Expr.cpp revision 5e94a0d82b1f49be41c35a73106b219e3f588c8c
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclObjC.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/RecordLayout.h"
21#include "clang/AST/StmtVisitor.h"
22#include "clang/Basic/Builtins.h"
23#include "clang/Basic/TargetInfo.h"
24#include <algorithm>
25using namespace clang;
26
27//===----------------------------------------------------------------------===//
28// Primary Expressions.
29//===----------------------------------------------------------------------===//
30
31/// getValueAsApproximateDouble - This returns the value as an inaccurate
32/// double.  Note that this may cause loss of precision, but is useful for
33/// debugging dumps, etc.
34double FloatingLiteral::getValueAsApproximateDouble() const {
35  llvm::APFloat V = getValue();
36  bool ignored;
37  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
38            &ignored);
39  return V.convertToDouble();
40}
41
42StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
43                                     unsigned ByteLength, bool Wide,
44                                     QualType Ty,
45                                     const SourceLocation *Loc,
46                                     unsigned NumStrs) {
47  // Allocate enough space for the StringLiteral plus an array of locations for
48  // any concatenated string tokens.
49  void *Mem = C.Allocate(sizeof(StringLiteral)+
50                         sizeof(SourceLocation)*(NumStrs-1),
51                         llvm::alignof<StringLiteral>());
52  StringLiteral *SL = new (Mem) StringLiteral(Ty);
53
54  // OPTIMIZE: could allocate this appended to the StringLiteral.
55  char *AStrData = new (C, 1) char[ByteLength];
56  memcpy(AStrData, StrData, ByteLength);
57  SL->StrData = AStrData;
58  SL->ByteLength = ByteLength;
59  SL->IsWide = Wide;
60  SL->TokLocs[0] = Loc[0];
61  SL->NumConcatenated = NumStrs;
62
63  if (NumStrs != 1)
64    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
65  return SL;
66}
67
68StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
69  void *Mem = C.Allocate(sizeof(StringLiteral)+
70                         sizeof(SourceLocation)*(NumStrs-1),
71                         llvm::alignof<StringLiteral>());
72  StringLiteral *SL = new (Mem) StringLiteral(QualType());
73  SL->StrData = 0;
74  SL->ByteLength = 0;
75  SL->NumConcatenated = NumStrs;
76  return SL;
77}
78
79void StringLiteral::DoDestroy(ASTContext &C) {
80  C.Deallocate(const_cast<char*>(StrData));
81  Expr::DoDestroy(C);
82}
83
84void StringLiteral::setStrData(ASTContext &C, const char *Str, unsigned Len) {
85  if (StrData)
86    C.Deallocate(const_cast<char*>(StrData));
87
88  char *AStrData = new (C, 1) char[Len];
89  memcpy(AStrData, Str, Len);
90  StrData = AStrData;
91  ByteLength = Len;
92}
93
94/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
95/// corresponds to, e.g. "sizeof" or "[pre]++".
96const char *UnaryOperator::getOpcodeStr(Opcode Op) {
97  switch (Op) {
98  default: assert(0 && "Unknown unary operator");
99  case PostInc: return "++";
100  case PostDec: return "--";
101  case PreInc:  return "++";
102  case PreDec:  return "--";
103  case AddrOf:  return "&";
104  case Deref:   return "*";
105  case Plus:    return "+";
106  case Minus:   return "-";
107  case Not:     return "~";
108  case LNot:    return "!";
109  case Real:    return "__real";
110  case Imag:    return "__imag";
111  case Extension: return "__extension__";
112  case OffsetOf: return "__builtin_offsetof";
113  }
114}
115
116UnaryOperator::Opcode
117UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
118  switch (OO) {
119  default: assert(false && "No unary operator for overloaded function");
120  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
121  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
122  case OO_Amp:        return AddrOf;
123  case OO_Star:       return Deref;
124  case OO_Plus:       return Plus;
125  case OO_Minus:      return Minus;
126  case OO_Tilde:      return Not;
127  case OO_Exclaim:    return LNot;
128  }
129}
130
131OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
132  switch (Opc) {
133  case PostInc: case PreInc: return OO_PlusPlus;
134  case PostDec: case PreDec: return OO_MinusMinus;
135  case AddrOf: return OO_Amp;
136  case Deref: return OO_Star;
137  case Plus: return OO_Plus;
138  case Minus: return OO_Minus;
139  case Not: return OO_Tilde;
140  case LNot: return OO_Exclaim;
141  default: return OO_None;
142  }
143}
144
145
146//===----------------------------------------------------------------------===//
147// Postfix Operators.
148//===----------------------------------------------------------------------===//
149
150CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
151                   unsigned numargs, QualType t, SourceLocation rparenloc)
152  : Expr(SC, t,
153         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
154         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
155    NumArgs(numargs) {
156
157  SubExprs = new (C) Stmt*[numargs+1];
158  SubExprs[FN] = fn;
159  for (unsigned i = 0; i != numargs; ++i)
160    SubExprs[i+ARGS_START] = args[i];
161
162  RParenLoc = rparenloc;
163}
164
165CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
166                   QualType t, SourceLocation rparenloc)
167  : Expr(CallExprClass, t,
168         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
169         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
170    NumArgs(numargs) {
171
172  SubExprs = new (C) Stmt*[numargs+1];
173  SubExprs[FN] = fn;
174  for (unsigned i = 0; i != numargs; ++i)
175    SubExprs[i+ARGS_START] = args[i];
176
177  RParenLoc = rparenloc;
178}
179
180CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
181  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
182  SubExprs = new (C) Stmt*[1];
183}
184
185void CallExpr::DoDestroy(ASTContext& C) {
186  DestroyChildren(C);
187  if (SubExprs) C.Deallocate(SubExprs);
188  this->~CallExpr();
189  C.Deallocate(this);
190}
191
192FunctionDecl *CallExpr::getDirectCallee() {
193  Expr *CEE = getCallee()->IgnoreParenCasts();
194  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
195    return dyn_cast<FunctionDecl>(DRE->getDecl());
196
197  return 0;
198}
199
200/// setNumArgs - This changes the number of arguments present in this call.
201/// Any orphaned expressions are deleted by this, and any new operands are set
202/// to null.
203void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
204  // No change, just return.
205  if (NumArgs == getNumArgs()) return;
206
207  // If shrinking # arguments, just delete the extras and forgot them.
208  if (NumArgs < getNumArgs()) {
209    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
210      getArg(i)->Destroy(C);
211    this->NumArgs = NumArgs;
212    return;
213  }
214
215  // Otherwise, we are growing the # arguments.  New an bigger argument array.
216  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
217  // Copy over args.
218  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
219    NewSubExprs[i] = SubExprs[i];
220  // Null out new args.
221  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
222    NewSubExprs[i] = 0;
223
224  if (SubExprs) C.Deallocate(SubExprs);
225  SubExprs = NewSubExprs;
226  this->NumArgs = NumArgs;
227}
228
229/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
230/// not, return 0.
231unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
232  // All simple function calls (e.g. func()) are implicitly cast to pointer to
233  // function. As a result, we try and obtain the DeclRefExpr from the
234  // ImplicitCastExpr.
235  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
236  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
237    return 0;
238
239  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
240  if (!DRE)
241    return 0;
242
243  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
244  if (!FDecl)
245    return 0;
246
247  if (!FDecl->getIdentifier())
248    return 0;
249
250  return FDecl->getBuiltinID(Context);
251}
252
253QualType CallExpr::getCallReturnType() const {
254  QualType CalleeType = getCallee()->getType();
255  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
256    CalleeType = FnTypePtr->getPointeeType();
257  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
258    CalleeType = BPT->getPointeeType();
259
260  const FunctionType *FnType = CalleeType->getAsFunctionType();
261  return FnType->getResultType();
262}
263
264/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
265/// corresponds to, e.g. "<<=".
