Expr.cpp revision cfa88f893915ceb8ae4ce2f17c46c24a4d67502f
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/APValue.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Basic/Builtins.h"
26#include "clang/Basic/SourceManager.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/Lex/Lexer.h"
29#include "clang/Lex/LiteralSupport.h"
30#include "clang/Sema/SemaDiagnostic.h"
31#include "llvm/Support/ErrorHandling.h"
32#include "llvm/Support/raw_ostream.h"
33#include <algorithm>
34#include <cstring>
35using namespace clang;
36
37const CXXRecordDecl *Expr::getBestDynamicClassType() const {
38  const Expr *E = ignoreParenBaseCasts();
39
40  QualType DerivedType = E->getType();
41  if (const PointerType *PTy = DerivedType->getAs<PointerType>())
42    DerivedType = PTy->getPointeeType();
43
44  if (DerivedType->isDependentType())
45    return NULL;
46
47  const RecordType *Ty = DerivedType->castAs<RecordType>();
48  Decl *D = Ty->getDecl();
49  return cast<CXXRecordDecl>(D);
50}
51
52const Expr *
53Expr::skipRValueSubobjectAdjustments(
54                     SmallVectorImpl<SubobjectAdjustment> &Adjustments) const  {
55  const Expr *E = this;
56  while (true) {
57    E = E->IgnoreParens();
58
59    if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
60      if ((CE->getCastKind() == CK_DerivedToBase ||
61           CE->getCastKind() == CK_UncheckedDerivedToBase) &&
62          E->getType()->isRecordType()) {
63        E = CE->getSubExpr();
64        CXXRecordDecl *Derived
65          = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
66        Adjustments.push_back(SubobjectAdjustment(CE, Derived));
67        continue;
68      }
69
70      if (CE->getCastKind() == CK_NoOp) {
71        E = CE->getSubExpr();
72        continue;
73      }
74    } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
75      if (!ME->isArrow() && ME->getBase()->isRValue()) {
76        assert(ME->getBase()->getType()->isRecordType());
77        if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
78          E = ME->getBase();
79          Adjustments.push_back(SubobjectAdjustment(Field));
80          continue;
81        }
82      }
83    } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
84      if (BO->isPtrMemOp()) {
85        assert(BO->getRHS()->isRValue());
86        E = BO->getLHS();
87        const MemberPointerType *MPT =
88          BO->getRHS()->getType()->getAs<MemberPointerType>();
89        Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
90      }
91    }
92
93    // Nothing changed.
94    break;
95  }
96  return E;
97}
98
99const Expr *
100Expr::findMaterializedTemporary(const MaterializeTemporaryExpr *&MTE) const {
101  const Expr *E = this;
102  // Look through single-element init lists that claim to be lvalues. They're
103  // just syntactic wrappers in this case.
104  if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E)) {
105    if (ILE->getNumInits() == 1 && ILE->isGLValue())
106      E = ILE->getInit(0);
107  }
108
109  // Look through expressions for materialized temporaries (for now).
110  if (const MaterializeTemporaryExpr *M
111      = dyn_cast<MaterializeTemporaryExpr>(E)) {
112    MTE = M;
113    E = M->GetTemporaryExpr();
114  }
115
116  if (const CXXDefaultArgExpr *DAE = dyn_cast<CXXDefaultArgExpr>(E))
117    E = DAE->getExpr();
118  return E;
119}
120
121/// isKnownToHaveBooleanValue - Return true if this is an integer expression
122/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
123/// but also int expressions which are produced by things like comparisons in
124/// C.
125bool Expr::isKnownToHaveBooleanValue() const {
126  const Expr *E = IgnoreParens();
127
128  // If this value has _Bool type, it is obvious 0/1.
129  if (E->getType()->isBooleanType()) return true;
130  // If this is a non-scalar-integer type, we don't care enough to try.
131  if (!E->getType()->isIntegralOrEnumerationType()) return false;
132
133  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
134    switch (UO->getOpcode()) {
135    case UO_Plus:
136      return UO->getSubExpr()->isKnownToHaveBooleanValue();
137    default:
138      return false;
139    }
140  }
141
142  // Only look through implicit casts.  If the user writes
143  // '(int) (a && b)' treat it as an arbitrary int.
144  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
145    return CE->getSubExpr()->isKnownToHaveBooleanValue();
146
147  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
148    switch (BO->getOpcode()) {
149    default: return false;
150    case BO_LT:   // Relational operators.
151    case BO_GT:
152    case BO_LE:
153    case BO_GE:
154    case BO_EQ:   // Equality operators.
155    case BO_NE:
156    case BO_LAnd: // AND operator.
157    case BO_LOr:  // Logical OR operator.
158      return true;
159
160    case BO_And:  // Bitwise AND operator.
161    case BO_Xor:  // Bitwise XOR operator.
162    case BO_Or:   // Bitwise OR operator.
163      // Handle things like (x==2)|(y==12).
164      return BO->getLHS()->isKnownToHaveBooleanValue() &&
165             BO->getRHS()->isKnownToHaveBooleanValue();
166
167    case BO_Comma:
168    case BO_Assign:
169      return BO->getRHS()->isKnownToHaveBooleanValue();
170    }
171  }
172
173  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
174    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
175           CO->getFalseExpr()->isKnownToHaveBooleanValue();
176
177  return false;
178}
179
180// Amusing macro metaprogramming hack: check whether a class provides
181// a more specific implementation of getExprLoc().
182//
183// See also Stmt.cpp:{getLocStart(),getLocEnd()}.
184namespace {
185  /// This implementation is used when a class provides a custom
186  /// implementation of getExprLoc.
187  template <class E, class T>
188  SourceLocation getExprLocImpl(const Expr *expr,
189                                SourceLocation (T::*v)() const) {
190    return static_cast<const E*>(expr)->getExprLoc();
191  }
192
193  /// This implementation is used when a class doesn't provide
194  /// a custom implementation of getExprLoc.  Overload resolution
195  /// should pick it over the implementation above because it's
196  /// more specialized according to function template partial ordering.
