Expr.cpp revision bbff82f302a1dd67589f65912351978905f0c5a7
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Lex/LiteralSupport.h"
25#include "clang/Lex/Lexer.h"
26#include "clang/Sema/SemaDiagnostic.h"
27#include "clang/Basic/Builtins.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/raw_ostream.h"
32#include <algorithm>
33#include <cstring>
34using namespace clang;
35
36const CXXRecordDecl *Expr::getBestDynamicClassType() const {
37  const Expr *E = ignoreParenBaseCasts();
38
39  QualType DerivedType = E->getType();
40  if (const PointerType *PTy = DerivedType->getAs<PointerType>())
41    DerivedType = PTy->getPointeeType();
42
43  if (DerivedType->isDependentType())
44    return NULL;
45
46  const RecordType *Ty = DerivedType->castAs<RecordType>();
47  Decl *D = Ty->getDecl();
48  return cast<CXXRecordDecl>(D);
49}
50
51/// isKnownToHaveBooleanValue - Return true if this is an integer expression
52/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
53/// but also int expressions which are produced by things like comparisons in
54/// C.
55bool Expr::isKnownToHaveBooleanValue() const {
56  const Expr *E = IgnoreParens();
57
58  // If this value has _Bool type, it is obvious 0/1.
59  if (E->getType()->isBooleanType()) return true;
60  // If this is a non-scalar-integer type, we don't care enough to try.
61  if (!E->getType()->isIntegralOrEnumerationType()) return false;
62
63  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
64    switch (UO->getOpcode()) {
65    case UO_Plus:
66      return UO->getSubExpr()->isKnownToHaveBooleanValue();
67    default:
68      return false;
69    }
70  }
71
72  // Only look through implicit casts.  If the user writes
73  // '(int) (a && b)' treat it as an arbitrary int.
74  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
75    return CE->getSubExpr()->isKnownToHaveBooleanValue();
76
77  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
78    switch (BO->getOpcode()) {
79    default: return false;
80    case BO_LT:   // Relational operators.
81    case BO_GT:
82    case BO_LE:
83    case BO_GE:
84    case BO_EQ:   // Equality operators.
85    case BO_NE:
86    case BO_LAnd: // AND operator.
87    case BO_LOr:  // Logical OR operator.
88      return true;
89
90    case BO_And:  // Bitwise AND operator.
91    case BO_Xor:  // Bitwise XOR operator.
92    case BO_Or:   // Bitwise OR operator.
93      // Handle things like (x==2)|(y==12).
94      return BO->getLHS()->isKnownToHaveBooleanValue() &&
95             BO->getRHS()->isKnownToHaveBooleanValue();
96
97    case BO_Comma:
98    case BO_Assign:
99      return BO->getRHS()->isKnownToHaveBooleanValue();
100    }
101  }
102
103  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
104    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
105           CO->getFalseExpr()->isKnownToHaveBooleanValue();
106
107  return false;
108}
109
110// Amusing macro metaprogramming hack: check whether a class provides
111// a more specific implementation of getExprLoc().
112//
113// See also Stmt.cpp:{getLocStart(),getLocEnd()}.
114namespace {
115  /// This implementation is used when a class provides a custom
116  /// implementation of getExprLoc.
117  template <class E, class T>
118  SourceLocation getExprLocImpl(const Expr *expr,
119                                SourceLocation (T::*v)() const) {
120    return static_cast<const E*>(expr)->getExprLoc();
121  }
122
123  /// This implementation is used when a class doesn't provide
124  /// a custom implementation of getExprLoc.  Overload resolution
125  /// should pick it over the implementation above because it's
126  /// more specialized according to function template partial ordering.
127  template <class E>
128  SourceLocation getExprLocImpl(const Expr *expr,
129                                SourceLocation (Expr::*v)() const) {
130    return static_cast<const E*>(expr)->getLocStart();
131  }
132}
133
134SourceLocation Expr::getExprLoc() const {
135  switch (getStmtClass()) {
136  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
137#define ABSTRACT_STMT(type)
138#define STMT(type, base) \
139  case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
140#define EXPR(type, base) \
141  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
142#include "clang/AST/StmtNodes.inc"
143  }
144  llvm_unreachable("unknown statement kind");
145}
146
147//===----------------------------------------------------------------------===//
148// Primary Expressions.
149//===----------------------------------------------------------------------===//
150
151/// \brief Compute the type-, value-, and instantiation-dependence of a
152/// declaration reference
153/// based on the declaration being referenced.
154static void computeDeclRefDependence(ASTContext &Ctx, NamedDecl *D, QualType T,
155                                     bool &TypeDependent,
156                                     bool &ValueDependent,
157                                     bool &InstantiationDependent) {
158  TypeDependent = false;
159  ValueDependent = false;
160  InstantiationDependent = false;
161
162  // (TD) C++ [temp.dep.expr]p3:
163  //   An id-expression is type-dependent if it contains:
164  //
165  // and
166  //
167  // (VD) C++ [temp.dep.constexpr]p2:
168  //  An identifier is value-dependent if it is:
169
170  //  (TD)  - an identifier that was declared with dependent type
171  //  (VD)  - a name declared with a dependent type,
172  if (T->isDependentType()) {
173    TypeDependent = true;
174    ValueDependent = true;
175    InstantiationDependent = true;
176    return;
177  } else if (T->isInstantiationDependentType()) {
178    InstantiationDependent = true;
179  }
180
181  //  (TD)  - a conversion-function-id that specifies a dependent type
182  if (D->getDeclName().getNameKind()
183                                == DeclarationName::CXXConversionFunctionName) {
184    QualType T = D->getDeclName().getCXXNameType();
185    if (T->isDependentType()) {
186      TypeDependent = true;
187      ValueDependent = true;
188      InstantiationDependent = true;
189      return;
190    }
191
192    if (T->isInstantiationDependentType())
193      InstantiationDependent = true;
194  }
195
196  //  (VD)  - the name of a non-type template parameter,
197  if (isa<NonTypeTemplateParmDecl>(D)) {
198    ValueDependent = true;
199    InstantiationDependent = true;
200    return;
201  }
202
203  //  (VD) - a constant with integral or enumeration type and is
204  //         initialized with an expression that is value-dependent.
205  //  (VD) - a constant with literal type and is initialized with an
206  //         expression that is value-dependent [C++11].
207  //  (VD) - FIXME: Missing from the standard:
208  //       -  an entity with reference type and is initialized with an
209  //          expression that is value-dependent [C++11]
210  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
211    if ((Ctx.getLangOpts().CPlusPlus0x ?
212           Var->getType()->isLiteralType() :
213           Var->getType()->isIntegralOrEnumerationType()) &&
214        (Var->getType().isConstQualified() ||
215         Var->getType()->isReferenceType())) {
216      if (const Expr *Init = Var->getAnyInitializer())
217        if (Init->isValueDependent()) {
218          ValueDependent = true;
219          InstantiationDependent = true;
220        }
221    }
222
223    // (VD) - FIXME: Missing from the standard:
224    //      -  a member function or a static data member of the current
225    //         instantiation
226    if (Var->isStaticDataMember() &&
227        Var->getDeclContext()->isDependentContext()) {
228      ValueDependent = true;
229      InstantiationDependent = true;
230    }
231
232    return;
233  }
234
235  // (VD) - FIXME: Missing from the standard:
236  //      -  a member function or a static data member of the current
237  //         instantiation
238  if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
239    ValueDependent = true;
240    InstantiationDependent = true;
241  }
242}
243
244void DeclRefExpr::computeDependence(ASTContext &Ctx) {
245  bool TypeDependent = false;
246  bool ValueDependent = false;
247  bool InstantiationDependent = false;
248  computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
249                           ValueDependent, InstantiationDependent);
250
251  // (TD) C++ [temp.dep.expr]p3:
252  //   An id-expression is type-dependent if it contains:
253  //
254  // and
255  //
256  // (VD) C++ [temp.dep.constexpr]p2:
257  //  An identifier is value-dependent if it is:
258  if (!TypeDependent && !ValueDependent &&
259      hasExplicitTemplateArgs() &&
260      TemplateSpecializationType::anyDependentTemplateArguments(
261                                                            getTemplateArgs(),
262                                                       getNumTemplateArgs(),
263                                                      InstantiationDependent)) {
264    TypeDependent = true;
265    ValueDependent = true;
266    InstantiationDependent = true;
267  }
268
269  ExprBits.TypeDependent = TypeDependent;
270  ExprBits.ValueDependent = ValueDependent;
271  ExprBits.InstantiationDependent = InstantiationDependent;
272
273  // Is the declaration a parameter pack?
274  if (getDecl()->isParameterPack())
275    ExprBits.ContainsUnexpandedParameterPack = true;
276}
277
278DeclRefExpr::DeclRefExpr(ASTContext &Ctx,
279                         NestedNameSpecifierLoc QualifierLoc,
280                         SourceLocation TemplateKWLoc,
281                         ValueDecl *D, bool RefersToEnclosingLocal,
282                         const DeclarationNameInfo &NameInfo,
283                         NamedDecl *FoundD,
284                         const TemplateArgumentListInfo *TemplateArgs,
285                         QualType T, ExprValueKind VK)
286  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
287    D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
288  DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
289  if (QualifierLoc)
290    getInternalQualifierLoc() = QualifierLoc;
291  DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
292  if (FoundD)
293    getInternalFoundDecl() = FoundD;
294  DeclRefExprBits.HasTemplateKWAndArgsInfo
295    = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
296  DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal;
297  if (TemplateArgs) {
298    bool Dependent = false;
299    bool InstantiationDependent = false;
300    bool ContainsUnexpandedParameterPack = false;
301    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
302                                               Dependent,
303                                               InstantiationDependent,
304                                               ContainsUnexpandedParameterPack);
305    if (InstantiationDependent)
306      setInstantiationDependent(true);
307  } else if (TemplateKWLoc.isValid()) {
308    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
309  }
310  DeclRefExprBits.HadMultipleCandidates = 0;
311
312  computeDependence(Ctx);
313}
314
315DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
316                                 NestedNameSpecifierLoc QualifierLoc,
317                                 SourceLocation TemplateKWLoc,
318                                 ValueDecl *D,
319                                 bool RefersToEnclosingLocal,
320                                 SourceLocation NameLoc,
321                                 QualType T,
322                                 ExprValueKind VK,
323                                 NamedDecl *FoundD,
324                                 const TemplateArgumentListInfo *TemplateArgs) {
325  return Create(Context, QualifierLoc, TemplateKWLoc, D,
326                RefersToEnclosingLocal,
327                DeclarationNameInfo(D->getDeclName(), NameLoc),
328                T, VK, FoundD, TemplateArgs);
329}
330
331DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
332                                 NestedNameSpecifierLoc QualifierLoc,
333                                 SourceLocation TemplateKWLoc,
334                                 ValueDecl *D,
335                                 bool RefersToEnclosingLocal,
336                                 const DeclarationNameInfo &NameInfo,
337                                 QualType T,
338                                 ExprValueKind VK,
339                                 NamedDecl *FoundD,
340                                 const TemplateArgumentListInfo *TemplateArgs) {
341  // Filter out cases where the found Decl is the same as the value refenenced.
342  if (D == FoundD)
343    FoundD = 0;
344
345  std::size_t Size = sizeof(DeclRefExpr);
346  if (QualifierLoc != 0)
347    Size += sizeof(NestedNameSpecifierLoc);
348  if (FoundD)
349    Size += sizeof(NamedDecl *);
350  if (TemplateArgs)
351    Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
352  else if (TemplateKWLoc.isValid())
353    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
354
355  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
356  return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
357                               RefersToEnclosingLocal,
358                               NameInfo, FoundD, TemplateArgs, T, VK);
359}
360
361DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
362                                      bool HasQualifier,
363                                      bool HasFoundDecl,
364                                      bool HasTemplateKWAndArgsInfo,
365                                      unsigned NumTemplateArgs) {
366  std::size_t Size = sizeof(DeclRefExpr);
367  if (HasQualifier)
368    Size += sizeof(NestedNameSpecifierLoc);
369  if (HasFoundDecl)
370    Size += sizeof(NamedDecl *);
371  if (HasTemplateKWAndArgsInfo)
372    Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
373
374  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
375  return new (Mem) DeclRefExpr(EmptyShell());
376}
377
378SourceRange DeclRefExpr::getSourceRange() const {
379  SourceRange R = getNameInfo().getSourceRange();
380  if (hasQualifier())
381    R.setBegin(getQualifierLoc().getBeginLoc());
382  if (hasExplicitTemplateArgs())
383    R.setEnd(getRAngleLoc());
384  return R;
385}
386SourceLocation DeclRefExpr::getLocStart() const {
387  if (hasQualifier())
388    return getQualifierLoc().getBeginLoc();
389  return getNameInfo().getLocStart();
390}
391SourceLocation DeclRefExpr::getLocEnd() const {
392  if (hasExplicitTemplateArgs())
393    return getRAngleLoc();
394  return getNameInfo().getLocEnd();
395}
396
397// FIXME: Maybe this should use DeclPrinter with a special "print predefined
398// expr" policy instead.
399std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
400  ASTContext &Context = CurrentDecl->getASTContext();
401
402  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
403    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
404      return FD->getNameAsString();
405
406    SmallString<256> Name;
407    llvm::raw_svector_ostream Out(Name);
408
409    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
410      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
411        Out << "virtual ";
412      if (MD->isStatic())
413        Out << "static ";
414    }
415
416    PrintingPolicy Policy(Context.getLangOpts());
417    std::string Proto = FD->getQualifiedNameAsString(Policy);
418    llvm::raw_string_ostream POut(Proto);
419
420    const FunctionDecl *Decl = FD;
421    if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
422      Decl = Pattern;
423    const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
424    const FunctionProtoType *FT = 0;
425    if (FD->hasWrittenPrototype())
426      FT = dyn_cast<FunctionProtoType>(AFT);
427
428    POut << "(";
429    if (FT) {
430      for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
431        if (i) POut << ", ";
432        POut << Decl->getParamDecl(i)->getType().stream(Policy);
433      }
434
435      if (FT->isVariadic()) {
436        if (FD->getNumParams()) POut << ", ";
437        POut << "...";
438      }
439    }
440    POut << ")";
441
442    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
443      const FunctionType *FT = cast<FunctionType>(MD->getType().getTypePtr());
444      if (FT->isConst())
445        POut << " const";
446      if (FT->isVolatile())
447        POut << " volatile";
448      RefQualifierKind Ref = MD->getRefQualifier();
449      if (Ref == RQ_LValue)
450        POut << " &";
451      else if (Ref == RQ_RValue)
452        POut << " &&";
453    }
454
455    typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
456    SpecsTy Specs;
457    const DeclContext *Ctx = FD->getDeclContext();
458    while (Ctx && isa<NamedDecl>(Ctx)) {
459      const ClassTemplateSpecializationDecl *Spec
460                               = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
461      if (Spec && !Spec->isExplicitSpecialization())
462        Specs.push_back(Spec);
463      Ctx = Ctx->getParent();
464    }
465
466    std::string TemplateParams;
467    llvm::raw_string_ostream TOut(TemplateParams);
468    for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
469         I != E; ++I) {
470      const TemplateParameterList *Params
471                  = (*I)->getSpecializedTemplate()->getTemplateParameters();
472      const TemplateArgumentList &Args = (*I)->getTemplateArgs();
473      assert(Params->size() == Args.size());
474      for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
475        StringRef Param = Params->getParam(i)->getName();
476        if (Param.empty()) continue;
477        TOut << Param << " = ";
478        Args.get(i).print(Policy, TOut);
479        TOut << ", ";
480      }
481    }
482
483    FunctionTemplateSpecializationInfo *FSI
484                                          = FD->getTemplateSpecializationInfo();
485    if (FSI && !FSI->isExplicitSpecialization()) {
486      const TemplateParameterList* Params
487                                  = FSI->getTemplate()->getTemplateParameters();
488      const TemplateArgumentList* Args = FSI->TemplateArguments;
489      assert(Params->size() == Args->size());
490      for (unsigned i = 0, e = Params->size(); i != e; ++i) {
491        StringRef Param = Params->getParam(i)->getName();
492        if (Param.empty()) continue;
493        TOut << Param << " = ";
494        Args->get(i).print(Policy, TOut);
495        TOut << ", ";
496      }
497    }
498
499    TOut.flush();
500    if (!TemplateParams.empty()) {
501      // remove the trailing comma and space
502      TemplateParams.resize(TemplateParams.size() - 2);
503      POut << " [" << TemplateParams << "]";
504    }
505
506    POut.flush();
507
508    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
509      AFT->getResultType().getAsStringInternal(Proto, Policy);
510
511    Out << Proto;
512
513    Out.flush();
514    return Name.str().str();
515  }
516  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
517    SmallString<256> Name;
518    llvm::raw_svector_ostream Out(Name);
519    Out << (MD->isInstanceMethod() ? '-' : '+');
520    Out << '[';
521
522    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
523    // a null check to avoid a crash.
