Expr.cpp revision 820bca41c3899374775d2a1dfc2ef2e22aaf1c7b
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/RecordLayout.h"
22#include "clang/AST/StmtVisitor.h"
23#include "clang/Basic/Builtins.h"
24#include "clang/Basic/TargetInfo.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// Primary Expressions.
32//===----------------------------------------------------------------------===//
33
34void ExplicitTemplateArgumentList::initializeFrom(
35                                      const TemplateArgumentListInfo &Info) {
36  LAngleLoc = Info.getLAngleLoc();
37  RAngleLoc = Info.getRAngleLoc();
38  NumTemplateArgs = Info.size();
39
40  TemplateArgumentLoc *ArgBuffer = getTemplateArgs();
41  for (unsigned i = 0; i != NumTemplateArgs; ++i)
42    new (&ArgBuffer[i]) TemplateArgumentLoc(Info[i]);
43}
44
45void ExplicitTemplateArgumentList::copyInto(
46                                      TemplateArgumentListInfo &Info) const {
47  Info.setLAngleLoc(LAngleLoc);
48  Info.setRAngleLoc(RAngleLoc);
49  for (unsigned I = 0; I != NumTemplateArgs; ++I)
50    Info.addArgument(getTemplateArgs()[I]);
51}
52
53std::size_t ExplicitTemplateArgumentList::sizeFor(
54                                      const TemplateArgumentListInfo &Info) {
55  return sizeof(ExplicitTemplateArgumentList) +
56         sizeof(TemplateArgumentLoc) * Info.size();
57}
58
59void DeclRefExpr::computeDependence() {
60  TypeDependent = false;
61  ValueDependent = false;
62
63  NamedDecl *D = getDecl();
64
65  // (TD) C++ [temp.dep.expr]p3:
66  //   An id-expression is type-dependent if it contains:
67  //
68  // and
69  //
70  // (VD) C++ [temp.dep.constexpr]p2:
71  //  An identifier is value-dependent if it is:
72
73  //  (TD)  - an identifier that was declared with dependent type
74  //  (VD)  - a name declared with a dependent type,
75  if (getType()->isDependentType()) {
76    TypeDependent = true;
77    ValueDependent = true;
78  }
79  //  (TD)  - a conversion-function-id that specifies a dependent type
80  else if (D->getDeclName().getNameKind()
81                               == DeclarationName::CXXConversionFunctionName &&
82           D->getDeclName().getCXXNameType()->isDependentType()) {
83    TypeDependent = true;
84    ValueDependent = true;
85  }
86  //  (TD)  - a template-id that is dependent,
87  else if (hasExplicitTemplateArgumentList() &&
88           TemplateSpecializationType::anyDependentTemplateArguments(
89                                                       getTemplateArgs(),
90                                                       getNumTemplateArgs())) {
91    TypeDependent = true;
92    ValueDependent = true;
93  }
94  //  (VD)  - the name of a non-type template parameter,
95  else if (isa<NonTypeTemplateParmDecl>(D))
96    ValueDependent = true;
97  //  (VD) - a constant with integral or enumeration type and is
98  //         initialized with an expression that is value-dependent.
99  else if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
100    if (Var->getType()->isIntegralType() &&
101        Var->getType().getCVRQualifiers() == Qualifiers::Const &&
102        Var->getInit() &&
103        Var->getInit()->isValueDependent())
104    ValueDependent = true;
105  }
106  //  (TD)  - a nested-name-specifier or a qualified-id that names a
107  //          member of an unknown specialization.
108  //        (handled by DependentScopeDeclRefExpr)
109}
110
111DeclRefExpr::DeclRefExpr(NestedNameSpecifier *Qualifier,
112                         SourceRange QualifierRange,
113                         ValueDecl *D, SourceLocation NameLoc,
114                         const TemplateArgumentListInfo *TemplateArgs,
115                         QualType T)
116  : Expr(DeclRefExprClass, T, false, false),
117    DecoratedD(D,
118               (Qualifier? HasQualifierFlag : 0) |
119               (TemplateArgs ? HasExplicitTemplateArgumentListFlag : 0)),
120    Loc(NameLoc) {
121  if (Qualifier) {
122    NameQualifier *NQ = getNameQualifier();
123    NQ->NNS = Qualifier;
124    NQ->Range = QualifierRange;
125  }
126
127  if (TemplateArgs)
128    getExplicitTemplateArgumentList()->initializeFrom(*TemplateArgs);
129
130  computeDependence();
131}
132
133DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
134                                 NestedNameSpecifier *Qualifier,
135                                 SourceRange QualifierRange,
136                                 ValueDecl *D,
137                                 SourceLocation NameLoc,
138                                 QualType T,
139                                 const TemplateArgumentListInfo *TemplateArgs) {
140  std::size_t Size = sizeof(DeclRefExpr);
141  if (Qualifier != 0)
142    Size += sizeof(NameQualifier);
143
144  if (TemplateArgs)
145    Size += ExplicitTemplateArgumentList::sizeFor(*TemplateArgs);
146
147  void *Mem = Context.Allocate(Size, llvm::alignof<DeclRefExpr>());
148  return new (Mem) DeclRefExpr(Qualifier, QualifierRange, D, NameLoc,
149                               TemplateArgs, T);
150}
151
152SourceRange DeclRefExpr::getSourceRange() const {
153  // FIXME: Does not handle multi-token names well, e.g., operator[].
154  SourceRange R(Loc);
155
156  if (hasQualifier())
157    R.setBegin(getQualifierRange().getBegin());
158  if (hasExplicitTemplateArgumentList())
159    R.setEnd(getRAngleLoc());
160  return R;
161}
162
163// FIXME: Maybe this should use DeclPrinter with a special "print predefined
164// expr" policy instead.
165std::string PredefinedExpr::ComputeName(ASTContext &Context, IdentType IT,
166                                        const Decl *CurrentDecl) {
167  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
168    if (IT != PrettyFunction)
169      return FD->getNameAsString();
170
171    llvm::SmallString<256> Name;
172    llvm::raw_svector_ostream Out(Name);
173
174    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
175      if (MD->isVirtual())
176        Out << "virtual ";
177    }
178
179    PrintingPolicy Policy(Context.getLangOptions());
180    Policy.SuppressTagKind = true;
181
182    std::string Proto = FD->getQualifiedNameAsString(Policy);
183
184    const FunctionType *AFT = FD->getType()->getAs<FunctionType>();
185    const FunctionProtoType *FT = 0;
186    if (FD->hasWrittenPrototype())
187      FT = dyn_cast<FunctionProtoType>(AFT);
188
189    Proto += "(";
190    if (FT) {
191      llvm::raw_string_ostream POut(Proto);
192      for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
193        if (i) POut << ", ";
194        std::string Param;
195        FD->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
196        POut << Param;
197      }
198
199      if (FT->isVariadic()) {
200        if (FD->getNumParams()) POut << ", ";
201        POut << "...";
202      }
203    }
204    Proto += ")";
205
206    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
207      AFT->getResultType().getAsStringInternal(Proto, Policy);
208
209    Out << Proto;
210
211    Out.flush();
212    return Name.str().str();
213  }
214  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
215    llvm::SmallString<256> Name;
216    llvm::raw_svector_ostream Out(Name);
217    Out << (MD->isInstanceMethod() ? '-' : '+');
218    Out << '[';
219    Out << MD->getClassInterface()->getNameAsString();
220    if (const ObjCCategoryImplDecl *CID =
221        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext())) {
222      Out << '(';
223      Out <<  CID->getNameAsString();
224      Out <<  ')';
225    }
226    Out <<  ' ';
227    Out << MD->getSelector().getAsString();
228    Out <<  ']';
229
230    Out.flush();
231    return Name.str().str();
232  }
233  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
234    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
235    return "top level";
236  }
237  return "";
238}
239
240/// getValueAsApproximateDouble - This returns the value as an inaccurate
241/// double.  Note that this may cause loss of precision, but is useful for
242/// debugging dumps, etc.
243double FloatingLiteral::getValueAsApproximateDouble() const {
244  llvm::APFloat V = getValue();
245  bool ignored;
246  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
247            &ignored);
248  return V.convertToDouble();
249}
250
251StringLiteral *StringLiteral::Create(ASTContext &C, const char *StrData,
252                                     unsigned ByteLength, bool Wide,
253                                     QualType Ty,
254                                     const SourceLocation *Loc,
255                                     unsigned NumStrs) {
256  // Allocate enough space for the StringLiteral plus an array of locations for
257  // any concatenated string tokens.
258  void *Mem = C.Allocate(sizeof(StringLiteral)+
259                         sizeof(SourceLocation)*(NumStrs-1),
260                         llvm::alignof<StringLiteral>());
261  StringLiteral *SL = new (Mem) StringLiteral(Ty);
262
263  // OPTIMIZE: could allocate this appended to the StringLiteral.
264  char *AStrData = new (C, 1) char[ByteLength];
265  memcpy(AStrData, StrData, ByteLength);
266  SL->StrData = AStrData;
267  SL->ByteLength = ByteLength;
268  SL->IsWide = Wide;
269  SL->TokLocs[0] = Loc[0];
270  SL->NumConcatenated = NumStrs;
271
272  if (NumStrs != 1)
273    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
274  return SL;
275}
276
277StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
278  void *Mem = C.Allocate(sizeof(StringLiteral)+
279                         sizeof(SourceLocation)*(NumStrs-1),
280                         llvm::alignof<StringLiteral>());
281  StringLiteral *SL = new (Mem) StringLiteral(QualType());
282  SL->StrData = 0;
283  SL->ByteLength = 0;
284  SL->NumConcatenated = NumStrs;
285  return SL;
286}
287
288void StringLiteral::DoDestroy(ASTContext &C) {
289  C.Deallocate(const_cast<char*>(StrData));
290  Expr::DoDestroy(C);
291}
292
293void StringLiteral::setString(ASTContext &C, llvm::StringRef Str) {
294  if (StrData)
295    C.Deallocate(const_cast<char*>(StrData));
296
297  char *AStrData = new (C, 1) char[Str.size()];
298  memcpy(AStrData, Str.data(), Str.size());
299  StrData = AStrData;
300  ByteLength = Str.size();
301}
302
303/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
304/// corresponds to, e.g. "sizeof" or "[pre]++".
305const char *UnaryOperator::getOpcodeStr(Opcode Op) {
306  switch (Op) {
307  default: assert(0 && "Unknown unary operator");
308  case PostInc: return "++";
309  case PostDec: return "--";
310  case PreInc:  return "++";
311  case PreDec:  return "--";
312  case AddrOf:  return "&";
313  case Deref:   return "*";
314  case Plus:    return "+";
315  case Minus:   return "-";
316  case Not:     return "~";
317  case LNot:    return "!";
318  case Real:    return "__real";
319  case Imag:    return "__imag";
320  case Extension: return "__extension__";
321  case OffsetOf: return "__builtin_offsetof";
322  }
323}
324
325UnaryOperator::Opcode
326UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
327  switch (OO) {
328  default: assert(false && "No unary operator for overloaded function");
329  case OO_PlusPlus:   return Postfix ? PostInc : PreInc;
330  case OO_MinusMinus: return Postfix ? PostDec : PreDec;
331  case OO_Amp:        return AddrOf;
332  case OO_Star:       return Deref;
333  case OO_Plus:       return Plus;
334  case OO_Minus:      return Minus;
335  case OO_Tilde:      return Not;
336  case OO_Exclaim:    return LNot;
337  }
338}
339
340OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
341  switch (Opc) {
342  case PostInc: case PreInc: return OO_PlusPlus;
343  case PostDec: case PreDec: return OO_MinusMinus;
344  case AddrOf: return OO_Amp;
345  case Deref: return OO_Star;
346  case Plus: return OO_Plus;
347  case Minus: return OO_Minus;
348  case Not: return OO_Tilde;
349  case LNot: return OO_Exclaim;
350  default: return OO_None;
351  }
352}
353
354
355//===----------------------------------------------------------------------===//
356// Postfix Operators.