197  template <class E>
198  SourceLocation getExprLocImpl(const Expr *expr,
199                                SourceLocation (Expr::*v)() const) {
200    return static_cast<const E*>(expr)->getLocStart();
201  }
202}
203
204SourceLocation Expr::getExprLoc() const {
205  switch (getStmtClass()) {
206  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
207#define ABSTRACT_STMT(type)
208#define STMT(type, base) \
209  case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
210#define EXPR(type, base) \
211  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
212#include "clang/AST/StmtNodes.inc"
213  }
214  llvm_unreachable("unknown statement kind");
215}
216
217//===----------------------------------------------------------------------===//
218// Primary Expressions.
219//===----------------------------------------------------------------------===//
220
221/// \brief Compute the type-, value-, and instantiation-dependence of a
222/// declaration reference
223/// based on the declaration being referenced.
224static void computeDeclRefDependence(ASTContext &Ctx, NamedDecl *D, QualType T,
225                                     bool &TypeDependent,
226                                     bool &ValueDependent,
227                                     bool &InstantiationDependent) {
228  TypeDependent = false;
229  ValueDependent = false;
230  InstantiationDependent = false;
231
232  // (TD) C++ [temp.dep.expr]p3:
233  //   An id-expression is type-dependent if it contains:
234  //
235  // and
236  //
237  // (VD) C++ [temp.dep.constexpr]p2:
238  //  An identifier is value-dependent if it is:
239
240  //  (TD)  - an identifier that was declared with dependent type
241  //  (VD)  - a name declared with a dependent type,
242  if (T->isDependentType()) {
243    TypeDependent = true;
244    ValueDependent = true;
245    InstantiationDependent = true;
246    return;
247  } else if (T->isInstantiationDependentType()) {
248    InstantiationDependent = true;
249  }
250
251  //  (TD)  - a conversion-function-id that specifies a dependent type
252  if (D->getDeclName().getNameKind()
253                                == DeclarationName::CXXConversionFunctionName) {
254    QualType T = D->getDeclName().getCXXNameType();
255    if (T->isDependentType()) {
256      TypeDependent = true;
257      ValueDependent = true;
258      InstantiationDependent = true;
259      return;
260    }
261
262    if (T->isInstantiationDependentType())
263      InstantiationDependent = true;
264  }
265
266  //  (VD)  - the name of a non-type template parameter,
267  if (isa<NonTypeTemplateParmDecl>(D)) {
268    ValueDependent = true;
269    InstantiationDependent = true;
270    return;
271  }
272
273  //  (VD) - a constant with integral or enumeration type and is
274  //         initialized with an expression that is value-dependent.
275  //  (VD) - a constant with literal type and is initialized with an
276  //         expression that is value-dependent [C++11].
277  //  (VD) - FIXME: Missing from the standard:
278  //       -  an entity with reference type and is initialized with an
279  //          expression that is value-dependent [C++11]
280  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
281    if ((Ctx.getLangOpts().CPlusPlus11 ?
282           Var->getType()->isLiteralType() :
283           Var->getType()->isIntegralOrEnumerationType()) &&
284        (Var->getType().isConstQualified() ||
285         Var->getType()->isReferenceType())) {
286      if (const Expr *Init = Var->getAnyInitializer())
287        if (Init->isValueDependent()) {
288          ValueDependent = true;
289          InstantiationDependent = true;
290        }
291    }
292
293    // (VD) - FIXME: Missing from the standard:
294    //      -  a member function or a static data member of the current
295    //         instantiation
296    if (Var->isStaticDataMember() &&
297        Var->getDeclContext()->isDependentContext()) {
298      ValueDependent = true;
299      InstantiationDependent = true;
300    }
301
302    return;
303  }
304
305  // (VD) - FIXME: Missing from the standard:
306  //      -  a member function or a static data member of the current
307  //         instantiation
308  if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
309    ValueDependent = true;
310    InstantiationDependent = true;
311  }
312}
313
314void DeclRefExpr::computeDependence(ASTContext &Ctx) {
315  bool TypeDependent = false;
316  bool ValueDependent = false;
317  bool InstantiationDependent = false;
318  computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
319                           ValueDependent, InstantiationDependent);
320
321  // (TD) C++ [temp.dep.expr]p3:
322  //   An id-expression is type-dependent if it contains:
323  //
324  // and
325  //
326  // (VD) C++ [temp.dep.constexpr]p2:
327  //  An identifier is value-dependent if it is:
328  if (!TypeDependent && !ValueDependent &&
329      hasExplicitTemplateArgs() &&
330      TemplateSpecializationType::anyDependentTemplateArguments(
331                                                            getTemplateArgs(),
332                                                       getNumTemplateArgs(),
333                                                      InstantiationDependent)) {
334    TypeDependent = true;
335    ValueDependent = true;
336    InstantiationDependent = true;
337  }
338
339  ExprBits.TypeDependent = TypeDependent;
340  ExprBits.ValueDependent = ValueDependent;
341  ExprBits.InstantiationDependent = InstantiationDependent;
342
343  // Is the declaration a parameter pack?
344  if (getDecl()->isParameterPack())
345    ExprBits.ContainsUnexpandedParameterPack = true;
346}
347
348DeclRefExpr::DeclRefExpr(ASTContext &Ctx,
349                         NestedNameSpecifierLoc QualifierLoc,
350                         SourceLocation TemplateKWLoc,
351                         ValueDecl *D, bool RefersToEnclosingLocal,
352                         const DeclarationNameInfo &NameInfo,
353                         NamedDecl *FoundD,
354                         const TemplateArgumentListInfo *TemplateArgs,
355                         QualType T, ExprValueKind VK)
356  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
357    D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
358  DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
359  if (QualifierLoc)
360    getInternalQualifierLoc() = QualifierLoc;
361  DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
362  if (FoundD)
363    getInternalFoundDecl() = FoundD;
364  DeclRefExprBits.HasTemplateKWAndArgsInfo
365    = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
366  DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal;
367  if (TemplateArgs) {
368    bool Dependent = false;
369    bool InstantiationDependent = false;
370    bool ContainsUnexpandedParameterPack = false;
371    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
372                                               Dependent,
373                                               InstantiationDependent,
374                                               ContainsUnexpandedParameterPack);
375    if (InstantiationDependent)
376      setInstantiationDependent(true);
377  } else if (TemplateKWLoc.isValid()) {
378    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
379  }
380  DeclRefExprBits.HadMultipleCandidates = 0;
381
382  computeDependence(Ctx);
383}
384
385DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
386                                 NestedNameSpecifierLoc QualifierLoc,
387                                 SourceLocation TemplateKWLoc,
388                                 ValueDecl *D,
389                                 bool RefersToEnclosingLocal,
390                                 SourceLocation NameLoc,
391                                 QualType T,
392                                 ExprValueKind VK,
393                                 NamedDecl *FoundD,
394                                 const TemplateArgumentListInfo *TemplateArgs) {
395  return Create(Context, QualifierLoc, TemplateKWLoc, D,
396                RefersToEnclosingLocal,
397                DeclarationNameInfo(D->getDeclName(), NameLoc),
398                T, VK, FoundD, TemplateArgs);
399}
400
401DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
402                                 NestedNameSpecifierLoc QualifierLoc,
403                                 SourceLocation TemplateKWLoc,
404                                 ValueDecl *D,
405                                 bool RefersToEnclosingLocal,
406                                 const DeclarationNameInfo &NameInfo,
407                                 QualType T,
408                                 ExprValueKind VK,
409                                 NamedDecl *FoundD,
410                                 const TemplateArgumentListInfo *TemplateArgs) {
411  // Filter out cases where the found Decl is the same as the value refenenced.