524    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
525      Out << *ID;
526
527    if (const ObjCCategoryImplDecl *CID =
528        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
529      Out << '(' << *CID << ')';
530
531    Out <<  ' ';
532    Out << MD->getSelector().getAsString();
533    Out <<  ']';
534
535    Out.flush();
536    return Name.str().str();
537  }
538  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
539    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
540    return "top level";
541  }
542  return "";
543}
544
545void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
546  if (hasAllocation())
547    C.Deallocate(pVal);
548
549  BitWidth = Val.getBitWidth();
550  unsigned NumWords = Val.getNumWords();
551  const uint64_t* Words = Val.getRawData();
552  if (NumWords > 1) {
553    pVal = new (C) uint64_t[NumWords];
554    std::copy(Words, Words + NumWords, pVal);
555  } else if (NumWords == 1)
556    VAL = Words[0];
557  else
558    VAL = 0;
559}
560
561IntegerLiteral::IntegerLiteral(ASTContext &C, const llvm::APInt &V,
562                               QualType type, SourceLocation l)
563  : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
564         false, false),
565    Loc(l) {
566  assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
567  assert(V.getBitWidth() == C.getIntWidth(type) &&
568         "Integer type is not the correct size for constant.");
569  setValue(C, V);
570}
571
572IntegerLiteral *
573IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
574                       QualType type, SourceLocation l) {
575  return new (C) IntegerLiteral(C, V, type, l);
576}
577
578IntegerLiteral *
579IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
580  return new (C) IntegerLiteral(Empty);
581}
582
583FloatingLiteral::FloatingLiteral(ASTContext &C, const llvm::APFloat &V,
584                                 bool isexact, QualType Type, SourceLocation L)
585  : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
586         false, false), Loc(L) {
587  FloatingLiteralBits.IsIEEE =
588    &C.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::IEEEquad;
589  FloatingLiteralBits.IsExact = isexact;
590  setValue(C, V);
591}
592
593FloatingLiteral::FloatingLiteral(ASTContext &C, EmptyShell Empty)
594  : Expr(FloatingLiteralClass, Empty) {
595  FloatingLiteralBits.IsIEEE =
596    &C.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::IEEEquad;
597  FloatingLiteralBits.IsExact = false;
598}
599
600FloatingLiteral *
601FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
602                        bool isexact, QualType Type, SourceLocation L) {
603  return new (C) FloatingLiteral(C, V, isexact, Type, L);
604}
605
606FloatingLiteral *
607FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
608  return new (C) FloatingLiteral(C, Empty);
609}
610
611/// getValueAsApproximateDouble - This returns the value as an inaccurate
612/// double.  Note that this may cause loss of precision, but is useful for
613/// debugging dumps, etc.
614double FloatingLiteral::getValueAsApproximateDouble() const {
615  llvm::APFloat V = getValue();
616  bool ignored;
617  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
618            &ignored);
619  return V.convertToDouble();
620}
621
622int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
623  int CharByteWidth = 0;
624  switch(k) {
625    case Ascii:
626    case UTF8:
627      CharByteWidth = target.getCharWidth();
628      break;
629    case Wide:
630      CharByteWidth = target.getWCharWidth();
631      break;
632    case UTF16:
633      CharByteWidth = target.getChar16Width();
634      break;
635    case UTF32:
636      CharByteWidth = target.getChar32Width();
637      break;
638  }
639  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
640  CharByteWidth /= 8;
641  assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
642         && "character byte widths supported are 1, 2, and 4 only");
643  return CharByteWidth;
644}
645
646StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str,
647                                     StringKind Kind, bool Pascal, QualType Ty,
648                                     const SourceLocation *Loc,
649                                     unsigned NumStrs) {
650  // Allocate enough space for the StringLiteral plus an array of locations for
651  // any concatenated string tokens.
652  void *Mem = C.Allocate(sizeof(StringLiteral)+
653                         sizeof(SourceLocation)*(NumStrs-1),
654                         llvm::alignOf<StringLiteral>());
655  StringLiteral *SL = new (Mem) StringLiteral(Ty);
656
657  // OPTIMIZE: could allocate this appended to the StringLiteral.
658  SL->setString(C,Str,Kind,Pascal);
659
660  SL->TokLocs[0] = Loc[0];
661  SL->NumConcatenated = NumStrs;
662
663  if (NumStrs != 1)
664    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
665  return SL;
666}
667
668StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
669  void *Mem = C.Allocate(sizeof(StringLiteral)+
670                         sizeof(SourceLocation)*(NumStrs-1),
671                         llvm::alignOf<StringLiteral>());
672  StringLiteral *SL = new (Mem) StringLiteral(QualType());
673  SL->CharByteWidth = 0;
674  SL->Length = 0;
675  SL->NumConcatenated = NumStrs;
676  return SL;
677}
678
679void StringLiteral::outputString(raw_ostream &OS) {
680  switch (getKind()) {
681  case Ascii: break; // no prefix.
682  case Wide:  OS << 'L'; break;
683  case UTF8:  OS << "u8"; break;
684  case UTF16: OS << 'u'; break;
685  case UTF32: OS << 'U'; break;
686  }
687  OS << '"';
688  static const char Hex[] = "0123456789ABCDEF";
689
690  unsigned LastSlashX = getLength();
691  for (unsigned I = 0, N = getLength(); I != N; ++I) {
692    switch (uint32_t Char = getCodeUnit(I)) {
693    default:
694      // FIXME: Convert UTF-8 back to codepoints before rendering.
695
696      // Convert UTF-16 surrogate pairs back to codepoints before rendering.
697      // Leave invalid surrogates alone; we'll use \x for those.
698      if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
699          Char <= 0xdbff) {
700        uint32_t Trail = getCodeUnit(I + 1);
701        if (Trail >= 0xdc00 && Trail <= 0xdfff) {
702          Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
703          ++I;
704        }
705      }
706
707      if (Char > 0xff) {
708        // If this is a wide string, output characters over 0xff using \x
709        // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
710        // codepoint: use \x escapes for invalid codepoints.
711        if (getKind() == Wide ||
712            (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
713          // FIXME: Is this the best way to print wchar_t?
714          OS << "\\x";
715          int Shift = 28;
716          while ((Char >> Shift) == 0)
717            Shift -= 4;
718          for (/**/; Shift >= 0; Shift -= 4)
719            OS << Hex[(Char >> Shift) & 15];
720          LastSlashX = I;
721          break;
722        }
723
724        if (Char > 0xffff)
725          OS << "\\U00"
726             << Hex[(Char >> 20) & 15]
727             << Hex[(Char >> 16) & 15];
728        else
729          OS << "\\u";
730        OS << Hex[(Char >> 12) & 15]
731           << Hex[(Char >>  8) & 15]
732           << Hex[(Char >>  4) & 15]
733           << Hex[(Char >>  0) & 15];
734        break;
735      }
736
737      // If we used \x... for the previous character, and this character is a
738      // hexadecimal digit, prevent it being slurped as part of the \x.
739      if (LastSlashX + 1 == I) {
740        switch (Char) {
741          case '0': case '1': case '2': case '3': case '4':
742          case '5': case '6': case '7': case '8': case '9':
743          case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
744          case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
745            OS << "\"\"";
746        }
747      }
748
749      assert(Char <= 0xff &&
750             "Characters above 0xff should already have been handled.");
751
752      if (isprint(Char))
753        OS << (char)Char;
754      else  // Output anything hard as an octal escape.
755        OS << '\\'
756           << (char)('0' + ((Char >> 6) & 7))
757           << (char)('0' + ((Char >> 3) & 7))
758           << (char)('0' + ((Char >> 0) & 7));
759      break;
760    // Handle some common non-printable cases to make dumps prettier.
761    case '\\': OS << "\\\\"; break;
762    case '"': OS << "\\\""; break;
763    case '\n': OS << "\\n"; break;
764    case '\t': OS << "\\t"; break;
765    case '\a': OS << "\\a"; break;
766    case '\b': OS << "\\b"; break;
767    }
768  }
769  OS << '"';
770}
771
772void StringLiteral::setString(ASTContext &C, StringRef Str,
773                              StringKind Kind, bool IsPascal) {
774  //FIXME: we assume that the string data comes from a target that uses the same
775  // code unit size and endianess for the type of string.
776  this->Kind = Kind;
777  this->IsPascal = IsPascal;
778
779  CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
780  assert((Str.size()%CharByteWidth == 0)
781         && "size of data must be multiple of CharByteWidth");
782  Length = Str.size()/CharByteWidth;
783
784  switch(CharByteWidth) {
785    case 1: {
786      char *AStrData = new (C) char[Length];
787      std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
788      StrData.asChar = AStrData;
789      break;
790    }
791    case 2: {
792      uint16_t *AStrData = new (C) uint16_t[Length];
793      std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
794      StrData.asUInt16 = AStrData;
795      break;
796    }
797    case 4: {
798      uint32_t *AStrData = new (C) uint32_t[Length];
799      std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
800      StrData.asUInt32 = AStrData;
801      break;
802    }
803    default:
804      assert(false && "unsupported CharByteWidth");
805  }
806}
807
808/// getLocationOfByte - Return a source location that points to the specified
809/// byte of this string literal.
810///
811/// Strings are amazingly complex.  They can be formed from multiple tokens and
812/// can have escape sequences in them in addition to the usual trigraph and
813/// escaped newline business.  This routine handles this complexity.
814///
815SourceLocation StringLiteral::
816getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
817                  const LangOptions &Features, const TargetInfo &Target) const {
818  assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
819         "Only narrow string literals are currently supported");
820
821  // Loop over all of the tokens in this string until we find the one that
822  // contains the byte we're looking for.
823  unsigned TokNo = 0;
824  while (1) {
825    assert(TokNo < getNumConcatenated() && "Invalid byte number!");
826    SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
827
828    // Get the spelling of the string so that we can get the data that makes up
829    // the string literal, not the identifier for the macro it is potentially
830    // expanded through.
831    SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
832
833    // Re-lex the token to get its length and original spelling.
834    std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
835    bool Invalid = false;
836    StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
837    if (Invalid)
838      return StrTokSpellingLoc;
839
840    const char *StrData = Buffer.data()+LocInfo.second;
841
842    // Create a lexer starting at the beginning of this token.
843    Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
844                   Buffer.begin(), StrData, Buffer.end());
845    Token TheTok;
846    TheLexer.LexFromRawLexer(TheTok);
847
848    // Use the StringLiteralParser to compute the length of the string in bytes.
849    StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
850    unsigned TokNumBytes = SLP.GetStringLength();
851
852    // If the byte is in this token, return the location of the byte.
853    if (ByteNo < TokNumBytes ||
854        (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
855      unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
856
857      // Now that we know the offset of the token in the spelling, use the
858      // preprocessor to get the offset in the original source.
859      return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
860    }
861
862    // Move to the next string token.
863    ++TokNo;
864    ByteNo -= TokNumBytes;
865  }
866}
867
868
869
870/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
871/// corresponds to, e.g. "sizeof" or "[pre]++".
872const char *UnaryOperator::getOpcodeStr(Opcode Op) {
873  switch (Op) {
874  case UO_PostInc: return "++";
875  case UO_PostDec: return "--";
876  case UO_PreInc:  return "++";
877  case UO_PreDec:  return "--";
878  case UO_AddrOf:  return "&";
879  case UO_Deref:   return "*";
880  case UO_Plus:    return "+";
881  case UO_Minus:   return "-";
882  case UO_Not:     return "~";
883  case UO_LNot:    return "!";
884  case UO_Real:    return "__real";
885  case UO_Imag:    return "__imag";
886  case UO_Extension: return "__extension__";
887  }
888  llvm_unreachable("Unknown unary operator");
889}
890
891UnaryOperatorKind
892UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
893  switch (OO) {
894  default: llvm_unreachable("No unary operator for overloaded function");
895  case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
896  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
897  case OO_Amp:        return UO_AddrOf;
898  case OO_Star:       return UO_Deref;
899  case OO_Plus:       return UO_Plus;
900  case OO_Minus:      return UO_Minus;
901  case OO_Tilde:      return UO_Not;
902  case OO_Exclaim:    return UO_LNot;
903  }
904}
905
906OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
907  switch (Opc) {
908  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
909  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
910  case UO_AddrOf: return OO_Amp;
911  case UO_Deref: return OO_Star;
912  case UO_Plus: return OO_Plus;
913  case UO_Minus: return OO_Minus;
914  case UO_Not: return OO_Tilde;
915  case UO_LNot: return OO_Exclaim;
916  default: return OO_None;
917  }
918}
919
920
921//===----------------------------------------------------------------------===//
922// Postfix Operators.
923//===----------------------------------------------------------------------===//
924
925CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
926                   ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
927                   SourceLocation rparenloc)
928  : Expr(SC, t, VK, OK_Ordinary,
929         fn->isTypeDependent(),
930         fn->isValueDependent(),
931         fn->isInstantiationDependent(),
932         fn->containsUnexpandedParameterPack()),
933    NumArgs(args.size()) {
934
935  SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
936  SubExprs[FN] = fn;
937  for (unsigned i = 0; i != args.size(); ++i) {
938    if (args[i]->isTypeDependent())
939      ExprBits.TypeDependent = true;
940    if (args[i]->isValueDependent())
941      ExprBits.ValueDependent = true;
942    if (args[i]->isInstantiationDependent())
943      ExprBits.InstantiationDependent = true;
944    if (args[i]->containsUnexpandedParameterPack())
945      ExprBits.ContainsUnexpandedParameterPack = true;
946
947    SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
948  }
949
950  CallExprBits.NumPreArgs = NumPreArgs;
951  RParenLoc = rparenloc;
952}
953
954CallExpr::CallExpr(ASTContext& C, Expr *fn, ArrayRef<Expr*> args,
955                   QualType t, ExprValueKind VK, SourceLocation rparenloc)
956  : Expr(CallExprClass, t, VK, OK_Ordinary,
957         fn->isTypeDependent(),
958         fn->isValueDependent(),
959         fn->isInstantiationDependent(),
960         fn->containsUnexpandedParameterPack()),
961    NumArgs(args.size()) {
962
963  SubExprs = new (C) Stmt*[args.size()+PREARGS_START];
964  SubExprs[FN] = fn;
965  for (unsigned i = 0; i != args.size(); ++i) {
966    if (args[i]->isTypeDependent())
967      ExprBits.TypeDependent = true;
968    if (args[i]->isValueDependent())
969      ExprBits.ValueDependent = true;
970    if (args[i]->isInstantiationDependent())
971      ExprBits.InstantiationDependent = true;
972    if (args[i]->containsUnexpandedParameterPack())
973      ExprBits.ContainsUnexpandedParameterPack = true;
974
975    SubExprs[i+PREARGS_START] = args[i];
976  }
977
978  CallExprBits.NumPreArgs = 0;
979  RParenLoc = rparenloc;
980}
981
982CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
983  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
984  // FIXME: Why do we allocate this?
985  SubExprs = new (C) Stmt*[PREARGS_START];
986  CallExprBits.NumPreArgs = 0;
987}
988
989CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
990                   EmptyShell Empty)
991  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
992  // FIXME: Why do we allocate this?
993  SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
994  CallExprBits.NumPreArgs = NumPreArgs;
995}
996
997Decl *CallExpr::getCalleeDecl() {
998  Expr *CEE = getCallee()->IgnoreParenImpCasts();
999
1000  while (SubstNonTypeTemplateParmExpr *NTTP
1001                                = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1002    CEE = NTTP->getReplacement()->IgnoreParenCasts();
1003  }
1004
1005  // If we're calling a dereference, look at the pointer instead.
1006  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1007    if (BO->isPtrMemOp())
1008      CEE = BO->getRHS()->IgnoreParenCasts();
1009  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1010    if (UO->getOpcode() == UO_Deref)
1011      CEE = UO->getSubExpr()->IgnoreParenCasts();
1012  }
1013  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1014    return DRE->getDecl();
1015  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1016    return ME->getMemberDecl();
1017
1018  return 0;
1019}
1020
1021FunctionDecl *CallExpr::getDirectCallee() {
1022  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
1023}
1024
1025/// setNumArgs - This changes the number of arguments present in this call.
1026/// Any orphaned expressions are deleted by this, and any new operands are set
1027/// to null.
1028void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
1029  // No change, just return.
1030  if (NumArgs == getNumArgs()) return;
1031
1032  // If shrinking # arguments, just delete the extras and forgot them.