357//===----------------------------------------------------------------------===//
358
359CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, Expr **args,
360                   unsigned numargs, QualType t, SourceLocation rparenloc)
361  : Expr(SC, t,
362         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
363         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
364    NumArgs(numargs) {
365
366  SubExprs = new (C) Stmt*[numargs+1];
367  SubExprs[FN] = fn;
368  for (unsigned i = 0; i != numargs; ++i)
369    SubExprs[i+ARGS_START] = args[i];
370
371  RParenLoc = rparenloc;
372}
373
374CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
375                   QualType t, SourceLocation rparenloc)
376  : Expr(CallExprClass, t,
377         fn->isTypeDependent() || hasAnyTypeDependentArguments(args, numargs),
378         fn->isValueDependent() || hasAnyValueDependentArguments(args,numargs)),
379    NumArgs(numargs) {
380
381  SubExprs = new (C) Stmt*[numargs+1];
382  SubExprs[FN] = fn;
383  for (unsigned i = 0; i != numargs; ++i)
384    SubExprs[i+ARGS_START] = args[i];
385
386  RParenLoc = rparenloc;
387}
388
389CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
390  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
391  SubExprs = new (C) Stmt*[1];
392}
393
394void CallExpr::DoDestroy(ASTContext& C) {
395  DestroyChildren(C);
396  if (SubExprs) C.Deallocate(SubExprs);
397  this->~CallExpr();
398  C.Deallocate(this);
399}
400
401FunctionDecl *CallExpr::getDirectCallee() {
402  Expr *CEE = getCallee()->IgnoreParenCasts();
403  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
404    return dyn_cast<FunctionDecl>(DRE->getDecl());
405
406  return 0;
407}
408
409/// setNumArgs - This changes the number of arguments present in this call.
410/// Any orphaned expressions are deleted by this, and any new operands are set
411/// to null.
412void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
413  // No change, just return.
414  if (NumArgs == getNumArgs()) return;
415
416  // If shrinking # arguments, just delete the extras and forgot them.
417  if (NumArgs < getNumArgs()) {
418    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
419      getArg(i)->Destroy(C);
420    this->NumArgs = NumArgs;
421    return;
422  }
423
424  // Otherwise, we are growing the # arguments.  New an bigger argument array.
425  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+1];
426  // Copy over args.
427  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
428    NewSubExprs[i] = SubExprs[i];
429  // Null out new args.
430  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
431    NewSubExprs[i] = 0;
432
433  if (SubExprs) C.Deallocate(SubExprs);
434  SubExprs = NewSubExprs;
435  this->NumArgs = NumArgs;
436}
437
438/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
439/// not, return 0.
440unsigned CallExpr::isBuiltinCall(ASTContext &Context) const {
441  // All simple function calls (e.g. func()) are implicitly cast to pointer to
442  // function. As a result, we try and obtain the DeclRefExpr from the
443  // ImplicitCastExpr.
444  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
445  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
446    return 0;
447
448  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
449  if (!DRE)
450    return 0;
451
452  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
453  if (!FDecl)
454    return 0;
455
456  if (!FDecl->getIdentifier())
457    return 0;
458
459  return FDecl->getBuiltinID();
460}
461
462QualType CallExpr::getCallReturnType() const {
463  QualType CalleeType = getCallee()->getType();
464  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
465    CalleeType = FnTypePtr->getPointeeType();
466  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
467    CalleeType = BPT->getPointeeType();
468
469  const FunctionType *FnType = CalleeType->getAs<FunctionType>();
470  return FnType->getResultType();
471}
472
473MemberExpr::MemberExpr(Expr *base, bool isarrow, NestedNameSpecifier *qual,
474                       SourceRange qualrange, ValueDecl *memberdecl,
475                       SourceLocation l, const TemplateArgumentListInfo *targs,
476                       QualType ty)
477  : Expr(MemberExprClass, ty,
478         base->isTypeDependent() || (qual && qual->isDependent()),
479         base->isValueDependent() || (qual && qual->isDependent())),
480    Base(base), MemberDecl(memberdecl), MemberLoc(l), IsArrow(isarrow),
481    HasQualifier(qual != 0), HasExplicitTemplateArgumentList(targs) {
482  // Initialize the qualifier, if any.
483  if (HasQualifier) {
484    NameQualifier *NQ = getMemberQualifier();
485    NQ->NNS = qual;
486    NQ->Range = qualrange;
487  }
488
489  // Initialize the explicit template argument list, if any.
490  if (targs)
491    getExplicitTemplateArgumentList()->initializeFrom(*targs);
492}
493
494MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
495                               NestedNameSpecifier *qual,
496                               SourceRange qualrange,
497                               ValueDecl *memberdecl,
498                               SourceLocation l,
499                               const TemplateArgumentListInfo *targs,
500                               QualType ty) {
501  std::size_t Size = sizeof(MemberExpr);
502  if (qual != 0)
503    Size += sizeof(NameQualifier);
504
505  if (targs)
506    Size += ExplicitTemplateArgumentList::sizeFor(*targs);
507
508  void *Mem = C.Allocate(Size, llvm::alignof<MemberExpr>());
509  return new (Mem) MemberExpr(base, isarrow, qual, qualrange, memberdecl, l,
510                              targs, ty);
511}
512
513const char *CastExpr::getCastKindName() const {
514  switch (getCastKind()) {
515  case CastExpr::CK_Unknown:
516    return "Unknown";
517  case CastExpr::CK_BitCast:
518    return "BitCast";
519  case CastExpr::CK_NoOp:
520    return "NoOp";
521  case CastExpr::CK_BaseToDerived:
522    return "BaseToDerived";
523  case CastExpr::CK_DerivedToBase:
524    return "DerivedToBase";
525  case CastExpr::CK_Dynamic:
526    return "Dynamic";
527  case CastExpr::CK_ToUnion:
528    return "ToUnion";
529  case CastExpr::CK_ArrayToPointerDecay:
530    return "ArrayToPointerDecay";
531  case CastExpr::CK_FunctionToPointerDecay:
532    return "FunctionToPointerDecay";
533  case CastExpr::CK_NullToMemberPointer:
534    return "NullToMemberPointer";
535  case CastExpr::CK_BaseToDerivedMemberPointer:
536    return "BaseToDerivedMemberPointer";
537  case CastExpr::CK_DerivedToBaseMemberPointer:
538    return "DerivedToBaseMemberPointer";
539  case CastExpr::CK_UserDefinedConversion:
540    return "UserDefinedConversion";
541  case CastExpr::CK_ConstructorConversion:
542    return "ConstructorConversion";
543  case CastExpr::CK_IntegralToPointer:
544    return "IntegralToPointer";
545  case CastExpr::CK_PointerToIntegral:
546    return "PointerToIntegral";
547  case CastExpr::CK_ToVoid:
548    return "ToVoid";
549  case CastExpr::CK_VectorSplat:
550    return "VectorSplat";
551  case CastExpr::CK_IntegralCast:
552    return "IntegralCast";
553  case CastExpr::CK_IntegralToFloating:
554    return "IntegralToFloating";
555  case CastExpr::CK_FloatingToIntegral:
556    return "FloatingToIntegral";
557  case CastExpr::CK_FloatingCast:
558    return "FloatingCast";
559  case CastExpr::CK_MemberPointerToBoolean:
560    return "MemberPointerToBoolean";
561  case CastExpr::CK_AnyPointerToObjCPointerCast:
562    return "AnyPointerToObjCPointerCast";
563  }
564
565  assert(0 && "Unhandled cast kind!");
566  return 0;
567}
568
569/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
570/// corresponds to, e.g. "<<=".
571const char *BinaryOperator::getOpcodeStr(Opcode Op) {
572  switch (Op) {
573  case PtrMemD:   return ".*";
574  case PtrMemI:   return "->*";
575  case Mul:       return "*";
576  case Div:       return "/";
577  case Rem:       return "%";
578  case Add:       return "+";
579  case Sub:       return "-";
580  case Shl:       return "<<";
581  case Shr:       return ">>";
582  case LT:        return "<";
583  case GT:        return ">";
584  case LE:        return "<=";
585  case GE:        return ">=";
586  case EQ:        return "==";
587  case NE:        return "!=";
588  case And:       return "&";
589  case Xor:       return "^";
590  case Or:        return "|";
591  case LAnd:      return "&&";
592  case LOr:       return "||";
593  case Assign:    return "=";
594  case MulAssign: return "*=";
595  case DivAssign: return "/=";
596  case RemAssign: return "%=";
597  case AddAssign: return "+=";
598  case SubAssign: return "-=";
599  case ShlAssign: return "<<=";
600  case ShrAssign: return ">>=";
601  case AndAssign: return "&=";
602  case XorAssign: return "^=";
603  case OrAssign:  return "|=";
604  case Comma:     return ",";
605  }
606
607  return "";
608}
609
610BinaryOperator::Opcode
611BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
612  switch (OO) {
613  default: assert(false && "Not an overloadable binary operator");
614  case OO_Plus: return Add;
615  case OO_Minus: return Sub;
616  case OO_Star: return Mul;
617  case OO_Slash: return Div;
618  case OO_Percent: return Rem;
619  case OO_Caret: return Xor;
620  case OO_Amp: return And;
621  case OO_Pipe: return Or;
622  case OO_Equal: return Assign;
623  case OO_Less: return LT;
624  case OO_Greater: return GT;
625  case OO_PlusEqual: return AddAssign;
626  case OO_MinusEqual: return SubAssign;
627  case OO_StarEqual: return MulAssign;
628  case OO_SlashEqual: return DivAssign;
629  case OO_PercentEqual: return RemAssign;
630  case OO_CaretEqual: return XorAssign;
631  case OO_AmpEqual: return AndAssign;
632  case OO_PipeEqual: return OrAssign;
633  case OO_LessLess: return Shl;
634  case OO_GreaterGreater: return Shr;
635  case OO_LessLessEqual: return ShlAssign;
636  case OO_GreaterGreaterEqual: return ShrAssign;
637  case OO_EqualEqual: return EQ;
638  case OO_ExclaimEqual: return NE;
639  case OO_LessEqual: return LE;
640  case OO_GreaterEqual: return GE;
641  case OO_AmpAmp: return LAnd;
642  case OO_PipePipe: return LOr;
643  case OO_Comma: return Comma;
644  case OO_ArrowStar: return PtrMemI;
645  }
646}
647
648OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
649  static const OverloadedOperatorKind OverOps[] = {
650    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
651    OO_Star, OO_Slash, OO_Percent,
652    OO_Plus, OO_Minus,
653    OO_LessLess, OO_GreaterGreater,
654    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
655    OO_EqualEqual, OO_ExclaimEqual,
656    OO_Amp,
657    OO_Caret,
658    OO_Pipe,
659    OO_AmpAmp,
660    OO_PipePipe,
661    OO_Equal, OO_StarEqual,
662    OO_SlashEqual, OO_PercentEqual,
663    OO_PlusEqual, OO_MinusEqual,
664    OO_LessLessEqual, OO_GreaterGreaterEqual,
665    OO_AmpEqual, OO_CaretEqual,
666    OO_PipeEqual,
667    OO_Comma
668  };
669  return OverOps[Opc];
670}
671
672InitListExpr::InitListExpr(SourceLocation lbraceloc,
673                           Expr **initExprs, unsigned numInits,
674                           SourceLocation rbraceloc)
675  : Expr(InitListExprClass, QualType(), false, false),
676    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0),
677    UnionFieldInit(0), HadArrayRangeDesignator(false)
678{
679  for (unsigned I = 0; I != numInits; ++I) {
680    if (initExprs[I]->isTypeDependent())
681      TypeDependent = true;
682    if (initExprs[I]->isValueDependent())
683      ValueDependent = true;
684  }
685
686  InitExprs.insert(InitExprs.end(), initExprs, initExprs+numInits);
687}
688
689void InitListExpr::reserveInits(unsigned NumInits) {
690  if (NumInits > InitExprs.size())
691    InitExprs.reserve(NumInits);
692}
693
694void InitListExpr::resizeInits(ASTContext &Context, unsigned NumInits) {
695  for (unsigned Idx = NumInits, LastIdx = InitExprs.size();
696       Idx < LastIdx; ++Idx)
697    InitExprs[Idx]->Destroy(Context);
698  InitExprs.resize(NumInits, 0);
699}
700
701Expr *InitListExpr::updateInit(unsigned Init, Expr *expr) {
702  if (Init >= InitExprs.size()) {
703    InitExprs.insert(InitExprs.end(), Init - InitExprs.size() + 1, 0);
704    InitExprs.back() = expr;
705    return 0;
706  }
707
708  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
709  InitExprs[Init] = expr;
710  return Result;
711}
712
713/// getFunctionType - Return the underlying function type for this block.