412  if (D == FoundD)
413    FoundD = 0;
414
415  std::size_t Size = sizeof(DeclRefExpr);
416  if (QualifierLoc != 0)
417    Size += sizeof(NestedNameSpecifierLoc);
418  if (FoundD)
419    Size += sizeof(NamedDecl *);
420  if (TemplateArgs)
421    Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
422  else if (TemplateKWLoc.isValid())
423    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
424
425  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
426  return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
427                               RefersToEnclosingLocal,
428                               NameInfo, FoundD, TemplateArgs, T, VK);
429}
430
431DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
432                                      bool HasQualifier,
433                                      bool HasFoundDecl,
434                                      bool HasTemplateKWAndArgsInfo,
435                                      unsigned NumTemplateArgs) {
436  std::size_t Size = sizeof(DeclRefExpr);
437  if (HasQualifier)
438    Size += sizeof(NestedNameSpecifierLoc);
439  if (HasFoundDecl)
440    Size += sizeof(NamedDecl *);
441  if (HasTemplateKWAndArgsInfo)
442    Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
443
444  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
445  return new (Mem) DeclRefExpr(EmptyShell());
446}
447
448SourceLocation DeclRefExpr::getLocStart() const {
449  if (hasQualifier())
450    return getQualifierLoc().getBeginLoc();
451  return getNameInfo().getLocStart();
452}
453SourceLocation DeclRefExpr::getLocEnd() const {
454  if (hasExplicitTemplateArgs())
455    return getRAngleLoc();
456  return getNameInfo().getLocEnd();
457}
458
459// FIXME: Maybe this should use DeclPrinter with a special "print predefined
460// expr" policy instead.
461std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
462  ASTContext &Context = CurrentDecl->getASTContext();
463
464  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
465    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
466      return FD->getNameAsString();
467
468    SmallString<256> Name;
469    llvm::raw_svector_ostream Out(Name);
470
471    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
472      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
473        Out << "virtual ";
474      if (MD->isStatic())
475        Out << "static ";
476    }
477
478    PrintingPolicy Policy(Context.getLangOpts());
479    std::string Proto = FD->getQualifiedNameAsString(Policy);
480    llvm::raw_string_ostream POut(Proto);
481
482    const FunctionDecl *Decl = FD;
483    if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
484      Decl = Pattern;
485    const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
486    const FunctionProtoType *FT = 0;
487    if (FD->hasWrittenPrototype())
488      FT = dyn_cast<FunctionProtoType>(AFT);
489
490    POut << "(";
491    if (FT) {
492      for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
493        if (i) POut << ", ";
494        POut << Decl->getParamDecl(i)->getType().stream(Policy);
495      }
496
497      if (FT->isVariadic()) {
498        if (FD->getNumParams()) POut << ", ";
499        POut << "...";
500      }
501    }
502    POut << ")";
503
504    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
505      const FunctionType *FT = MD->getType()->castAs<FunctionType>();
506      if (FT->isConst())
507        POut << " const";
508      if (FT->isVolatile())
509        POut << " volatile";
510      RefQualifierKind Ref = MD->getRefQualifier();
511      if (Ref == RQ_LValue)
512        POut << " &";
513      else if (Ref == RQ_RValue)
514        POut << " &&";
515    }
516
517    typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
518    SpecsTy Specs;
519    const DeclContext *Ctx = FD->getDeclContext();
520    while (Ctx && isa<NamedDecl>(Ctx)) {
521      const ClassTemplateSpecializationDecl *Spec
522                               = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
523      if (Spec && !Spec->isExplicitSpecialization())
524        Specs.push_back(Spec);
525      Ctx = Ctx->getParent();
526    }
527
528    std::string TemplateParams;
529    llvm::raw_string_ostream TOut(TemplateParams);
530    for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
531         I != E; ++I) {
532      const TemplateParameterList *Params
533                  = (*I)->getSpecializedTemplate()->getTemplateParameters();
534      const TemplateArgumentList &Args = (*I)->getTemplateArgs();
535      assert(Params->size() == Args.size());
536      for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
537        StringRef Param = Params->getParam(i)->getName();
538        if (Param.empty()) continue;
539        TOut << Param << " = ";
540        Args.get(i).print(Policy, TOut);
541        TOut << ", ";
542      }
543    }
544
545    FunctionTemplateSpecializationInfo *FSI
546                                          = FD->getTemplateSpecializationInfo();
547    if (FSI && !FSI->isExplicitSpecialization()) {
548      const TemplateParameterList* Params
549                                  = FSI->getTemplate()->getTemplateParameters();
550      const TemplateArgumentList* Args = FSI->TemplateArguments;
551      assert(Params->size() == Args->size());
552      for (unsigned i = 0, e = Params->size(); i != e; ++i) {
553        StringRef Param = Params->getParam(i)->getName();
554        if (Param.empty()) continue;
555        TOut << Param << " = ";
556        Args->get(i).print(Policy, TOut);
557        TOut << ", ";
558      }
559    }
560
561    TOut.flush();
562    if (!TemplateParams.empty()) {
563      // remove the trailing comma and space
564      TemplateParams.resize(TemplateParams.size() - 2);
565      POut << " [" << TemplateParams << "]";
566    }
567
568    POut.flush();
569
570    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
571      AFT->getResultType().getAsStringInternal(Proto, Policy);
572
573    Out << Proto;
574
575    Out.flush();
576    return Name.str().str();
577  }
578  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
579    SmallString<256> Name;
580    llvm::raw_svector_ostream Out(Name);
581    Out << (MD->isInstanceMethod() ? '-' : '+');
582    Out << '[';
583
584    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
585    // a null check to avoid a crash.