1033  if (NumArgs < getNumArgs()) {
1034    this->NumArgs = NumArgs;
1035    return;
1036  }
1037
1038  // Otherwise, we are growing the # arguments.  New an bigger argument array.
1039  unsigned NumPreArgs = getNumPreArgs();
1040  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
1041  // Copy over args.
1042  for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
1043    NewSubExprs[i] = SubExprs[i];
1044  // Null out new args.
1045  for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
1046       i != NumArgs+PREARGS_START+NumPreArgs; ++i)
1047    NewSubExprs[i] = 0;
1048
1049  if (SubExprs) C.Deallocate(SubExprs);
1050  SubExprs = NewSubExprs;
1051  this->NumArgs = NumArgs;
1052}
1053
1054/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1055/// not, return 0.
1056unsigned CallExpr::isBuiltinCall() const {
1057  // All simple function calls (e.g. func()) are implicitly cast to pointer to
1058  // function. As a result, we try and obtain the DeclRefExpr from the
1059  // ImplicitCastExpr.
1060  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1061  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1062    return 0;
1063
1064  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1065  if (!DRE)
1066    return 0;
1067
1068  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1069  if (!FDecl)
1070    return 0;
1071
1072  if (!FDecl->getIdentifier())
1073    return 0;
1074
1075  return FDecl->getBuiltinID();
1076}
1077
1078QualType CallExpr::getCallReturnType() const {
1079  QualType CalleeType = getCallee()->getType();
1080  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
1081    CalleeType = FnTypePtr->getPointeeType();
1082  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
1083    CalleeType = BPT->getPointeeType();
1084  else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
1085    // This should never be overloaded and so should never return null.
1086    CalleeType = Expr::findBoundMemberType(getCallee());
1087
1088  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1089  return FnType->getResultType();
1090}
1091
1092SourceRange CallExpr::getSourceRange() const {
1093  if (isa<CXXOperatorCallExpr>(this))
1094    return cast<CXXOperatorCallExpr>(this)->getSourceRange();
1095
1096  SourceLocation begin = getCallee()->getLocStart();
1097  if (begin.isInvalid() && getNumArgs() > 0)
1098    begin = getArg(0)->getLocStart();
1099  SourceLocation end = getRParenLoc();
1100  if (end.isInvalid() && getNumArgs() > 0)
1101    end = getArg(getNumArgs() - 1)->getLocEnd();
1102  return SourceRange(begin, end);
1103}
1104SourceLocation CallExpr::getLocStart() const {
1105  if (isa<CXXOperatorCallExpr>(this))
1106    return cast<CXXOperatorCallExpr>(this)->getSourceRange().getBegin();
1107
1108  SourceLocation begin = getCallee()->getLocStart();
1109  if (begin.isInvalid() && getNumArgs() > 0)
1110    begin = getArg(0)->getLocStart();
1111  return begin;
1112}
1113SourceLocation CallExpr::getLocEnd() const {
1114  if (isa<CXXOperatorCallExpr>(this))
1115    return cast<CXXOperatorCallExpr>(this)->getSourceRange().getEnd();
1116
1117  SourceLocation end = getRParenLoc();
1118  if (end.isInvalid() && getNumArgs() > 0)
1119    end = getArg(getNumArgs() - 1)->getLocEnd();
1120  return end;
1121}
1122
1123OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
1124                                   SourceLocation OperatorLoc,
1125                                   TypeSourceInfo *tsi,
1126                                   ArrayRef<OffsetOfNode> comps,
1127                                   ArrayRef<Expr*> exprs,
1128                                   SourceLocation RParenLoc) {
1129  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1130                         sizeof(OffsetOfNode) * comps.size() +
1131                         sizeof(Expr*) * exprs.size());
1132
1133  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1134                                RParenLoc);
1135}
1136
1137OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
1138                                        unsigned numComps, unsigned numExprs) {
1139  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1140                         sizeof(OffsetOfNode) * numComps +
1141                         sizeof(Expr*) * numExprs);
1142  return new (Mem) OffsetOfExpr(numComps, numExprs);
1143}
1144
1145OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
1146                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1147                           ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1148                           SourceLocation RParenLoc)
1149  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1150         /*TypeDependent=*/false,
1151         /*ValueDependent=*/tsi->getType()->isDependentType(),
1152         tsi->getType()->isInstantiationDependentType(),
1153         tsi->getType()->containsUnexpandedParameterPack()),
1154    OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1155    NumComps(comps.size()), NumExprs(exprs.size())
1156{
1157  for (unsigned i = 0; i != comps.size(); ++i) {
1158    setComponent(i, comps[i]);
1159  }
1160
1161  for (unsigned i = 0; i != exprs.size(); ++i) {
1162    if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1163      ExprBits.ValueDependent = true;
1164    if (exprs[i]->containsUnexpandedParameterPack())
1165      ExprBits.ContainsUnexpandedParameterPack = true;
1166
1167    setIndexExpr(i, exprs[i]);
1168  }
1169}
1170
1171IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
1172  assert(getKind() == Field || getKind() == Identifier);
1173  if (getKind() == Field)
1174    return getField()->getIdentifier();
1175
1176  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1177}
1178
1179MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
1180                               NestedNameSpecifierLoc QualifierLoc,
1181                               SourceLocation TemplateKWLoc,
1182                               ValueDecl *memberdecl,
1183                               DeclAccessPair founddecl,
1184                               DeclarationNameInfo nameinfo,
1185                               const TemplateArgumentListInfo *targs,
1186                               QualType ty,
1187                               ExprValueKind vk,
1188                               ExprObjectKind ok) {
1189  std::size_t Size = sizeof(MemberExpr);
1190
1191  bool hasQualOrFound = (QualifierLoc ||
1192                         founddecl.getDecl() != memberdecl ||
1193                         founddecl.getAccess() != memberdecl->getAccess());
1194  if (hasQualOrFound)
1195    Size += sizeof(MemberNameQualifier);
1196
1197  if (targs)
1198    Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
1199  else if (TemplateKWLoc.isValid())
1200    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
1201
1202  void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1203  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
1204                                       ty, vk, ok);
1205
1206  if (hasQualOrFound) {
1207    // FIXME: Wrong. We should be looking at the member declaration we found.
1208    if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1209      E->setValueDependent(true);
1210      E->setTypeDependent(true);
1211      E->setInstantiationDependent(true);
1212    }
1213    else if (QualifierLoc &&
1214             QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1215      E->setInstantiationDependent(true);
1216
1217    E->HasQualifierOrFoundDecl = true;
1218
1219    MemberNameQualifier *NQ = E->getMemberQualifier();
1220    NQ->QualifierLoc = QualifierLoc;
1221    NQ->FoundDecl = founddecl;
1222  }
1223
1224  E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1225
1226  if (targs) {
1227    bool Dependent = false;
1228    bool InstantiationDependent = false;
1229    bool ContainsUnexpandedParameterPack = false;
1230    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1231                                                  Dependent,
1232                                                  InstantiationDependent,
1233                                             ContainsUnexpandedParameterPack);
1234    if (InstantiationDependent)
1235      E->setInstantiationDependent(true);
1236  } else if (TemplateKWLoc.isValid()) {
1237    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1238  }
1239
1240  return E;
1241}
1242
1243SourceRange MemberExpr::getSourceRange() const {
1244  return SourceRange(getLocStart(), getLocEnd());
1245}
1246SourceLocation MemberExpr::getLocStart() const {
1247  if (isImplicitAccess()) {
1248    if (hasQualifier())
1249      return getQualifierLoc().getBeginLoc();
1250    return MemberLoc;
1251  }
1252
1253  // FIXME: We don't want this to happen. Rather, we should be able to
1254  // detect all kinds of implicit accesses more cleanly.
1255  SourceLocation BaseStartLoc = getBase()->getLocStart();
1256  if (BaseStartLoc.isValid())
1257    return BaseStartLoc;
1258  return MemberLoc;
1259}
1260SourceLocation MemberExpr::getLocEnd() const {
1261  if (hasExplicitTemplateArgs())
1262    return getRAngleLoc();
1263  return getMemberNameInfo().getEndLoc();
1264}
1265
1266void CastExpr::CheckCastConsistency() const {
1267  switch (getCastKind()) {
1268  case CK_DerivedToBase:
1269  case CK_UncheckedDerivedToBase:
1270  case CK_DerivedToBaseMemberPointer:
1271  case CK_BaseToDerived:
1272  case CK_BaseToDerivedMemberPointer:
1273    assert(!path_empty() && "Cast kind should have a base path!");
1274    break;
1275
1276  case CK_CPointerToObjCPointerCast:
1277    assert(getType()->isObjCObjectPointerType());
1278    assert(getSubExpr()->getType()->isPointerType());
1279    goto CheckNoBasePath;
1280
1281  case CK_BlockPointerToObjCPointerCast:
1282    assert(getType()->isObjCObjectPointerType());
1283    assert(getSubExpr()->getType()->isBlockPointerType());
1284    goto CheckNoBasePath;
1285
1286  case CK_ReinterpretMemberPointer:
1287    assert(getType()->isMemberPointerType());
1288    assert(getSubExpr()->getType()->isMemberPointerType());
1289    goto CheckNoBasePath;
1290
1291  case CK_BitCast:
1292    // Arbitrary casts to C pointer types count as bitcasts.
1293    // Otherwise, we should only have block and ObjC pointer casts
1294    // here if they stay within the type kind.
1295    if (!getType()->isPointerType()) {
1296      assert(getType()->isObjCObjectPointerType() ==
1297             getSubExpr()->getType()->isObjCObjectPointerType());
1298      assert(getType()->isBlockPointerType() ==
1299             getSubExpr()->getType()->isBlockPointerType());
1300    }
1301    goto CheckNoBasePath;
1302
1303  case CK_AnyPointerToBlockPointerCast:
1304    assert(getType()->isBlockPointerType());
1305    assert(getSubExpr()->getType()->isAnyPointerType() &&
1306           !getSubExpr()->getType()->isBlockPointerType());
1307    goto CheckNoBasePath;
1308
1309  case CK_CopyAndAutoreleaseBlockObject:
1310    assert(getType()->isBlockPointerType());
1311    assert(getSubExpr()->getType()->isBlockPointerType());
1312    goto CheckNoBasePath;
1313
1314  case CK_FunctionToPointerDecay:
1315    assert(getType()->isPointerType());
1316    assert(getSubExpr()->getType()->isFunctionType());
1317    goto CheckNoBasePath;
1318
1319  // These should not have an inheritance path.
1320  case CK_Dynamic:
1321  case CK_ToUnion:
1322  case CK_ArrayToPointerDecay:
1323  case CK_NullToMemberPointer:
1324  case CK_NullToPointer:
1325  case CK_ConstructorConversion:
1326  case CK_IntegralToPointer:
1327  case CK_PointerToIntegral:
1328  case CK_ToVoid:
1329  case CK_VectorSplat:
1330  case CK_IntegralCast:
1331  case CK_IntegralToFloating:
1332  case CK_FloatingToIntegral:
1333  case CK_FloatingCast:
1334  case CK_ObjCObjectLValueCast:
1335  case CK_FloatingRealToComplex:
1336  case CK_FloatingComplexToReal:
1337  case CK_FloatingComplexCast:
1338  case CK_FloatingComplexToIntegralComplex:
1339  case CK_IntegralRealToComplex:
1340  case CK_IntegralComplexToReal:
1341  case CK_IntegralComplexCast:
1342  case CK_IntegralComplexToFloatingComplex:
1343  case CK_ARCProduceObject:
1344  case CK_ARCConsumeObject:
1345  case CK_ARCReclaimReturnedObject:
1346  case CK_ARCExtendBlockObject:
1347    assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1348    goto CheckNoBasePath;
1349
1350  case CK_Dependent:
1351  case CK_LValueToRValue:
1352  case CK_NoOp:
1353  case CK_AtomicToNonAtomic:
1354  case CK_NonAtomicToAtomic:
1355  case CK_PointerToBoolean:
1356  case CK_IntegralToBoolean:
1357  case CK_FloatingToBoolean:
1358  case CK_MemberPointerToBoolean:
1359  case CK_FloatingComplexToBoolean:
1360  case CK_IntegralComplexToBoolean:
1361  case CK_LValueBitCast:            // -> bool&
1362  case CK_UserDefinedConversion:    // operator bool()
1363  case CK_BuiltinFnToFnPtr:
1364  CheckNoBasePath:
1365    assert(path_empty() && "Cast kind should not have a base path!");
1366    break;
1367  }
1368}
1369
1370const char *CastExpr::getCastKindName() const {
1371  switch (getCastKind()) {
1372  case CK_Dependent:
1373    return "Dependent";
1374  case CK_BitCast:
1375    return "BitCast";
1376  case CK_LValueBitCast:
1377    return "LValueBitCast";
1378  case CK_LValueToRValue:
1379    return "LValueToRValue";
1380  case CK_NoOp:
1381    return "NoOp";
1382  case CK_BaseToDerived:
1383    return "BaseToDerived";
1384  case CK_DerivedToBase:
1385    return "DerivedToBase";
1386  case CK_UncheckedDerivedToBase:
1387    return "UncheckedDerivedToBase";
1388  case CK_Dynamic:
1389    return "Dynamic";
1390  case CK_ToUnion:
1391    return "ToUnion";
1392  case CK_ArrayToPointerDecay:
1393    return "ArrayToPointerDecay";
1394  case CK_FunctionToPointerDecay:
1395    return "FunctionToPointerDecay";
1396  case CK_NullToMemberPointer:
1397    return "NullToMemberPointer";
1398  case CK_NullToPointer:
1399    return "NullToPointer";
1400  case CK_BaseToDerivedMemberPointer:
1401    return "BaseToDerivedMemberPointer";
1402  case CK_DerivedToBaseMemberPointer:
1403    return "DerivedToBaseMemberPointer";
1404  case CK_ReinterpretMemberPointer:
1405    return "ReinterpretMemberPointer";
1406  case CK_UserDefinedConversion:
1407    return "UserDefinedConversion";
1408  case CK_ConstructorConversion:
1409    return "ConstructorConversion";
1410  case CK_IntegralToPointer:
1411    return "IntegralToPointer";
1412  case CK_PointerToIntegral:
1413    return "PointerToIntegral";
1414  case CK_PointerToBoolean:
1415    return "PointerToBoolean";
1416  case CK_ToVoid:
1417    return "ToVoid";
1418  case CK_VectorSplat:
1419    return "VectorSplat";
1420  case CK_IntegralCast:
1421    return "IntegralCast";
1422  case CK_IntegralToBoolean:
1423    return "IntegralToBoolean";
1424  case CK_IntegralToFloating:
1425    return "IntegralToFloating";
1426  case CK_FloatingToIntegral:
1427    return "FloatingToIntegral";
1428  case CK_FloatingCast:
1429    return "FloatingCast";
1430  case CK_FloatingToBoolean:
1431    return "FloatingToBoolean";
1432  case CK_MemberPointerToBoolean:
1433    return "MemberPointerToBoolean";
1434  case CK_CPointerToObjCPointerCast:
1435    return "CPointerToObjCPointerCast";
1436  case CK_BlockPointerToObjCPointerCast:
1437    return "BlockPointerToObjCPointerCast";
1438  case CK_AnyPointerToBlockPointerCast:
1439    return "AnyPointerToBlockPointerCast";
1440  case CK_ObjCObjectLValueCast:
1441    return "ObjCObjectLValueCast";
1442  case CK_FloatingRealToComplex:
1443    return "FloatingRealToComplex";
1444  case CK_FloatingComplexToReal:
1445    return "FloatingComplexToReal";
1446  case CK_FloatingComplexToBoolean:
1447    return "FloatingComplexToBoolean";
1448  case CK_FloatingComplexCast:
1449    return "FloatingComplexCast";
1450  case CK_FloatingComplexToIntegralComplex:
1451    return "FloatingComplexToIntegralComplex";
1452  case CK_IntegralRealToComplex:
1453    return "IntegralRealToComplex";
1454  case CK_IntegralComplexToReal:
1455    return "IntegralComplexToReal";
1456  case CK_IntegralComplexToBoolean:
1457    return "IntegralComplexToBoolean";
1458  case CK_IntegralComplexCast:
1459    return "IntegralComplexCast";
1460  case CK_IntegralComplexToFloatingComplex:
1461    return "IntegralComplexToFloatingComplex";
1462  case CK_ARCConsumeObject:
1463    return "ARCConsumeObject";
1464  case CK_ARCProduceObject:
1465    return "ARCProduceObject";
1466  case CK_ARCReclaimReturnedObject:
1467    return "ARCReclaimReturnedObject";
1468  case CK_ARCExtendBlockObject:
1469    return "ARCCExtendBlockObject";
1470  case CK_AtomicToNonAtomic:
1471    return "AtomicToNonAtomic";
1472  case CK_NonAtomicToAtomic:
1473    return "NonAtomicToAtomic";
1474  case CK_CopyAndAutoreleaseBlockObject:
1475    return "CopyAndAutoreleaseBlockObject";
1476  case CK_BuiltinFnToFnPtr:
1477    return "BuiltinFnToFnPtr";
1478  }
1479
1480  llvm_unreachable("Unhandled cast kind!");
1481}
1482
1483Expr *CastExpr::getSubExprAsWritten() {
1484  Expr *SubExpr = 0;
1485  CastExpr *E = this;
1486  do {
1487    SubExpr = E->getSubExpr();
1488
1489    // Skip through reference binding to temporary.