714///
715const FunctionType *BlockExpr::getFunctionType() const {
716  return getType()->getAs<BlockPointerType>()->
717                    getPointeeType()->getAs<FunctionType>();
718}
719
720SourceLocation BlockExpr::getCaretLocation() const {
721  return TheBlock->getCaretLocation();
722}
723const Stmt *BlockExpr::getBody() const {
724  return TheBlock->getBody();
725}
726Stmt *BlockExpr::getBody() {
727  return TheBlock->getBody();
728}
729
730
731//===----------------------------------------------------------------------===//
732// Generic Expression Routines
733//===----------------------------------------------------------------------===//
734
735/// isUnusedResultAWarning - Return true if this immediate expression should
736/// be warned about if the result is unused.  If so, fill in Loc and Ranges
737/// with location to warn on and the source range[s] to report with the
738/// warning.
739bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
740                                  SourceRange &R2, ASTContext &Ctx) const {
741  // Don't warn if the expr is type dependent. The type could end up
742  // instantiating to void.
743  if (isTypeDependent())
744    return false;
745
746  switch (getStmtClass()) {
747  default:
748    Loc = getExprLoc();
749    R1 = getSourceRange();
750    return true;
751  case ParenExprClass:
752    return cast<ParenExpr>(this)->getSubExpr()->
753      isUnusedResultAWarning(Loc, R1, R2, Ctx);
754  case UnaryOperatorClass: {
755    const UnaryOperator *UO = cast<UnaryOperator>(this);
756
757    switch (UO->getOpcode()) {
758    default: break;
759    case UnaryOperator::PostInc:
760    case UnaryOperator::PostDec:
761    case UnaryOperator::PreInc:
762    case UnaryOperator::PreDec:                 // ++/--
763      return false;  // Not a warning.
764    case UnaryOperator::Deref:
765      // Dereferencing a volatile pointer is a side-effect.
766      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
767        return false;
768      break;
769    case UnaryOperator::Real:
770    case UnaryOperator::Imag:
771      // accessing a piece of a volatile complex is a side-effect.
772      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
773          .isVolatileQualified())
774        return false;
775      break;
776    case UnaryOperator::Extension:
777      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
778    }
779    Loc = UO->getOperatorLoc();
780    R1 = UO->getSubExpr()->getSourceRange();
781    return true;
782  }
783  case BinaryOperatorClass: {
784    const BinaryOperator *BO = cast<BinaryOperator>(this);
785    // Consider comma to have side effects if the LHS or RHS does.
786    if (BO->getOpcode() == BinaryOperator::Comma)
787      return (BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
788              BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
789
790    if (BO->isAssignmentOp())
791      return false;
792    Loc = BO->getOperatorLoc();
793    R1 = BO->getLHS()->getSourceRange();
794    R2 = BO->getRHS()->getSourceRange();
795    return true;
796  }
797  case CompoundAssignOperatorClass:
798    return false;
799
800  case ConditionalOperatorClass: {
801    // The condition must be evaluated, but if either the LHS or RHS is a
802    // warning, warn about them.
803    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
804    if (Exp->getLHS() &&
805        Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
806      return true;
807    return Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
808  }
809
810  case MemberExprClass:
811    // If the base pointer or element is to a volatile pointer/field, accessing
812    // it is a side effect.
813    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
814      return false;
815    Loc = cast<MemberExpr>(this)->getMemberLoc();
816    R1 = SourceRange(Loc, Loc);
817    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
818    return true;
819
820  case ArraySubscriptExprClass:
821    // If the base pointer or element is to a volatile pointer/field, accessing
822    // it is a side effect.
823    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
824      return false;
825    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
826    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
827    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
828    return true;
829
830  case CallExprClass:
831  case CXXOperatorCallExprClass:
832  case CXXMemberCallExprClass: {
833    // If this is a direct call, get the callee.
834    const CallExpr *CE = cast<CallExpr>(this);
835    if (const FunctionDecl *FD = CE->getDirectCallee()) {
836      // If the callee has attribute pure, const, or warn_unused_result, warn
837      // about it. void foo() { strlen("bar"); } should warn.
838      //
839      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
840      // updated to match for QoI.
841      if (FD->getAttr<WarnUnusedResultAttr>() ||
842          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
843        Loc = CE->getCallee()->getLocStart();
844        R1 = CE->getCallee()->getSourceRange();
845
846        if (unsigned NumArgs = CE->getNumArgs())
847          R2 = SourceRange(CE->getArg(0)->getLocStart(),
848                           CE->getArg(NumArgs-1)->getLocEnd());
849        return true;
850      }
851    }
852    return false;
853  }
854
855  case CXXTemporaryObjectExprClass:
856  case CXXConstructExprClass:
857    return false;
858
859  case ObjCMessageExprClass:
860    return false;
861
862  case ObjCImplicitSetterGetterRefExprClass: {   // Dot syntax for message send.
863#if 0
864    const ObjCImplicitSetterGetterRefExpr *Ref =
865      cast<ObjCImplicitSetterGetterRefExpr>(this);
866    // FIXME: We really want the location of the '.' here.
867    Loc = Ref->getLocation();
868    R1 = SourceRange(Ref->getLocation(), Ref->getLocation());
869    if (Ref->getBase())
870      R2 = Ref->getBase()->getSourceRange();
871#else
872    Loc = getExprLoc();
873    R1 = getSourceRange();
874#endif
875    return true;
876  }
877  case StmtExprClass: {
878    // Statement exprs don't logically have side effects themselves, but are
879    // sometimes used in macros in ways that give them a type that is unused.
880    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
881    // however, if the result of the stmt expr is dead, we don't want to emit a
882    // warning.
883    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
884    if (!CS->body_empty())
885      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
886        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
887
888    Loc = cast<StmtExpr>(this)->getLParenLoc();
889    R1 = getSourceRange();
890    return true;
891  }
892  case CStyleCastExprClass:
893    // If this is an explicit cast to void, allow it.  People do this when they
894    // think they know what they're doing :).
895    if (getType()->isVoidType())
896      return false;
897    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
898    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
899    return true;
900  case CXXFunctionalCastExprClass: {
901    const CastExpr *CE = cast<CastExpr>(this);
902
903    // If this is a cast to void or a constructor conversion, check the operand.
904    // Otherwise, the result of the cast is unused.
905    if (CE->getCastKind() == CastExpr::CK_ToVoid ||
906        CE->getCastKind() == CastExpr::CK_ConstructorConversion)
907      return (cast<CastExpr>(this)->getSubExpr()
908              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
909    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
910    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
911    return true;
912  }
913
914  case ImplicitCastExprClass:
915    // Check the operand, since implicit casts are inserted by Sema
916    return (cast<ImplicitCastExpr>(this)
917            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
918
919  case CXXDefaultArgExprClass:
920    return (cast<CXXDefaultArgExpr>(this)
921            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
922
923  case CXXNewExprClass:
924    // FIXME: In theory, there might be new expressions that don't have side
925    // effects (e.g. a placement new with an uninitialized POD).
926  case CXXDeleteExprClass:
927    return false;
928  case CXXBindTemporaryExprClass:
929    return (cast<CXXBindTemporaryExpr>(this)
930            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
931  case CXXExprWithTemporariesClass:
932    return (cast<CXXExprWithTemporaries>(this)
933            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
934  }
935}
936
937/// DeclCanBeLvalue - Determine whether the given declaration can be
938/// an lvalue. This is a helper routine for isLvalue.
939static bool DeclCanBeLvalue(const NamedDecl *Decl, ASTContext &Ctx) {
940  // C++ [temp.param]p6:
941  //   A non-type non-reference template-parameter is not an lvalue.
942  if (const NonTypeTemplateParmDecl *NTTParm
943        = dyn_cast<NonTypeTemplateParmDecl>(Decl))
944    return NTTParm->getType()->isReferenceType();
945
946  return isa<VarDecl>(Decl) || isa<FieldDecl>(Decl) ||
947    // C++ 3.10p2: An lvalue refers to an object or function.
948    (Ctx.getLangOptions().CPlusPlus &&
949     (isa<FunctionDecl>(Decl) || isa<FunctionTemplateDecl>(Decl)));
950}
951
952/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
953/// incomplete type other than void. Nonarray expressions that can be lvalues:
954///  - name, where name must be a variable
955///  - e[i]
956///  - (e), where e must be an lvalue
957///  - e.name, where e must be an lvalue
958///  - e->name
959///  - *e, the type of e cannot be a function type
960///  - string-constant
961///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
962///  - reference type [C++ [expr]]
963///
964Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
965  assert(!TR->isReferenceType() && "Expressions can't have reference type.");
966
967  isLvalueResult Res = isLvalueInternal(Ctx);
968  if (Res != LV_Valid || Ctx.getLangOptions().CPlusPlus)
969    return Res;
970
971  // first, check the type (C99 6.3.2.1). Expressions with function
972  // type in C are not lvalues, but they can be lvalues in C++.
973  if (TR->isFunctionType() || TR == Ctx.OverloadTy)
974    return LV_NotObjectType;
975
976  // Allow qualified void which is an incomplete type other than void (yuck).
977  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).hasQualifiers())
978    return LV_IncompleteVoidType;
979
980  return LV_Valid;
981}
982
983// Check whether the expression can be sanely treated like an l-value
984Expr::isLvalueResult Expr::isLvalueInternal(ASTContext &Ctx) const {
985  switch (getStmtClass()) {
986  case ObjCIsaExprClass:
987  case StringLiteralClass:  // C99 6.5.1p4
988  case ObjCEncodeExprClass: // @encode behaves like its string in every way.