586    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
587      Out << *ID;
588
589    if (const ObjCCategoryImplDecl *CID =
590        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
591      Out << '(' << *CID << ')';
592
593    Out <<  ' ';
594    Out << MD->getSelector().getAsString();
595    Out <<  ']';
596
597    Out.flush();
598    return Name.str().str();
599  }
600  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
601    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
602    return "top level";
603  }
604  return "";
605}
606
607void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
608  if (hasAllocation())
609    C.Deallocate(pVal);
610
611  BitWidth = Val.getBitWidth();
612  unsigned NumWords = Val.getNumWords();
613  const uint64_t* Words = Val.getRawData();
614  if (NumWords > 1) {
615    pVal = new (C) uint64_t[NumWords];
616    std::copy(Words, Words + NumWords, pVal);
617  } else if (NumWords == 1)
618    VAL = Words[0];
619  else
620    VAL = 0;
621}
622
623IntegerLiteral::IntegerLiteral(ASTContext &C, const llvm::APInt &V,
624                               QualType type, SourceLocation l)
625  : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
626         false, false),
627    Loc(l) {
628  assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
629  assert(V.getBitWidth() == C.getIntWidth(type) &&
630         "Integer type is not the correct size for constant.");
631  setValue(C, V);
632}
633
634IntegerLiteral *
635IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
636                       QualType type, SourceLocation l) {
637  return new (C) IntegerLiteral(C, V, type, l);
638}
639
640IntegerLiteral *
641IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
642  return new (C) IntegerLiteral(Empty);
643}
644
645FloatingLiteral::FloatingLiteral(ASTContext &C, const llvm::APFloat &V,
646                                 bool isexact, QualType Type, SourceLocation L)
647  : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
648         false, false), Loc(L) {
649  FloatingLiteralBits.IsIEEE =
650    &C.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::IEEEquad;
651  FloatingLiteralBits.IsExact = isexact;
652  setValue(C, V);
653}
654
655FloatingLiteral::FloatingLiteral(ASTContext &C, EmptyShell Empty)
656  : Expr(FloatingLiteralClass, Empty) {
657  FloatingLiteralBits.IsIEEE =
658    &C.getTargetInfo().getLongDoubleFormat() == &llvm::APFloat::IEEEquad;
659  FloatingLiteralBits.IsExact = false;
660}
661
662FloatingLiteral *
663FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
664                        bool isexact, QualType Type, SourceLocation L) {
665  return new (C) FloatingLiteral(C, V, isexact, Type, L);
666}
667
668FloatingLiteral *
669FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
670  return new (C) FloatingLiteral(C, Empty);
671}
672
673/// getValueAsApproximateDouble - This returns the value as an inaccurate
674/// double.  Note that this may cause loss of precision, but is useful for
675/// debugging dumps, etc.
676double FloatingLiteral::getValueAsApproximateDouble() const {
677  llvm::APFloat V = getValue();
678  bool ignored;
679  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
680            &ignored);
681  return V.convertToDouble();
682}
683
684int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
685  int CharByteWidth = 0;
686  switch(k) {
687    case Ascii:
688    case UTF8:
689      CharByteWidth = target.getCharWidth();
690      break;
691    case Wide:
692      CharByteWidth = target.getWCharWidth();
693      break;
694    case UTF16:
695      CharByteWidth = target.getChar16Width();
696      break;
697    case UTF32:
698      CharByteWidth = target.getChar32Width();
699      break;
700  }
701  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
702  CharByteWidth /= 8;
703  assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
704         && "character byte widths supported are 1, 2, and 4 only");
705  return CharByteWidth;
706}
707
708StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str,
709                                     StringKind Kind, bool Pascal, QualType Ty,
710                                     const SourceLocation *Loc,
711                                     unsigned NumStrs) {
712  // Allocate enough space for the StringLiteral plus an array of locations for
713  // any concatenated string tokens.
714  void *Mem = C.Allocate(sizeof(StringLiteral)+
715                         sizeof(SourceLocation)*(NumStrs-1),
716                         llvm::alignOf<StringLiteral>());
717  StringLiteral *SL = new (Mem) StringLiteral(Ty);
718
719  // OPTIMIZE: could allocate this appended to the StringLiteral.
720  SL->setString(C,Str,Kind,Pascal);
721
722  SL->TokLocs[0] = Loc[0];
723  SL->NumConcatenated = NumStrs;
724
725  if (NumStrs != 1)
726    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
727  return SL;
728}
729
730StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
731  void *Mem = C.Allocate(sizeof(StringLiteral)+
732                         sizeof(SourceLocation)*(NumStrs-1),
733                         llvm::alignOf<StringLiteral>());
734  StringLiteral *SL = new (Mem) StringLiteral(QualType());
735  SL->CharByteWidth = 0;
736  SL->Length = 0;
737  SL->NumConcatenated = NumStrs;
738  return SL;
739}
740
741void StringLiteral::outputString(raw_ostream &OS) {
742  switch (getKind()) {
743  case Ascii: break; // no prefix.
744  case Wide:  OS << 'L'; break;
745  case UTF8:  OS << "u8"; break;
746  case UTF16: OS << 'u'; break;
747  case UTF32: OS << 'U'; break;
748  }
749  OS << '"';
750  static const char Hex[] = "0123456789ABCDEF";
751
752  unsigned LastSlashX = getLength();
753  for (unsigned I = 0, N = getLength(); I != N; ++I) {
754    switch (uint32_t Char = getCodeUnit(I)) {
755    default:
756      // FIXME: Convert UTF-8 back to codepoints before rendering.
757
758      // Convert UTF-16 surrogate pairs back to codepoints before rendering.
759      // Leave invalid surrogates alone; we'll use \x for those.