266const char *BinaryOperator::getOpcodeStr(Opcode Op) {
267  switch (Op) {
268  case PtrMemD:   return ".*";
269  case PtrMemI:   return "->*";
270  case Mul:       return "*";
271  case Div:       return "/";
272  case Rem:       return "%";
273  case Add:       return "+";
274  case Sub:       return "-";
275  case Shl:       return "<<";
276  case Shr:       return ">>";
277  case LT:        return "<";
278  case GT:        return ">";
279  case LE:        return "<=";
280  case GE:        return ">=";
281  case EQ:        return "==";
282  case NE:        return "!=";
283  case And:       return "&";
284  case Xor:       return "^";
285  case Or:        return "|";
286  case LAnd:      return "&&";
287  case LOr:       return "||";
288  case Assign:    return "=";
289  case MulAssign: return "*=";
290  case DivAssign: return "/=";
291  case RemAssign: return "%=";
292  case AddAssign: return "+=";
293  case SubAssign: return "-=";
294  case ShlAssign: return "<<=";
295  case ShrAssign: return ">>=";
296  case AndAssign: return "&=";
297  case XorAssign: return "^=";
298  case OrAssign:  return "|=";
299  case Comma:     return ",";
300  }
301
302  return "";
303}
304
305BinaryOperator::Opcode
306BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
307  switch (OO) {
308  default: assert(false && "Not an overloadable binary operator");
309  case OO_Plus: return Add;
310  case OO_Minus: return Sub;
311  case OO_Star: return Mul;
312  case OO_Slash: return Div;
313  case OO_Percent: return Rem;
314  case OO_Caret: return Xor;
315  case OO_Amp: return And;
316  case OO_Pipe: return Or;
317  case OO_Equal: return Assign;
318  case OO_Less: return LT;
319  case OO_Greater: return GT;
320  case OO_PlusEqual: return AddAssign;
321  case OO_MinusEqual: return SubAssign;
322  case OO_StarEqual: return MulAssign;
323  case OO_SlashEqual: return DivAssign;
324  case OO_PercentEqual: return RemAssign;
325  case OO_CaretEqual: return XorAssign;
326  case OO_AmpEqual: return AndAssign;
327  case OO_PipeEqual: return OrAssign;
328  case OO_LessLess: return Shl;
329  case OO_GreaterGreater: return Shr;
330  case OO_LessLessEqual: return ShlAssign;
331  case OO_GreaterGreaterEqual: return ShrAssign;
332  case OO_EqualEqual: return EQ;
333  case OO_ExclaimEqual: return NE;
334  case OO_LessEqual: return LE;
335  case OO_GreaterEqual: return GE;
336  case OO_AmpAmp: return LAnd;
337  case OO_PipePipe: return LOr;
338  case OO_Comma: return Comma;
339  case OO_ArrowStar: return PtrMemI;
340  }
341}
342
343OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
344  static const OverloadedOperatorKind OverOps[] = {
345    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
346    OO_Star, OO_Slash, OO_Percent,
347    OO_Plus, OO_Minus,
348    OO_LessLess, OO_GreaterGreater,
349    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
350    OO_EqualEqual, OO_ExclaimEqual,
351    OO_Amp,
352    OO_Caret,
353    OO_Pipe,
354    OO_AmpAmp,
355    OO_PipePipe,
356    OO_Equal, OO_StarEqual,
357    OO_SlashEqual, OO_PercentEqual,
358    OO_PlusEqual, OO_MinusEqual,
359    OO_LessLessEqual, OO_GreaterGreaterEqual,
360    OO_AmpEqual, OO_CaretEqual,
361    OO_PipeEqual,
362    OO_Comma
363  };
364  return OverOps[Opc];
365}
366
367InitListExpr::InitListExpr(SourceLocation lbraceloc,
368                           Expr **initExprs, unsigned numInits,
369                           SourceLocation rbraceloc)
370  : Expr(InitListExprClass, QualType(),
371         hasAnyTypeDependentArguments(initExprs, numInits),
372         hasAnyValueDependentArguments(initExprs, numInits)),
373    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
374    UnionFieldInit(0), HadArrayRangeDesignator(false) {
375
376  InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
377}
378
379void InitListExpr::reserveInits(unsigned NumInits) {
380  if (NumInits > InitExprs.size())
381    InitExprs.reserve(NumInits);
382}
383
384void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) {
385  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
386       Idx < LastIdx; ++Idx)
387    InitExprs[Idx]->Destroy(Context);
388  InitExprs.resize(NumInits, 0);
389}
390
391Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
392  if (Init >= InitExprs.size()) {
393    InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0);
394    InitExprs.back() = expr;
395    return 0;
396  }
397
398  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
399  InitExprs[Init] = expr;
400  return Result;
401}
402
403/// getFunctionType - Return the underlying function type for this block.
404///
405const FunctionType *BlockExpr::getFunctionType() const {
406  return getType()->getAs<BlockPointerType>()->
407                    getPointeeType()->getAsFunctionType();
408}
409
410SourceLocation BlockExpr::getCaretLocation() const {
411  return TheBlock->getCaretLocation();
412}
413const Stmt *BlockExpr::getBody() const {
414  return TheBlock->getBody();
415}
416Stmt *BlockExpr::getBody() {
417  return TheBlock->getBody();
418}
419
420
421//===----------------------------------------------------------------------===//
422// Generic Expression Routines
423//===----------------------------------------------------------------------===//
424
425/// isUnusedResultAWarning - Return true if this immediate expression should
426/// be warned about if the result is unused.  If so, fill in Loc and Ranges
427/// with location to warn on and the source range[s] to report with the
428/// warning.
429bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
430                                  SourceRange &R2) const {
431  // Don't warn if the expr is type dependent. The type could end up
432  // instantiating to void.
433  if (isTypeDependent())
434    return false;
435
436  switch (getStmtClass()) {
437  default:
438    Loc = getExprLoc();
439    R1 = getSourceRange();
440    return true;
441  case ParenExprClass:
442    return cast<ParenExpr>(this)->getSubExpr()->
443      isUnusedResultAWarning(Loc, R1, R2);
444  case UnaryOperatorClass: {
445    const UnaryOperator *UO = cast<UnaryOperator>(this);
446
447    switch (UO->getOpcode()) {
448    default: break;
449    case UnaryOperator::PostInc:
450    case UnaryOperator::PostDec:
451    case UnaryOperator::PreInc:
452    case UnaryOperator::PreDec:                 // ++/--
453      return false;  // Not a warning.
454    case UnaryOperator::Deref:
455      // Dereferencing a volatile pointer is a side-effect.
456      if (getType().isVolatileQualified())
457        return false;
458      break;
459    case UnaryOperator::Real:
460    case UnaryOperator::Imag:
461      // accessing a piece of a volatile complex is a side-effect.
462      if (UO->getSubExpr()->getType().isVolatileQualified())
463        return false;
464      break;
465    case UnaryOperator::Extension:
466      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2);
467    }
468    Loc = UO->getOperatorLoc();
469    R1 = UO->getSubExpr()->getSourceRange();
470    return true;
471  }
472  case BinaryOperatorClass: {
473    const BinaryOperator *BO = cast<BinaryOperator>(this);
474    // Consider comma to have side effects if the LHS or RHS does.
475    if (BO->getOpcode() == BinaryOperator::Comma)
476      return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2) ||
477             BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2);
478
479    if (BO->isAssignmentOp())
480      return false;
481    Loc = BO->getOperatorLoc();
482    R1 = BO->getLHS()->getSourceRange();
483    R2 = BO->getRHS()->getSourceRange();
484    return true;
485  }
486  case CompoundAssignOperatorClass:
487    return false;
488
489  case ConditionalOperatorClass: {
490    // The condition must be evaluated, but if either the LHS or RHS is a
491    // warning, warn about them.
492    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
493    if (Exp->getLHS() &&
494        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2))
495      return true;
496    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2);
497  }
498
499  case MemberExprClass:
500    // If the base pointer or element is to a volatile pointer/field, accessing
501    // it is a side effect.
502    if (getType().isVolatileQualified())
503      return false;
504    Loc = cast<MemberExpr>(this)->getMemberLoc();
505    R1 = SourceRange(Loc, Loc);
506    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
507    return true;
508
509  case ArraySubscriptExprClass:
510    // If the base pointer or element is to a volatile pointer/field, accessing
511    // it is a side effect.
512    if (getType().isVolatileQualified())
513      return false;
514    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
515    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
516    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
517    return true;
518
519  case CallExprClass:
520  case CXXOperatorCallExprClass:
521  case CXXMemberCallExprClass: {
522    // If this is a direct call, get the callee.
523    const CallExpr *CE = cast<CallExpr>(this);
524    const Expr *CalleeExpr = CE->getCallee()->IgnoreParenCasts();
525    if (const DeclRefExpr *CalleeDRE = dyn_cast<DeclRefExpr>(CalleeExpr)) {
526      // If the callee has attribute pure, const, or warn_unused_result, warn
527      // about it. void foo() { strlen("bar"); } should warn.