1490    if (MaterializeTemporaryExpr *Materialize
1491                                  = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1492      SubExpr = Materialize->GetTemporaryExpr();
1493
1494    // Skip any temporary bindings; they're implicit.
1495    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1496      SubExpr = Binder->getSubExpr();
1497
1498    // Conversions by constructor and conversion functions have a
1499    // subexpression describing the call; strip it off.
1500    if (E->getCastKind() == CK_ConstructorConversion)
1501      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1502    else if (E->getCastKind() == CK_UserDefinedConversion)
1503      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1504
1505    // If the subexpression we're left with is an implicit cast, look
1506    // through that, too.
1507  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1508
1509  return SubExpr;
1510}
1511
1512CXXBaseSpecifier **CastExpr::path_buffer() {
1513  switch (getStmtClass()) {
1514#define ABSTRACT_STMT(x)
1515#define CASTEXPR(Type, Base) \
1516  case Stmt::Type##Class: \
1517    return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1518#define STMT(Type, Base)
1519#include "clang/AST/StmtNodes.inc"
1520  default:
1521    llvm_unreachable("non-cast expressions not possible here");
1522  }
1523}
1524
1525void CastExpr::setCastPath(const CXXCastPath &Path) {
1526  assert(Path.size() == path_size());
1527  memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1528}
1529
1530ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
1531                                           CastKind Kind, Expr *Operand,
1532                                           const CXXCastPath *BasePath,
1533                                           ExprValueKind VK) {
1534  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1535  void *Buffer =
1536    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1537  ImplicitCastExpr *E =
1538    new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1539  if (PathSize) E->setCastPath(*BasePath);
1540  return E;
1541}
1542
1543ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
1544                                                unsigned PathSize) {
1545  void *Buffer =
1546    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1547  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1548}
1549
1550
1551CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
1552                                       ExprValueKind VK, CastKind K, Expr *Op,
1553                                       const CXXCastPath *BasePath,
1554                                       TypeSourceInfo *WrittenTy,
1555                                       SourceLocation L, SourceLocation R) {
1556  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1557  void *Buffer =
1558    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1559  CStyleCastExpr *E =
1560    new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1561  if (PathSize) E->setCastPath(*BasePath);
1562  return E;
1563}
1564
1565CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
1566  void *Buffer =
1567    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1568  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1569}
1570
1571/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1572/// corresponds to, e.g. "<<=".
1573const char *BinaryOperator::getOpcodeStr(Opcode Op) {
1574  switch (Op) {
1575  case BO_PtrMemD:   return ".*";
1576  case BO_PtrMemI:   return "->*";
1577  case BO_Mul:       return "*";
1578  case BO_Div:       return "/";
1579  case BO_Rem:       return "%";
1580  case BO_Add:       return "+";
1581  case BO_Sub:       return "-";
1582  case BO_Shl:       return "<<";
1583  case BO_Shr:       return ">>";
1584  case BO_LT:        return "<";
1585  case BO_GT:        return ">";
1586  case BO_LE:        return "<=";
1587  case BO_GE:        return ">=";
1588  case BO_EQ:        return "==";
1589  case BO_NE:        return "!=";
1590  case BO_And:       return "&";
1591  case BO_Xor:       return "^";
1592  case BO_Or:        return "|";
1593  case BO_LAnd:      return "&&";
1594  case BO_LOr:       return "||";
1595  case BO_Assign:    return "=";
1596  case BO_MulAssign: return "*=";
1597  case BO_DivAssign: return "/=";
1598  case BO_RemAssign: return "%=";
1599  case BO_AddAssign: return "+=";
1600  case BO_SubAssign: return "-=";
1601  case BO_ShlAssign: return "<<=";
1602  case BO_ShrAssign: return ">>=";
1603  case BO_AndAssign: return "&=";
1604  case BO_XorAssign: return "^=";
1605  case BO_OrAssign:  return "|=";
1606  case BO_Comma:     return ",";
1607  }
1608
1609  llvm_unreachable("Invalid OpCode!");
1610}
1611
1612BinaryOperatorKind
1613BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1614  switch (OO) {
1615  default: llvm_unreachable("Not an overloadable binary operator");
1616  case OO_Plus: return BO_Add;
1617  case OO_Minus: return BO_Sub;
1618  case OO_Star: return BO_Mul;
1619  case OO_Slash: return BO_Div;
1620  case OO_Percent: return BO_Rem;
1621  case OO_Caret: return BO_Xor;
1622  case OO_Amp: return BO_And;
1623  case OO_Pipe: return BO_Or;
1624  case OO_Equal: return BO_Assign;
1625  case OO_Less: return BO_LT;
1626  case OO_Greater: return BO_GT;
1627  case OO_PlusEqual: return BO_AddAssign;
1628  case OO_MinusEqual: return BO_SubAssign;
1629  case OO_StarEqual: return BO_MulAssign;
1630  case OO_SlashEqual: return BO_DivAssign;
1631  case OO_PercentEqual: return BO_RemAssign;
1632  case OO_CaretEqual: return BO_XorAssign;
1633  case OO_AmpEqual: return BO_AndAssign;
1634  case OO_PipeEqual: return BO_OrAssign;
1635  case OO_LessLess: return BO_Shl;
1636  case OO_GreaterGreater: return BO_Shr;
1637  case OO_LessLessEqual: return BO_ShlAssign;
1638  case OO_GreaterGreaterEqual: return BO_ShrAssign;
1639  case OO_EqualEqual: return BO_EQ;
1640  case OO_ExclaimEqual: return BO_NE;
1641  case OO_LessEqual: return BO_LE;
1642  case OO_GreaterEqual: return BO_GE;
1643  case OO_AmpAmp: return BO_LAnd;
1644  case OO_PipePipe: return BO_LOr;
1645  case OO_Comma: return BO_Comma;
1646  case OO_ArrowStar: return BO_PtrMemI;
1647  }
1648}
1649
1650OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1651  static const OverloadedOperatorKind OverOps[] = {
1652    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1653    OO_Star, OO_Slash, OO_Percent,
1654    OO_Plus, OO_Minus,
1655    OO_LessLess, OO_GreaterGreater,
1656    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1657    OO_EqualEqual, OO_ExclaimEqual,
1658    OO_Amp,
1659    OO_Caret,
1660    OO_Pipe,
1661    OO_AmpAmp,
1662    OO_PipePipe,
1663    OO_Equal, OO_StarEqual,
1664    OO_SlashEqual, OO_PercentEqual,
1665    OO_PlusEqual, OO_MinusEqual,
1666    OO_LessLessEqual, OO_GreaterGreaterEqual,
1667    OO_AmpEqual, OO_CaretEqual,
1668    OO_PipeEqual,
1669    OO_Comma
1670  };
1671  return OverOps[Opc];
1672}
1673
1674InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
1675                           ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
1676  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1677         false, false),
1678    InitExprs(C, initExprs.size()),
1679    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0)
1680{
1681  sawArrayRangeDesignator(false);
1682  setInitializesStdInitializerList(false);
1683  for (unsigned I = 0; I != initExprs.size(); ++I) {
1684    if (initExprs[I]->isTypeDependent())
1685      ExprBits.TypeDependent = true;
1686    if (initExprs[I]->isValueDependent())
1687      ExprBits.ValueDependent = true;
1688    if (initExprs[I]->isInstantiationDependent())
1689      ExprBits.InstantiationDependent = true;
1690    if (initExprs[I]->containsUnexpandedParameterPack())
1691      ExprBits.ContainsUnexpandedParameterPack = true;
1692  }
1693
1694  InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
1695}
1696
1697void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
1698  if (NumInits > InitExprs.size())
1699    InitExprs.reserve(C, NumInits);
1700}
1701
1702void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
1703  InitExprs.resize(C, NumInits, 0);
1704}
1705
1706Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
1707  if (Init >= InitExprs.size()) {
1708    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1709    InitExprs.back() = expr;
1710    return 0;
1711  }
1712
1713  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1714  InitExprs[Init] = expr;
1715  return Result;
1716}
1717
1718void InitListExpr::setArrayFiller(Expr *filler) {
1719  assert(!hasArrayFiller() && "Filler already set!");
1720  ArrayFillerOrUnionFieldInit = filler;
1721  // Fill out any "holes" in the array due to designated initializers.
1722  Expr **inits = getInits();
1723  for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1724    if (inits[i] == 0)
1725      inits[i] = filler;
1726}
1727
1728bool InitListExpr::isStringLiteralInit() const {
1729  if (getNumInits() != 1)
1730    return false;
1731  const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
1732  if (!AT || !AT->getElementType()->isIntegerType())
1733    return false;
1734  const Expr *Init = getInit(0)->IgnoreParens();
1735  return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
1736}
1737
1738SourceRange InitListExpr::getSourceRange() const {
1739  if (SyntacticForm)
1740    return SyntacticForm->getSourceRange();
1741  SourceLocation Beg = LBraceLoc, End = RBraceLoc;
1742  if (Beg.isInvalid()) {
1743    // Find the first non-null initializer.
1744    for (InitExprsTy::const_iterator I = InitExprs.begin(),
1745                                     E = InitExprs.end();
1746      I != E; ++I) {
1747      if (Stmt *S = *I) {
1748        Beg = S->getLocStart();
1749        break;
1750      }
1751    }
1752  }
1753  if (End.isInvalid()) {
1754    // Find the first non-null initializer from the end.
1755    for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1756                                             E = InitExprs.rend();
1757      I != E; ++I) {
1758      if (Stmt *S = *I) {
1759        End = S->getSourceRange().getEnd();
1760        break;
1761      }
1762    }
1763  }
1764  return SourceRange(Beg, End);
1765}
1766
1767/// getFunctionType - Return the underlying function type for this block.
1768///
1769const FunctionProtoType *BlockExpr::getFunctionType() const {
1770  // The block pointer is never sugared, but the function type might be.
1771  return cast<BlockPointerType>(getType())
1772           ->getPointeeType()->castAs<FunctionProtoType>();
1773}
1774
1775SourceLocation BlockExpr::getCaretLocation() const {
1776  return TheBlock->getCaretLocation();
1777}
1778const Stmt *BlockExpr::getBody() const {
1779  return TheBlock->getBody();
1780}
1781Stmt *BlockExpr::getBody() {
1782  return TheBlock->getBody();
1783}
1784
1785
1786//===----------------------------------------------------------------------===//
1787// Generic Expression Routines
1788//===----------------------------------------------------------------------===//
1789
1790/// isUnusedResultAWarning - Return true if this immediate expression should
1791/// be warned about if the result is unused.  If so, fill in Loc and Ranges
1792/// with location to warn on and the source range[s] to report with the
1793/// warning.
1794bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
1795                                  SourceRange &R1, SourceRange &R2,
1796                                  ASTContext &Ctx) const {
1797  // Don't warn if the expr is type dependent. The type could end up
1798  // instantiating to void.
1799  if (isTypeDependent())
1800    return false;
1801
1802  switch (getStmtClass()) {
1803  default:
1804    if (getType()->isVoidType())
1805      return false;
1806    WarnE = this;
1807    Loc = getExprLoc();
1808    R1 = getSourceRange();
1809    return true;
1810  case ParenExprClass:
1811    return cast<ParenExpr>(this)->getSubExpr()->
1812      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1813  case GenericSelectionExprClass:
1814    return cast<GenericSelectionExpr>(this)->getResultExpr()->
1815      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1816  case UnaryOperatorClass: {
1817    const UnaryOperator *UO = cast<UnaryOperator>(this);
1818
1819    switch (UO->getOpcode()) {
1820    case UO_Plus:
1821    case UO_Minus:
1822    case UO_AddrOf:
1823    case UO_Not:
1824    case UO_LNot:
1825    case UO_Deref:
1826      break;
1827    case UO_PostInc:
1828    case UO_PostDec:
1829    case UO_PreInc:
1830    case UO_PreDec:                 // ++/--
1831      return false;  // Not a warning.
1832    case UO_Real:
1833    case UO_Imag:
1834      // accessing a piece of a volatile complex is a side-effect.
1835      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1836          .isVolatileQualified())
1837        return false;
1838      break;
1839    case UO_Extension:
1840      return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1841    }
1842    WarnE = this;
1843    Loc = UO->getOperatorLoc();
1844    R1 = UO->getSubExpr()->getSourceRange();
1845    return true;
1846  }
1847  case BinaryOperatorClass: {
1848    const BinaryOperator *BO = cast<BinaryOperator>(this);
1849    switch (BO->getOpcode()) {
1850      default:
1851        break;
1852      // Consider the RHS of comma for side effects. LHS was checked by
1853      // Sema::CheckCommaOperands.
1854      case BO_Comma:
1855        // ((foo = <blah>), 0) is an idiom for hiding the result (and
1856        // lvalue-ness) of an assignment written in a macro.
1857        if (IntegerLiteral *IE =
1858              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1859          if (IE->getValue() == 0)
1860            return false;
1861        return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1862      // Consider '||', '&&' to have side effects if the LHS or RHS does.
1863      case BO_LAnd:
1864      case BO_LOr:
1865        if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
1866            !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
1867          return false;
1868        break;
1869    }
1870    if (BO->isAssignmentOp())
1871      return false;
1872    WarnE = this;
1873    Loc = BO->getOperatorLoc();
1874    R1 = BO->getLHS()->getSourceRange();
1875    R2 = BO->getRHS()->getSourceRange();
1876    return true;
1877  }
1878  case CompoundAssignOperatorClass:
1879  case VAArgExprClass:
1880  case AtomicExprClass:
1881    return false;
1882
1883  case ConditionalOperatorClass: {
1884    // If only one of the LHS or RHS is a warning, the operator might
1885    // be being used for control flow. Only warn if both the LHS and
1886    // RHS are warnings.
1887    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1888    if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
1889      return false;
1890    if (!Exp->getLHS())
1891      return true;
1892    return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1893  }
1894
1895  case MemberExprClass:
1896    WarnE = this;
1897    Loc = cast<MemberExpr>(this)->getMemberLoc();
1898    R1 = SourceRange(Loc, Loc);
1899    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
1900    return true;
1901
1902  case ArraySubscriptExprClass:
1903    WarnE = this;
1904    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
1905    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
1906    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
1907    return true;
1908
1909  case CXXOperatorCallExprClass: {
1910    // We warn about operator== and operator!= even when user-defined operator
1911    // overloads as there is no reasonable way to define these such that they
1912    // have non-trivial, desirable side-effects. See the -Wunused-comparison
1913    // warning: these operators are commonly typo'ed, and so warning on them
1914    // provides additional value as well. If this list is updated,
1915    // DiagnoseUnusedComparison should be as well.
1916    const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
1917    if (Op->getOperator() == OO_EqualEqual ||
1918        Op->getOperator() == OO_ExclaimEqual) {
1919      WarnE = this;
1920      Loc = Op->getOperatorLoc();
1921      R1 = Op->getSourceRange();
1922      return true;
1923    }
1924
1925    // Fallthrough for generic call handling.
1926  }
1927  case CallExprClass:
1928  case CXXMemberCallExprClass:
1929  case UserDefinedLiteralClass: {
1930    // If this is a direct call, get the callee.
1931    const CallExpr *CE = cast<CallExpr>(this);
1932    if (const Decl *FD = CE->getCalleeDecl()) {
1933      // If the callee has attribute pure, const, or warn_unused_result, warn
1934      // about it. void foo() { strlen("bar"); } should warn.
1935      //
1936      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
1937      // updated to match for QoI.