760      if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
761          Char <= 0xdbff) {
762        uint32_t Trail = getCodeUnit(I + 1);
763        if (Trail >= 0xdc00 && Trail <= 0xdfff) {
764          Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
765          ++I;
766        }
767      }
768
769      if (Char > 0xff) {
770        // If this is a wide string, output characters over 0xff using \x
771        // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
772        // codepoint: use \x escapes for invalid codepoints.
773        if (getKind() == Wide ||
774            (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
775          // FIXME: Is this the best way to print wchar_t?
776          OS << "\\x";
777          int Shift = 28;
778          while ((Char >> Shift) == 0)
779            Shift -= 4;
780          for (/**/; Shift >= 0; Shift -= 4)
781            OS << Hex[(Char >> Shift) & 15];
782          LastSlashX = I;
783          break;
784        }
785
786        if (Char > 0xffff)
787          OS << "\\U00"
788             << Hex[(Char >> 20) & 15]
789             << Hex[(Char >> 16) & 15];
790        else
791          OS << "\\u";
792        OS << Hex[(Char >> 12) & 15]
793           << Hex[(Char >>  8) & 15]
794           << Hex[(Char >>  4) & 15]
795           << Hex[(Char >>  0) & 15];
796        break;
797      }
798
799      // If we used \x... for the previous character, and this character is a
800      // hexadecimal digit, prevent it being slurped as part of the \x.
801      if (LastSlashX + 1 == I) {
802        switch (Char) {
803          case '0': case '1': case '2': case '3': case '4':
804          case '5': case '6': case '7': case '8': case '9':
805          case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
806          case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
807            OS << "\"\"";
808        }
809      }
810
811      assert(Char <= 0xff &&
812             "Characters above 0xff should already have been handled.");
813
814      if (isprint(Char))
815        OS << (char)Char;
816      else  // Output anything hard as an octal escape.
817        OS << '\\'
818           << (char)('0' + ((Char >> 6) & 7))
819           << (char)('0' + ((Char >> 3) & 7))
820           << (char)('0' + ((Char >> 0) & 7));
821      break;
822    // Handle some common non-printable cases to make dumps prettier.
823    case '\\': OS << "\\\\"; break;
824    case '"': OS << "\\\""; break;
825    case '\n': OS << "\\n"; break;
826    case '\t': OS << "\\t"; break;
827    case '\a': OS << "\\a"; break;
828    case '\b': OS << "\\b"; break;
829    }
830  }
831  OS << '"';
832}
833
834void StringLiteral::setString(ASTContext &C, StringRef Str,
835                              StringKind Kind, bool IsPascal) {
836  //FIXME: we assume that the string data comes from a target that uses the same
837  // code unit size and endianess for the type of string.
838  this->Kind = Kind;
839  this->IsPascal = IsPascal;
840
841  CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
842  assert((Str.size()%CharByteWidth == 0)
843         && "size of data must be multiple of CharByteWidth");
844  Length = Str.size()/CharByteWidth;
845
846  switch(CharByteWidth) {
847    case 1: {
848      char *AStrData = new (C) char[Length];
849      std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
850      StrData.asChar = AStrData;
851      break;
852    }
853    case 2: {
854      uint16_t *AStrData = new (C) uint16_t[Length];
855      std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
856      StrData.asUInt16 = AStrData;
857      break;
858    }
859    case 4: {
860      uint32_t *AStrData = new (C) uint32_t[Length];
861      std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
862      StrData.asUInt32 = AStrData;
863      break;
864    }
865    default:
866      assert(false && "unsupported CharByteWidth");
867  }
868}
869
870/// getLocationOfByte - Return a source location that points to the specified
871/// byte of this string literal.
872///
873/// Strings are amazingly complex.  They can be formed from multiple tokens and
874/// can have escape sequences in them in addition to the usual trigraph and
875/// escaped newline business.  This routine handles this complexity.
876///
877SourceLocation StringLiteral::
878getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
879                  const LangOptions &Features, const TargetInfo &Target) const {
880  assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
881         "Only narrow string literals are currently supported");
882
883  // Loop over all of the tokens in this string until we find the one that
884  // contains the byte we're looking for.
885  unsigned TokNo = 0;
886  while (1) {
887    assert(TokNo < getNumConcatenated() && "Invalid byte number!");
888    SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
889
890    // Get the spelling of the string so that we can get the data that makes up
891    // the string literal, not the identifier for the macro it is potentially
892    // expanded through.
893    SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
894
895    // Re-lex the token to get its length and original spelling.
896    std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
897    bool Invalid = false;
898    StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
899    if (Invalid)
900      return StrTokSpellingLoc;
901
902    const char *StrData = Buffer.data()+LocInfo.second;
903
904    // Create a lexer starting at the beginning of this token.
905    Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
906                   Buffer.begin(), StrData, Buffer.end());
907    Token TheTok;
908    TheLexer.LexFromRawLexer(TheTok);
909
910    // Use the StringLiteralParser to compute the length of the string in bytes.
911    StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
912    unsigned TokNumBytes = SLP.GetStringLength();
913
914    // If the byte is in this token, return the location of the byte.
915    if (ByteNo < TokNumBytes ||
916        (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
917      unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
918
919      // Now that we know the offset of the token in the spelling, use the
920      // preprocessor to get the offset in the original source.
921      return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
922    }
923
924    // Move to the next string token.
925    ++TokNo;
926    ByteNo -= TokNumBytes;
927  }
928}
929
930
931
932/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
933/// corresponds to, e.g. "sizeof" or "[pre]++".
934StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
935  switch (Op) {
936  case UO_PostInc: return "++";
937  case UO_PostDec: return "--";
938  case UO_PreInc:  return "++";
939  case UO_PreDec:  return "--";
940  case UO_AddrOf:  return "&";
941  case UO_Deref:   return "*";
942  case UO_Plus:    return "+";
943  case UO_Minus:   return "-";
944  case UO_Not:     return "~";
945  case UO_LNot:    return "!";
946  case UO_Real:    return "__real";
947  case UO_Imag:    return "__imag";
948  case UO_Extension: return "__extension__";
949  }
950  llvm_unreachable("Unknown unary operator");
951}
952
953UnaryOperatorKind
954UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
955  switch (OO) {
956  default: llvm_unreachable("No unary operator for overloaded function");
957  case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
958  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
959  case OO_Amp:        return UO_AddrOf;
960  case OO_Star:       return UO_Deref;
961  case OO_Plus:       return UO_Plus;
962  case OO_Minus:      return UO_Minus;
963  case OO_Tilde:      return UO_Not;
964  case OO_Exclaim:    return UO_LNot;
965  }
966}
967
968OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
969  switch (Opc) {
970  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
971  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
972  case UO_AddrOf: return OO_Amp;
973  case UO_Deref: return OO_Star;
974  case UO_Plus: return OO_Plus;
975  case UO_Minus: return OO_Minus;
976  case UO_Not: return OO_Tilde;
977  case UO_LNot: return OO_Exclaim;
978  default: return OO_None;
979  }
980}
981
982
983//===----------------------------------------------------------------------===//
984// Postfix Operators.