528      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CalleeDRE->getDecl()))
529        if (FD->getAttr<WarnUnusedResultAttr>() ||
530            FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
531          Loc = CE->getCallee()->getLocStart();
532          R1 = CE->getCallee()->getSourceRange();
533
534          if (unsigned NumArgs = CE->getNumArgs())
535            R2 = SourceRange(CE->getArg(0)->getLocStart(),
536                             CE->getArg(NumArgs-1)->getLocEnd());
537          return true;
538        }
539    }
540    return false;
541  }
542  case ObjCMessageExprClass:
543    return false;
544
545  case ObjCKVCRefExprClass: {   // Dot syntax for message send.
546#if 0
547    const ObjCKVCRefExpr *KVCRef = cast<ObjCKVCRefExpr>(this);
548    // FIXME: We really want the location of the '.' here.
549    Loc = KVCRef->getLocation();
550    R1 = SourceRange(KVCRef->getLocation(), KVCRef->getLocation());
551    if (KVCRef->getBase())
552      R2 = KVCRef->getBase()->getSourceRange();
553#else
554    Loc = getExprLoc();
555    R1 = getSourceRange();
556#endif
557    return true;
558  }
559  case StmtExprClass: {
560    // Statement exprs don't logically have side effects themselves, but are
561    // sometimes used in macros in ways that give them a type that is unused.
562    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
563    // however, if the result of the stmt expr is dead, we don't want to emit a
564    // warning.
565    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
566    if (!CS->body_empty())
567      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
568        return E->isUnusedResultAWarning(Loc, R1, R2);
569
570    Loc = cast<StmtExpr>(this)->getLParenLoc();
571    R1 = getSourceRange();
572    return true;
573  }
574  case CStyleCastExprClass:
575    // If this is an explicit cast to void, allow it.  People do this when they
576    // think they know what they're doing :).
577    if (getType()->isVoidType())
578      return false;
579    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
580    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
581    return true;
582  case CXXFunctionalCastExprClass:
583    // If this is a cast to void, check the operand.  Otherwise, the result of
584    // the cast is unused.
585    if (getType()->isVoidType())
586      return cast<CastExpr>(this)->getSubExpr()
587               ->isUnusedResultAWarning(Loc, R1, R2);
588    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
589    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
590    return true;
591
592  case ImplicitCastExprClass:
593    // Check the operand, since implicit casts are inserted by Sema
594    return cast<ImplicitCastExpr>(this)
595      ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2);
596
597  case CXXDefaultArgExprClass:
598    return cast<CXXDefaultArgExpr>(this)
599      ->getExpr()->isUnusedResultAWarning(Loc, R1, R2);
600
601  case CXXNewExprClass:
602    // FIXME: In theory, there might be new expressions that don't have side
603    // effects (e.g. a placement new with an uninitialized POD).
604  case CXXDeleteExprClass:
605    return false;
606  case CXXBindTemporaryExprClass:
607    return cast<CXXBindTemporaryExpr>(this)
608      ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2);
609  case CXXExprWithTemporariesClass:
610    return cast<CXXExprWithTemporaries>(this)
611      ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2);
612  }
613}
614
615/// DeclCanBeLvalue - Determine whether the given declaration can be
616/// an lvalue. This is a helper routine for isLvalue.
617static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
618  // C++ [temp.param]p6:
619  //   A non-type non-reference template-parameter is not an lvalue.
620  if (const NonTypeTemplateParmDecl *NTTParm
621        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
622    return NTTParm->getType()->isReferenceType();
623
624  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
625    // C++ 3.10p2: An lvalue refers to an object or function.
626    (Ctx.getLangOptions().CPlusPlus &&
627     (isa<FunctionDecl>(Decl) || isa<OverloadedFunctionDecl>(Decl) ||
628      isa<FunctionTemplateDecl>(Decl)));
629}
630
631/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
632/// incomplete type other than void. Nonarray expressions that can be lvalues:
633///  - name, where name must be a variable
634///  - e[i]
635///  - (e), where e must be an lvalue
636///  - e.name, where e must be an lvalue
637///  - e->name
638///  - *e, the type of e cannot be a function type
639///  - string-constant
640///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
641///  - reference type [C++ [expr]]
642///
643Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
644  assert(!TR->isReferenceType() && "Expressions can't have reference type.");
645
646  isLvalueResult Res = isLvalueInternal(Ctx);
647  if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
648    return Res;
649
650  // first, check the type (C99 6.3.2.1). Expressions with function
651  // type in C are not lvalues, but they can be lvalues in C++.
652  if (TR->isFunctionType() || TR == Ctx.OverloadTy)
653    return LV_NotObjectType;
654
655  // Allow qualified void which is an incomplete type other than void (yuck).
656  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).getCVRQualifiers())
657    return LV_IncompleteVoidType;
658
659  return LV_Valid;
660}
661
662// Check whether the expression can be sanely treated like an l-value
663Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
664  switch (getStmtClass()) {
665  case StringLiteralClass:  // C99 6.5.1p4
666  case ObjCEncodeExprClass: // @encode behaves like its string in every way.
667    return LV_Valid;
668  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
669    // For vectors, make sure base is an lvalue (i.e. not a function call).
670    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
671      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
672    return LV_Valid;
673  case DeclRefExprClass:
674  case QualifiedDeclRefExprClass: { // C99 6.5.1p2
675    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
676    if (DeclCanBeLvalue(RefdDecl, Ctx))
677      return LV_Valid;
678    break;
679  }
680  case BlockDeclRefExprClass: {
681    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
682    if (isa<VarDecl>(BDR->getDecl()))
683      return LV_Valid;
684    break;
685  }
686  case MemberExprClass: {
687    const MemberExpr *m = cast<MemberExpr>(this);
688    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
689      NamedDecl *Member = m->getMemberDecl();
690      // C++ [expr.ref]p4:
691      //   If E2 is declared to have type "reference to T", then E1.E2
692      //   is an lvalue.
693      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
694        if (Value->getType()->isReferenceType())
695          return LV_Valid;
696
697      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
698      if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
699        return LV_Valid;
700
701      //   -- If E2 is a non-static data member [...]. If E1 is an
702      //      lvalue, then E1.E2 is an lvalue.
703      if (isa<FieldDecl>(Member))
704        return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
705
706      //   -- If it refers to a static member function [...], then
707      //      E1.E2 is an lvalue.
708      //   -- Otherwise, if E1.E2 refers to a non-static member
709      //      function [...], then E1.E2 is not an lvalue.
710      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
711        return Method->isStatic()? LV_Valid : LV_MemberFunction;
712
713      //   -- If E2 is a member enumerator [...], the expression E1.E2
714      //      is not an lvalue.
715      if (isa<EnumConstantDecl>(Member))
716        return LV_InvalidExpression;
717
718        // Not an lvalue.
719      return LV_InvalidExpression;
720    }
721
722    // C99 6.5.2.3p4
723    return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
724  }
725  case UnaryOperatorClass:
726    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
727      return LV_Valid; // C99 6.5.3p4
728
729    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
730        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
731        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
732      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
733
734    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
735        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
736         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
737      return LV_Valid;
738    break;
739  case ImplicitCastExprClass:
740    return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid
741                                                       : LV_InvalidExpression;
742  case ParenExprClass: // C99 6.5.1p5
743    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
744  case BinaryOperatorClass:
745  case CompoundAssignOperatorClass: {
746    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
747
748    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
749        BinOp->getOpcode() == BinaryOperator::Comma)
750      return BinOp->getRHS()->isLvalue(Ctx);
751
752    // C++ [expr.mptr.oper]p6
753    if ((BinOp->getOpcode() == BinaryOperator::PtrMemD ||
754         BinOp->getOpcode() == BinaryOperator::PtrMemI) &&
755        !BinOp->getType()->isFunctionType())
756      return BinOp->getLHS()->isLvalue(Ctx);
757
758    if (!BinOp->isAssignmentOp())
759      return LV_InvalidExpression;
760
761    if (Ctx.getLangOptions().CPlusPlus)
762      // C++ [expr.ass]p1:
763      //   The result of an assignment operation [...] is an lvalue.
764      return LV_Valid;
765
766
767    // C99 6.5.16:
768    //   An assignment expression [...] is not an lvalue.
769    return LV_InvalidExpression;
770  }
771  case CallExprClass:
772  case CXXOperatorCallExprClass:
773  case CXXMemberCallExprClass: {
774    // C++0x [expr.call]p10
775    //   A function call is an lvalue if and only if the result type
776    //   is an lvalue reference.
