getCharWidth();
813      if (Exp->isSizeOf())
814        Result = Ctx.getTypeSize(Exp->getArgumentType()) / CharSize;
815      else
816        Result = Ctx.getTypeAlign(Exp->getArgumentType()) / CharSize;
817    }
818    break;
819  }
820  case BinaryOperatorClass: {
821    const BinaryOperator *Exp = cast<BinaryOperator>(this);
822
823    // The LHS of a constant expr is always evaluated and needed.
824    if (!Exp->getLHS()->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
825      return false;
826
827    llvm::APSInt RHS(Result);
828
829    // The short-circuiting &&/|| operators don't necessarily evaluate their
830    // RHS.  Make sure to pass isEvaluated down correctly.
831    if (Exp->isLogicalOp()) {
832      bool RHSEval;
833      if (Exp->getOpcode() == BinaryOperator::LAnd)
834        RHSEval = Result != 0;
835      else {
836        assert(Exp->getOpcode() == BinaryOperator::LOr &&"Unexpected logical");
837        RHSEval = Result == 0;
838      }
839
840      if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc,
841                                                isEvaluated & RHSEval))
842        return false;
843    } else {
844      if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc, isEvaluated))
845        return false;
846    }
847
848    switch (Exp->getOpcode()) {
849    default:
850      if (Loc) *Loc = getLocStart();
851      return false;
852    case BinaryOperator::Mul:
853      Result *= RHS;
854      break;
855    case BinaryOperator::Div:
856      if (RHS == 0) {
857        if (!isEvaluated) break;
858        if (Loc) *Loc = getLocStart();
859        return false;
860      }
861      Result /= RHS;
862      break;
863    case BinaryOperator::Rem:
864      if (RHS == 0) {
865        if (!isEvaluated) break;
866        if (Loc) *Loc = getLocStart();
867        return false;
868      }
869      Result %= RHS;
870      break;
871    case BinaryOperator::Add: Result += RHS; break;
872    case BinaryOperator::Sub: Result -= RHS; break;
873    case BinaryOperator::Shl:
874      Result <<=
875        static_cast<uint32_t>(RHS.getLimitedValue(Result.getBitWidth()-1));
876      break;
877    case BinaryOperator::Shr:
878      Result >>=
879        static_cast<uint32_t>(RHS.getLimitedValue(Result.getBitWidth()-1));
880      break;
881    case BinaryOperator::LT:  Result = Result < RHS; break;
882    case BinaryOperator::GT:  Result = Result > RHS; break;
883    case BinaryOperator::LE:  Result = Result <= RHS; break;
884    case BinaryOperator::GE:  Result = Result >= RHS; break;
885    case BinaryOperator::EQ:  Result = Result == RHS; break;
886    case BinaryOperator::NE:  Result = Result != RHS; break;
887    case BinaryOperator::And: Result &= RHS; break;
888    case BinaryOperator::Xor: Result ^= RHS; break;
889    case BinaryOperator::Or:  Result |= RHS; break;
890    case BinaryOperator::LAnd:
891      Result = Result != 0 && RHS != 0;
892      break;
893    case BinaryOperator::LOr:
894      Result = Result != 0 || RHS != 0;
895      break;
896
897    case BinaryOperator::Comma:
898      // C99 6.6p3: "shall not contain assignment, ..., or comma operators,
899      // *except* when they are contained within a subexpression that is not
900      // evaluated".  Note that Assignment can never happen due to constraints
901      // on the LHS subexpr, so we don't need to check it here.
902      if (isEvaluated) {
903        if (Loc) *Loc = getLocStart();
904        return false;
905      }
906
907      // The result of the constant expr is the RHS.
908      Result = RHS;
909      return true;
910    }
911
912    assert(!Exp->isAssignmentOp() && "LHS can't be a constant expr!");
913    break;
914  }
915  case ImplicitCastExprClass:
916  case CastExprClass: {
917    const Expr *SubExpr;
918    SourceLocation CastLoc;
919    if (const CastExpr *C = dyn_cast<CastExpr>(this)) {
920      SubExpr = C->getSubExpr();
921      CastLoc = C->getLParenLoc();
922    } else {
923      SubExpr = cast<ImplicitCastExpr>(this)->getSubExpr();
924      CastLoc = getLocStart();
925    }
926
927    // C99 6.6p6: shall only convert arithmetic types to integer types.