989    return LV_Valid;
990  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
991    // For vectors, make sure base is an lvalue (i.e. not a function call).
992    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
993      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
994    return LV_Valid;
995  case DeclRefExprClass: { // C99 6.5.1p2
996    const NamedDecl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
997    if (DeclCanBeLvalue(RefdDecl, Ctx))
998      return LV_Valid;
999    break;
1000  }
1001  case BlockDeclRefExprClass: {
1002    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
1003    if (isa<VarDecl>(BDR->getDecl()))
1004      return LV_Valid;
1005    break;
1006  }
1007  case MemberExprClass: {
1008    const MemberExpr *m = cast<MemberExpr>(this);
1009    if (Ctx.getLangOptions().CPlusPlus) { // C++ [expr.ref]p4:
1010      NamedDecl *Member = m->getMemberDecl();
1011      // C++ [expr.ref]p4:
1012      //   If E2 is declared to have type "reference to T", then E1.E2
1013      //   is an lvalue.
1014      if (ValueDecl *Value = dyn_cast<ValueDecl>(Member))
1015        if (Value->getType()->isReferenceType())
1016          return LV_Valid;
1017
1018      //   -- If E2 is a static data member [...] then E1.E2 is an lvalue.
1019      if (isa<VarDecl>(Member) && Member->getDeclContext()->isRecord())
1020        return LV_Valid;
1021
1022      //   -- If E2 is a non-static data member [...]. If E1 is an
1023      //      lvalue, then E1.E2 is an lvalue.
1024      if (isa<FieldDecl>(Member))
1025        return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
1026
1027      //   -- If it refers to a static member function [...], then
1028      //      E1.E2 is an lvalue.
1029      //   -- Otherwise, if E1.E2 refers to a non-static member
1030      //      function [...], then E1.E2 is not an lvalue.
1031      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member))
1032        return Method->isStatic()? LV_Valid : LV_MemberFunction;
1033
1034      //   -- If E2 is a member enumerator [...], the expression E1.E2
1035      //      is not an lvalue.
1036      if (isa<EnumConstantDecl>(Member))
1037        return LV_InvalidExpression;
1038
1039        // Not an lvalue.
1040      return LV_InvalidExpression;
1041    }
1042
1043    // C99 6.5.2.3p4
1044    return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
1045  }
1046  case UnaryOperatorClass:
1047    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
1048      return LV_Valid; // C99 6.5.3p4
1049
1050    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
1051        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
1052        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
1053      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
1054
1055    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.pre.incr]p1
1056        (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreInc ||
1057         cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::PreDec))
1058      return LV_Valid;
1059    break;
1060  case ImplicitCastExprClass:
1061    return cast<ImplicitCastExpr>(this)->isLvalueCast()? LV_Valid
1062                                                       : LV_InvalidExpression;
1063  case ParenExprClass: // C99 6.5.1p5
1064    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
1065  case BinaryOperatorClass:
1066  case CompoundAssignOperatorClass: {
1067    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
1068
1069    if (Ctx.getLangOptions().CPlusPlus && // C++ [expr.comma]p1
1070        BinOp->getOpcode() == BinaryOperator::Comma)
1071      return BinOp->getRHS()->isLvalue(Ctx);
1072
1073    // C++ [expr.mptr.oper]p6
1074    // The result of a .* expression is an lvalue only if its first operand is
1075    // an lvalue and its second operand is a pointer to data member.
1076    if (BinOp->getOpcode() == BinaryOperator::PtrMemD &&
1077        !BinOp->getType()->isFunctionType())
1078      return BinOp->getLHS()->isLvalue(Ctx);
1079
1080    // The result of an ->* expression is an lvalue only if its second operand
1081    // is a pointer to data member.
1082    if (BinOp->getOpcode() == BinaryOperator::PtrMemI &&
1083        !BinOp->getType()->isFunctionType()) {
1084      QualType Ty = BinOp->getRHS()->getType();
1085      if (Ty->isMemberPointerType() && !Ty->isMemberFunctionPointerType())
1086        return LV_Valid;
1087    }
1088
1089    if (!BinOp->isAssignmentOp())
1090      return LV_InvalidExpression;
1091
1092    if (Ctx.getLangOptions().CPlusPlus)
1093      // C++ [expr.ass]p1:
1094      //   The result of an assignment operation [...] is an lvalue.
1095      return LV_Valid;
1096
1097
1098    // C99 6.5.16:
1099    //   An assignment expression [...] is not an lvalue.
1100    return LV_InvalidExpression;
1101  }
1102  case CallExprClass:
1103  case CXXOperatorCallExprClass:
1104  case CXXMemberCallExprClass: {
1105    // C++0x [expr.call]p10
1106    //   A function call is an lvalue if and only if the result type
1107    //   is an lvalue reference.
1108    QualType ReturnType = cast<CallExpr>(this)->getCallReturnType();
1109    if (ReturnType->isLValueReferenceType())
1110      return LV_Valid;
1111
1112    break;
1113  }
1114  case CompoundLiteralExprClass: // C99 6.5.2.5p5
1115    return LV_Valid;
1116  case ChooseExprClass:
1117    // __builtin_choose_expr is an lvalue if the selected operand is.
1118    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->isLvalue(Ctx);
1119  case ExtVectorElementExprClass:
1120    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
1121      return LV_DuplicateVectorComponents;
1122    return LV_Valid;
1123  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
1124    return LV_Valid;
1125  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
1126    return LV_Valid;
1127  case ObjCImplicitSetterGetterRefExprClass: // FIXME: check if read-only property.
1128    return LV_Valid;
1129  case PredefinedExprClass:
1130    return LV_Valid;
1131  case UnresolvedLookupExprClass:
1132    return LV_Valid;
1133  case CXXDefaultArgExprClass:
1134    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
1135  case CStyleCastExprClass:
1136  case CXXFunctionalCastExprClass:
1137  case CXXStaticCastExprClass:
1138  case CXXDynamicCastExprClass:
1139  case CXXReinterpretCastExprClass:
1140  case CXXConstCastExprClass:
1141    // The result of an explicit cast is an lvalue if the type we are
1142    // casting to is an lvalue reference type. See C++ [expr.cast]p1,
1143    // C++ [expr.static.cast]p2, C++ [expr.dynamic.cast]p2,
1144    // C++ [expr.reinterpret.cast]p1, C++ [expr.const.cast]p1.
1145    if (cast<ExplicitCastExpr>(this)->getTypeAsWritten()->
1146          isLValueReferenceType())
1147      return LV_Valid;
1148    break;
1149  case CXXTypeidExprClass:
1150    // C++ 5.2.8p1: The result of a typeid expression is an lvalue of ...
1151    return LV_Valid;
1152  case CXXBindTemporaryExprClass:
1153    return cast<CXXBindTemporaryExpr>(this)->getSubExpr()->
1154      isLvalueInternal(Ctx);
1155  case ConditionalOperatorClass: {
1156    // Complicated handling is only for C++.
1157    if (!Ctx.getLangOptions().CPlusPlus)
1158      return LV_InvalidExpression;
1159
1160    // Sema should have taken care to ensure that a CXXTemporaryObjectExpr is
1161    // everywhere there's an object converted to an rvalue. Also, any other
1162    // casts should be wrapped by ImplicitCastExprs. There's just the special
1163    // case involving throws to work out.
1164    const ConditionalOperator *Cond = cast<ConditionalOperator>(this);
1165    Expr *True = Cond->getTrueExpr();
1166    Expr *False = Cond->getFalseExpr();
1167    // C++0x 5.16p2
1168    //   If either the second or the third operand has type (cv) void, [...]
1169    //   the result [...] is an rvalue.
1170    if (True->getType()->isVoidType() || False->getType()->isVoidType())
1171      return LV_InvalidExpression;
1172
1173    // Both sides must be lvalues for the result to be an lvalue.
1174    if (True->isLvalue(Ctx) != LV_Valid || False->isLvalue(Ctx) != LV_Valid)
1175      return LV_InvalidExpression;
1176
1177    // That's it.
1178    return LV_Valid;
1179  }
1180
1181  default:
1182    break;
1183  }
1184  return LV_InvalidExpression;
1185}
1186
1187/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
1188/// does not have an incomplete type, does not have a const-qualified type, and
1189/// if it is a structure or union, does not have any member (including,
1190/// recursively, any member or element of all contained aggregates or unions)
1191/// with a const-qualified type.
1192Expr::isModifiableLvalueResult
1193Expr::isModifiableLvalue(ASTContext &Ctx, SourceLocation *Loc) const {
1194  isLvalueResult lvalResult = isLvalue(Ctx);
1195
1196  switch (lvalResult) {
1197  case LV_Valid:
1198    // C++ 3.10p11: Functions cannot be modified, but pointers to
1199    // functions can be modifiable.
1200    if (Ctx.getLangOptions().CPlusPlus && TR->isFunctionType())
1201      return MLV_NotObjectType;
1202    break;
1203
1204  case LV_NotObjectType: return MLV_NotObjectType;
1205  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
1206  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
1207  case LV_InvalidExpression:
1208    // If the top level is a C-style cast, and the subexpression is a valid
1209    // lvalue, then this is probably a use of the old-school "cast as lvalue"
1210    // GCC extension.  We don't support it, but we want to produce good
1211    // diagnostics when it happens so that the user knows why.
1212    if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(IgnoreParens())) {
1213      if (CE->getSubExpr()->isLvalue(Ctx) == LV_Valid) {
1214        if (Loc)
1215          *Loc = CE->getLParenLoc();
1216        return MLV_LValueCast;
1217      }
1218    }
1219    return MLV_InvalidExpression;
1220  case LV_MemberFunction: return MLV_MemberFunction;
1221  }
1222
1223  // The following is illegal:
1224  //   void takeclosure(void (^C)(void));
1225  //   void func() { int x = 1; takeclosure(^{ x = 7; }); }
1226  //
1227  if (const BlockDeclRefExpr *BDR = dyn_cast<BlockDeclRefExpr>(this)) {
1228    if (!BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
1229      return MLV_NotBlockQualified;
1230  }
1231
1232  // Assigning to an 'implicit' property?
1233  if (const ObjCImplicitSetterGetterRefExpr* Expr =
1234        dyn_cast<ObjCImplicitSetterGetterRefExpr>(this)) {
1235    if (Expr->getSetterMethod() == 0)
1236      return MLV_NoSetterProperty;
1237  }
1238
1239  QualType CT = Ctx.getCanonicalType(getType());
1240
1241  if (CT.isConstQualified())
1242    return MLV_ConstQualified;
1243  if (CT->isArrayType())
1244    return MLV_ArrayType;
1245  if (CT->isIncompleteType())
1246    return MLV_IncompleteType;
1247
1248  if (const RecordType *r = CT->getAs<RecordType>()) {
1249    if (r->hasConstFields())
1250      return MLV_ConstQualified;
1251  }
1252
1253  return MLV_Valid;
1254}
1255
1256/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1257/// returns true, if it is; false otherwise.
1258bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1259  switch (getStmtClass()) {
1260  default:
1261    return false;
1262  case ObjCIvarRefExprClass:
1263    return true;
1264  case Expr::UnaryOperatorClass:
1265    return cast<UnaryOperator>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1266  case ParenExprClass:
1267    return cast<ParenExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1268  case ImplicitCastExprClass:
1269    return cast<ImplicitCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1270  case CStyleCastExprClass:
1271    return cast<CStyleCastExpr>(this)->getSubExpr()->isOBJCGCCandidate(Ctx);
1272  case DeclRefExprClass: {
1273    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
1274    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1275      if (VD->hasGlobalStorage())
1276        return true;
1277      QualType T = VD->getType();
1278      // dereferencing to a  pointer is always a gc'able candidate,
1279      // unless it is __weak.