1938      if (FD->getAttr<WarnUnusedResultAttr>() ||
1939          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
1940        WarnE = this;
1941        Loc = CE->getCallee()->getLocStart();
1942        R1 = CE->getCallee()->getSourceRange();
1943
1944        if (unsigned NumArgs = CE->getNumArgs())
1945          R2 = SourceRange(CE->getArg(0)->getLocStart(),
1946                           CE->getArg(NumArgs-1)->getLocEnd());
1947        return true;
1948      }
1949    }
1950    return false;
1951  }
1952
1953  case CXXTemporaryObjectExprClass:
1954  case CXXConstructExprClass:
1955    return false;
1956
1957  case ObjCMessageExprClass: {
1958    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
1959    if (Ctx.getLangOpts().ObjCAutoRefCount &&
1960        ME->isInstanceMessage() &&
1961        !ME->getType()->isVoidType() &&
1962        ME->getSelector().getIdentifierInfoForSlot(0) &&
1963        ME->getSelector().getIdentifierInfoForSlot(0)
1964                                               ->getName().startswith("init")) {
1965      WarnE = this;
1966      Loc = getExprLoc();
1967      R1 = ME->getSourceRange();
1968      return true;
1969    }
1970
1971    const ObjCMethodDecl *MD = ME->getMethodDecl();
1972    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
1973      WarnE = this;
1974      Loc = getExprLoc();
1975      return true;
1976    }
1977    return false;
1978  }
1979
1980  case ObjCPropertyRefExprClass:
1981    WarnE = this;
1982    Loc = getExprLoc();
1983    R1 = getSourceRange();
1984    return true;
1985
1986  case PseudoObjectExprClass: {
1987    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
1988
1989    // Only complain about things that have the form of a getter.
1990    if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
1991        isa<BinaryOperator>(PO->getSyntacticForm()))
1992      return false;
1993
1994    WarnE = this;
1995    Loc = getExprLoc();
1996    R1 = getSourceRange();
1997    return true;
1998  }
1999
2000  case StmtExprClass: {
2001    // Statement exprs don't logically have side effects themselves, but are
2002    // sometimes used in macros in ways that give them a type that is unused.
2003    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2004    // however, if the result of the stmt expr is dead, we don't want to emit a
2005    // warning.
2006    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2007    if (!CS->body_empty()) {
2008      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2009        return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2010      if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2011        if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2012          return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2013    }
2014
2015    if (getType()->isVoidType())
2016      return false;
2017    WarnE = this;
2018    Loc = cast<StmtExpr>(this)->getLParenLoc();
2019    R1 = getSourceRange();
2020    return true;
2021  }
2022  case CXXFunctionalCastExprClass:
2023  case CStyleCastExprClass: {
2024    // Ignore an explicit cast to void unless the operand is a non-trivial
2025    // volatile lvalue.
2026    const CastExpr *CE = cast<CastExpr>(this);
2027    if (CE->getCastKind() == CK_ToVoid) {
2028      if (CE->getSubExpr()->isGLValue() &&
2029          CE->getSubExpr()->getType().isVolatileQualified()) {
2030        const DeclRefExpr *DRE =
2031            dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2032        if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2033              cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
2034          return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2035                                                          R1, R2, Ctx);
2036        }
2037      }
2038      return false;
2039    }
2040
2041    // If this is a cast to a constructor conversion, check the operand.
2042    // Otherwise, the result of the cast is unused.
2043    if (CE->getCastKind() == CK_ConstructorConversion)
2044      return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2045
2046    WarnE = this;
2047    if (const CXXFunctionalCastExpr *CXXCE =
2048            dyn_cast<CXXFunctionalCastExpr>(this)) {
2049      Loc = CXXCE->getTypeBeginLoc();
2050      R1 = CXXCE->getSubExpr()->getSourceRange();
2051    } else {
2052      const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2053      Loc = CStyleCE->getLParenLoc();
2054      R1 = CStyleCE->getSubExpr()->getSourceRange();
2055    }
2056    return true;
2057  }
2058  case ImplicitCastExprClass: {
2059    const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2060
2061    // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2062    if (ICE->getCastKind() == CK_LValueToRValue &&
2063        ICE->getSubExpr()->getType().isVolatileQualified())
2064      return false;
2065
2066    return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2067  }
2068  case CXXDefaultArgExprClass:
2069    return (cast<CXXDefaultArgExpr>(this)
2070            ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2071
2072  case CXXNewExprClass:
2073    // FIXME: In theory, there might be new expressions that don't have side
2074    // effects (e.g. a placement new with an uninitialized POD).
2075  case CXXDeleteExprClass:
2076    return false;
2077  case CXXBindTemporaryExprClass:
2078    return (cast<CXXBindTemporaryExpr>(this)
2079            ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2080  case ExprWithCleanupsClass:
2081    return (cast<ExprWithCleanups>(this)
2082            ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2083  }
2084}
2085
2086/// isOBJCGCCandidate - Check if an expression is objc gc'able.
2087/// returns true, if it is; false otherwise.
2088bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2089  const Expr *E = IgnoreParens();
2090  switch (E->getStmtClass()) {
2091  default:
2092    return false;
2093  case ObjCIvarRefExprClass:
2094    return true;
2095  case Expr::UnaryOperatorClass:
2096    return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2097  case ImplicitCastExprClass:
2098    return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2099  case MaterializeTemporaryExprClass:
2100    return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2101                                                      ->isOBJCGCCandidate(Ctx);
2102  case CStyleCastExprClass:
2103    return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2104  case DeclRefExprClass: {
2105    const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2106
2107    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2108      if (VD->hasGlobalStorage())
2109        return true;
2110      QualType T = VD->getType();
2111      // dereferencing to a  pointer is always a gc'able candidate,
2112      // unless it is __weak.
2113      return T->isPointerType() &&
2114             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2115    }
2116    return false;
2117  }
2118  case MemberExprClass: {
2119    const MemberExpr *M = cast<MemberExpr>(E);
2120    return M->getBase()->isOBJCGCCandidate(Ctx);
2121  }
2122  case ArraySubscriptExprClass:
2123    return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2124  }
2125}
2126
2127bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2128  if (isTypeDependent())
2129    return false;
2130  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2131}
2132
2133QualType Expr::findBoundMemberType(const Expr *expr) {
2134  assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2135
2136  // Bound member expressions are always one of these possibilities:
2137  //   x->m      x.m      x->*y      x.*y
2138  // (possibly parenthesized)
2139
2140  expr = expr->IgnoreParens();
2141  if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2142    assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2143    return mem->getMemberDecl()->getType();
2144  }
2145
2146  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2147    QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2148                      ->getPointeeType();
2149    assert(type->isFunctionType());
2150    return type;
2151  }
2152
2153  assert(isa<UnresolvedMemberExpr>(expr));
2154  return QualType();
2155}
2156
2157Expr* Expr::IgnoreParens() {
2158  Expr* E = this;
2159  while (true) {
2160    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2161      E = P->getSubExpr();
2162      continue;
2163    }
2164    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2165      if (P->getOpcode() == UO_Extension) {
2166        E = P->getSubExpr();
2167        continue;
2168      }
2169    }
2170    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2171      if (!P->isResultDependent()) {
2172        E = P->getResultExpr();
2173        continue;
2174      }
2175    }
2176    return E;
2177  }
2178}
2179
2180/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
2181/// or CastExprs or ImplicitCastExprs, returning their operand.
2182Expr *Expr::IgnoreParenCasts() {
2183  Expr *E = this;
2184  while (true) {
2185    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2186      E = P->getSubExpr();
2187      continue;
2188    }
2189    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2190      E = P->getSubExpr();
2191      continue;
2192    }
2193    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2194      if (P->getOpcode() == UO_Extension) {
2195        E = P->getSubExpr();
2196        continue;
2197      }
2198    }
2199    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2200      if (!P->isResultDependent()) {
2201        E = P->getResultExpr();
2202        continue;
2203      }
2204    }
2205    if (MaterializeTemporaryExpr *Materialize
2206                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2207      E = Materialize->GetTemporaryExpr();
2208      continue;
2209    }
2210    if (SubstNonTypeTemplateParmExpr *NTTP
2211                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2212      E = NTTP->getReplacement();
2213      continue;
2214    }
2215    return E;
2216  }
2217}
2218
2219/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2220/// casts.  This is intended purely as a temporary workaround for code
2221/// that hasn't yet been rewritten to do the right thing about those
2222/// casts, and may disappear along with the last internal use.
2223Expr *Expr::IgnoreParenLValueCasts() {
2224  Expr *E = this;
2225  while (true) {
2226    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2227      E = P->getSubExpr();
2228      continue;
2229    } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2230      if (P->getCastKind() == CK_LValueToRValue) {
2231        E = P->getSubExpr();
2232        continue;
2233      }
2234    } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2235      if (P->getOpcode() == UO_Extension) {
2236        E = P->getSubExpr();
2237        continue;
2238      }
2239    } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2240      if (!P->isResultDependent()) {
2241        E = P->getResultExpr();
2242        continue;
2243      }
2244    } else if (MaterializeTemporaryExpr *Materialize
2245                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2246      E = Materialize->GetTemporaryExpr();
2247      continue;
2248    } else if (SubstNonTypeTemplateParmExpr *NTTP
2249                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2250      E = NTTP->getReplacement();
2251      continue;
2252    }
2253    break;
2254  }
2255  return E;
2256}
2257
2258Expr *Expr::ignoreParenBaseCasts() {
2259  Expr *E = this;
2260  while (true) {
2261    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2262      E = P->getSubExpr();
2263      continue;
2264    }
2265    if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
2266      if (CE->getCastKind() == CK_DerivedToBase ||
2267          CE->getCastKind() == CK_UncheckedDerivedToBase ||
2268          CE->getCastKind() == CK_NoOp) {
2269        E = CE->getSubExpr();
2270        continue;
2271      }
2272    }
2273
2274    return E;
2275  }
2276}
2277
2278Expr *Expr::IgnoreParenImpCasts() {
2279  Expr *E = this;
2280  while (true) {
2281    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2282      E = P->getSubExpr();
2283      continue;
2284    }
2285    if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2286      E = P->getSubExpr();
2287      continue;
2288    }
2289    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2290      if (P->getOpcode() == UO_Extension) {
2291        E = P->getSubExpr();
2292        continue;
2293      }
2294    }
2295    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2296      if (!P->isResultDependent()) {
2297        E = P->getResultExpr();
2298        continue;
2299      }
2300    }
2301    if (MaterializeTemporaryExpr *Materialize
2302                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2303      E = Materialize->GetTemporaryExpr();
2304      continue;
2305    }
2306    if (SubstNonTypeTemplateParmExpr *NTTP
2307                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2308      E = NTTP->getReplacement();
2309      continue;
2310    }
2311    return E;
2312  }
2313}
2314
2315Expr *Expr::IgnoreConversionOperator() {
2316  if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2317    if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2318      return MCE->getImplicitObjectArgument();
2319  }
2320  return this;
2321}
2322
2323/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2324/// value (including ptr->int casts of the same size).  Strip off any
2325/// ParenExpr or CastExprs, returning their operand.
2326Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2327  Expr *E = this;
2328  while (true) {
2329    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2330      E = P->getSubExpr();
2331      continue;
2332    }
2333
2334    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2335      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2336      // ptr<->int casts of the same width.  We also ignore all identity casts.
2337      Expr *SE = P->getSubExpr();
2338
2339      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2340        E = SE;
2341        continue;
2342      }
2343
2344      if ((E->getType()->isPointerType() ||
2345           E->getType()->isIntegralType(Ctx)) &&
2346          (SE->getType()->isPointerType() ||
2347           SE->getType()->isIntegralType(Ctx)) &&
2348          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2349        E = SE;
2350        continue;
2351      }
2352    }
2353
2354    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2355      if (P->getOpcode() == UO_Extension) {
2356        E = P->getSubExpr();
2357        continue;
2358      }
2359    }
2360
2361    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2362      if (!P->isResultDependent()) {
2363        E = P->getResultExpr();
2364        continue;
2365      }
2366    }
2367
2368    if (SubstNonTypeTemplateParmExpr *NTTP
2369                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2370      E = NTTP->getReplacement();
2371      continue;
2372    }
2373
2374    return E;
2375  }
2376}
2377
2378bool Expr::isDefaultArgument() const {
2379  const Expr *E = this;
2380  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2381    E = M->GetTemporaryExpr();
2382
2383  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2384    E = ICE->getSubExprAsWritten();
2385
2386  return isa<CXXDefaultArgExpr>(E);
2387}
2388
2389/// \brief Skip over any no-op casts and any temporary-binding
2390/// expressions.
2391static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2392  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2393    E = M->GetTemporaryExpr();
2394
2395  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2396    if (ICE->getCastKind() == CK_NoOp)
2397      E = ICE->getSubExpr();
2398    else
2399      break;
2400  }
2401
2402  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2403    E = BE->getSubExpr();
2404
2405  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2406    if (ICE->getCastKind() == CK_NoOp)
2407      E = ICE->getSubExpr();
2408    else
2409      break;
2410  }
2411
2412  return E->IgnoreParens();
2413}
2414
2415/// isTemporaryObject - Determines if this expression produces a
2416/// temporary of the given class type.
2417bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2418  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2419    return false;
2420
2421  const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2422
2423  // Temporaries are by definition pr-values of class type.
2424  if (!E->Classify(C).isPRValue()) {
2425    // In this context, property reference is a message call and is pr-value.
2426    if (!isa<ObjCPropertyRefExpr>(E))
2427      return false;
2428  }
2429
2430  // Black-list a few cases which yield pr-values of class type that don't
2431  // refer to temporaries of that type:
2432
2433  // - implicit derived-to-base conversions
2434  if (isa<ImplicitCastExpr>(E)) {
2435    switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2436    case CK_DerivedToBase:
2437    case CK_UncheckedDerivedToBase:
2438      return false;
2439    default:
2440      break;
2441    }
2442  }
2443
2444  // - member expressions (all)
2445  if (isa<MemberExpr>(E))
2446    return false;
2447
2448  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2449    if (BO->isPtrMemOp())
2450      return false;
2451
2452  // - opaque values (all)
2453  if (isa<OpaqueValueExpr>(E))
2454    return false;
2455
2456  return true;
2457}
2458
2459bool Expr::isImplicitCXXThis() const {
2460  const Expr *E = this;
2461
2462  // Strip away parentheses and casts we don't care about.
2463  while (true) {
2464    if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2465      E = Paren->getSubExpr();
2466      continue;
2467    }
2468
2469    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2470      if (ICE->getCastKind() == CK_NoOp ||
2471          ICE->getCastKind() == CK_LValueToRValue ||
2472          ICE->getCastKind() == CK_DerivedToBase ||
2473          ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2474        E = ICE->getSubExpr();
2475        continue;
2476      }
2477    }
2478
2479    if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2480      if (UnOp->getOpcode() == UO_Extension) {
2481        E = UnOp->getSubExpr();
2482        continue;
2483      }
2484    }
2485
2486    if (const MaterializeTemporaryExpr *M
2487                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2488      E = M->GetTemporaryExpr();
2489      continue;
2490    }
2491
2492    break;
2493  }
2494
2495  if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2496    return This->isImplicit();
2497
2498  return false;
2499}
2500
2501/// hasAnyTypeDependentArguments - Determines if any of the expressions
2502/// in Exprs is type-dependent.
2503bool Expr::hasAnyTypeDependentArguments(llvm::ArrayRef<Expr *> Exprs) {
2504  for (unsigned I = 0; I < Exprs.size(); ++I)
2505    if (Exprs[I]->isTypeDependent())
2506      return true;
2507
2508  return false;
2509}
2510
2511bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
2512  // This function is attempting whether an expression is an initializer
2513  // which can be evaluated at compile-time.  isEvaluatable handles most
2514  // of the cases, but it can't deal with some initializer-specific
2515  // expressions, and it can't deal with aggregates; we deal with those here,
2516  // and fall back to isEvaluatable for the other cases.
2517
2518  // If we ever capture reference-binding directly in the AST, we can
2519  // kill the second parameter.
2520
2521  if (IsForRef) {
2522    EvalResult Result;
2523    return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
2524  }
2525
2526  switch (getStmtClass()) {
2527  default: break;
2528  case IntegerLiteralClass:
2529  case FloatingLiteralClass:
2530  case StringLiteralClass:
2531  case ObjCStringLiteralClass:
2532  case ObjCEncodeExprClass:
2533    return true;
2534  case CXXTemporaryObjectExprClass:
2535  case CXXConstructExprClass: {
2536    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2537
2538    // Only if it's
2539    if (CE->getConstructor()->isTrivial()) {
2540      // 1) an application of the trivial default constructor or
2541      if (!CE->getNumArgs()) return true;
2542
2543      // 2) an elidable trivial copy construction of an operand which is
2544      //    itself a constant initializer.  Note that we consider the
2545      //    operand on its own, *not* as a reference binding.
2546      if (CE->isElidable() &&
2547          CE->getArg(0)->isConstantInitializer(Ctx, false))
2548        return true;
2549    }
2550
2551    // 3) a foldable constexpr constructor.
2552    break;
2553  }
2554  case CompoundLiteralExprClass: {
2555    // This handles gcc's extension that allows global initializers like
2556    // "struct x {int x;} x = (struct x) {};".