928    if (!SubExpr->getType()->isArithmeticType() ||
929        !getType()->isIntegerType()) {
930      if (Loc) *Loc = SubExpr->getLocStart();
931      // GCC accepts pointers as an extension.
932      // FIXME: check getLangOptions().NoExtensions. At the moment, it doesn't
933      // appear possible to get langOptions() from the Expr.
934      if (SubExpr->getType()->isPointerType()) // && !NoExtensions
935        return true;
936      return false;
937    }
938
939    uint32_t DestWidth = static_cast<uint32_t>(Ctx.getTypeSize(getType()));
940
941    // Handle simple integer->integer casts.
942    if (SubExpr->getType()->isIntegerType()) {
943      if (!SubExpr->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
944        return false;
945
946      // Figure out if this is a truncate, extend or noop cast.
947      // If the input is signed, do a sign extend, noop, or truncate.
948      if (getType()->isBooleanType()) {
949        // Conversion to bool compares against zero.
950        Result = Result != 0;
951        Result.zextOrTrunc(DestWidth);
952      } else if (SubExpr->getType()->isSignedIntegerType())
953        Result.sextOrTrunc(DestWidth);
954      else  // If the input is unsigned, do a zero extend, noop, or truncate.
955        Result.zextOrTrunc(DestWidth);
956      break;
957    }
958
959    // Allow floating constants that are the immediate operands of casts or that
960    // are parenthesized.
961    const Expr *Operand = SubExpr;
962    while (const ParenExpr *PE = dyn_cast<ParenExpr>(Operand))
963      Operand = PE->getSubExpr();
964
965    // If this isn't a floating literal, we can't handle it.
966    const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(Operand);
967    if (!FL) {
968      if (Loc) *Loc = Operand->getLocStart();
969      return false;
970    }
971
972    // If the destination is boolean, compare against zero.
973    if (getType()->isBooleanType()) {
974      Result = !FL->getValue().isZero();
975      Result.zextOrTrunc(DestWidth);
976      break;
977    }
978
979    // Determine whether we are converting to unsigned or signed.
980    bool DestSigned = getType()->isSignedIntegerType();
981
982    // TODO: Warn on overflow, but probably not here: isIntegerConstantExpr can
983    // be called multiple times per AST.
984    uint64_t Space[4];
985    (void)FL->getValue().convertToInteger(Space, DestWidth, DestSigned,
986                                          llvm::APFloat::rmTowardZero);
987    Result = llvm::APInt(DestWidth, 4, Space);
988    break;
989  }
990  case ConditionalOperatorClass: {
991    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
992
993    if (!Exp->getCond()->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
994      return false;
995
996    const Expr *TrueExp  = Exp->getLHS();
997    const Expr *FalseExp = Exp->getRHS();
998    if (Result == 0) std::swap(TrueExp, FalseExp);
999
1000    // Evaluate the false one first, discard the result.
1001    if (FalseExp && !FalseExp->isIntegerConstantExpr(Result, Ctx, Loc, false))
1002      return false;
1003    // Evalute the true one, capture the result.
1004    if (TrueExp &&
1005        !TrueExp->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
1006      return false;
1007    break;
1008  }
1009  case CXXDefaultArgExprClass:
1010    return cast<CXXDefaultArgExpr>(this)
1011             ->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
1012  }
1013
1014  // Cases that are valid constant exprs fall through to here.
1015  Result.setIsUnsigned(getType()->isUnsignedIntegerType());
1016  return true;
1017}
1018
1019/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1020/// integer constant expression with the value zero, or if this is one that is
1021/// cast to void*.
1022bool Expr::isNullPointerConstant(ASTContext &Ctx) const {
1023  // Strip off a cast to void*, if it exists.
1024  if (const CastExpr *CE = dyn_cast<CastExpr>(this)) {
1025    // Check that it is a cast to void*.