1280      return T->isPointerType() &&
1281             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1282    }
1283    return false;
1284  }
1285  case MemberExprClass: {
1286    const MemberExpr *M = cast<MemberExpr>(this);
1287    return M->getBase()->isOBJCGCCandidate(Ctx);
1288  }
1289  case ArraySubscriptExprClass:
1290    return cast<ArraySubscriptExpr>(this)->getBase()->isOBJCGCCandidate(Ctx);
1291  }
1292}
1293Expr* Expr::IgnoreParens() {
1294  Expr* E = this;
1295  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
1296    E = P->getSubExpr();
1297
1298  return E;
1299}
1300
1301/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
1302/// or CastExprs or ImplicitCastExprs, returning their operand.
1303Expr *Expr::IgnoreParenCasts() {
1304  Expr *E = this;
1305  while (true) {
1306    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
1307      E = P->getSubExpr();
1308    else if (CastExpr *P = dyn_cast<CastExpr>(E))
1309      E = P->getSubExpr();
1310    else
1311      return E;
1312  }
1313}
1314
1315/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
1316/// value (including ptr->int casts of the same size).  Strip off any
1317/// ParenExpr or CastExprs, returning their operand.
1318Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
1319  Expr *E = this;
1320  while (true) {
1321    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
1322      E = P->getSubExpr();
1323      continue;
1324    }
1325
1326    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
1327      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
1328      // ptr<->int casts of the same width.  We also ignore all identify casts.
1329      Expr *SE = P->getSubExpr();
1330
1331      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
1332        E = SE;
1333        continue;
1334      }
1335
1336      if ((E->getType()->isPointerType() || E->getType()->isIntegralType()) &&
1337          (SE->getType()->isPointerType() || SE->getType()->isIntegralType()) &&
1338          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
1339        E = SE;
1340        continue;
1341      }
1342    }
1343
1344    return E;
1345  }
1346}
1347
1348
1349/// hasAnyTypeDependentArguments - Determines if any of the expressions
1350/// in Exprs is type-dependent.
1351bool Expr::hasAnyTypeDependentArguments(Expr** Exprs, unsigned NumExprs) {
1352  for (unsigned I = 0; I < NumExprs; ++I)
1353    if (Exprs[I]->isTypeDependent())
1354      return true;
1355
1356  return false;
1357}
1358
1359/// hasAnyValueDependentArguments - Determines if any of the expressions
1360/// in Exprs is value-dependent.
1361bool Expr::hasAnyValueDependentArguments(Expr** Exprs, unsigned NumExprs) {
1362  for (unsigned I = 0; I < NumExprs; ++I)
1363    if (Exprs[I]->isValueDependent())
1364      return true;
1365
1366  return false;
1367}
1368
1369bool Expr::isConstantInitializer(ASTContext &Ctx) const {
1370  // This function is attempting whether an expression is an initializer
1371  // which can be evaluated at compile-time.  isEvaluatable handles most
1372  // of the cases, but it can't deal with some initializer-specific
1373  // expressions, and it can't deal with aggregates; we deal with those here,
1374  // and fall back to isEvaluatable for the other cases.
1375
1376  // FIXME: This function assumes the variable being assigned to
1377  // isn't a reference type!
1378
1379  switch (getStmtClass()) {
1380  default: break;
1381  case StringLiteralClass:
1382  case ObjCStringLiteralClass:
1383  case ObjCEncodeExprClass:
1384    return true;
1385  case CompoundLiteralExprClass: {
1386    // This handles gcc's extension that allows global initializers like
1387    // "struct x {int x;} x = (struct x) {};".
1388    // FIXME: This accepts other cases it shouldn't!
1389    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
1390    return Exp->isConstantInitializer(Ctx);
1391  }
1392  case InitListExprClass: {
1393    // FIXME: This doesn't deal with fields with reference types correctly.
1394    // FIXME: This incorrectly allows pointers cast to integers to be assigned
1395    // to bitfields.
1396    const InitListExpr *Exp = cast<InitListExpr>(this);
1397    unsigned numInits = Exp->getNumInits();
1398    for (unsigned i = 0; i < numInits; i++) {
1399      if (!Exp->getInit(i)->isConstantInitializer(Ctx))
1400        return false;
1401    }
1402    return true;
1403  }
1404  case ImplicitValueInitExprClass:
1405    return true;
1406  case ParenExprClass:
1407    return cast<ParenExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1408  case UnaryOperatorClass: {
1409    const UnaryOperator* Exp = cast<UnaryOperator>(this);
1410    if (Exp->getOpcode() == UnaryOperator::Extension)
1411      return Exp->getSubExpr()->isConstantInitializer(Ctx);
1412    break;
1413  }
1414  case BinaryOperatorClass: {
1415    // Special case &&foo - &&bar.  It would be nice to generalize this somehow
1416    // but this handles the common case.
1417    const BinaryOperator *Exp = cast<BinaryOperator>(this);
1418    if (Exp->getOpcode() == BinaryOperator::Sub &&
1419        isa<AddrLabelExpr>(Exp->getLHS()->IgnoreParenNoopCasts(Ctx)) &&
1420        isa<AddrLabelExpr>(Exp->getRHS()->IgnoreParenNoopCasts(Ctx)))
1421      return true;
1422    break;
1423  }
1424  case ImplicitCastExprClass:
1425  case CStyleCastExprClass:
1426    // Handle casts with a destination that's a struct or union; this
1427    // deals with both the gcc no-op struct cast extension and the
1428    // cast-to-union extension.
1429    if (getType()->isRecordType())
1430      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1431
1432    // Integer->integer casts can be handled here, which is important for
1433    // things like (int)(&&x-&&y).  Scary but true.
1434    if (getType()->isIntegerType() &&
1435        cast<CastExpr>(this)->getSubExpr()->getType()->isIntegerType())
1436      return cast<CastExpr>(this)->getSubExpr()->isConstantInitializer(Ctx);
1437
1438    break;
1439  }
1440  return isEvaluatable(Ctx);
1441}
1442
1443/// isIntegerConstantExpr - this recursive routine will test if an expression is
1444/// an integer constant expression.
1445
1446/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
1447/// comma, etc
1448///
1449/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
1450/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
1451/// cast+dereference.
1452
1453// CheckICE - This function does the fundamental ICE checking: the returned
1454// ICEDiag contains a Val of 0, 1, or 2, and a possibly null SourceLocation.
1455// Note that to reduce code duplication, this helper does no evaluation
1456// itself; the caller checks whether the expression is evaluatable, and
1457// in the rare cases where CheckICE actually cares about the evaluated
1458// value, it calls into Evalute.
1459//
1460// Meanings of Val:
1461// 0: This expression is an ICE if it can be evaluated by Evaluate.
1462// 1: This expression is not an ICE, but if it isn't evaluated, it's
1463//    a legal subexpression for an ICE. This return value is used to handle
1464//    the comma operator in C99 mode.
1465// 2: This expression is not an ICE, and is not a legal subexpression for one.
1466
1467struct ICEDiag {
1468  unsigned Val;
1469  SourceLocation Loc;
1470
1471  public:
1472  ICEDiag(unsigned v, SourceLocation l) : Val(v), Loc(l) {}
1473  ICEDiag() : Val(0) {}
1474};
1475
1476ICEDiag NoDiag() { return ICEDiag(); }
1477
1478static ICEDiag CheckEvalInICE(const Expr* E, ASTContext &Ctx) {
1479  Expr::EvalResult EVResult;
1480  if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1481      !EVResult.Val.isInt()) {
1482    return ICEDiag(2, E->getLocStart());
1483  }
1484  return NoDiag();
1485}
1486
1487static ICEDiag CheckICE(const Expr* E, ASTContext &Ctx) {
1488  assert(!E->isValueDependent() && "Should not see value dependent exprs!");
1489  if (!E->getType()->isIntegralType()) {
1490    return ICEDiag(2, E->getLocStart());
1491  }
1492
1493  switch (E->getStmtClass()) {
1494#define STMT(Node, Base) case Expr::Node##Class:
1495#define EXPR(Node, Base)
1496#include "clang/AST/StmtNodes.def"
1497  case Expr::PredefinedExprClass:
1498  case Expr::FloatingLiteralClass:
1499  case Expr::ImaginaryLiteralClass:
1500  case Expr::StringLiteralClass:
1501  case Expr::ArraySubscriptExprClass:
1502  case Expr::MemberExprClass:
1503  case Expr::CompoundAssignOperatorClass:
1504  case Expr::CompoundLiteralExprClass:
1505  case Expr::ExtVectorElementExprClass:
1506  case Expr::InitListExprClass:
1507  case Expr::DesignatedInitExprClass:
1508  case Expr::ImplicitValueInitExprClass:
1509  case Expr::ParenListExprClass:
1510  case Expr::VAArgExprClass:
1511  case Expr::AddrLabelExprClass:
1512  case Expr::StmtExprClass:
1513  case Expr::CXXMemberCallExprClass:
1514  case Expr::CXXDynamicCastExprClass:
1515  case Expr::CXXTypeidExprClass:
1516  case Expr::CXXNullPtrLiteralExprClass:
1517  case Expr::CXXThisExprClass:
1518  case Expr::CXXThrowExprClass:
1519  case Expr::CXXNewExprClass:
1520  case Expr::CXXDeleteExprClass:
1521  case Expr::CXXPseudoDestructorExprClass:
1522  case Expr::UnresolvedLookupExprClass:
1523  case Expr::DependentScopeDeclRefExprClass:
1524  case Expr::CXXConstructExprClass:
1525  case Expr::CXXBindTemporaryExprClass:
1526  case Expr::CXXExprWithTemporariesClass:
1527  case Expr::CXXTemporaryObjectExprClass:
1528  case Expr::CXXUnresolvedConstructExprClass:
1529  case Expr::CXXDependentScopeMemberExprClass:
1530  case Expr::UnresolvedMemberExprClass:
1531  case Expr::ObjCStringLiteralClass:
1532  case Expr::ObjCEncodeExprClass:
1533  case Expr::ObjCMessageExprClass:
1534  case Expr::ObjCSelectorExprClass:
1535  case Expr::ObjCProtocolExprClass:
1536  case Expr::ObjCIvarRefExprClass:
1537  case Expr::ObjCPropertyRefExprClass:
1538  case Expr::ObjCImplicitSetterGetterRefExprClass:
1539  case Expr::ObjCSuperExprClass:
1540  case Expr::ObjCIsaExprClass:
1541  case Expr::ShuffleVectorExprClass:
1542  case Expr::BlockExprClass:
1543  case Expr::BlockDeclRefExprClass:
1544  case Expr::NoStmtClass:
1545  case Expr::ExprClass:
1546    return ICEDiag(2, E->getLocStart());
1547
1548  case Expr::GNUNullExprClass:
1549    // GCC considers the GNU __null value to be an integral constant expression.