2557    // FIXME: This accepts other cases it shouldn't!
2558    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2559    return Exp->isConstantInitializer(Ctx, false);
2560  }
2561  case InitListExprClass: {
2562    // FIXME: This doesn't deal with fields with reference types correctly.
2563    // FIXME: This incorrectly allows pointers cast to integers to be assigned
2564    // to bitfields.
2565    const InitListExpr *Exp = cast<InitListExpr>(this);
2566    unsigned numInits = Exp->getNumInits();
2567    for (unsigned i = 0; i < numInits; i++) {
2568      if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
2569        return false;
2570    }
2571    return true;
2572  }
2573  case ImplicitValueInitExprClass:
2574    return true;
2575  case ParenExprClass:
2576    return cast<ParenExpr>(this)->getSubExpr()
2577      ->isConstantInitializer(Ctx, IsForRef);
2578  case GenericSelectionExprClass:
2579    if (cast<GenericSelectionExpr>(this)->isResultDependent())
2580      return false;
2581    return cast<GenericSelectionExpr>(this)->getResultExpr()
2582      ->isConstantInitializer(Ctx, IsForRef);
2583  case ChooseExprClass:
2584    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
2585      ->isConstantInitializer(Ctx, IsForRef);
2586  case UnaryOperatorClass: {
2587    const UnaryOperator* Exp = cast<UnaryOperator>(this);
2588    if (Exp->getOpcode() == UO_Extension)
2589      return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
2590    break;
2591  }
2592  case CXXFunctionalCastExprClass:
2593  case CXXStaticCastExprClass:
2594  case ImplicitCastExprClass:
2595  case CStyleCastExprClass: {
2596    const CastExpr *CE = cast<CastExpr>(this);
2597
2598    // If we're promoting an integer to an _Atomic type then this is constant
2599    // if the integer is constant.  We also need to check the converse in case
2600    // someone does something like:
2601    //
2602    // int a = (_Atomic(int))42;
2603    //
2604    // I doubt anyone would write code like this directly, but it's quite
2605    // possible as the result of macro expansions.
2606    if (CE->getCastKind() == CK_NonAtomicToAtomic ||
2607        CE->getCastKind() == CK_AtomicToNonAtomic)
2608      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2609
2610    // Handle bitcasts of vector constants.
2611    if (getType()->isVectorType() && CE->getCastKind() == CK_BitCast)
2612      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2613
2614    // Handle misc casts we want to ignore.
2615    // FIXME: Is it really safe to ignore all these?
2616    if (CE->getCastKind() == CK_NoOp ||
2617        CE->getCastKind() == CK_LValueToRValue ||
2618        CE->getCastKind() == CK_ToUnion ||
2619        CE->getCastKind() == CK_ConstructorConversion)
2620      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2621
2622    break;
2623  }
2624  case MaterializeTemporaryExprClass:
2625    return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2626                                            ->isConstantInitializer(Ctx, false);
2627  }
2628  return isEvaluatable(Ctx);
2629}
2630
2631bool Expr::HasSideEffects(const ASTContext &Ctx) const {
2632  if (isInstantiationDependent())
2633    return true;
2634
2635  switch (getStmtClass()) {
2636  case NoStmtClass:
2637  #define ABSTRACT_STMT(Type)
2638  #define STMT(Type, Base) case Type##Class:
2639  #define EXPR(Type, Base)
2640  #include "clang/AST/StmtNodes.inc"
2641    llvm_unreachable("unexpected Expr kind");
2642
2643  case DependentScopeDeclRefExprClass:
2644  case CXXUnresolvedConstructExprClass:
2645  case CXXDependentScopeMemberExprClass:
2646  case UnresolvedLookupExprClass:
2647  case UnresolvedMemberExprClass:
2648  case PackExpansionExprClass:
2649  case SubstNonTypeTemplateParmPackExprClass:
2650  case FunctionParmPackExprClass:
2651    llvm_unreachable("shouldn't see dependent / unresolved nodes here");
2652
2653  case DeclRefExprClass:
2654  case ObjCIvarRefExprClass:
2655  case PredefinedExprClass:
2656  case IntegerLiteralClass:
2657  case FloatingLiteralClass:
2658  case ImaginaryLiteralClass:
2659  case StringLiteralClass:
2660  case CharacterLiteralClass:
2661  case OffsetOfExprClass:
2662  case ImplicitValueInitExprClass:
2663  case UnaryExprOrTypeTraitExprClass:
2664  case AddrLabelExprClass:
2665  case GNUNullExprClass:
2666  case CXXBoolLiteralExprClass:
2667  case CXXNullPtrLiteralExprClass:
2668  case CXXThisExprClass:
2669  case CXXScalarValueInitExprClass:
2670  case TypeTraitExprClass:
2671  case UnaryTypeTraitExprClass:
2672  case BinaryTypeTraitExprClass:
2673  case ArrayTypeTraitExprClass:
2674  case ExpressionTraitExprClass:
2675  case CXXNoexceptExprClass:
2676  case SizeOfPackExprClass:
2677  case ObjCStringLiteralClass:
2678  case ObjCEncodeExprClass:
2679  case ObjCBoolLiteralExprClass:
2680  case CXXUuidofExprClass:
2681  case OpaqueValueExprClass:
2682    // These never have a side-effect.
2683    return false;
2684
2685  case CallExprClass:
2686  case CompoundAssignOperatorClass:
2687  case VAArgExprClass:
2688  case AtomicExprClass:
2689  case StmtExprClass:
2690  case CXXOperatorCallExprClass:
2691  case CXXMemberCallExprClass:
2692  case UserDefinedLiteralClass:
2693  case CXXThrowExprClass:
2694  case CXXNewExprClass:
2695  case CXXDeleteExprClass:
2696  case ExprWithCleanupsClass:
2697  case CXXBindTemporaryExprClass:
2698  case BlockExprClass:
2699  case CUDAKernelCallExprClass:
2700    // These always have a side-effect.
2701    return true;
2702
2703  case ParenExprClass:
2704  case ArraySubscriptExprClass:
2705  case MemberExprClass:
2706  case ConditionalOperatorClass:
2707  case BinaryConditionalOperatorClass:
2708  case CompoundLiteralExprClass:
2709  case ExtVectorElementExprClass:
2710  case DesignatedInitExprClass:
2711  case ParenListExprClass:
2712  case CXXPseudoDestructorExprClass:
2713  case SubstNonTypeTemplateParmExprClass:
2714  case MaterializeTemporaryExprClass:
2715  case ShuffleVectorExprClass:
2716  case AsTypeExprClass:
2717    // These have a side-effect if any subexpression does.
2718    break;
2719
2720  case UnaryOperatorClass:
2721    if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
2722      return true;
2723    break;
2724
2725  case BinaryOperatorClass:
2726    if (cast<BinaryOperator>(this)->isAssignmentOp())
2727      return true;
2728    break;
2729
2730  case InitListExprClass:
2731    // FIXME: The children for an InitListExpr doesn't include the array filler.
2732    if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
2733      if (E->HasSideEffects(Ctx))
2734        return true;
2735    break;
2736
2737  case GenericSelectionExprClass:
2738    return cast<GenericSelectionExpr>(this)->getResultExpr()->
2739        HasSideEffects(Ctx);
2740
2741  case ChooseExprClass:
2742    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->HasSideEffects(Ctx);
2743
2744  case CXXDefaultArgExprClass:
2745    return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(Ctx);
2746
2747  case CXXDynamicCastExprClass: {
2748    // A dynamic_cast expression has side-effects if it can throw.
2749    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
2750    if (DCE->getTypeAsWritten()->isReferenceType() &&
2751        DCE->getCastKind() == CK_Dynamic)
2752      return true;
2753  } // Fall through.
2754  case ImplicitCastExprClass:
2755  case CStyleCastExprClass:
2756  case CXXStaticCastExprClass:
2757  case CXXReinterpretCastExprClass:
2758  case CXXConstCastExprClass:
2759  case CXXFunctionalCastExprClass: {
2760    const CastExpr *CE = cast<CastExpr>(this);
2761    if (CE->getCastKind() == CK_LValueToRValue &&
2762        CE->getSubExpr()->getType().isVolatileQualified())
2763      return true;
2764    break;
2765  }
2766
2767  case CXXTypeidExprClass:
2768    // typeid might throw if its subexpression is potentially-evaluated, so has
2769    // side-effects in that case whether or not its subexpression does.
2770    return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
2771
2772  case CXXConstructExprClass:
2773  case CXXTemporaryObjectExprClass: {
2774    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2775    if (!CE->getConstructor()->isTrivial())
2776      return true;
2777    // A trivial constructor does not add any side-effects of its own. Just look
2778    // at its arguments.
2779    break;
2780  }
2781
2782  case LambdaExprClass: {
2783    const LambdaExpr *LE = cast<LambdaExpr>(this);
2784    for (LambdaExpr::capture_iterator I = LE->capture_begin(),
2785                                      E = LE->capture_end(); I != E; ++I)
2786      if (I->getCaptureKind() == LCK_ByCopy)
2787        // FIXME: Only has a side-effect if the variable is volatile or if
2788        // the copy would invoke a non-trivial copy constructor.
2789        return true;
2790    return false;
2791  }
2792
2793  case PseudoObjectExprClass: {
2794    // Only look for side-effects in the semantic form, and look past
2795    // OpaqueValueExpr bindings in that form.
2796    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2797    for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
2798                                                    E = PO->semantics_end();
2799         I != E; ++I) {
2800      const Expr *Subexpr = *I;
2801      if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
2802        Subexpr = OVE->getSourceExpr();
2803      if (Subexpr->HasSideEffects(Ctx))
2804        return true;
2805    }
2806    return false;
2807  }
2808
2809  case ObjCBoxedExprClass:
2810  case ObjCArrayLiteralClass:
2811  case ObjCDictionaryLiteralClass:
2812  case ObjCMessageExprClass:
2813  case ObjCSelectorExprClass:
2814  case ObjCProtocolExprClass:
2815  case ObjCPropertyRefExprClass:
2816  case ObjCIsaExprClass:
2817  case ObjCIndirectCopyRestoreExprClass:
2818  case ObjCSubscriptRefExprClass:
2819  case ObjCBridgedCastExprClass:
2820    // FIXME: Classify these cases better.
2821    return true;
2822  }
2823
2824  // Recurse to children.
2825  for (const_child_range SubStmts = children(); SubStmts; ++SubStmts)
2826    if (const Stmt *S = *SubStmts)
2827      if (cast<Expr>(S)->HasSideEffects(Ctx))
2828        return true;
2829
2830  return false;
2831}
2832
2833namespace {
2834  /// \brief Look for a call to a non-trivial function within an expression.
2835  class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
2836  {
2837    typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
2838
2839    bool NonTrivial;
2840
2841  public:
2842    explicit NonTrivialCallFinder(ASTContext &Context)
2843      : Inherited(Context), NonTrivial(false) { }
2844
2845    bool hasNonTrivialCall() const { return NonTrivial; }
2846
2847    void VisitCallExpr(CallExpr *E) {
2848      if (CXXMethodDecl *Method
2849          = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
2850        if (Method->isTrivial()) {
2851          // Recurse to children of the call.
2852          Inherited::VisitStmt(E);
2853          return;
2854        }
2855      }
2856
2857      NonTrivial = true;
2858    }
2859
2860    void VisitCXXConstructExpr(CXXConstructExpr *E) {
2861      if (E->getConstructor()->isTrivial()) {
2862        // Recurse to children of the call.
2863        Inherited::VisitStmt(E);
2864        return;
2865      }
2866
2867      NonTrivial = true;
2868    }
2869
2870    void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2871      if (E->getTemporary()->getDestructor()->isTrivial()) {
2872        Inherited::VisitStmt(E);
2873        return;
2874      }
2875
2876      NonTrivial = true;
2877    }
2878  };
2879}
2880
2881bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
2882  NonTrivialCallFinder Finder(Ctx);
2883  Finder.Visit(this);
2884  return Finder.hasNonTrivialCall();
2885}
2886
2887/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
2888/// pointer constant or not, as well as the specific kind of constant detected.
2889/// Null pointer constants can be integer constant expressions with the
2890/// value zero, casts of zero to void*, nullptr (C++0X), or __null
2891/// (a GNU extension).
2892Expr::NullPointerConstantKind
2893Expr::isNullPointerConstant(ASTContext &Ctx,
2894                            NullPointerConstantValueDependence NPC) const {
2895  if (isValueDependent()) {
2896    switch (NPC) {
2897    case NPC_NeverValueDependent:
2898      llvm_unreachable("Unexpected value dependent expression!");
2899    case NPC_ValueDependentIsNull:
2900      if (isTypeDependent() || getType()->isIntegralType(Ctx))
2901        return NPCK_ZeroExpression;
2902      else
2903        return NPCK_NotNull;
2904
2905    case NPC_ValueDependentIsNotNull:
2906      return NPCK_NotNull;
2907    }
2908  }
2909
2910  // Strip off a cast to void*, if it exists. Except in C++.
2911  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
2912    if (!Ctx.getLangOpts().CPlusPlus) {
2913      // Check that it is a cast to void*.
2914      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
2915        QualType Pointee = PT->getPointeeType();
2916        if (!Pointee.hasQualifiers() &&
2917            Pointee->isVoidType() &&                              // to void*
2918            CE->getSubExpr()->getType()->isIntegerType())         // from int.
2919          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2920      }
2921    }
2922  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
2923    // Ignore the ImplicitCastExpr type entirely.
2924    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2925  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
2926    // Accept ((void*)0) as a null pointer constant, as many other
2927    // implementations do.
2928    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2929  } else if (const GenericSelectionExpr *GE =
2930               dyn_cast<GenericSelectionExpr>(this)) {
2931    return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
2932  } else if (const CXXDefaultArgExpr *DefaultArg
2933               = dyn_cast<CXXDefaultArgExpr>(this)) {
2934    // See through default argument expressions
2935    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
2936  } else if (isa<GNUNullExpr>(this)) {
2937    // The GNU __null extension is always a null pointer constant.
2938    return NPCK_GNUNull;
2939  } else if (const MaterializeTemporaryExpr *M
2940                                   = dyn_cast<MaterializeTemporaryExpr>(this)) {
2941    return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
2942  } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
2943    if (const Expr *Source = OVE->getSourceExpr())
2944      return Source->isNullPointerConstant(Ctx, NPC);
2945  }
2946
2947  // C++0x nullptr_t is always a null pointer constant.
2948  if (getType()->isNullPtrType())
2949    return NPCK_CXX0X_nullptr;
2950
2951  if (const RecordType *UT = getType()->getAsUnionType())
2952    if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
2953      if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
2954        const Expr *InitExpr = CLE->getInitializer();
2955        if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
2956          return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
2957      }
2958  // This expression must be an integer type.
2959  if (!getType()->isIntegerType() ||
2960      (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
2961    return NPCK_NotNull;
2962
2963  // If we have an integer constant expression, we need to *evaluate* it and
2964  // test for the value 0. Don't use the C++11 constant expression semantics
2965  // for this, for now; once the dust settles on core issue 903, we might only
2966  // allow a literal 0 here in C++11 mode.
2967  if (Ctx.getLangOpts().CPlusPlus0x) {
2968    if (!isCXX98IntegralConstantExpr(Ctx))
2969      return NPCK_NotNull;
2970  } else {
2971    if (!isIntegerConstantExpr(Ctx))
2972      return NPCK_NotNull;
2973  }
2974
2975  if (EvaluateKnownConstInt(Ctx) != 0)
2976    return NPCK_NotNull;
2977
2978  if (isa<IntegerLiteral>(this))
2979    return NPCK_ZeroLiteral;
2980  return NPCK_ZeroExpression;
2981}
2982
2983/// \brief If this expression is an l-value for an Objective C
2984/// property, find the underlying property reference expression.