1026    if (const PointerType *PT = CE->getType()->getAsPointerType()) {
1027      QualType Pointee = PT->getPointeeType();
1028      if (Pointee.getCVRQualifiers() == 0 &&
1029          Pointee->isVoidType() &&                                 // to void*
1030          CE->getSubExpr()->getType()->isIntegerType())            // from int.
1031        return CE->getSubExpr()->isNullPointerConstant(Ctx);
1032    }
1033  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1034    // Ignore the ImplicitCastExpr type entirely.
1035    return ICE->getSubExpr()->isNullPointerConstant(Ctx);
1036  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1037    // Accept ((void*)0) as a null pointer constant, as many other
1038    // implementations do.
1039    return PE->getSubExpr()->isNullPointerConstant(Ctx);
1040  } else if (const CXXDefaultArgExpr *DefaultArg
1041               = dyn_cast<CXXDefaultArgExpr>(this)) {
1042    // See through default argument expressions
1043    return DefaultArg->getExpr()->isNullPointerConstant(Ctx);
1044  }
1045
1046  // This expression must be an integer type.
1047  if (!getType()->isIntegerType())
1048    return false;
1049
1050  // If we have an integer constant expression, we need to *evaluate* it and
1051  // test for the value 0.
1052  llvm::APSInt Val(32);
1053  return isIntegerConstantExpr(Val, Ctx, 0, true) && Val == 0;
1054}
1055
1056unsigned ExtVectorElementExpr::getNumElements() const {
1057  if (const VectorType *VT = getType()->getAsVectorType())
1058    return VT->getNumElements();
1059  return 1;
1060}
1061
1062/// containsDuplicateElements - Return true if any element access is repeated.
1063bool ExtVectorElementExpr::containsDuplicateElements() const {
1064  const char *compStr = Accessor.getName();
1065  unsigned length = strlen(compStr);
1066
1067  for (unsigned i = 0; i < length-1; i++) {
1068    const char *s = compStr+i;
1069    for (const char c = *s++; *s; s++)
1070      if (c == *s)
1071        return true;
1072  }
1073  return false;
1074}
1075
1076/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
1077void ExtVectorElementExpr::getEncodedElementAccess(
1078                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
1079  const char *compStr = Accessor.getName();
1080
1081  bool isHi =   !strcmp(compStr, "hi");
1082  bool isLo =   !strcmp(compStr, "lo");
1083  bool isEven = !strcmp(compStr, "e");
1084  bool isOdd  = !strcmp(compStr, "o");
1085
1086  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
1087    uint64_t Index;
1088
1089    if (isHi)
1090      Index = e + i;
1091    else if (isLo)
1092      Index = i;
1093    else if (isEven)
1094      Index = 2 * i;
1095    else if (isOdd)
1096      Index = 2 * i + 1;
1097    else
1098      Index = ExtVectorType::getAccessorIdx(compStr[i]);
1099
1100    Elts.push_back(Index);
1101  }
1102}
1103
1104// constructor for instance messages.
1105ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
1106                QualType retType, ObjCMethodDecl *mproto,
1107                SourceLocation LBrac, SourceLocation RBrac,
1108                Expr **ArgExprs, unsigned nargs)
1109  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1110    MethodProto(mproto) {
1111  NumArgs = nargs;
1112  SubExprs = new Stmt*[NumArgs+1];
1113  SubExprs[RECEIVER] = receiver;
1114  if (NumArgs) {
1115    for (unsigned i = 0; i != NumArgs; ++i)
1116      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1117  }
1118  LBracloc = LBrac;
1119  RBracloc = RBrac;
1120}
1121
1122// constructor for class messages.