985//===----------------------------------------------------------------------===//
986
987CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
988                   ArrayRef<Expr*> args, QualType t, ExprValueKind VK,
989                   SourceLocation rparenloc)
990  : Expr(SC, t, VK, OK_Ordinary,
991         fn->isTypeDependent(),
992         fn->isValueDependent(),
993         fn->isInstantiationDependent(),
994         fn->containsUnexpandedParameterPack()),
995    NumArgs(args.size()) {
996
997  SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
998  SubExprs[FN] = fn;
999  for (unsigned i = 0; i != args.size(); ++i) {
1000    if (args[i]->isTypeDependent())
1001      ExprBits.TypeDependent = true;
1002    if (args[i]->isValueDependent())
1003      ExprBits.ValueDependent = true;
1004    if (args[i]->isInstantiationDependent())
1005      ExprBits.InstantiationDependent = true;
1006    if (args[i]->containsUnexpandedParameterPack())
1007      ExprBits.ContainsUnexpandedParameterPack = true;
1008
1009    SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
1010  }
1011
1012  CallExprBits.NumPreArgs = NumPreArgs;
1013  RParenLoc = rparenloc;
1014}
1015
1016CallExpr::CallExpr(ASTContext& C, Expr *fn, ArrayRef<Expr*> args,
1017                   QualType t, ExprValueKind VK, SourceLocation rparenloc)
1018  : Expr(CallExprClass, t, VK, OK_Ordinary,
1019         fn->isTypeDependent(),
1020         fn->isValueDependent(),
1021         fn->isInstantiationDependent(),
1022         fn->containsUnexpandedParameterPack()),
1023    NumArgs(args.size()) {
1024
1025  SubExprs = new (C) Stmt*[args.size()+PREARGS_START];
1026  SubExprs[FN] = fn;
1027  for (unsigned i = 0; i != args.size(); ++i) {
1028    if (args[i]->isTypeDependent())
1029      ExprBits.TypeDependent = true;
1030    if (args[i]->isValueDependent())
1031      ExprBits.ValueDependent = true;
1032    if (args[i]->isInstantiationDependent())
1033      ExprBits.InstantiationDependent = true;
1034    if (args[i]->containsUnexpandedParameterPack())
1035      ExprBits.ContainsUnexpandedParameterPack = true;
1036
1037    SubExprs[i+PREARGS_START] = args[i];
1038  }
1039
1040  CallExprBits.NumPreArgs = 0;
1041  RParenLoc = rparenloc;
1042}
1043
1044CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
1045  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
1046  // FIXME: Why do we allocate this?
1047  SubExprs = new (C) Stmt*[PREARGS_START];
1048  CallExprBits.NumPreArgs = 0;
1049}
1050
1051CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
1052                   EmptyShell Empty)
1053  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
1054  // FIXME: Why do we allocate this?
1055  SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
1056  CallExprBits.NumPreArgs = NumPreArgs;
1057}
1058
1059Decl *CallExpr::getCalleeDecl() {
1060  Expr *CEE = getCallee()->IgnoreParenImpCasts();
1061
1062  while (SubstNonTypeTemplateParmExpr *NTTP
1063                                = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1064    CEE = NTTP->getReplacement()->IgnoreParenCasts();
1065  }
1066
1067  // If we're calling a dereference, look at the pointer instead.
1068  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1069    if (BO->isPtrMemOp())
1070      CEE = BO->getRHS()->IgnoreParenCasts();
1071  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1072    if (UO->getOpcode() == UO_Deref)
1073      CEE = UO->getSubExpr()->IgnoreParenCasts();
1074  }
1075  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1076    return DRE->getDecl();
1077  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1078    return ME->getMemberDecl();
1079
1080  return 0;
1081}
1082
1083FunctionDecl *CallExpr::getDirectCallee() {
1084  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
1085}
1086
1087/// setNumArgs - This changes the number of arguments present in this call.
1088/// Any orphaned expressions are deleted by this, and any new operands are set
1089/// to null.
1090void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
1091  // No change, just return.
1092  if (NumArgs == getNumArgs()) return;
1093
1094  // If shrinking # arguments, just delete the extras and forgot them.
1095  if (NumArgs < getNumArgs()) {
1096    this->NumArgs = NumArgs;
1097    return;
1098  }
1099
1100  // Otherwise, we are growing the # arguments.  New an bigger argument array.
1101  unsigned NumPreArgs = getNumPreArgs();
1102  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
1103  // Copy over args.
1104  for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
1105    NewSubExprs[i] = SubExprs[i];
1106  // Null out new args.
1107  for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
1108       i != NumArgs+PREARGS_START+NumPreArgs; ++i)
1109    NewSubExprs[i] = 0;
1110
1111  if (SubExprs) C.Deallocate(SubExprs);
1112  SubExprs = NewSubExprs;
1113  this->NumArgs = NumArgs;
1114}
1115
1116/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
1117/// not, return 0.
1118unsigned CallExpr::isBuiltinCall() const {
1119  // All simple function calls (e.g. func()) are implicitly cast to pointer to
1120  // function. As a result, we try and obtain the DeclRefExpr from the
1121  // ImplicitCastExpr.
1122  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1123  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1124    return 0;
1125
1126  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1127  if (!DRE)
1128    return 0;
1129
1130  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1131  if (!FDecl)
1132    return 0;
1133
1134  if (!FDecl->getIdentifier())
1135    return 0;
1136
1137  return FDecl->getBuiltinID();
1138}
1139
1140QualType CallExpr::getCallReturnType() const {
1141  QualType CalleeType = getCallee()->getType();
1142  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
1143    CalleeType = FnTypePtr->getPointeeType();
1144  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
1145    CalleeType = BPT->getPointeeType();
1146  else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
1147    // This should never be overloaded and so should never return null.