1550    return NoDiag();
1551
1552  case Expr::ParenExprClass:
1553    return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
1554  case Expr::IntegerLiteralClass:
1555  case Expr::CharacterLiteralClass:
1556  case Expr::CXXBoolLiteralExprClass:
1557  case Expr::CXXZeroInitValueExprClass:
1558  case Expr::TypesCompatibleExprClass:
1559  case Expr::UnaryTypeTraitExprClass:
1560    return NoDiag();
1561  case Expr::CallExprClass:
1562  case Expr::CXXOperatorCallExprClass: {
1563    const CallExpr *CE = cast<CallExpr>(E);
1564    if (CE->isBuiltinCall(Ctx))
1565      return CheckEvalInICE(E, Ctx);
1566    return ICEDiag(2, E->getLocStart());
1567  }
1568  case Expr::DeclRefExprClass:
1569    if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
1570      return NoDiag();
1571    if (Ctx.getLangOptions().CPlusPlus &&
1572        E->getType().getCVRQualifiers() == Qualifiers::Const) {
1573      // C++ 7.1.5.1p2
1574      //   A variable of non-volatile const-qualified integral or enumeration
1575      //   type initialized by an ICE can be used in ICEs.
1576      if (const VarDecl *Dcl =
1577              dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
1578        Qualifiers Quals = Ctx.getCanonicalType(Dcl->getType()).getQualifiers();
1579        if (Quals.hasVolatile() || !Quals.hasConst())
1580          return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1581
1582        // Look for the definition of this variable, which will actually have
1583        // an initializer.
1584        const VarDecl *Def = 0;
1585        const Expr *Init = Dcl->getDefinition(Def);
1586        if (Init) {
1587          if (Def->isInitKnownICE()) {
1588            // We have already checked whether this subexpression is an
1589            // integral constant expression.
1590            if (Def->isInitICE())
1591              return NoDiag();
1592            else
1593              return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1594          }
1595
1596          // C++ [class.static.data]p4:
1597          //   If a static data member is of const integral or const
1598          //   enumeration type, its declaration in the class definition can
1599          //   specify a constant-initializer which shall be an integral
1600          //   constant expression (5.19). In that case, the member can appear
1601          //   in integral constant expressions.
1602          if (Def->isOutOfLine()) {
1603            Dcl->setInitKnownICE(false);
1604            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1605          }
1606
1607          if (Dcl->isCheckingICE()) {
1608            return ICEDiag(2, cast<DeclRefExpr>(E)->getLocation());
1609          }
1610
1611          Dcl->setCheckingICE();
1612          ICEDiag Result = CheckICE(Init, Ctx);
1613          // Cache the result of the ICE test.
1614          Dcl->setInitKnownICE(Result.Val == 0);
1615          return Result;
1616        }
1617      }
1618    }
1619    return ICEDiag(2, E->getLocStart());
1620  case Expr::UnaryOperatorClass: {
1621    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1622    switch (Exp->getOpcode()) {
1623    case UnaryOperator::PostInc:
1624    case UnaryOperator::PostDec:
1625    case UnaryOperator::PreInc:
1626    case UnaryOperator::PreDec:
1627    case UnaryOperator::AddrOf:
1628    case UnaryOperator::Deref:
1629      return ICEDiag(2, E->getLocStart());
1630
1631    case UnaryOperator::Extension:
1632    case UnaryOperator::LNot:
1633    case UnaryOperator::Plus:
1634    case UnaryOperator::Minus:
1635    case UnaryOperator::Not:
1636    case UnaryOperator::Real:
1637    case UnaryOperator::Imag:
1638      return CheckICE(Exp->getSubExpr(), Ctx);
1639    case UnaryOperator::OffsetOf:
1640      // Note that per C99, offsetof must be an ICE. And AFAIK, using
1641      // Evaluate matches the proposed gcc behavior for cases like
1642      // "offsetof(struct s{int x[4];}, x[!.0])".  This doesn't affect
1643      // compliance: we should warn earlier for offsetof expressions with
1644      // array subscripts that aren't ICEs, and if the array subscripts
1645      // are ICEs, the value of the offsetof must be an integer constant.
1646      return CheckEvalInICE(E, Ctx);
1647    }
1648  }
1649  case Expr::SizeOfAlignOfExprClass: {
1650    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(E);
1651    if (Exp->isSizeOf() && Exp->getTypeOfArgument()->isVariableArrayType())
1652      return ICEDiag(2, E->getLocStart());
1653    return NoDiag();
1654  }
1655  case Expr::BinaryOperatorClass: {
1656    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1657    switch (Exp->getOpcode()) {
1658    case BinaryOperator::PtrMemD:
1659    case BinaryOperator::PtrMemI:
1660    case BinaryOperator::Assign:
1661    case BinaryOperator::MulAssign:
1662    case BinaryOperator::DivAssign:
1663    case BinaryOperator::RemAssign:
1664    case BinaryOperator::AddAssign:
1665    case BinaryOperator::SubAssign:
1666    case BinaryOperator::ShlAssign:
1667    case BinaryOperator::ShrAssign:
1668    case BinaryOperator::AndAssign:
1669    case BinaryOperator::XorAssign:
1670    case BinaryOperator::OrAssign:
1671      return ICEDiag(2, E->getLocStart());
1672
1673    case BinaryOperator::Mul:
1674    case BinaryOperator::Div:
1675    case BinaryOperator::Rem:
1676    case BinaryOperator::Add:
1677    case BinaryOperator::Sub:
1678    case BinaryOperator::Shl:
1679    case BinaryOperator::Shr:
1680    case BinaryOperator::LT:
1681    case BinaryOperator::GT:
1682    case BinaryOperator::LE:
1683    case BinaryOperator::GE:
1684    case BinaryOperator::EQ:
1685    case BinaryOperator::NE:
1686    case BinaryOperator::And:
1687    case BinaryOperator::Xor:
1688    case BinaryOperator::Or:
1689    case BinaryOperator::Comma: {
1690      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1691      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1692      if (Exp->getOpcode() == BinaryOperator::Div ||
1693          Exp->getOpcode() == BinaryOperator::Rem) {
1694        // Evaluate gives an error for undefined Div/Rem, so make sure
1695        // we don't evaluate one.
1696        if (LHSResult.Val != 2 && RHSResult.Val != 2) {
1697          llvm::APSInt REval = Exp->getRHS()->EvaluateAsInt(Ctx);
1698          if (REval == 0)
1699            return ICEDiag(1, E->getLocStart());
1700          if (REval.isSigned() && REval.isAllOnesValue()) {
1701            llvm::APSInt LEval = Exp->getLHS()->EvaluateAsInt(Ctx);
1702            if (LEval.isMinSignedValue())
1703              return ICEDiag(1, E->getLocStart());
1704          }
1705        }
1706      }
1707      if (Exp->getOpcode() == BinaryOperator::Comma) {
1708        if (Ctx.getLangOptions().C99) {
1709          // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
1710          // if it isn't evaluated.
1711          if (LHSResult.Val == 0 && RHSResult.Val == 0)
1712            return ICEDiag(1, E->getLocStart());
1713        } else {
1714          // In both C89 and C++, commas in ICEs are illegal.
1715          return ICEDiag(2, E->getLocStart());
1716        }
1717      }
1718      if (LHSResult.Val >= RHSResult.Val)
1719        return LHSResult;
1720      return RHSResult;
1721    }
1722    case BinaryOperator::LAnd:
1723    case BinaryOperator::LOr: {
1724      ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
1725      ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
1726      if (LHSResult.Val == 0 && RHSResult.Val == 1) {
1727        // Rare case where the RHS has a comma "side-effect"; we need
1728        // to actually check the condition to see whether the side
1729        // with the comma is evaluated.
1730        if ((Exp->getOpcode() == BinaryOperator::LAnd) !=
1731            (Exp->getLHS()->EvaluateAsInt(Ctx) == 0))
1732          return RHSResult;
1733        return NoDiag();
1734      }
1735
1736      if (LHSResult.Val >= RHSResult.Val)
1737        return LHSResult;
1738      return RHSResult;
1739    }
1740    }
1741  }
1742  case Expr::CastExprClass:
1743  case Expr::ImplicitCastExprClass:
1744  case Expr::ExplicitCastExprClass:
1745  case Expr::CStyleCastExprClass:
1746  case Expr::CXXFunctionalCastExprClass:
1747  case Expr::CXXNamedCastExprClass:
1748  case Expr::CXXStaticCastExprClass:
1749  case Expr::CXXReinterpretCastExprClass:
1750  case Expr::CXXConstCastExprClass: {
1751    const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
1752    if (SubExpr->getType()->isIntegralType())
1753      return CheckICE(SubExpr, Ctx);
1754    if (isa<FloatingLiteral>(SubExpr->IgnoreParens()))
1755      return NoDiag();
1756    return ICEDiag(2, E->getLocStart());
1757  }
1758  case Expr::ConditionalOperatorClass: {
1759    const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
1760    // If the condition (ignoring parens) is a __builtin_constant_p call,
1761    // then only the true side is actually considered in an integer constant
1762    // expression, and it is fully evaluated.  This is an important GNU
1763    // extension.  See GCC PR38377 for discussion.
1764    if (const CallExpr *CallCE = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
1765      if (CallCE->isBuiltinCall(Ctx) == Builtin::BI__builtin_constant_p) {
1766        Expr::EvalResult EVResult;
1767        if (!E->Evaluate(EVResult, Ctx) || EVResult.HasSideEffects ||
1768            !EVResult.Val.isInt()) {
1769          return ICEDiag(2, E->getLocStart());
1770        }
1771        return NoDiag();
1772      }
1773    ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
1774    ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
1775    ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
1776    if (CondResult.Val == 2)
1777      return CondResult;
1778    if (TrueResult.Val == 2)
1779      return TrueResult;
1780    if (FalseResult.Val == 2)
1781      return FalseResult;
1782    if (CondResult.Val == 1)
1783      return CondResult;
1784    if (TrueResult.Val == 0 && FalseResult.Val == 0)
1785      return NoDiag();
1786    // Rare case where the diagnostics depend on which side is evaluated
1787    // Note that if we get here, CondResult is 0, and at least one of
1788    // TrueResult and FalseResult is non-zero.
1789    if (Exp->getCond()->EvaluateAsInt(Ctx) == 0) {
1790      return FalseResult;
1791    }
1792    return TrueResult;
1793  }
1794  case Expr::CXXDefaultArgExprClass:
1795    return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
1796  case Expr::ChooseExprClass: {
1797    return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(Ctx), Ctx);
1798  }
1799  }
1800
1801  // Silence a GCC warning
1802  return ICEDiag(2, E->getLocStart());
1803}
1804
1805bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
1806                                 SourceLocation *Loc, bool isEvaluated) const {
1807  ICEDiag d = CheckICE(this, Ctx);
1808  if (d.Val != 0) {
1809    if (Loc) *Loc = d.Loc;
1810    return false;
1811  }
1812  EvalResult EvalResult;
1813  if (!Evaluate(EvalResult, Ctx))
1814    llvm::llvm_unreachable("ICE cannot be evaluated!");
1815  assert(!EvalResult.HasSideEffects && "ICE with side effects!");
1816  assert(EvalResult.Val.isInt() && "ICE that isn't integer!");
1817  Result = EvalResult.Val.getInt();
1818  return true;
1819}
1820
1821/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1822/// integer constant expression with the value zero, or if this is one that is
1823/// cast to void*.
1824bool Expr::isNullPointerConstant(ASTContext &Ctx,
1825                                 NullPointerConstantValueDependence NPC) const {
1826  if (isValueDependent()) {
1827    switch (NPC) {
1828    case NPC_NeverValueDependent:
1829      assert(false && "Unexpected value dependent expression!");
1830      // If the unthinkable happens, fall through to the safest alternative.