777    QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
778    if (ReturnType->isLValueReferenceType())
779      return LV_Valid;
780
781    break;
782  }
783  case CompoundLiteralExprClass: // C99 6.5.2.5p5
784    return LV_Valid;
785  case ChooseExprClass:
786    // __builtin_choose_expr is an lvalue if the selected operand is.
787    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
788  case ExtVectorElementExprClass:
789    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
790      return LV_DuplicateVectorComponents;
791    return LV_Valid;
792  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
793    return LV_Valid;
794  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
795    return LV_Valid;
796  case ObjCKVCRefExprClass: // FIXME: check if read-only property.
797    return LV_Valid;
798  case PredefinedExprClass:
799    return LV_Valid;
800  case CXXDefaultArgExprClass:
801    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
802  case CXXConditionDeclExprClass:
803    return LV_Valid;
804  case CStyleCastExprClass:
805  case CXXFunctionalCastExprClass:
806  case CXXStaticCastExprClass:
807  case CXXDynamicCastExprClass:
808  case CXXReinterpretCastExprClass:
809  case CXXConstCastExprClass:
810    // The result of an explicit cast is an lvalue if the type we are
811    // casting to is an lvalue reference type. See C++ [expr.cast]p1,
812    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
813    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
814    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
815          isLValueReferenceType())
816      return LV_Valid;
817    break;
818  case CXXTypeidExprClass:
819    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
820    return LV_Valid;
821  case CXXBindTemporaryExprClass:
822    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()->
823      isLvalueInternal(Ctx);
824  case ConditionalOperatorClass: {
825    // Complicated handling is only for C++.
826    if (!Ctx.getLangOptions().CPlusPlus)
827      return LV_InvalidExpression;
828
829    // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
830    // everywhere there's an object converted to an rvalue. Also, any other
831    // casts should be wrapped by ImplicitCastExprs. There's just the special
832    // case involving throws to work out.
833    const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
834    Expr *True = Cond->getTrueExpr();
835    Expr *False = Cond->getFalseExpr();
836    // C++0x 5.16p2
837    //   If either the second or the third operand has type (cv) void, [...]
838    //   the result [...] is an rvalue.
839    if (True->getType()->isVoidType() || False->getType()->isVoidType())
840      return LV_InvalidExpression;
841
842    // Both sides must be lvalues for the result to be an lvalue.
843    if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
844      return LV_InvalidExpression;
845
846    // That's it.
847    return LV_Valid;
848  }
849
850  default:
851    break;
852  }
853  return LV_InvalidExpression;
854}
855
856/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
857/// does not have an incomplete type, does not have a const-qualified type, and
858/// if it is a structure or union, does not have any member (including,
859/// recursively, any member or element of all contained aggregates or unions)
860/// with a const-qualified type.
861Expr::isModifiableLvalueResult
862Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
863  isLvalueResult lvalResult = isLvalue(Ctx);
864
865  switch (lvalResult) {
866  case LV_Valid:
867    // C++ 3.10p11: Functions cannot be modified, but pointers to
868    // functions can be modifiable.
869    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
870      return MLV_NotObjectType;
871    break;
872
873  case LV_NotObjectType: return MLV_NotObjectType;
874  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
875  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
876  case LV_InvalidExpression:
877    // If the top level is a C-style cast, and the subexpression is a valid
878    // lvalue, then this is probably a use of the old-school "cast as lvalue"
879    // GCC extension.  We don't support it, but we want to produce good
880    // diagnostics when it happens so that the user knows why.
881    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
882      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
883        if (Loc)
884          *Loc = CE->getLParenLoc();
885        return MLV_LValueCast;
886      }
887    }
888    return MLV_InvalidExpression;
889  case LV_MemberFunction: return MLV_MemberFunction;
890  }
891
892  // The following is illegal:
893  //   void takeclosure(void (^C)(void));
894  //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
895  //
896  if (isa<BlockDeclRefExpr>(this)) {
897    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
898    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
899      return MLV_NotBlockQualified;
900  }
901
902  QualType CT = Ctx.getCanonicalType(getType());
903
904  if (CT.isConstQualified())
905    return MLV_ConstQualified;
906  if (CT->isArrayType())
907    return MLV_ArrayType;
908  if (CT->isIncompleteType())
909    return MLV_IncompleteType;
910
911  if (const RecordType *r = CT->getAs<RecordType>()) {
912    if (r->hasConstFields())
913      return MLV_ConstQualified;
914  }
915
916  // Assigning to an 'implicit' property?
917  else if (isa<ObjCKVCRefExpr>(this)) {
918    const ObjCKVCRefExpr* KVCExpr = cast<ObjCKVCRefExpr>(this);
919    if (KVCExpr->getSetterMethod() == 0)
920      return MLV_NoSetterProperty;
921  }
922  return MLV_Valid;
923}
924
925/// hasGlobalStorage - Return true if this expression has static storage
926/// duration.  This means that the address of this expression is a link-time
927/// constant.
928bool Expr::hasGlobalStorage() const {
929  switch (getStmtClass()) {
930  default:
931    return false;
932  case BlockExprClass:
933    return true;
934  case ParenExprClass:
935    return cast<ParenExpr>(this)->getSubExpr()->hasGlobalStorage();
936  case ImplicitCastExprClass:
937    return cast<ImplicitCastExpr>(this)->getSubExpr()->hasGlobalStorage();
938  case CompoundLiteralExprClass:
939    return cast<CompoundLiteralExpr>(this)->isFileScope();
940  case DeclRefExprClass:
941  case QualifiedDeclRefExprClass: {
942    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
943    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
944      return VD->hasGlobalStorage();
945    if (isa<FunctionDecl>(D))
946      return true;
947    return false;
948  }
949  case MemberExprClass: {
950    const MemberExpr *M = cast<MemberExpr>(this);
951    return !M->isArrow() && M->getBase()->hasGlobalStorage();
952  }
953  case ArraySubscriptExprClass:
954    return cast<ArraySubscriptExpr>(this)->getBase()->hasGlobalStorage();
955  case PredefinedExprClass:
956    return true;
957  case CXXDefaultArgExprClass:
958    return cast<CXXDefaultArgExpr>(this)->getExpr()->hasGlobalStorage();
959  }
960}
961
962/// isOBJCGCCandidate - Check if an expression is objc gc'able.
963///
964bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
965  switch (getStmtClass()) {
966  default:
967    return false;
968  case ObjCIvarRefExprClass:
969    return true;
970  case Expr::UnaryOperatorClass:
971    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
972  case ParenExprClass:
973    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
974  case ImplicitCastExprClass:
975    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
976  case CStyleCastExprClass:
977    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
978  case DeclRefExprClass:
979  case QualifiedDeclRefExprClass: {
980    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
981    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
982      if (VD->hasGlobalStorage())
983        return true;
984      QualType T = VD->getType();
985      // dereferencing to an object pointer is always a gc'able candidate
986      if (T->isPointerType() &&
987          T->getAs<PointerType>()->getPointeeType()->isObjCObjectPointerType())
988        return true;
989
990    }
991    return false;
992  }
993  case MemberExprClass: {
994    const MemberExpr *M = cast<MemberExpr>(this);
995    return M->getBase()->isOBJCGCCandidate(Ctx);
996  }
997  case ArraySubscriptExprClass:
998    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
999  }
1000}
1001Expr* Expr::IgnoreParens() {
1002  Expr* E = this;
1003  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
1004    E = P->getSubExpr();
1005
1006  return E;
1007}
1008
1009/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1010/// or CastExprs or ImplicitCastExprs, returning their operand.
1011Expr *Expr::IgnoreParenCasts() {
1012  Expr *E = this;
1013  while (true) {
1014    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1015      E = P->getSubExpr();
1016    else if (CastExpr *P = dyn_cast<CastExpr>(E))
1017      E = P->getSubExpr();
1018    else
1019      return E;
1020  }
1021}
1022
1023/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1024/// value (including ptr->int casts of the same size).  Strip off any
1025/// ParenExpr or CastExprs, returning their operand.
1026Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1027  Expr *E = this;
1028  while (true) {
1029    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1030      E = P->getSubExpr();
1031      continue;
1032    }
1033
1034    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1035      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1036      // ptr<->int casts of the same width.  We also ignore all identify casts.
1037      Expr *SE = P->getSubExpr();
1038
1039      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1040        E = SE;
1041        continue;
1042      }
1043
1044      if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
1045          (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
1046          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1047        E = SE;
1048        continue;
1049      }
1050    }
1051
1052    return E;
1053  }
1054}
1055
1056
1057/// hasAnyTypeDependentArguments - Determines if any of the expressions
1058/// in Exprs is type-dependent.