1148    CalleeType = Expr::findBoundMemberType(getCallee());
1149
1150  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1151  return FnType->getResultType();
1152}
1153
1154SourceLocation CallExpr::getLocStart() const {
1155  if (isa<CXXOperatorCallExpr>(this))
1156    return cast<CXXOperatorCallExpr>(this)->getLocStart();
1157
1158  SourceLocation begin = getCallee()->getLocStart();
1159  if (begin.isInvalid() && getNumArgs() > 0)
1160    begin = getArg(0)->getLocStart();
1161  return begin;
1162}
1163SourceLocation CallExpr::getLocEnd() const {
1164  if (isa<CXXOperatorCallExpr>(this))
1165    return cast<CXXOperatorCallExpr>(this)->getLocEnd();
1166
1167  SourceLocation end = getRParenLoc();
1168  if (end.isInvalid() && getNumArgs() > 0)
1169    end = getArg(getNumArgs() - 1)->getLocEnd();
1170  return end;
1171}
1172
1173OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
1174                                   SourceLocation OperatorLoc,
1175                                   TypeSourceInfo *tsi,
1176                                   ArrayRef<OffsetOfNode> comps,
1177                                   ArrayRef<Expr*> exprs,
1178                                   SourceLocation RParenLoc) {
1179  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1180                         sizeof(OffsetOfNode) * comps.size() +
1181                         sizeof(Expr*) * exprs.size());
1182
1183  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1184                                RParenLoc);
1185}
1186
1187OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
1188                                        unsigned numComps, unsigned numExprs) {
1189  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1190                         sizeof(OffsetOfNode) * numComps +
1191                         sizeof(Expr*) * numExprs);
1192  return new (Mem) OffsetOfExpr(numComps, numExprs);
1193}
1194
1195OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
1196                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1197                           ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1198                           SourceLocation RParenLoc)
1199  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1200         /*TypeDependent=*/false,
1201         /*ValueDependent=*/tsi->getType()->isDependentType(),
1202         tsi->getType()->isInstantiationDependentType(),
1203         tsi->getType()->containsUnexpandedParameterPack()),
1204    OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1205    NumComps(comps.size()), NumExprs(exprs.size())
1206{
1207  for (unsigned i = 0; i != comps.size(); ++i) {
1208    setComponent(i, comps[i]);
1209  }
1210
1211  for (unsigned i = 0; i != exprs.size(); ++i) {
1212    if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1213      ExprBits.ValueDependent = true;
1214    if (exprs[i]->containsUnexpandedParameterPack())
1215      ExprBits.ContainsUnexpandedParameterPack = true;
1216
1217    setIndexExpr(i, exprs[i]);
1218  }
1219}
1220
1221IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
1222  assert(getKind() == Field || getKind() == Identifier);
1223  if (getKind() == Field)
1224    return getField()->getIdentifier();
1225
1226  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1227}
1228
1229MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
1230                               NestedNameSpecifierLoc QualifierLoc,
1231                               SourceLocation TemplateKWLoc,
1232                               ValueDecl *memberdecl,
1233                               DeclAccessPair founddecl,
1234                               DeclarationNameInfo nameinfo,
1235                               const TemplateArgumentListInfo *targs,
1236                               QualType ty,
1237                               ExprValueKind vk,
1238                               ExprObjectKind ok) {
1239  std::size_t Size = sizeof(MemberExpr);
1240
1241  bool hasQualOrFound = (QualifierLoc ||
1242                         founddecl.getDecl() != memberdecl ||
1243                         founddecl.getAccess() != memberdecl->getAccess());
1244  if (hasQualOrFound)
1245    Size += sizeof(MemberNameQualifier);
1246
1247  if (targs)
1248    Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
1249  else if (TemplateKWLoc.isValid())
1250    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
1251
1252  void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1253  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
1254                                       ty, vk, ok);
1255
1256  if (hasQualOrFound) {
1257    // FIXME: Wrong. We should be looking at the member declaration we found.
1258    if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1259      E->setValueDependent(true);
1260      E->setTypeDependent(true);
1261      E->setInstantiationDependent(true);
1262    }
1263    else if (QualifierLoc &&
1264             QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1265      E->setInstantiationDependent(true);
1266
1267    E->HasQualifierOrFoundDecl = true;
1268
1269    MemberNameQualifier *NQ = E->getMemberQualifier();
1270    NQ->QualifierLoc = QualifierLoc;
1271    NQ->FoundDecl = founddecl;
1272  }
1273
1274  E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1275
1276  if (targs) {
1277    bool Dependent = false;
1278    bool InstantiationDependent = false;
1279    bool ContainsUnexpandedParameterPack = false;
1280    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1281                                                  Dependent,
1282                                                  InstantiationDependent,
1283                                             ContainsUnexpandedParameterPack);
1284    if (InstantiationDependent)
1285      E->setInstantiationDependent(true);
1286  } else if (TemplateKWLoc.isValid()) {
1287    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1288  }
1289
1290  return E;
1291}
1292
1293SourceLocation MemberExpr::getLocStart() const {
1294  if (isImplicitAccess()) {
1295    if (hasQualifier())
1296      return getQualifierLoc().getBeginLoc();
1297    return MemberLoc;
1298  }
1299
1300  // FIXME: We don't want this to happen. Rather, we should be able to
1301  // detect all kinds of implicit accesses more cleanly.