1831
1832    case NPC_ValueDependentIsNull:
1833      return isTypeDependent() || getType()->isIntegralType();
1834
1835    case NPC_ValueDependentIsNotNull:
1836      return false;
1837    }
1838  }
1839
1840  // Strip off a cast to void*, if it exists. Except in C++.
1841  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1842    if (!Ctx.getLangOptions().CPlusPlus) {
1843      // Check that it is a cast to void*.
1844      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
1845        QualType Pointee = PT->getPointeeType();
1846        if (!Pointee.hasQualifiers() &&
1847            Pointee->isVoidType() &&                              // to void*
1848            CE->getSubExpr()->getType()->isIntegerType())         // from int.
1849          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1850      }
1851    }
1852  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1853    // Ignore the ImplicitCastExpr type entirely.
1854    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1855  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1856    // Accept ((void*)0) as a null pointer constant, as many other
1857    // implementations do.
1858    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
1859  } else if (const CXXDefaultArgExpr *DefaultArg
1860               = dyn_cast<CXXDefaultArgExpr>(this)) {
1861    // See through default argument expressions
1862    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
1863  } else if (isa<GNUNullExpr>(this)) {
1864    // The GNU __null extension is always a null pointer constant.
1865    return true;
1866  }
1867
1868  // C++0x nullptr_t is always a null pointer constant.
1869  if (getType()->isNullPtrType())
1870    return true;
1871
1872  // This expression must be an integer type.
1873  if (!getType()->isIntegerType() ||
1874      (Ctx.getLangOptions().CPlusPlus && getType()->isEnumeralType()))
1875    return false;
1876
1877  // If we have an integer constant expression, we need to *evaluate* it and
1878  // test for the value 0.
1879  llvm::APSInt Result;
1880  return isIntegerConstantExpr(Result, Ctx) && Result == 0;
1881}
1882
1883FieldDecl *Expr::getBitField() {
1884  Expr *E = this->IgnoreParens();
1885
1886  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
1887    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
1888      if (Field->isBitField())
1889        return Field;
1890
1891  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E))
1892    if (BinOp->isAssignmentOp() && BinOp->getLHS())
1893      return BinOp->getLHS()->getBitField();
1894
1895  return 0;
1896}
1897
1898/// isArrow - Return true if the base expression is a pointer to vector,
1899/// return false if the base expression is a vector.
1900bool ExtVectorElementExpr::isArrow() const {
1901  return getBase()->getType()->isPointerType();
1902}
1903
1904unsigned ExtVectorElementExpr::getNumElements() const {
1905  if (const VectorType *VT = getType()->getAs<VectorType>())
1906    return VT->getNumElements();
1907  return 1;
1908}
1909
1910/// containsDuplicateElements - Return true if any element access is repeated.
1911bool ExtVectorElementExpr::containsDuplicateElements() const {
1912  // FIXME: Refactor this code to an accessor on the AST node which returns the
1913  // "type" of component access, and share with code below and in Sema.
1914  llvm::StringRef Comp = Accessor->getName();
1915
1916  // Halving swizzles do not contain duplicate elements.
1917  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
1918    return false;
1919
1920  // Advance past s-char prefix on hex swizzles.
1921  if (Comp[0] == 's' || Comp[0] == 'S')
1922    Comp = Comp.substr(1);
1923
1924  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
1925    if (Comp.substr(i + 1).find(Comp[i]) != llvm::StringRef::npos)
1926        return true;
1927
1928  return false;
1929}
1930
1931/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
1932void ExtVectorElementExpr::getEncodedElementAccess(
1933                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
1934  llvm::StringRef Comp = Accessor->getName();
1935  if (Comp[0] == 's' || Comp[0] == 'S')
1936    Comp = Comp.substr(1);
1937
1938  bool isHi =   Comp == "hi";
1939  bool isLo =   Comp == "lo";
1940  bool isEven = Comp == "even";
1941  bool isOdd  = Comp == "odd";
1942
1943  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
1944    uint64_t Index;
1945
1946    if (isHi)
1947      Index = e + i;
1948    else if (isLo)
1949      Index = i;
1950    else if (isEven)
1951      Index = 2 * i;
1952    else if (isOdd)
1953      Index = 2 * i + 1;
1954    else
1955      Index = ExtVectorType::getAccessorIdx(Comp[i]);
1956
1957    Elts.push_back(Index);
1958  }
1959}
1960
1961// constructor for instance messages.
1962ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
1963                QualType retType, ObjCMethodDecl *mproto,
1964                SourceLocation LBrac, SourceLocation RBrac,
1965                Expr **ArgExprs, unsigned nargs)
1966  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1967    MethodProto(mproto) {
1968  NumArgs = nargs;
1969  SubExprs = new Stmt*[NumArgs+1];
1970  SubExprs[RECEIVER] = receiver;
1971  if (NumArgs) {
1972    for (unsigned i = 0; i != NumArgs; ++i)
1973      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1974  }
1975  LBracloc = LBrac;
1976  RBracloc = RBrac;
1977}
1978
1979// constructor for class messages.
1980// FIXME: clsName should be typed to ObjCInterfaceType
1981ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
1982                QualType retType, ObjCMethodDecl *mproto,
1983                SourceLocation LBrac, SourceLocation RBrac,
1984                Expr **ArgExprs, unsigned nargs)
1985  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1986    MethodProto(mproto) {
1987  NumArgs = nargs;
1988  SubExprs = new Stmt*[NumArgs+1];
1989  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
1990  if (NumArgs) {
1991    for (unsigned i = 0; i != NumArgs; ++i)
1992      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1993  }
1994  LBracloc = LBrac;
1995  RBracloc = RBrac;
1996}
1997
1998// constructor for class messages.
1999ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
2000                                 QualType retType, ObjCMethodDecl *mproto,
2001                                 SourceLocation LBrac, SourceLocation RBrac,
2002                                 Expr **ArgExprs, unsigned nargs)
2003: Expr(ObjCMessageExprClass, retType), SelName(selInfo),
2004MethodProto(mproto) {
2005  NumArgs = nargs;
2006  SubExprs = new Stmt*[NumArgs+1];
2007  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
2008  if (NumArgs) {
2009    for (unsigned i = 0; i != NumArgs; ++i)
2010      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
2011  }
2012  LBracloc = LBrac;
2013  RBracloc = RBrac;
2014}
2015
2016ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
2017  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
2018  switch (x & Flags) {
2019    default:
2020      assert(false && "Invalid ObjCMessageExpr.");
2021    case IsInstMeth:
2022      return ClassInfo(0, 0);
2023    case IsClsMethDeclUnknown:
2024      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
2025    case IsClsMethDeclKnown: {
2026      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
2027      return ClassInfo(D, D->getIdentifier());
2028    }
2029  }
2030}
2031
2032void ObjCMessageExpr::setClassInfo(const ObjCMessageExpr::ClassInfo &CI) {
2033  if (CI.first == 0 && CI.second == 0)
2034    SubExprs[RECEIVER] = (Expr*)((uintptr_t)0 | IsInstMeth);
2035  else if (CI.first == 0)
2036    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.second | IsClsMethDeclUnknown);
2037  else
2038    SubExprs[RECEIVER] = (Expr*)((uintptr_t)CI.first | IsClsMethDeclKnown);
2039}
2040
2041
2042bool ChooseExpr::isConditionTrue(ASTContext &C) const {
2043  return getCond()->EvaluateAsInt(C) != 0;
2044}
2045
2046void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
2047                                 unsigned NumExprs) {
2048  if (SubExprs) C.Deallocate(SubExprs);
2049
2050  SubExprs = new (C) Stmt* [NumExprs];
2051  this->NumExprs = NumExprs;
2052  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
2053}
2054
2055void ShuffleVectorExpr::DoDestroy(ASTContext& C) {
2056  DestroyChildren(C);
2057  if (SubExprs) C.Deallocate(SubExprs);
2058  this->~ShuffleVectorExpr();
2059  C.Deallocate(this);
2060}
2061
2062void SizeOfAlignOfExpr::DoDestroy(ASTContext& C) {
2063  // Override default behavior of traversing children. If this has a type
2064  // operand and the type is a variable-length array, the child iteration
2065  // will iterate over the size expression. However, this expression belongs
2066  // to the type, not to this, so we don't want to delete it.
2067  // We still want to delete this expression.
2068  if (isArgumentType()) {
2069    this->~SizeOfAlignOfExpr();
2070    C.Deallocate(this);
2071  }
2072  else
2073    Expr::DoDestroy(C);
2074}
2075
2076//===----------------------------------------------------------------------===//
2077//  DesignatedInitExpr
2078//===----------------------------------------------------------------------===//
2079
2080IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() {
2081  assert(Kind == FieldDesignator && "Only valid on a field designator");
2082  if (Field.NameOrField & 0x01)
2083    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
2084  else
2085    return getField()->getIdentifier();
2086}
2087
2088DesignatedInitExpr::DesignatedInitExpr(QualType Ty, unsigned NumDesignators,
2089                                       const Designator *Designators,
2090                                       SourceLocation EqualOrColonLoc,
2091                                       bool GNUSyntax,
2092                                       Expr **IndexExprs,
2093                                       unsigned NumIndexExprs,
2094                                       Expr *Init)
2095  : Expr(DesignatedInitExprClass, Ty,
2096         Init->isTypeDependent(), Init->isValueDependent()),
2097    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
2098    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
2099  this->Designators = new Designator[NumDesignators];
2100
2101  // Record the initializer itself.
2102  child_iterator Child = child_begin();
2103  *Child++ = Init;
2104
2105  // Copy the designators and their subexpressions, computing
2106  // value-dependence along the way.
2107  unsigned IndexIdx = 0;
2108  for (unsigned I = 0; I != NumDesignators; ++I) {
2109    this->Designators[I] = Designators[I];
2110
2111    if (this->Designators[I].isArrayDesignator()) {
2112      // Compute type- and value-dependence.
2113      Expr *Index = IndexExprs[IndexIdx];
2114      ValueDependent = ValueDependent ||
2115        Index->isTypeDependent() || Index->isValueDependent();
2116
2117      // Copy the index expressions into permanent storage.
2118      *Child++ = IndexExprs[IndexIdx++];
2119    } else if (this->Designators[I].isArrayRangeDesignator()) {
2120      // Compute type- and value-dependence.
2121      Expr *Start = IndexExprs[IndexIdx];
2122      Expr *End = IndexExprs[IndexIdx + 1];
2123      ValueDependent = ValueDependent ||
2124        Start->isTypeDependent() || Start->isValueDependent() ||
2125        End->isTypeDependent() || End->isValueDependent();
2126
2127      // Copy the start/end expressions into permanent storage.