1059bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1060  for (unsigned I = 0; I < NumExprs; ++I)
1061    if (Exprs[I]->isTypeDependent())
1062      return true;
1063
1064  return false;
1065}
1066
1067/// hasAnyValueDependentArguments - Determines if any of the expressions
1068/// in Exprs is value-dependent.
1069bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1070  for (unsigned I = 0; I < NumExprs; ++I)
1071    if (Exprs[I]->isValueDependent())
1072      return true;
1073
1074  return false;
1075}
1076
1077bool Expr::isConstantInitializer(ASTContext &Ctx) const {
1078  // This function is attempting whether an expression is an initializer
1079  // which can be evaluated at compile-time.  isEvaluatable handles most
1080  // of the cases, but it can't deal with some initializer-specific
1081  // expressions, and it can't deal with aggregates; we deal with those here,
1082  // and fall back to isEvaluatable for the other cases.
1083
1084  // FIXME: This function assumes the variable being assigned to
1085  // isn't a reference type!
1086
1087  switch (getStmtClass()) {
1088  default: break;
1089  case StringLiteralClass:
1090  case ObjCStringLiteralClass:
1091  case ObjCEncodeExprClass:
1092    return true;
1093  case CompoundLiteralExprClass: {
1094    // This handles gcc's extension that allows global initializers like
1095    // "struct x {int x;} x = (struct x) {};".
1096    // FIXME: This accepts other cases it shouldn't!
1097    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1098    return Exp->isConstantInitializer(Ctx);
1099  }
1100  case InitListExprClass: {
1101    // FIXME: This doesn't deal with fields with reference types correctly.
1102    // FIXME: This incorrectly allows pointers cast to integers to be assigned
1103    // to bitfields.
1104    const InitListExpr *Exp = cast<InitListExpr>(this);
1105    unsigned numInits = Exp->getNumInits();
1106    for (unsigned i = 0; i < numInits; i++) {
1107      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
1108        return false;
1109    }
1110    return true;
1111  }
1112  case ImplicitValueInitExprClass:
1113    return true;
1114  case ParenExprClass: {
1115    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1116  }
1117  case UnaryOperatorClass: {
1118    const UnaryOperator* Exp = cast<UnaryOperator>(this);
1119    if (Exp->getOpcode() == UnaryOperator::Extension)
1120      return Exp->getSubExpr()->isConstantInitializer(Ctx);
1121    break;
1122  }
1123  case ImplicitCastExprClass:
1124  case CStyleCastExprClass:
1125    // Handle casts with a destination that's a struct or union; this
1126    // deals with both the gcc no-op struct cast extension and the
1127    // cast-to-union extension.
1128    if (getType()->isRecordType())
1129      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1130    break;
1131  }
1132  return isEvaluatable(Ctx);
1133}
1134
1135/// isIntegerConstantExpr - this recursive routine will test if an expression is
1136/// an integer constant expression.
1137
1138/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
1139/// comma, etc
1140///
1141/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
1142/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
1143/// cast+dereference.
1144
1145// CheckICE - This function does the fundamental ICE checking: the returned
1146// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
1147// Note that to reduce code duplication, this helper does no evaluation
1148// itself; the caller checks whether the expression is evaluatable, and
1149// in the rare cases where CheckICE actually cares about the evaluated
1150// value, it calls into Evalute.
1151//
1152// Meanings of Val:
1153// 0: This expression is an ICE if it can be evaluated by Evaluate.
1154// 1: This expression is not an ICE, but if it isn't evaluated, it's
1155//    a legal subexpression for an ICE. This return value is used to handle
1156//    the comma operator in C99 mode.
1157// 2: This expression is not an ICE, and is not a legal subexpression for one.
1158
1159struct ICEDiag {
1160  unsigned Val;
1161  SourceLocation Loc;
1162
1163  public:
1164  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
1165  ICEDiag() : Val(0) {}
1166};
1167
1168ICEDiag NoDiag() { return ICEDiag(); }
1169
1170static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
1171  Expr::EvalResult EVResult;
1172  if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1173      !EVResult.Val.isInt()) {
1174    return ICEDiag(2, E->getLocStart());
1175  }
1176  return NoDiag();
1177}
1178
1179static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
1180  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
1181  if (!E->getType()->isIntegralType()) {
1182    return ICEDiag(2, E->getLocStart());
1183  }
1184
1185  switch (E->getStmtClass()) {
1186  default:
1187    return ICEDiag(2, E->getLocStart());
1188  case Expr::ParenExprClass:
1189    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
1190  case Expr::IntegerLiteralClass:
1191  case Expr::CharacterLiteralClass:
1192  case Expr::CXXBoolLiteralExprClass:
1193  case Expr::CXXZeroInitValueExprClass:
1194  case Expr::TypesCompatibleExprClass:
1195  case Expr::UnaryTypeTraitExprClass:
1196    return NoDiag();
1197  case Expr::CallExprClass:
1198  case Expr::CXXOperatorCallExprClass: {
1199    const CallExpr *CE = cast<CallExpr>(E);
1200    if (CE->isBuiltinCall(Ctx))
1201      return CheckEvalInICE(E, Ctx);
1202    return ICEDiag(2, E->getLocStart());
1203  }
1204  case Expr::DeclRefExprClass:
1205  case Expr::QualifiedDeclRefExprClass:
1206    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
1207      return NoDiag();
1208    if (Ctx.getLangOptions().CPlusPlus &&
1209        E->getType().getCVRQualifiers() == QualType::Const) {
1210      // C++ 7.1.5.1p2
1211      //   A variable of non-volatile const-qualified integral or enumeration
1212      //   type initialized by an ICE can be used in ICEs.
1213      if (const VarDecl *Dcl =
1214              dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
1215        if (Dcl->isInitKnownICE()) {
1216          // We have already checked whether this subexpression is an
1217          // integral constant expression.
1218          if (Dcl->isInitICE())
1219            return NoDiag();
1220          else
1221            return ICEDiag(2, E->getLocStart());
1222        }
1223
1224        if (const Expr *Init = Dcl->getInit()) {
1225          ICEDiag Result = CheckICE(Init, Ctx);
1226          // Cache the result of the ICE test.
1227          Dcl->setInitKnownICE(Ctx, Result.Val == 0);
1228          return Result;
1229        }
1230      }
1231    }
1232    return ICEDiag(2, E->getLocStart());
1233  case Expr::UnaryOperatorClass: {
1234    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1235    switch (Exp->getOpcode()) {
1236    default:
1237      return ICEDiag(2, E->getLocStart());
1238    case UnaryOperator::Extension:
1239    case UnaryOperator::LNot:
1240    case UnaryOperator::Plus:
1241    case UnaryOperator::Minus:
1242    case UnaryOperator::Not:
1243    case UnaryOperator::Real:
1244    case UnaryOperator::Imag:
1245      return CheckICE(Exp->getSubExpr(), Ctx);
1246    case UnaryOperator::OffsetOf:
1247      // Note that per C99, offsetof must be an ICE. And AFAIK, using
1248      // Evaluate matches the proposed gcc behavior for cases like
1249      // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect
1250      // compliance: we should warn earlier for offsetof expressions with
1251      // array subscripts that aren't ICEs, and if the array subscripts
1252      // are ICEs, the value of the offsetof must be an integer constant.
1253      return CheckEvalInICE(E, Ctx);
1254    }
1255  }
1256  case Expr::SizeOfAlignOfExprClass: {
1257    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
1258    if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
1259      return ICEDiag(2, E->getLocStart());
1260    return NoDiag();
1261  }
1262  case Expr::BinaryOperatorClass: {
1263    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1264    switch (Exp->getOpcode()) {
1265    default:
1266      return ICEDiag(2, E->getLocStart());
1267    case BinaryOperator::Mul:
1268    case BinaryOperator::Div:
1269    case BinaryOperator::Rem:
1270    case BinaryOperator::Add:
1271    case BinaryOperator::Sub:
1272    case BinaryOperator::Shl:
1273    case BinaryOperator::Shr:
1274    case BinaryOperator::LT:
1275    case BinaryOperator::GT:
1276    case BinaryOperator::LE:
1277    case BinaryOperator::GE:
1278    case BinaryOperator::EQ:
1279    case BinaryOperator::NE:
1280    case BinaryOperator::And:
1281    case BinaryOperator::Xor:
1282    case BinaryOperator::Or:
1283    case BinaryOperator::Comma: {
1284      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1285      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1286      if (Exp->getOpcode() == BinaryOperator::Div ||
1287          Exp->getOpcode() == BinaryOperator::Rem) {
1288        // Evaluate gives an error for undefined Div/Rem, so make sure
1289        // we don't evaluate one.