2985const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
2986  const Expr *E = this;
2987  while (true) {
2988    assert((E->getValueKind() == VK_LValue &&
2989            E->getObjectKind() == OK_ObjCProperty) &&
2990           "expression is not a property reference");
2991    E = E->IgnoreParenCasts();
2992    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2993      if (BO->getOpcode() == BO_Comma) {
2994        E = BO->getRHS();
2995        continue;
2996      }
2997    }
2998
2999    break;
3000  }
3001
3002  return cast<ObjCPropertyRefExpr>(E);
3003}
3004
3005bool Expr::isObjCSelfExpr() const {
3006  const Expr *E = IgnoreParenImpCasts();
3007
3008  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3009  if (!DRE)
3010    return false;
3011
3012  const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3013  if (!Param)
3014    return false;
3015
3016  const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3017  if (!M)
3018    return false;
3019
3020  return M->getSelfDecl() == Param;
3021}
3022
3023FieldDecl *Expr::getBitField() {
3024  Expr *E = this->IgnoreParens();
3025
3026  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3027    if (ICE->getCastKind() == CK_LValueToRValue ||
3028        (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3029      E = ICE->getSubExpr()->IgnoreParens();
3030    else
3031      break;
3032  }
3033
3034  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3035    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3036      if (Field->isBitField())
3037        return Field;
3038
3039  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
3040    if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3041      if (Field->isBitField())
3042        return Field;
3043
3044  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3045    if (BinOp->isAssignmentOp() && BinOp->getLHS())
3046      return BinOp->getLHS()->getBitField();
3047
3048    if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3049      return BinOp->getRHS()->getBitField();
3050  }
3051
3052  return 0;
3053}
3054
3055bool Expr::refersToVectorElement() const {
3056  const Expr *E = this->IgnoreParens();
3057
3058  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3059    if (ICE->getValueKind() != VK_RValue &&
3060        ICE->getCastKind() == CK_NoOp)
3061      E = ICE->getSubExpr()->IgnoreParens();
3062    else
3063      break;
3064  }
3065
3066  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3067    return ASE->getBase()->getType()->isVectorType();
3068
3069  if (isa<ExtVectorElementExpr>(E))
3070    return true;
3071
3072  return false;
3073}
3074
3075/// isArrow - Return true if the base expression is a pointer to vector,
3076/// return false if the base expression is a vector.
3077bool ExtVectorElementExpr::isArrow() const {
3078  return getBase()->getType()->isPointerType();
3079}
3080
3081unsigned ExtVectorElementExpr::getNumElements() const {
3082  if (const VectorType *VT = getType()->getAs<VectorType>())
3083    return VT->getNumElements();
3084  return 1;
3085}
3086
3087/// containsDuplicateElements - Return true if any element access is repeated.
3088bool ExtVectorElementExpr::containsDuplicateElements() const {
3089  // FIXME: Refactor this code to an accessor on the AST node which returns the
3090  // "type" of component access, and share with code below and in Sema.
3091  StringRef Comp = Accessor->getName();
3092
3093  // Halving swizzles do not contain duplicate elements.
3094  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3095    return false;
3096
3097  // Advance past s-char prefix on hex swizzles.
3098  if (Comp[0] == 's' || Comp[0] == 'S')
3099    Comp = Comp.substr(1);
3100
3101  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3102    if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3103        return true;
3104
3105  return false;
3106}
3107
3108/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
3109void ExtVectorElementExpr::getEncodedElementAccess(
3110                                  SmallVectorImpl<unsigned> &Elts) const {
3111  StringRef Comp = Accessor->getName();
3112  if (Comp[0] == 's' || Comp[0] == 'S')
3113    Comp = Comp.substr(1);
3114
3115  bool isHi =   Comp == "hi";
3116  bool isLo =   Comp == "lo";
3117  bool isEven = Comp == "even";
3118  bool isOdd  = Comp == "odd";
3119
3120  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3121    uint64_t Index;
3122
3123    if (isHi)
3124      Index = e + i;
3125    else if (isLo)
3126      Index = i;
3127    else if (isEven)
3128      Index = 2 * i;
3129    else if (isOdd)
3130      Index = 2 * i + 1;
3131    else
3132      Index = ExtVectorType::getAccessorIdx(Comp[i]);
3133
3134    Elts.push_back(Index);
3135  }
3136}
3137
3138ObjCMessageExpr::ObjCMessageExpr(QualType T,
3139                                 ExprValueKind VK,
3140                                 SourceLocation LBracLoc,
3141                                 SourceLocation SuperLoc,
3142                                 bool IsInstanceSuper,
3143                                 QualType SuperType,
3144                                 Selector Sel,
3145                                 ArrayRef<SourceLocation> SelLocs,
3146                                 SelectorLocationsKind SelLocsK,
3147                                 ObjCMethodDecl *Method,
3148                                 ArrayRef<Expr *> Args,
3149                                 SourceLocation RBracLoc,
3150                                 bool isImplicit)
3151  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
3152         /*TypeDependent=*/false, /*ValueDependent=*/false,
3153         /*InstantiationDependent=*/false,
3154         /*ContainsUnexpandedParameterPack=*/false),
3155    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3156                                                       : Sel.getAsOpaquePtr())),
3157    Kind(IsInstanceSuper? SuperInstance : SuperClass),
3158    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3159    SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3160{
3161  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3162  setReceiverPointer(SuperType.getAsOpaquePtr());
3163}
3164
3165ObjCMessageExpr::ObjCMessageExpr(QualType T,
3166                                 ExprValueKind VK,
3167                                 SourceLocation LBracLoc,
3168                                 TypeSourceInfo *Receiver,
3169                                 Selector Sel,
3170                                 ArrayRef<SourceLocation> SelLocs,
3171                                 SelectorLocationsKind SelLocsK,
3172                                 ObjCMethodDecl *Method,
3173                                 ArrayRef<Expr *> Args,
3174                                 SourceLocation RBracLoc,
3175                                 bool isImplicit)
3176  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
3177         T->isDependentType(), T->isInstantiationDependentType(),
3178         T->containsUnexpandedParameterPack()),
3179    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3180                                                       : Sel.getAsOpaquePtr())),
3181    Kind(Class),
3182    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3183    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3184{
3185  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3186  setReceiverPointer(Receiver);
3187}
3188
3189ObjCMessageExpr::ObjCMessageExpr(QualType T,
3190                                 ExprValueKind VK,
3191                                 SourceLocation LBracLoc,
3192                                 Expr *Receiver,
3193                                 Selector Sel,
3194                                 ArrayRef<SourceLocation> SelLocs,
3195                                 SelectorLocationsKind SelLocsK,
3196                                 ObjCMethodDecl *Method,
3197                                 ArrayRef<Expr *> Args,
3198                                 SourceLocation RBracLoc,
3199                                 bool isImplicit)
3200  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
3201         Receiver->isTypeDependent(),
3202         Receiver->isInstantiationDependent(),
3203         Receiver->containsUnexpandedParameterPack()),
3204    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3205                                                       : Sel.getAsOpaquePtr())),
3206    Kind(Instance),
3207    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3208    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3209{
3210  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3211  setReceiverPointer(Receiver);
3212}
3213
3214void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
3215                                         ArrayRef<SourceLocation> SelLocs,
3216                                         SelectorLocationsKind SelLocsK) {
3217  setNumArgs(Args.size());
3218  Expr **MyArgs = getArgs();
3219  for (unsigned I = 0; I != Args.size(); ++I) {
3220    if (Args[I]->isTypeDependent())
3221      ExprBits.TypeDependent = true;
3222    if (Args[I]->isValueDependent())
3223      ExprBits.ValueDependent = true;
3224    if (Args[I]->isInstantiationDependent())
3225      ExprBits.InstantiationDependent = true;
3226    if (Args[I]->containsUnexpandedParameterPack())
3227      ExprBits.ContainsUnexpandedParameterPack = true;
3228
3229    MyArgs[I] = Args[I];
3230  }
3231
3232  SelLocsKind = SelLocsK;
3233  if (!isImplicit()) {
3234    if (SelLocsK == SelLoc_NonStandard)
3235      std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
3236  }
3237}
3238
3239ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3240                                         ExprValueKind VK,
3241                                         SourceLocation LBracLoc,
3242                                         SourceLocation SuperLoc,
3243                                         bool IsInstanceSuper,
3244                                         QualType SuperType,
3245                                         Selector Sel,
3246                                         ArrayRef<SourceLocation> SelLocs,
3247                                         ObjCMethodDecl *Method,
3248                                         ArrayRef<Expr *> Args,
3249                                         SourceLocation RBracLoc,
3250                                         bool isImplicit) {
3251  assert((!SelLocs.empty() || isImplicit) &&
3252         "No selector locs for non-implicit message");
3253  ObjCMessageExpr *Mem;
3254  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3255  if (isImplicit)
3256    Mem = alloc(Context, Args.size(), 0);
3257  else
3258    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3259  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
3260                                   SuperType, Sel, SelLocs, SelLocsK,
3261                                   Method, Args, RBracLoc, isImplicit);
3262}
3263
3264ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3265                                         ExprValueKind VK,
3266                                         SourceLocation LBracLoc,
3267                                         TypeSourceInfo *Receiver,
3268                                         Selector Sel,
3269                                         ArrayRef<SourceLocation> SelLocs,
3270                                         ObjCMethodDecl *Method,
3271                                         ArrayRef<Expr *> Args,
3272                                         SourceLocation RBracLoc,
3273                                         bool isImplicit) {
3274  assert((!SelLocs.empty() || isImplicit) &&
3275         "No selector locs for non-implicit message");
3276  ObjCMessageExpr *Mem;
3277  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3278  if (isImplicit)
3279    Mem = alloc(Context, Args.size(), 0);
3280  else
3281    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3282  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3283                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
3284                                   isImplicit);
3285}
3286
3287ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3288                                         ExprValueKind VK,
3289                                         SourceLocation LBracLoc,
3290                                         Expr *Receiver,
3291                                         Selector Sel,
3292                                         ArrayRef<SourceLocation> SelLocs,
3293                                         ObjCMethodDecl *Method,
3294                                         ArrayRef<Expr *> Args,
3295                                         SourceLocation RBracLoc,
3296                                         bool isImplicit) {
3297  assert((!SelLocs.empty() || isImplicit) &&
3298         "No selector locs for non-implicit message");
3299  ObjCMessageExpr *Mem;
3300  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3301  if (isImplicit)
3302    Mem = alloc(Context, Args.size(), 0);
3303  else
3304    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3305  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3306                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
3307                                   isImplicit);
3308}
3309
3310ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
3311                                              unsigned NumArgs,
3312                                              unsigned NumStoredSelLocs) {
3313  ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
3314  return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
3315}
3316
3317ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3318                                        ArrayRef<Expr *> Args,
3319                                        SourceLocation RBraceLoc,
3320                                        ArrayRef<SourceLocation> SelLocs,
3321                                        Selector Sel,
3322                                        SelectorLocationsKind &SelLocsK) {
3323  SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
3324  unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
3325                                                               : 0;
3326  return alloc(C, Args.size(), NumStoredSelLocs);
3327}
3328
3329ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3330                                        unsigned NumArgs,
3331                                        unsigned NumStoredSelLocs) {
3332  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
3333    NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
3334  return (ObjCMessageExpr *)C.Allocate(Size,
3335                                     llvm::AlignOf<ObjCMessageExpr>::Alignment);
3336}
3337
3338void ObjCMessageExpr::getSelectorLocs(
3339                               SmallVectorImpl<SourceLocation> &SelLocs) const {
3340  for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
3341    SelLocs.push_back(getSelectorLoc(i));
3342}
3343
3344SourceRange ObjCMessageExpr::getReceiverRange() const {
3345  switch (getReceiverKind()) {
3346  case Instance:
3347    return getInstanceReceiver()->getSourceRange();
3348
3349  case Class:
3350    return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
3351
3352  case SuperInstance:
3353  case SuperClass:
3354    return getSuperLoc();
3355  }
3356
3357  llvm_unreachable("Invalid ReceiverKind!");
3358}
3359
3360Selector ObjCMessageExpr::getSelector() const {
3361  if (HasMethod)
3362    return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
3363                                                               ->getSelector();
3364  return Selector(SelectorOrMethod);
3365}
3366
3367ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
3368  switch (getReceiverKind()) {
3369  case Instance:
3370    if (const ObjCObjectPointerType *Ptr
3371          = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
3372      return Ptr->getInterfaceDecl();
3373    break;
3374
3375  case Class:
3376    if (const ObjCObjectType *Ty
3377          = getClassReceiver()->getAs<ObjCObjectType>())
3378      return Ty->getInterface();
3379    break;
3380
3381  case SuperInstance:
3382    if (const ObjCObjectPointerType *Ptr
3383          = getSuperType()->getAs<ObjCObjectPointerType>())
3384      return Ptr->getInterfaceDecl();
3385    break;
3386
3387  case SuperClass:
3388    if (const ObjCObjectType *Iface
3389          = getSuperType()->getAs<ObjCObjectType>())
3390      return Iface->getInterface();
3391    break;
3392  }
3393
3394  return 0;
3395}
3396
3397StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
3398  switch (getBridgeKind()) {
3399  case OBC_Bridge:
3400    return "__bridge";
3401  case OBC_BridgeTransfer:
3402    return "__bridge_transfer";
3403  case OBC_BridgeRetained:
3404    return "__bridge_retained";
3405  }
3406
3407  llvm_unreachable("Invalid BridgeKind!");
3408}
3409
3410bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
3411  return getCond()->EvaluateKnownConstInt(C) != 0;
3412}
3413
3414ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, ArrayRef<Expr*> args,
3415                                     QualType Type, SourceLocation BLoc,
3416                                     SourceLocation RP)
3417   : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3418          Type->isDependentType(), Type->isDependentType(),
3419          Type->isInstantiationDependentType(),
3420          Type->containsUnexpandedParameterPack()),
3421     BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3422{
3423  SubExprs = new (C) Stmt*[args.size()];
3424  for (unsigned i = 0; i != args.size(); i++) {
3425    if (args[i]->isTypeDependent())
3426      ExprBits.TypeDependent = true;
3427    if (args[i]->isValueDependent())
3428      ExprBits.ValueDependent = true;
3429    if (args[i]->isInstantiationDependent())
3430      ExprBits.InstantiationDependent = true;
3431    if (args[i]->containsUnexpandedParameterPack())
3432      ExprBits.ContainsUnexpandedParameterPack = true;
3433
3434    SubExprs[i] = args[i];
3435  }
3436}
3437
3438void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
3439                                 unsigned NumExprs) {
3440  if (SubExprs) C.Deallocate(SubExprs);
3441
3442  SubExprs = new (C) Stmt* [NumExprs];
3443  this->NumExprs = NumExprs;
3444  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
3445}
3446
3447GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3448                               SourceLocation GenericLoc, Expr *ControllingExpr,
3449                               ArrayRef<TypeSourceInfo*> AssocTypes,
3450                               ArrayRef<Expr*> AssocExprs,
3451                               SourceLocation DefaultLoc,
3452                               SourceLocation RParenLoc,
3453                               bool ContainsUnexpandedParameterPack,
3454                               unsigned ResultIndex)
3455  : Expr(GenericSelectionExprClass,
3456         AssocExprs[ResultIndex]->getType(),
3457         AssocExprs[ResultIndex]->getValueKind(),
3458         AssocExprs[ResultIndex]->getObjectKind(),
3459         AssocExprs[ResultIndex]->isTypeDependent(),
3460         AssocExprs[ResultIndex]->isValueDependent(),
3461         AssocExprs[ResultIndex]->isInstantiationDependent(),
3462         ContainsUnexpandedParameterPack),
3463    AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3464    SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3465    NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
3466    GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3467  SubExprs[CONTROLLING] = ControllingExpr;
3468  assert(AssocTypes.size() == AssocExprs.size());
3469  std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3470  std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3471}
3472
3473GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3474                               SourceLocation GenericLoc, Expr *ControllingExpr,
3475                               ArrayRef<TypeSourceInfo*> AssocTypes,
3476                               ArrayRef<Expr*> AssocExprs,
3477                               SourceLocation DefaultLoc,
3478                               SourceLocation RParenLoc,
3479                               bool ContainsUnexpandedParameterPack)
3480  : Expr(GenericSelectionExprClass,
3481         Context.DependentTy,
3482         VK_RValue,
3483         OK_Ordinary,
3484         /*isTypeDependent=*/true,
3485         /*isValueDependent=*/true,
3486         /*isInstantiationDependent=*/true,
3487         ContainsUnexpandedParameterPack),
3488    AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3489    SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3490    NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
3491    DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3492  SubExprs[CONTROLLING] = ControllingExpr;
3493  assert(AssocTypes.size() == AssocExprs.size());
3494  std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3495  std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3496}
3497
3498//===----------------------------------------------------------------------===//
3499//  DesignatedInitExpr
3500//===----------------------------------------------------------------------===//
3501
3502IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3503  assert(Kind == FieldDesignator && "Only valid on a field designator");
3504  if (Field.NameOrField & 0x01)
3505    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3506  else
3507    return getField()->getIdentifier();
3508}
3509
3510DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
3511                                       unsigned NumDesignators,
3512                                       const Designator *Designators,
3513                                       SourceLocation EqualOrColonLoc,
3514                                       bool GNUSyntax,
3515                                       ArrayRef<Expr*> IndexExprs,
3516                                       Expr *Init)
3517  : Expr(DesignatedInitExprClass, Ty,
3518         Init->getValueKind(), Init->getObjectKind(),
3519         Init->isTypeDependent(), Init->isValueDependent(),
3520         Init->isInstantiationDependent(),
3521         Init->containsUnexpandedParameterPack()),
3522    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3523    NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
3524  this->Designators = new (C) Designator[NumDesignators];
3525
3526  // Record the initializer itself.