2128      *Child++ = IndexExprs[IndexIdx++];
2129      *Child++ = IndexExprs[IndexIdx++];
2130    }
2131  }
2132
2133  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
2134}
2135
2136DesignatedInitExpr *
2137DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
2138                           unsigned NumDesignators,
2139                           Expr **IndexExprs, unsigned NumIndexExprs,
2140                           SourceLocation ColonOrEqualLoc,
2141                           bool UsesColonSyntax, Expr *Init) {
2142  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2143                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2144  return new (Mem) DesignatedInitExpr(C.VoidTy, NumDesignators, Designators,
2145                                      ColonOrEqualLoc, UsesColonSyntax,
2146                                      IndexExprs, NumIndexExprs, Init);
2147}
2148
2149DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
2150                                                    unsigned NumIndexExprs) {
2151  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
2152                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
2153  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
2154}
2155
2156void DesignatedInitExpr::setDesignators(const Designator *Desigs,
2157                                        unsigned NumDesigs) {
2158  if (Designators)
2159    delete [] Designators;
2160
2161  Designators = new Designator[NumDesigs];
2162  NumDesignators = NumDesigs;
2163  for (unsigned I = 0; I != NumDesigs; ++I)
2164    Designators[I] = Desigs[I];
2165}
2166
2167SourceRange DesignatedInitExpr::getSourceRange() const {
2168  SourceLocation StartLoc;
2169  Designator &First =
2170    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
2171  if (First.isFieldDesignator()) {
2172    if (GNUSyntax)
2173      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
2174    else
2175      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
2176  } else
2177    StartLoc =
2178      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
2179  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
2180}
2181
2182Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
2183  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
2184  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2185  Ptr += sizeof(DesignatedInitExpr);
2186  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2187  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2188}
2189
2190Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
2191  assert(D.Kind == Designator::ArrayRangeDesignator &&
2192         "Requires array range designator");
2193  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2194  Ptr += sizeof(DesignatedInitExpr);
2195  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2196  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
2197}
2198
2199Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
2200  assert(D.Kind == Designator::ArrayRangeDesignator &&
2201         "Requires array range designator");
2202  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2203  Ptr += sizeof(DesignatedInitExpr);
2204  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2205  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
2206}
2207
2208/// \brief Replaces the designator at index @p Idx with the series
2209/// of designators in [First, Last).
2210void DesignatedInitExpr::ExpandDesignator(unsigned Idx,
2211                                          const Designator *First,
2212                                          const Designator *Last) {
2213  unsigned NumNewDesignators = Last - First;
2214  if (NumNewDesignators == 0) {
2215    std::copy_backward(Designators + Idx + 1,
2216                       Designators + NumDesignators,
2217                       Designators + Idx);
2218    --NumNewDesignators;
2219    return;
2220  } else if (NumNewDesignators == 1) {
2221    Designators[Idx] = *First;
2222    return;
2223  }
2224
2225  Designator *NewDesignators
2226    = new Designator[NumDesignators - 1 + NumNewDesignators];
2227  std::copy(Designators, Designators + Idx, NewDesignators);
2228  std::copy(First, Last, NewDesignators + Idx);
2229  std::copy(Designators + Idx + 1, Designators + NumDesignators,
2230            NewDesignators + Idx + NumNewDesignators);
2231  delete [] Designators;
2232  Designators = NewDesignators;
2233  NumDesignators = NumDesignators - 1 + NumNewDesignators;
2234}
2235
2236void DesignatedInitExpr::DoDestroy(ASTContext &C) {
2237  delete [] Designators;
2238  Expr::DoDestroy(C);
2239}
2240
2241ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
2242                             Expr **exprs, unsigned nexprs,
2243                             SourceLocation rparenloc)
2244: Expr(ParenListExprClass, QualType(),
2245       hasAnyTypeDependentArguments(exprs, nexprs),
2246       hasAnyValueDependentArguments(exprs, nexprs)),
2247  NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
2248
2249  Exprs = new (C) Stmt*[nexprs];
2250  for (unsigned i = 0; i != nexprs; ++i)
2251    Exprs[i] = exprs[i];
2252}
2253
2254void ParenListExpr::DoDestroy(ASTContext& C) {
2255  DestroyChildren(C);
2256  if (Exprs) C.Deallocate(Exprs);
2257  this->~ParenListExpr();
2258  C.Deallocate(this);
2259}
2260
2261//===----------------------------------------------------------------------===//
2262//  ExprIterator.
2263//===----------------------------------------------------------------------===//
2264
2265Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
2266Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
2267Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
2268const Expr* ConstExprIterator::operator[](size_t idx) const {
2269  return cast<Expr>(I[idx]);
2270}
2271const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
2272const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
2273
2274//===----------------------------------------------------------------------===//
2275//  Child Iterators for iterating over subexpressions/substatements
2276//===----------------------------------------------------------------------===//
2277
2278// DeclRefExpr
2279Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
2280Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
2281
2282// ObjCIvarRefExpr
2283Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
2284Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
2285
2286// ObjCPropertyRefExpr
2287Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
2288Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
2289
2290// ObjCImplicitSetterGetterRefExpr
2291Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_begin() {
2292  return &Base;
2293}
2294Stmt::child_iterator ObjCImplicitSetterGetterRefExpr::child_end() {
2295  return &Base+1;
2296}
2297
2298// ObjCSuperExpr
2299Stmt::child_iterator ObjCSuperExpr::child_begin() { return child_iterator(); }
2300Stmt::child_iterator ObjCSuperExpr::child_end() { return child_iterator(); }
2301
2302// ObjCIsaExpr
2303Stmt::child_iterator ObjCIsaExpr::child_begin() { return &Base; }
2304Stmt::child_iterator ObjCIsaExpr::child_end() { return &Base+1; }
2305
2306// PredefinedExpr
2307Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
2308Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
2309
2310// IntegerLiteral
2311Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
2312Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
2313
2314// CharacterLiteral
2315Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator();}
2316Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
2317
2318// FloatingLiteral
2319Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
2320Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
2321
2322// ImaginaryLiteral
2323Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
2324Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
2325
2326// StringLiteral
2327Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
2328Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
2329
2330// ParenExpr
2331Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
2332Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
2333
2334// UnaryOperator
2335Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
2336Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
2337
2338// SizeOfAlignOfExpr
2339Stmt::child_iterator SizeOfAlignOfExpr::child_begin() {
2340  // If this is of a type and the type is a VLA type (and not a typedef), the
2341  // size expression of the VLA needs to be treated as an executable expression.
2342  // Why isn't this weirdness documented better in StmtIterator?
2343  if (isArgumentType()) {
2344    if (VariableArrayType* T = dyn_cast<VariableArrayType>(
2345                                   getArgumentType().getTypePtr()))
2346      return child_iterator(T);
2347    return child_iterator();
2348  }
2349  return child_iterator(&Argument.Ex);
2350}
2351Stmt::child_iterator SizeOfAlignOfExpr::child_end() {
2352  if (isArgumentType())
2353    return child_iterator();
2354  return child_iterator(&Argument.Ex + 1);
2355}
2356
2357// ArraySubscriptExpr
2358Stmt::child_iterator ArraySubscriptExpr::child_begin() {
2359  return &SubExprs[0];
2360}
2361Stmt::child_iterator ArraySubscriptExpr::child_end() {
2362  return &SubExprs[0]+END_EXPR;
2363}
2364
2365// CallExpr
2366Stmt::child_iterator CallExpr::child_begin() {
2367  return &SubExprs[0];
2368}
2369Stmt::child_iterator CallExpr::child_end() {
2370  return &SubExprs[0]+NumArgs+ARGS_START;
2371}
2372
2373// MemberExpr
2374Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
2375Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
2376
2377// ExtVectorElementExpr
2378Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
2379Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
2380
2381// CompoundLiteralExpr
2382Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
2383Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
2384
2385// CastExpr
2386Stmt::child_iterator CastExpr::child_begin() { return &Op; }
2387Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
2388
2389// BinaryOperator
2390Stmt::child_iterator BinaryOperator::child_begin() {
2391  return &SubExprs[0];
2392}
2393Stmt::child_iterator BinaryOperator::child_end() {
2394  return &SubExprs[0]+END_EXPR;
2395}
2396
2397// ConditionalOperator
2398Stmt::child_iterator ConditionalOperator::child_begin() {
2399  return &SubExprs[0];
2400}
2401Stmt::child_iterator ConditionalOperator::child_end() {
2402  return &SubExprs[0]+END_EXPR;
2403}
2404
2405// AddrLabelExpr
2406Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
2407Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
2408
2409// StmtExpr
2410Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
2411Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
2412
2413// TypesCompatibleExpr
2414Stmt::child_iterator TypesCompatibleExpr::child_begin() {
2415  return child_iterator();
2416}
2417
2418Stmt::child_iterator TypesCompatibleExpr::child_end() {
2419  return child_iterator();
2420}
2421
2422// ChooseExpr
2423Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
2424Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
2425
2426// GNUNullExpr
2427Stmt::child_iterator GNUNullExpr::child_begin() { return child_iterator(); }
2428Stmt::child_iterator GNUNullExpr::child_end() { return child_iterator(); }
2429
2430// ShuffleVectorExpr
2431Stmt::child_iterator ShuffleVectorExpr::child_begin() {
2432  return &SubExprs[0];
2433}
2434Stmt::child_iterator ShuffleVectorExpr::child_end() {
2435  return &SubExprs[0]+NumExprs;
2436}
2437
2438// VAArgExpr
2439Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
2440Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
2441
2442// InitListExpr
2443Stmt::child_iterator InitListExpr::child_begin() {
2444  return InitExprs.size() ? &InitExprs[0] : 0;
2445}
2446Stmt::child_iterator InitListExpr::child_end() {
2447  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
2448}
2449
2450// DesignatedInitExpr
2451Stmt::child_iterator DesignatedInitExpr::child_begin() {
2452  char* Ptr = static_cast<char*>(static_cast<void *>(this));
2453  Ptr += sizeof(DesignatedInitExpr);
2454  return reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
2455}
2456Stmt::child_iterator DesignatedInitExpr::child_end() {
2457  return child_iterator(&*child_begin() + NumSubExprs);
2458}
2459
2460// ImplicitValueInitExpr
2461Stmt::child_iterator ImplicitValueInitExpr::child_begin() {
2462  return child_iterator();
2463}
2464
2465Stmt::child_iterator ImplicitValueInitExpr::child_end() {
2466  return child_iterator();
2467}
2468
2469// ParenListExpr
2470Stmt::child_iterator ParenListExpr::child_begin() {
2471  return &Exprs[0];
2472}
2473Stmt::child_iterator ParenListExpr::child_end() {
2474  return &Exprs[0]+NumExprs;
2475}
2476
2477// ObjCStringLiteral
2478Stmt::child_iterator ObjCStringLiteral::child_begin() {
2479  return &String;
2480}
2481Stmt::child_iterator ObjCStringLiteral::child_end() {
2482  return &String+1;
2483}
2484
2485// ObjCEncodeExpr
2486Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
2487Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
2488
2489// ObjCSelectorExpr
2490Stmt::child_iterator ObjCSelectorExpr::child_begin() {
2491  return child_iterator();
2492}
2493Stmt::child_iterator ObjCSelectorExpr::child_end() {
2494  return child_iterator();
2495}
2496
2497// ObjCProtocolExpr
2498Stmt::child_iterator ObjCProtocolExpr::child_begin() {
2499  return child_iterator();
2500}
2501Stmt::child_iterator ObjCProtocolExpr::child_end() {
2502  return child_iterator();
2503}
2504
2505// ObjCMessageExpr
2506Stmt::child_iterator ObjCMessageExpr::child_begin() {
2507  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
2508}
2509Stmt::child_iterator ObjCMessageExpr::child_end() {
2510  return &SubExprs[0]+ARGS_START+getNumArgs();
2511}
2512
2513// Blocks
2514Stmt::child_iterator BlockExpr::child_begin() { return child_iterator(); }
2515Stmt::child_iterator BlockExpr::child_end() { return child_iterator(); }
2516
2517Stmt::child_iterator BlockDeclRefExpr::child_begin() { return child_iterator();}
2518Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator(); }
2519