1290        if (LHSResult.Val != 2 && RHSResult.Val != 2) {
1291          llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
1292          if (REval == 0)
1293            return ICEDiag(1, E->getLocStart());
1294          if (REval.isSigned() && REval.isAllOnesValue()) {
1295            llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
1296            if (LEval.isMinSignedValue())
1297              return ICEDiag(1, E->getLocStart());
1298          }
1299        }
1300      }
1301      if (Exp->getOpcode() == BinaryOperator::Comma) {
1302        if (Ctx.getLangOptions().C99) {
1303          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
1304          // if it isn't evaluated.
1305          if (LHSResult.Val == 0 && RHSResult.Val == 0)
1306            return ICEDiag(1, E->getLocStart());
1307        } else {
1308          // In both C89 and C++, commas in ICEs are illegal.
1309          return ICEDiag(2, E->getLocStart());
1310        }
1311      }
1312      if (LHSResult.Val >= RHSResult.Val)
1313        return LHSResult;
1314      return RHSResult;
1315    }
1316    case BinaryOperator::LAnd:
1317    case BinaryOperator::LOr: {
1318      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1319      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1320      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
1321        // Rare case where the RHS has a comma "side-effect"; we need
1322        // to actually check the condition to see whether the side
1323        // with the comma is evaluated.
1324        if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
1325            (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
1326          return RHSResult;
1327        return NoDiag();
1328      }
1329
1330      if (LHSResult.Val >= RHSResult.Val)
1331        return LHSResult;
1332      return RHSResult;
1333    }
1334    }
1335  }
1336  case Expr::ImplicitCastExprClass:
1337  case Expr::CStyleCastExprClass:
1338  case Expr::CXXFunctionalCastExprClass: {
1339    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
1340    if (SubExpr->getType()->isIntegralType())
1341      return CheckICE(SubExpr, Ctx);
1342    if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
1343      return NoDiag();
1344    return ICEDiag(2, E->getLocStart());
1345  }
1346  case Expr::ConditionalOperatorClass: {
1347    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
1348    // If the condition (ignoring parens) is a __builtin_constant_p call,
1349    // then only the true side is actually considered in an integer constant
1350    // expression, and it is fully evaluated.  This is an important GNU
1351    // extension.  See GCC PR38377 for discussion.
1352    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
1353      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
1354        Expr::EvalResult EVResult;
1355        if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1356            !EVResult.Val.isInt()) {
1357          return ICEDiag(2, E->getLocStart());
1358        }
1359        return NoDiag();
1360      }
1361    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
1362    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
1363    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
1364    if (CondResult.Val == 2)
1365      return CondResult;
1366    if (TrueResult.Val == 2)
1367      return TrueResult;
1368    if (FalseResult.Val == 2)
1369      return FalseResult;
1370    if (CondResult.Val == 1)
1371      return CondResult;
1372    if (TrueResult.Val == 0 && FalseResult.Val == 0)
1373      return NoDiag();
1374    // Rare case where the diagnostics depend on which side is evaluated
1375    // Note that if we get here, CondResult is 0, and at least one of
1376    // TrueResult and FalseResult is non-zero.
1377    if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
1378      return FalseResult;
1379    }
1380    return TrueResult;
1381  }
1382  case Expr::CXXDefaultArgExprClass:
1383    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
1384  case Expr::ChooseExprClass: {
1385    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
1386  }
1387  }
1388}
1389
1390bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
1391                                 SourceLocation *Loc, bool isEvaluated) const {
1392  ICEDiag d = CheckICE(this, Ctx);
1393  if (d.Val != 0) {
1394    if (Loc) *Loc = d.Loc;
1395    return false;
1396  }
1397  EvalResult EvalResult;
1398  if (!Evaluate(EvalResult, Ctx))
1399    assert(0 && "ICE cannot be evaluated!");
1400  assert(!EvalResult.HasSideEffects && "ICE with side effects!");
1401  assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
1402  Result = EvalResult.Val.getInt();
1403  return true;
1404}
1405
1406/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1407/// integer constant expression with the value zero, or if this is one that is
1408/// cast to void*.
1409bool Expr::isNullPointerConstant(ASTContext &Ctx) const
1410{
1411  // Strip off a cast to void*, if it exists. Except in C++.
1412  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1413    if (!Ctx.getLangOptions().CPlusPlus) {
1414      // Check that it is a cast to void*.
1415      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
1416        QualType Pointee = PT->getPointeeType();
1417        if (Pointee.getCVRQualifiers() == 0 &&
1418            Pointee->isVoidType() &&                              // to void*
1419            CE->getSubExpr()->getType()->isIntegerType())         // from int.
1420          return CE->getSubExpr()->isNullPointerConstant(Ctx);
1421      }
1422    }
1423  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1424    // Ignore the ImplicitCastExpr type entirely.
1425    return ICE->getSubExpr()->isNullPointerConstant(Ctx);
1426  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1427    // Accept ((void*)0) as a null pointer constant, as many other
1428    // implementations do.
1429    return PE->getSubExpr()->isNullPointerConstant(Ctx);
1430  } else if (const CXXDefaultArgExpr *DefaultArg
1431               = dyn_cast<CXXDefaultArgExpr>(this)) {
1432    // See through default argument expressions
1433    return DefaultArg->getExpr()->isNullPointerConstant(Ctx);
1434  } else if (isa<GNUNullExpr>(this)) {
1435    // The GNU __null extension is always a null pointer constant.
1436    return true;
1437  }
1438
1439  // C++0x nullptr_t is always a null pointer constant.
1440  if (getType()->isNullPtrType())
1441    return true;
1442
1443  // This expression must be an integer type.
1444  if (!getType()->isIntegerType())
1445    return false;
1446
1447  // If we have an integer constant expression, we need to *evaluate* it and
1448  // test for the value 0.
1449  llvm::APSInt Result;
1450  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
1451}
1452
1453FieldDecl *Expr::getBitField() {
1454  Expr *E = this->IgnoreParens();
1455
1456  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
1457    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
1458      if (Field->isBitField())
1459        return Field;
1460
1461  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
1462    if (BinOp->isAssignmentOp() && BinOp->getLHS())
1463      return BinOp->getLHS()->getBitField();
1464
1465  return 0;
1466}
1467
1468/// isArrow - Return true if the base expression is a pointer to vector,
1469/// return false if the base expression is a vector.
1470bool ExtVectorElementExpr::isArrow() const {
1471  return getBase()->getType()->isPointerType();
1472}
1473
1474unsigned ExtVectorElementExpr::getNumElements() const {
1475  if (const VectorType *VT = getType()->getAsVectorType())
1476    return VT->getNumElements();
1477  return 1;
1478}
1479
1480/// containsDuplicateElements - Return true if any element access is repeated.
1481bool ExtVectorElementExpr::containsDuplicateElements() const {
1482  const char *compStr = Accessor->getName();
1483  unsigned length = Accessor->getLength();
1484
1485  // Halving swizzles do not contain duplicate elements.
1486  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
1487      !strcmp(compStr, "even") || !strcmp(compStr, "odd"))
1488    return false;
1489
1490  // Advance past s-char prefix on hex swizzles.
1491  if (*compStr == 's' || *compStr == 'S') {
1492    compStr++;
1493    length--;
1494  }
1495
1496  for (unsigned i = 0; i != length-1; i++) {
1497    const char *s = compStr+i;
1498    for (const char c = *s++; *s; s++)
1499      if (c == *s)
1500        return true;
1501  }
1502  return false;
1503}
1504
1505/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
1506void ExtVectorElementExpr::getEncodedElementAccess(
1507                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
1508  const char *compStr = Accessor->getName();
1509  if (*compStr == 's' || *compStr == 'S')
1510    compStr++;
1511
1512  bool isHi =   !strcmp(compStr, "hi");
1513  bool isLo =   !strcmp(compStr, "lo");
1514  bool isEven = !strcmp(compStr, "even");
1515  bool isOdd  = !strcmp(compStr, "odd");
1516
1517  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
1518    uint64_t Index;
1519
1520    if (isHi)
1521      Index = e + i;
1522    else if (isLo)
1523      Index = i;
1524    else if (isEven)
1525      Index = 2 * i;
1526    else if (isOdd)
1527      Index = 2 * i + 1;
1528    else
1529      Index = ExtVectorType::getAccessorIdx(compStr[i]);
1530
1531    Elts.push_back(Index);
1532  }
1533}
1534
1535// constructor for instance messages.