3527  child_range Child = children();
3528  *Child++ = Init;
3529
3530  // Copy the designators and their subexpressions, computing
3531  // value-dependence along the way.
3532  unsigned IndexIdx = 0;
3533  for (unsigned I = 0; I != NumDesignators; ++I) {
3534    this->Designators[I] = Designators[I];
3535
3536    if (this->Designators[I].isArrayDesignator()) {
3537      // Compute type- and value-dependence.
3538      Expr *Index = IndexExprs[IndexIdx];
3539      if (Index->isTypeDependent() || Index->isValueDependent())
3540        ExprBits.ValueDependent = true;
3541      if (Index->isInstantiationDependent())
3542        ExprBits.InstantiationDependent = true;
3543      // Propagate unexpanded parameter packs.
3544      if (Index->containsUnexpandedParameterPack())
3545        ExprBits.ContainsUnexpandedParameterPack = true;
3546
3547      // Copy the index expressions into permanent storage.
3548      *Child++ = IndexExprs[IndexIdx++];
3549    } else if (this->Designators[I].isArrayRangeDesignator()) {
3550      // Compute type- and value-dependence.
3551      Expr *Start = IndexExprs[IndexIdx];
3552      Expr *End = IndexExprs[IndexIdx + 1];
3553      if (Start->isTypeDependent() || Start->isValueDependent() ||
3554          End->isTypeDependent() || End->isValueDependent()) {
3555        ExprBits.ValueDependent = true;
3556        ExprBits.InstantiationDependent = true;
3557      } else if (Start->isInstantiationDependent() ||
3558                 End->isInstantiationDependent()) {
3559        ExprBits.InstantiationDependent = true;
3560      }
3561
3562      // Propagate unexpanded parameter packs.
3563      if (Start->containsUnexpandedParameterPack() ||
3564          End->containsUnexpandedParameterPack())
3565        ExprBits.ContainsUnexpandedParameterPack = true;
3566
3567      // Copy the start/end expressions into permanent storage.
3568      *Child++ = IndexExprs[IndexIdx++];
3569      *Child++ = IndexExprs[IndexIdx++];
3570    }
3571  }
3572
3573  assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
3574}
3575
3576DesignatedInitExpr *
3577DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
3578                           unsigned NumDesignators,
3579                           ArrayRef<Expr*> IndexExprs,
3580                           SourceLocation ColonOrEqualLoc,
3581                           bool UsesColonSyntax, Expr *Init) {
3582  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3583                         sizeof(Stmt *) * (IndexExprs.size() + 1), 8);
3584  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3585                                      ColonOrEqualLoc, UsesColonSyntax,
3586                                      IndexExprs, Init);
3587}
3588
3589DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
3590                                                    unsigned NumIndexExprs) {
3591  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3592                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3593  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3594}
3595
3596void DesignatedInitExpr::setDesignators(ASTContext &C,
3597                                        const Designator *Desigs,
3598                                        unsigned NumDesigs) {
3599  Designators = new (C) Designator[NumDesigs];
3600  NumDesignators = NumDesigs;
3601  for (unsigned I = 0; I != NumDesigs; ++I)
3602    Designators[I] = Desigs[I];
3603}
3604
3605SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3606  DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3607  if (size() == 1)
3608    return DIE->getDesignator(0)->getSourceRange();
3609  return SourceRange(DIE->getDesignator(0)->getStartLocation(),
3610                     DIE->getDesignator(size()-1)->getEndLocation());
3611}
3612
3613SourceRange DesignatedInitExpr::getSourceRange() const {
3614  SourceLocation StartLoc;
3615  Designator &First =
3616    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3617  if (First.isFieldDesignator()) {
3618    if (GNUSyntax)
3619      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3620    else
3621      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3622  } else
3623    StartLoc =
3624      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3625  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
3626}
3627
3628Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
3629  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3630  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3631  Ptr += sizeof(DesignatedInitExpr);
3632  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3633  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3634}
3635
3636Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
3637  assert(D.Kind == Designator::ArrayRangeDesignator &&
3638         "Requires array range designator");
3639  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3640  Ptr += sizeof(DesignatedInitExpr);
3641  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3642  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3643}
3644
3645Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
3646  assert(D.Kind == Designator::ArrayRangeDesignator &&
3647         "Requires array range designator");
3648  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3649  Ptr += sizeof(DesignatedInitExpr);
3650  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3651  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3652}
3653
3654/// \brief Replaces the designator at index @p Idx with the series
3655/// of designators in [First, Last).
3656void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
3657                                          const Designator *First,
3658                                          const Designator *Last) {
3659  unsigned NumNewDesignators = Last - First;
3660  if (NumNewDesignators == 0) {
3661    std::copy_backward(Designators + Idx + 1,
3662                       Designators + NumDesignators,
3663                       Designators + Idx);
3664    --NumNewDesignators;
3665    return;
3666  } else if (NumNewDesignators == 1) {
3667    Designators[Idx] = *First;
3668    return;
3669  }
3670
3671  Designator *NewDesignators
3672    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3673  std::copy(Designators, Designators + Idx, NewDesignators);
3674  std::copy(First, Last, NewDesignators + Idx);
3675  std::copy(Designators + Idx + 1, Designators + NumDesignators,
3676            NewDesignators + Idx + NumNewDesignators);
3677  Designators = NewDesignators;
3678  NumDesignators = NumDesignators - 1 + NumNewDesignators;
3679}
3680
3681ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
3682                             ArrayRef<Expr*> exprs,
3683                             SourceLocation rparenloc)
3684  : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3685         false, false, false, false),
3686    NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3687  Exprs = new (C) Stmt*[exprs.size()];
3688  for (unsigned i = 0; i != exprs.size(); ++i) {
3689    if (exprs[i]->isTypeDependent())
3690      ExprBits.TypeDependent = true;
3691    if (exprs[i]->isValueDependent())
3692      ExprBits.ValueDependent = true;
3693    if (exprs[i]->isInstantiationDependent())
3694      ExprBits.InstantiationDependent = true;
3695    if (exprs[i]->containsUnexpandedParameterPack())
3696      ExprBits.ContainsUnexpandedParameterPack = true;
3697
3698    Exprs[i] = exprs[i];
3699  }
3700}
3701
3702const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3703  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3704    e = ewc->getSubExpr();
3705  if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3706    e = m->GetTemporaryExpr();
3707  e = cast<CXXConstructExpr>(e)->getArg(0);
3708  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3709    e = ice->getSubExpr();
3710  return cast<OpaqueValueExpr>(e);
3711}
3712
3713PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &Context, EmptyShell sh,
3714                                           unsigned numSemanticExprs) {
3715  void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
3716                                    (1 + numSemanticExprs) * sizeof(Expr*),
3717                                  llvm::alignOf<PseudoObjectExpr>());
3718  return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3719}
3720
3721PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3722  : Expr(PseudoObjectExprClass, shell) {
3723  PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3724}
3725
3726PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &C, Expr *syntax,
3727                                           ArrayRef<Expr*> semantics,
3728                                           unsigned resultIndex) {
3729  assert(syntax && "no syntactic expression!");
3730  assert(semantics.size() && "no semantic expressions!");
3731
3732  QualType type;
3733  ExprValueKind VK;
3734  if (resultIndex == NoResult) {
3735    type = C.VoidTy;
3736    VK = VK_RValue;
3737  } else {
3738    assert(resultIndex < semantics.size());
3739    type = semantics[resultIndex]->getType();
3740    VK = semantics[resultIndex]->getValueKind();
3741    assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3742  }
3743
3744  void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
3745                              (1 + semantics.size()) * sizeof(Expr*),
3746                            llvm::alignOf<PseudoObjectExpr>());
3747  return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3748                                      resultIndex);
3749}
3750
3751PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3752                                   Expr *syntax, ArrayRef<Expr*> semantics,
3753                                   unsigned resultIndex)
3754  : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3755         /*filled in at end of ctor*/ false, false, false, false) {
3756  PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3757  PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3758
3759  for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3760    Expr *E = (i == 0 ? syntax : semantics[i-1]);
3761    getSubExprsBuffer()[i] = E;
3762
3763    if (E->isTypeDependent())
3764      ExprBits.TypeDependent = true;
3765    if (E->isValueDependent())
3766      ExprBits.ValueDependent = true;
3767    if (E->isInstantiationDependent())
3768      ExprBits.InstantiationDependent = true;
3769    if (E->containsUnexpandedParameterPack())
3770      ExprBits.ContainsUnexpandedParameterPack = true;
3771
3772    if (isa<OpaqueValueExpr>(E))
3773      assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 &&
3774             "opaque-value semantic expressions for pseudo-object "
3775             "operations must have sources");
3776  }
3777}
3778
3779//===----------------------------------------------------------------------===//
3780//  ExprIterator.
3781//===----------------------------------------------------------------------===//
3782
3783Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
3784Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
3785Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
3786const Expr* ConstExprIterator::operator[](size_t idx) const {
3787  return cast<Expr>(I[idx]);
3788}
3789const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
3790const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
3791
3792//===----------------------------------------------------------------------===//
3793//  Child Iterators for iterating over subexpressions/substatements
3794//===----------------------------------------------------------------------===//
3795
3796// UnaryExprOrTypeTraitExpr
3797Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
3798  // If this is of a type and the type is a VLA type (and not a typedef), the
3799  // size expression of the VLA needs to be treated as an executable expression.
3800  // Why isn't this weirdness documented better in StmtIterator?
3801  if (isArgumentType()) {
3802    if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
3803                                   getArgumentType().getTypePtr()))
3804      return child_range(child_iterator(T), child_iterator());
3805    return child_range();
3806  }
3807  return child_range(&Argument.Ex, &Argument.Ex + 1);
3808}
3809
3810// ObjCMessageExpr
3811Stmt::child_range ObjCMessageExpr::children() {
3812  Stmt **begin;
3813  if (getReceiverKind() == Instance)
3814    begin = reinterpret_cast<Stmt **>(this + 1);
3815  else
3816    begin = reinterpret_cast<Stmt **>(getArgs());
3817  return child_range(begin,
3818                     reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
3819}
3820
3821ObjCArrayLiteral::ObjCArrayLiteral(llvm::ArrayRef<Expr *> Elements,
3822                                   QualType T, ObjCMethodDecl *Method,
3823                                   SourceRange SR)
3824  : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
3825         false, false, false, false),
3826    NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
3827{
3828  Expr **SaveElements = getElements();
3829  for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
3830    if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
3831      ExprBits.ValueDependent = true;
3832    if (Elements[I]->isInstantiationDependent())
3833      ExprBits.InstantiationDependent = true;
3834    if (Elements[I]->containsUnexpandedParameterPack())
3835      ExprBits.ContainsUnexpandedParameterPack = true;
3836
3837    SaveElements[I] = Elements[I];
3838  }
3839}
3840
3841ObjCArrayLiteral *ObjCArrayLiteral::Create(ASTContext &C,
3842                                           llvm::ArrayRef<Expr *> Elements,
3843                                           QualType T, ObjCMethodDecl * Method,
3844                                           SourceRange SR) {
3845  void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3846                         + Elements.size() * sizeof(Expr *));
3847  return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
3848}
3849
3850ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(ASTContext &C,
3851                                                unsigned NumElements) {
3852
3853  void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3854                         + NumElements * sizeof(Expr *));
3855  return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
3856}
3857
3858ObjCDictionaryLiteral::ObjCDictionaryLiteral(
3859                                             ArrayRef<ObjCDictionaryElement> VK,
3860                                             bool HasPackExpansions,
3861                                             QualType T, ObjCMethodDecl *method,
3862                                             SourceRange SR)
3863  : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
3864         false, false),
3865    NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
3866    DictWithObjectsMethod(method)
3867{
3868  KeyValuePair *KeyValues = getKeyValues();
3869  ExpansionData *Expansions = getExpansionData();
3870  for (unsigned I = 0; I < NumElements; I++) {
3871    if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
3872        VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
3873      ExprBits.ValueDependent = true;
3874    if (VK[I].Key->isInstantiationDependent() ||
3875        VK[I].Value->isInstantiationDependent())
3876      ExprBits.InstantiationDependent = true;
3877    if (VK[I].EllipsisLoc.isInvalid() &&
3878        (VK[I].Key->containsUnexpandedParameterPack() ||
3879         VK[I].Value->containsUnexpandedParameterPack()))
3880      ExprBits.ContainsUnexpandedParameterPack = true;
3881
3882    KeyValues[I].Key = VK[I].Key;
3883    KeyValues[I].Value = VK[I].Value;
3884    if (Expansions) {
3885      Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
3886      if (VK[I].NumExpansions)
3887        Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
3888      else
3889        Expansions[I].NumExpansionsPlusOne = 0;
3890    }
3891  }
3892}
3893
3894ObjCDictionaryLiteral *
3895ObjCDictionaryLiteral::Create(ASTContext &C,
3896                              ArrayRef<ObjCDictionaryElement> VK,
3897                              bool HasPackExpansions,
3898                              QualType T, ObjCMethodDecl *method,
3899                              SourceRange SR) {
3900  unsigned ExpansionsSize = 0;
3901  if (HasPackExpansions)
3902    ExpansionsSize = sizeof(ExpansionData) * VK.size();
3903
3904  void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
3905                         sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
3906  return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
3907}
3908
3909ObjCDictionaryLiteral *
3910ObjCDictionaryLiteral::CreateEmpty(ASTContext &C, unsigned NumElements,
3911                                   bool HasPackExpansions) {
3912  unsigned ExpansionsSize = 0;
3913  if (HasPackExpansions)
3914    ExpansionsSize = sizeof(ExpansionData) * NumElements;
3915  void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
3916                         sizeof(KeyValuePair) * NumElements + ExpansionsSize);
3917  return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
3918                                         HasPackExpansions);
3919}
3920
3921ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(ASTContext &C,
3922                                                   Expr *base,
3923                                                   Expr *key, QualType T,
3924                                                   ObjCMethodDecl *getMethod,
3925                                                   ObjCMethodDecl *setMethod,
3926                                                   SourceLocation RB) {
3927  void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
3928  return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
3929                                        OK_ObjCSubscript,
3930                                        getMethod, setMethod, RB);
3931}
3932
3933AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
3934                       QualType t, AtomicOp op, SourceLocation RP)
3935  : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
3936         false, false, false, false),
3937    NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
3938{
3939  assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
3940  for (unsigned i = 0; i != args.size(); i++) {
3941    if (args[i]->isTypeDependent())
3942      ExprBits.TypeDependent = true;
3943    if (args[i]->isValueDependent())
3944      ExprBits.ValueDependent = true;
3945    if (args[i]->isInstantiationDependent())
3946      ExprBits.InstantiationDependent = true;
3947    if (args[i]->containsUnexpandedParameterPack())
3948      ExprBits.ContainsUnexpandedParameterPack = true;
3949
3950    SubExprs[i] = args[i];
3951  }
3952}
3953
3954unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
3955  switch (Op) {
3956  case AO__c11_atomic_init:
3957  case AO__c11_atomic_load:
3958  case AO__atomic_load_n:
3959    return 2;
3960
3961  case AO__c11_atomic_store:
3962  case AO__c11_atomic_exchange:
3963  case AO__atomic_load:
3964  case AO__atomic_store:
3965  case AO__atomic_store_n:
3966  case AO__atomic_exchange_n:
3967  case AO__c11_atomic_fetch_add:
3968  case AO__c11_atomic_fetch_sub:
3969  case AO__c11_atomic_fetch_and:
3970  case AO__c11_atomic_fetch_or:
3971  case AO__c11_atomic_fetch_xor:
3972  case AO__atomic_fetch_add:
3973  case AO__atomic_fetch_sub:
3974  case AO__atomic_fetch_and:
3975  case AO__atomic_fetch_or:
3976  case AO__atomic_fetch_xor:
3977  case AO__atomic_fetch_nand:
3978  case AO__atomic_add_fetch:
3979  case AO__atomic_sub_fetch:
3980  case AO__atomic_and_fetch:
3981  case AO__atomic_or_fetch:
3982  case AO__atomic_xor_fetch:
3983  case AO__atomic_nand_fetch:
3984    return 3;
3985
3986  case AO__atomic_exchange:
3987    return 4;
3988
3989  case AO__c11_atomic_compare_exchange_strong:
3990  case AO__c11_atomic_compare_exchange_weak:
3991    return 5;
3992
3993  case AO__atomic_compare_exchange:
3994  case AO__atomic_compare_exchange_n:
3995    return 6;
3996  }
3997  llvm_unreachable("unknown atomic op");
3998}
3999