1123// FIXME: clsName should be typed to ObjCInterfaceType
1124ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
1125                QualType retType, ObjCMethodDecl *mproto,
1126                SourceLocation LBrac, SourceLocation RBrac,
1127                Expr **ArgExprs, unsigned nargs)
1128  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1129    MethodProto(mproto) {
1130  NumArgs = nargs;
1131  SubExprs = new Stmt*[NumArgs+1];
1132  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | 0x1);
1133  if (NumArgs) {
1134    for (unsigned i = 0; i != NumArgs; ++i)
1135      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1136  }
1137  LBracloc = LBrac;
1138  RBracloc = RBrac;
1139}
1140
1141bool ChooseExpr::isConditionTrue(ASTContext &C) const {
1142  llvm::APSInt CondVal(32);
1143  bool IsConst = getCond()->isIntegerConstantExpr(CondVal, C);
1144  assert(IsConst && "Condition of choose expr must be i-c-e"); IsConst=IsConst;
1145  return CondVal != 0;
1146}
1147
1148static int64_t evaluateOffsetOf(ASTContext& C, const Expr *E)
1149{
1150  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1151    QualType Ty = ME->getBase()->getType();
1152
1153    RecordDecl *RD = Ty->getAsRecordType()->getDecl();
1154    const ASTRecordLayout &RL = C.getASTRecordLayout(RD);
1155    FieldDecl *FD = ME->getMemberDecl();
1156
1157    // FIXME: This is linear time.
1158    unsigned i = 0, e = 0;
1159    for (i = 0, e = RD->getNumMembers(); i != e; i++) {
1160      if (RD->getMember(i) == FD)
1161        break;
1162    }
1163
1164    return RL.getFieldOffset(i) + evaluateOffsetOf(C, ME->getBase());
1165  } else if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
1166    const Expr *Base = ASE->getBase();
1167    llvm::APSInt Idx(32);
1168    bool ICE = ASE->getIdx()->isIntegerConstantExpr(Idx, C);
1169    assert(ICE && "Array index is not a constant integer!");
1170
1171    int64_t size = C.getTypeSize(ASE->getType());
1172    size *= Idx.getSExtValue();
1173
1174    return size + evaluateOffsetOf(C, Base);
1175  } else if (isa<CompoundLiteralExpr>(E))
1176    return 0;
1177
1178  assert(0 && "Unknown offsetof subexpression!");
1179  return 0;
1180}
1181
1182int64_t UnaryOperator::evaluateOffsetOf(ASTContext& C) const
1183{
1184  assert(Opc == OffsetOf && "Unary operator not offsetof!");
1185
1186  unsigned CharSize = C.Target.getCharWidth();
1187  return ::evaluateOffsetOf(C, cast<Expr>(Val)) / CharSize;
1188}
1189
1190//===----------------------------------------------------------------------===//
1191//  Child Iterators for iterating over subexpressions/substatements
1192//===----------------------------------------------------------------------===//
1193
1194// DeclRefExpr
1195Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
1196Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
1197
1198// ObjCIvarRefExpr
1199Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
1200Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
1201
1202// ObjCPropertyRefExpr
1203Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
1204Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
1205
1206// ObjCSuperRefExpr
1207Stmt::child_iterator ObjCSuperRefExpr::child_begin() { return child_iterator();}
1208Stmt::child_iterator ObjCSuperRefExpr::child_end() { return child_iterator(); }
1209
1210// PreDefinedExpr
1211Stmt::child_iterator PreDefinedExpr::child_begin() { return child_iterator(); }
1212Stmt::child_iterator PreDefinedExpr::child_end() { return child_iterator(); }
1213
1214// IntegerLiteral
1215Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
1216Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
1217
1218// CharacterLiteral
1219Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator(); }
1220Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
1221
1222// FloatingLiteral
1223Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
1224Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
1225
1226// ImaginaryLiteral
1227Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
1228Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
1229
1230// StringLiteral
1231Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
1232Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
1233
1234// ParenExpr
1235Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
1236Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
1237
1238// UnaryOperator
1239Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
1240Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
1241
1242// SizeOfAlignOfTypeExpr
1243Stmt::child_iterator SizeOfAlignOfTypeExpr::child_begin() {
1244  // If the type is a VLA type (and not a typedef), the size expression of the
1245  // VLA needs to be treated as an executable expression.