1536ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
1537                QualType retType, ObjCMethodDecl *mproto,
1538                SourceLocation LBrac, SourceLocation RBrac,
1539                Expr **ArgExprs, unsigned nargs)
1540  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1541    MethodProto(mproto) {
1542  NumArgs = nargs;
1543  SubExprs = new Stmt*[NumArgs+1];
1544  SubExprs[RECEIVER] = receiver;
1545  if (NumArgs) {
1546    for (unsigned i = 0; i != NumArgs; ++i)
1547      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1548  }
1549  LBracloc = LBrac;
1550  RBracloc = RBrac;
1551}
1552
1553// constructor for class messages.
1554// FIXME: clsName should be typed to ObjCInterfaceType
1555ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
1556                QualType retType, ObjCMethodDecl *mproto,
1557                SourceLocation LBrac, SourceLocation RBrac,
1558                Expr **ArgExprs, unsigned nargs)
1559  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1560    MethodProto(mproto) {
1561  NumArgs = nargs;
1562  SubExprs = new Stmt*[NumArgs+1];
1563  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
1564  if (NumArgs) {
1565    for (unsigned i = 0; i != NumArgs; ++i)
1566      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1567  }
1568  LBracloc = LBrac;
1569  RBracloc = RBrac;
1570}
1571
1572// constructor for class messages.
1573ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
1574                                 QualType retType, ObjCMethodDecl *mproto,
1575                                 SourceLocation LBrac, SourceLocation RBrac,
1576                                 Expr **ArgExprs, unsigned nargs)
1577: Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1578MethodProto(mproto) {
1579  NumArgs = nargs;
1580  SubExprs = new Stmt*[NumArgs+1];
1581  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
1582  if (NumArgs) {
1583    for (unsigned i = 0; i != NumArgs; ++i)
1584      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1585  }
1586  LBracloc = LBrac;
1587  RBracloc = RBrac;
1588}
1589
1590ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
1591  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
1592  switch (x & Flags) {
1593    default:
1594      assert(false && "Invalid ObjCMessageExpr.");
1595    case IsInstMeth:
1596      return ClassInfo(0, 0);
1597    case IsClsMethDeclUnknown:
1598      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
1599    case IsClsMethDeclKnown: {
1600      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
1601      return ClassInfo(D, D->getIdentifier());
1602    }
1603  }
1604}
1605
1606void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) {
1607  if (CI.first == 0 && CI.second == 0)
1608    SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth);
1609  else if (CI.first == 0)
1610    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.second | IsClsMethDeclUnknown);
1611  else
1612    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.first | IsClsMethDeclKnown);
1613}
1614
1615
1616bool ChooseExpr::isConditionTrue(ASTContext &C) const {
1617  return getCond()->EvaluateAsInt(C) != 0;
1618}
1619
1620void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
1621                                 unsigned NumExprs) {
1622  if (SubExprs) C.Deallocate(SubExprs);
1623
1624  SubExprs = new (C) Stmt* [NumExprs];
1625  this->NumExprs = NumExprs;
1626  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
1627}
1628
1629void ShuffleVectorExpr::DoDestroy(ASTContext& C) {
1630  DestroyChildren(C);
1631  if (SubExprs) C.Deallocate(SubExprs);
1632  this->~ShuffleVectorExpr();
1633  C.Deallocate(this);
1634}
1635
1636void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) {
1637  // Override default behavior of traversing children. If this has a type
1638  // operand and the type is a variable-length array, the child iteration
1639  // will iterate over the size expression. However, this expression belongs
1640  // to the type, not to this, so we don't want to delete it.
1641  // We still want to delete this expression.
1642  if (isArgumentType()) {
1643    this->~SizeOfAlignOfExpr();
1644    C.Deallocate(this);
1645  }
1646  else
1647    Expr::DoDestroy(C);
1648}
1649
1650//===----------------------------------------------------------------------===//
1651//  DesignatedInitExpr
1652//===----------------------------------------------------------------------===//
1653
1654IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
1655  assert(Kind == FieldDesignator && "Only valid on a field designator");
1656  if (Field.NameOrField & 0x01)
1657    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
1658  else
1659    return getField()->getIdentifier();
1660}
1661
1662DesignatedInitExpr::DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
1663                                       const Designator *Designators,
1664                                       SourceLocation EqualOrColonLoc,
1665                                       bool GNUSyntax,
1666                                       Expr **IndexExprs,
1667                                       unsigned NumIndexExprs,
1668                                       Expr *Init)
1669  : Expr(DesignatedInitExprClass, Ty,
1670         Init->isTypeDependent(), Init->isValueDependent()),
1671    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
1672    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
1673  this->Designators = new Designator[NumDesignators];
1674
1675  // Record the initializer itself.
1676  child_iterator Child = child_begin();
1677  *Child++ = Init;
1678
1679  // Copy the designators and their subexpressions, computing
1680  // value-dependence along the way.
1681  unsigned IndexIdx = 0;
1682  for (unsigned I = 0; I != NumDesignators; ++I) {
1683    this->Designators[I] = Designators[I];
1684
1685    if (this->Designators[I].isArrayDesignator()) {
1686      // Compute type- and value-dependence.
1687      Expr *Index = IndexExprs[IndexIdx];
1688      ValueDependent = ValueDependent ||
1689        Index->isTypeDependent() || Index->isValueDependent();
1690
1691      // Copy the index expressions into permanent storage.
1692      *Child++ = IndexExprs[IndexIdx++];
1693    } else if (this->Designators[I].isArrayRangeDesignator()) {
1694      // Compute type- and value-dependence.
1695      Expr *Start = IndexExprs[IndexIdx];
1696      Expr *End = IndexExprs[IndexIdx + 1];
1697      ValueDependent = ValueDependent ||
1698        Start->isTypeDependent() || Start->isValueDependent() ||
1699        End->isTypeDependent() || End->isValueDependent();
1700
1701      // Copy the start/end expressions into permanent storage.
1702      *Child++ = IndexExprs[IndexIdx++];
1703      *Child++ = IndexExprs[IndexIdx++];
1704    }
1705  }
1706
1707  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
1708}
1709
1710DesignatedInitExpr *
1711DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
1712                           unsigned NumDesignators,
1713                           Expr **IndexExprs, unsigned NumIndexExprs,
1714                           SourceLocation ColonOrEqualLoc,
1715                           bool UsesColonSyntax, Expr *Init) {
1716  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
1717                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
1718  return new (Mem) DesignatedInitExpr(C.VoidTy, NumDesignators, Designators,
1719                                      ColonOrEqualLoc, UsesColonSyntax,
1720                                      IndexExprs, NumIndexExprs, Init);
1721}
1722
1723DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
1724                                                    unsigned NumIndexExprs) {
1725  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
1726                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
1727  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
1728}
1729
1730void DesignatedInitExpr::setDesignators(const Designator *Desigs,
1731                                        unsigned NumDesigs) {
1732  if (Designators)
1733    delete [] Designators;
1734
1735  Designators = new Designator[NumDesigs];
1736  NumDesignators = NumDesigs;
1737  for (unsigned I = 0; I != NumDesigs; ++I)
1738    Designators[I] = Desigs[I];
1739}
1740
1741SourceRange DesignatedInitExpr::getSourceRange() const {
1742  SourceLocation StartLoc;
1743  Designator &First =
1744    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
1745  if (First.isFieldDesignator()) {
1746    if (GNUSyntax)
1747      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
1748    else
1749      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
1750  } else
1751    StartLoc =
1752      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
1753  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
1754}
1755
1756Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
1757  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
1758  char* Ptr = static_cast<char*>(static_cast<void *>(this));
1759  Ptr += sizeof(DesignatedInitExpr);
1760  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
1761  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
1762}
1763
1764Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
1765  assert(D.Kind == Designator::ArrayRangeDesignator &&
1766         "Requires array range designator");
1767  char* Ptr = static_cast<char*>(static_cast<void *>(this));
1768  Ptr += sizeof(DesignatedInitExpr);
1769  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
1770  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
1771}
1772
1773Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
1774  assert(D.Kind == Designator::ArrayRangeDesignator &&
1775         "Requires array range designator");
1776  char* Ptr = static_cast<char*>(static_cast<void *>(this));
1777  Ptr += sizeof(DesignatedInitExpr);
1778  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
1779  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
1780}
1781
1782/// \brief Replaces the designator at index @p Idx with the series
1783/// of designators in [First, Last).