1246  if (VariableArrayType* T = dyn_cast<VariableArrayType>(Ty.getTypePtr()))
1247    return child_iterator(T);
1248  else
1249    return child_iterator();
1250}
1251Stmt::child_iterator SizeOfAlignOfTypeExpr::child_end() {
1252  return child_iterator();
1253}
1254
1255// ArraySubscriptExpr
1256Stmt::child_iterator ArraySubscriptExpr::child_begin() {
1257  return &SubExprs[0];
1258}
1259Stmt::child_iterator ArraySubscriptExpr::child_end() {
1260  return &SubExprs[0]+END_EXPR;
1261}
1262
1263// CallExpr
1264Stmt::child_iterator CallExpr::child_begin() {
1265  return &SubExprs[0];
1266}
1267Stmt::child_iterator CallExpr::child_end() {
1268  return &SubExprs[0]+NumArgs+ARGS_START;
1269}
1270
1271// MemberExpr
1272Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
1273Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
1274
1275// ExtVectorElementExpr
1276Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
1277Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
1278
1279// CompoundLiteralExpr
1280Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
1281Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
1282
1283// ImplicitCastExpr
1284Stmt::child_iterator ImplicitCastExpr::child_begin() { return &Op; }
1285Stmt::child_iterator ImplicitCastExpr::child_end() { return &Op+1; }
1286
1287// CastExpr
1288Stmt::child_iterator CastExpr::child_begin() { return &Op; }
1289Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
1290
1291// BinaryOperator
1292Stmt::child_iterator BinaryOperator::child_begin() {
1293  return &SubExprs[0];
1294}
1295Stmt::child_iterator BinaryOperator::child_end() {
1296  return &SubExprs[0]+END_EXPR;
1297}
1298
1299// ConditionalOperator
1300Stmt::child_iterator ConditionalOperator::child_begin() {
1301  return &SubExprs[0];
1302}
1303Stmt::child_iterator ConditionalOperator::child_end() {
1304  return &SubExprs[0]+END_EXPR;
1305}
1306
1307// AddrLabelExpr
1308Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
1309Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
1310
1311// StmtExpr
1312Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
1313Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
1314
1315// TypesCompatibleExpr
1316Stmt::child_iterator TypesCompatibleExpr::child_begin() {
1317  return child_iterator();
1318}
1319
1320Stmt::child_iterator TypesCompatibleExpr::child_end() {
1321  return child_iterator();
1322}
1323
1324// ChooseExpr
1325Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
1326Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
1327
1328// OverloadExpr
1329Stmt::child_iterator OverloadExpr::child_begin() { return &SubExprs[0]; }
1330Stmt::child_iterator OverloadExpr::child_end() { return &SubExprs[0]+NumExprs; }
1331
1332// ShuffleVectorExpr
1333Stmt::child_iterator ShuffleVectorExpr::child_begin() {
1334  return &SubExprs[0];
1335}
1336Stmt::child_iterator ShuffleVectorExpr::child_end() {
1337  return &SubExprs[0]+NumExprs;
1338}
1339
1340// VAArgExpr
1341Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
1342Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
1343
1344// InitListExpr
1345Stmt::child_iterator InitListExpr::child_begin() {
1346  return InitExprs.size() ? &InitExprs[0] : 0;
1347}
1348Stmt::child_iterator InitListExpr::child_end() {
1349  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
1350}
1351
1352// ObjCStringLiteral
1353Stmt::child_iterator ObjCStringLiteral::child_begin() {
1354  return child_iterator();
1355}
1356Stmt::child_iterator ObjCStringLiteral::child_end() {
1357  return child_iterator();
1358}
1359
1360// ObjCEncodeExpr
1361Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
1362Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
1363
1364// ObjCSelectorExpr
1365Stmt::child_iterator ObjCSelectorExpr::child_begin() {
1366  return child_iterator();
1367}
1368Stmt::child_iterator ObjCSelectorExpr::child_end() {
1369  return child_iterator();
1370}
1371
1372// ObjCProtocolExpr
1373Stmt::child_iterator ObjCProtocolExpr::child_begin() {
1374  return child_iterator();
1375}
1376Stmt::child_iterator ObjCProtocolExpr::child_end() {
1377  return child_iterator();
1378}
1379
1380// ObjCMessageExpr
1381Stmt::child_iterator ObjCMessageExpr::child_begin() {
1382  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
1383}
1384Stmt::child_iterator ObjCMessageExpr::child_end() {
1385  return &SubExprs[0]+ARGS_START+getNumArgs();
1386}
1387
1388