1784void DesignatedInitExpr::ExpandDesignator(unsigned Idx,
1785                                          const Designator *First,
1786                                          const Designator *Last) {
1787  unsigned NumNewDesignators = Last - First;
1788  if (NumNewDesignators == 0) {
1789    std::copy_backward(Designators + Idx + 1,
1790                       Designators + NumDesignators,
1791                       Designators + Idx);
1792    --NumNewDesignators;
1793    return;
1794  } else if (NumNewDesignators == 1) {
1795    Designators[Idx] = *First;
1796    return;
1797  }
1798
1799  Designator *NewDesignators
1800    = new Designator[NumDesignators - 1 + NumNewDesignators];
1801  std::copy(Designators, Designators + Idx, NewDesignators);
1802  std::copy(First, Last, NewDesignators + Idx);
1803  std::copy(Designators + Idx + 1, Designators + NumDesignators,
1804            NewDesignators + Idx + NumNewDesignators);
1805  delete [] Designators;
1806  Designators = NewDesignators;
1807  NumDesignators = NumDesignators - 1 + NumNewDesignators;
1808}
1809
1810void DesignatedInitExpr::DoDestroy(ASTContext &C) {
1811  delete [] Designators;
1812  Expr::DoDestroy(C);
1813}
1814
1815ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
1816                             Expr **exprs, unsigned nexprs,
1817                             SourceLocation rparenloc)
1818: Expr(ParenListExprClass, QualType(),
1819       hasAnyTypeDependentArguments(exprs, nexprs),
1820       hasAnyValueDependentArguments(exprs, nexprs)),
1821  NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
1822
1823  Exprs = new (C) Stmt*[nexprs];
1824  for (unsigned i = 0; i != nexprs; ++i)
1825    Exprs[i] = exprs[i];
1826}
1827
1828void ParenListExpr::DoDestroy(ASTContext& C) {
1829  DestroyChildren(C);
1830  if (Exprs) C.Deallocate(Exprs);
1831  this->~ParenListExpr();
1832  C.Deallocate(this);
1833}
1834
1835//===----------------------------------------------------------------------===//
1836//  ExprIterator.
1837//===----------------------------------------------------------------------===//
1838
1839Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
1840Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
1841Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
1842const Expr* ConstExprIterator::operator[](size_t idx) const {
1843  return cast<Expr>(I[idx]);
1844}
1845const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
1846const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
1847
1848//===----------------------------------------------------------------------===//
1849//  Child Iterators for iterating over subexpressions/substatements
1850//===----------------------------------------------------------------------===//
1851
1852// DeclRefExpr
1853Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
1854Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
1855
1856// ObjCIvarRefExpr
1857Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
1858Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
1859
1860// ObjCPropertyRefExpr
1861Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
1862Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
1863
1864// ObjCKVCRefExpr
1865Stmt::child_iterator ObjCKVCRefExpr::child_begin() { return &Base; }
1866Stmt::child_iterator ObjCKVCRefExpr::child_end() { return &Base+1; }
1867
1868// ObjCSuperExpr
1869Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
1870Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
1871
1872// ObjCIsaExpr
1873Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
1874Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
1875
1876// PredefinedExpr
1877Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
1878Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
1879
1880// IntegerLiteral
1881Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
1882Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
1883
1884// CharacterLiteral
1885Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
1886Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
1887
1888// FloatingLiteral
1889Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
1890Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
1891
1892// ImaginaryLiteral
1893Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
1894Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
1895
1896// StringLiteral
1897Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
1898Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
1899
1900// ParenExpr
1901Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
1902Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
1903
1904// UnaryOperator
1905Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
1906Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
1907
1908// SizeOfAlignOfExpr
1909Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
1910  // If this is of a type and the type is a VLA type (and not a typedef), the
1911  // size expression of the VLA needs to be treated as an executable expression.
1912  // Why isn't this weirdness documented better in StmtIterator?
1913  if (isArgumentType()) {
1914    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
1915                                   getArgumentType().getTypePtr()))
1916      return child_iterator(T);
1917    return child_iterator();
1918  }
1919  return child_iterator(&Argument.Ex);
1920}
1921Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
1922  if (isArgumentType())
1923    return child_iterator();
1924  return child_iterator(&Argument.Ex + 1);
1925}
1926
1927// ArraySubscriptExpr
1928Stmt::child_iterator ArraySubscriptExpr::child_begin() {
1929  return &SubExprs[0];
1930}
1931Stmt::child_iterator ArraySubscriptExpr::child_end() {
1932  return &SubExprs[0]+END_EXPR;
1933}
1934
1935// CallExpr
1936Stmt::child_iterator CallExpr::child_begin() {
1937  return &SubExprs[0];
1938}
1939Stmt::child_iterator CallExpr::child_end() {
1940  return &SubExprs[0]+NumArgs+ARGS_START;
1941}
1942
1943// MemberExpr
1944Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
1945Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
1946
1947// ExtVectorElementExpr
1948Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
1949Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
1950
1951// CompoundLiteralExpr
1952Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
1953Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
1954
1955// CastExpr
1956Stmt::child_iterator CastExpr::child_begin() { return &Op; }
1957Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
1958
1959// BinaryOperator
1960Stmt::child_iterator BinaryOperator::child_begin() {
1961  return &SubExprs[0];
1962}
1963Stmt::child_iterator BinaryOperator::child_end() {
1964  return &SubExprs[0]+END_EXPR;
1965}
1966
1967// ConditionalOperator
1968Stmt::child_iterator ConditionalOperator::child_begin() {
1969  return &SubExprs[0];
1970}
1971Stmt::child_iterator ConditionalOperator::child_end() {
1972  return &SubExprs[0]+END_EXPR;
1973}
1974
1975// AddrLabelExpr
1976Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
1977Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
1978
1979// StmtExpr
1980Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
1981Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
1982
1983// TypesCompatibleExpr
1984Stmt::child_iterator TypesCompatibleExpr::child_begin() {
1985  return child_iterator();
1986}
1987
1988Stmt::child_iterator TypesCompatibleExpr::child_end() {
1989  return child_iterator();
1990}
1991
1992// ChooseExpr
1993Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
1994Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
1995
1996// GNUNullExpr
1997Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
1998Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
1999
2000// ShuffleVectorExpr
2001Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2002  return &SubExprs[0];
2003}
2004Stmt::child_iterator ShuffleVectorExpr::child_end() {
2005  return &SubExprs[0]+NumExprs;
2006}
2007
2008// VAArgExpr
2009Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2010Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2011
2012// InitListExpr
2013Stmt::child_iterator InitListExpr::child_begin() {
2014  return InitExprs.size() ? &InitExprs[0] : 0;
2015}
2016Stmt::child_iterator InitListExpr::child_end() {
2017  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2018}
2019
2020// DesignatedInitExpr
2021Stmt::child_iterator DesignatedInitExpr::child_begin() {
2022  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2023  Ptr += sizeof(DesignatedInitExpr);
2024  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2025}
2026Stmt::child_iterator DesignatedInitExpr::child_end() {
2027  return child_iterator(&*child_begin() + NumSubExprs);
2028}
2029
2030// ImplicitValueInitExpr
2031Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2032  return child_iterator();
2033}
2034
2035Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2036  return child_iterator();
2037}
2038
2039// ParenListExpr
2040Stmt::child_iterator ParenListExpr::child_begin() {
2041  return &Exprs[0];
2042}
2043Stmt::child_iterator ParenListExpr::child_end() {
2044  return &Exprs[0]+NumExprs;
2045}
2046
2047// ObjCStringLiteral
2048Stmt::child_iterator ObjCStringLiteral::child_begin() {
2049  return &String;
2050}
2051Stmt::child_iterator ObjCStringLiteral::child_end() {
2052  return &String+1;
2053}
2054
2055// ObjCEncodeExpr
2056Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2057Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2058
2059// ObjCSelectorExpr
2060Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2061  return child_iterator();
2062}
2063Stmt::child_iterator ObjCSelectorExpr::child_end() {
2064  return child_iterator();
2065}
2066
2067// ObjCProtocolExpr
2068Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2069  return child_iterator();
2070}
2071Stmt::child_iterator ObjCProtocolExpr::child_end() {
2072  return child_iterator();
2073}
2074
2075// ObjCMessageExpr
2076Stmt::child_iterator ObjCMessageExpr::child_begin() {
2077  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
2078}
2079Stmt::child_iterator ObjCMessageExpr::child_end() {
2080  return &SubExprs[0]+ARGS_START+getNumArgs();
2081}
2082
2083// Blocks
2084Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2085Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2086
2087Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2088Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2089