1302  SourceLocation BaseStartLoc = getBase()->getLocStart();
1303  if (BaseStartLoc.isValid())
1304    return BaseStartLoc;
1305  return MemberLoc;
1306}
1307SourceLocation MemberExpr::getLocEnd() const {
1308  SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1309  if (hasExplicitTemplateArgs())
1310    EndLoc = getRAngleLoc();
1311  else if (EndLoc.isInvalid())
1312    EndLoc = getBase()->getLocEnd();
1313  return EndLoc;
1314}
1315
1316void CastExpr::CheckCastConsistency() const {
1317  switch (getCastKind()) {
1318  case CK_DerivedToBase:
1319  case CK_UncheckedDerivedToBase:
1320  case CK_DerivedToBaseMemberPointer:
1321  case CK_BaseToDerived:
1322  case CK_BaseToDerivedMemberPointer:
1323    assert(!path_empty() && "Cast kind should have a base path!");
1324    break;
1325
1326  case CK_CPointerToObjCPointerCast:
1327    assert(getType()->isObjCObjectPointerType());
1328    assert(getSubExpr()->getType()->isPointerType());
1329    goto CheckNoBasePath;
1330
1331  case CK_BlockPointerToObjCPointerCast:
1332    assert(getType()->isObjCObjectPointerType());
1333    assert(getSubExpr()->getType()->isBlockPointerType());
1334    goto CheckNoBasePath;
1335
1336  case CK_ReinterpretMemberPointer:
1337    assert(getType()->isMemberPointerType());
1338    assert(getSubExpr()->getType()->isMemberPointerType());
1339    goto CheckNoBasePath;
1340
1341  case CK_BitCast:
1342    // Arbitrary casts to C pointer types count as bitcasts.
1343    // Otherwise, we should only have block and ObjC pointer casts
1344    // here if they stay within the type kind.
1345    if (!getType()->isPointerType()) {
1346      assert(getType()->isObjCObjectPointerType() ==
1347             getSubExpr()->getType()->isObjCObjectPointerType());
1348      assert(getType()->isBlockPointerType() ==
1349             getSubExpr()->getType()->isBlockPointerType());
1350    }
1351    goto CheckNoBasePath;
1352
1353  case CK_AnyPointerToBlockPointerCast:
1354    assert(getType()->isBlockPointerType());
1355    assert(getSubExpr()->getType()->isAnyPointerType() &&
1356           !getSubExpr()->getType()->isBlockPointerType());
1357    goto CheckNoBasePath;
1358
1359  case CK_CopyAndAutoreleaseBlockObject:
1360    assert(getType()->isBlockPointerType());
1361    assert(getSubExpr()->getType()->isBlockPointerType());
1362    goto CheckNoBasePath;
1363
1364  case CK_FunctionToPointerDecay:
1365    assert(getType()->isPointerType());
1366    assert(getSubExpr()->getType()->isFunctionType());
1367    goto CheckNoBasePath;
1368
1369  // These should not have an inheritance path.
1370  case CK_Dynamic:
1371  case CK_ToUnion:
1372  case CK_ArrayToPointerDecay:
1373  case CK_NullToMemberPointer:
1374  case CK_NullToPointer:
1375  case CK_ConstructorConversion:
1376  case CK_IntegralToPointer:
1377  case CK_PointerToIntegral:
1378  case CK_ToVoid:
1379  case CK_VectorSplat:
1380  case CK_IntegralCast:
1381  case CK_IntegralToFloating:
1382  case CK_FloatingToIntegral:
1383  case CK_FloatingCast:
1384  case CK_ObjCObjectLValueCast:
1385  case CK_FloatingRealToComplex:
1386  case CK_FloatingComplexToReal:
1387  case CK_FloatingComplexCast:
1388  case CK_FloatingComplexToIntegralComplex:
1389  case CK_IntegralRealToComplex:
1390  case CK_IntegralComplexToReal:
1391  case CK_IntegralComplexCast:
1392  case CK_IntegralComplexToFloatingComplex:
1393  case CK_ARCProduceObject:
1394  case CK_ARCConsumeObject:
1395  case CK_ARCReclaimReturnedObject:
1396  case CK_ARCExtendBlockObject:
1397    assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1398    goto CheckNoBasePath;
1399
1400  case CK_Dependent:
1401  case CK_LValueToRValue:
1402  case CK_NoOp:
1403  case CK_AtomicToNonAtomic:
1404  case CK_NonAtomicToAtomic:
1405  case CK_PointerToBoolean:
1406  case CK_IntegralToBoolean:
1407  case CK_FloatingToBoolean:
1408  case CK_MemberPointerToBoolean:
1409  case CK_FloatingComplexToBoolean:
1410  case CK_IntegralComplexToBoolean:
1411  case CK_LValueBitCast:            // -> bool&
1412  case CK_UserDefinedConversion:    // operator bool()
1413  case CK_BuiltinFnToFnPtr:
1414  CheckNoBasePath:
1415    assert(path_empty() && "Cast kind should not have a base path!");
1416    break;
1417  }
1418}
1419
1420const char *CastExpr::getCastKindName() const {
1421  switch (getCastKind()) {
1422  case CK_Dependent:
1423    return "Dependent";
1424  case CK_BitCast:
1425    return "BitCast";
1426  case CK_LValueBitCast:
1427    return "LValueBitCast";
1428  case CK_LValueToRValue:
1429    return "LValueToRValue";
1430  case CK_NoOp:
1431    return "NoOp";
1432  case CK_BaseToDerived:
1433    return "BaseToDerived";
1434  case CK_DerivedToBase:
1435    return "DerivedToBase";
1436  case CK_UncheckedDerivedToBase:
1437    return "UncheckedDerivedToBase";
1438  case CK_Dynamic:
1439    return "Dynamic";
1440  case CK_ToUnion:
1441    return "ToUnion";
1442  case CK_ArrayToPointerDecay:
1443    return "ArrayToPointerDecay";
1444  case CK_FunctionToPointerDecay:
1445    return "FunctionToPointerDecay";
1446  case CK_NullToMemberPointer:
1447    return "NullToMemberPointer";
1448  case CK_NullToPointer:
1449    return "NullToPointer";
1450  case CK_BaseToDerivedMemberPointer:
1451    return "BaseToDerivedMemberPointer";
1452  case CK_DerivedToBaseMemberPointer:
1453    return "DerivedToBaseMemberPointer";
1454  case CK_ReinterpretMemberPointer:
1455    return "ReinterpretMemberPointer";
1456  case CK_UserDefinedConversion:
1457    return "UserDefinedConversion";
1458  case CK_ConstructorConversion:
1459    return "ConstructorConversion";
1460  case CK_IntegralToPointer:
1461    return "IntegralToPointer";
1462  case CK_PointerToIntegral:
1463    return "PointerToIntegral";
1464  case CK_PointerToBoolean:
1465    return "PointerToBoolean";
1466  case CK_ToVoid:
1467    return "ToVoid";
1468  case CK_VectorSplat:
1469    return "VectorSplat";
1470  case CK_IntegralCast:
1471    return "IntegralCast";
1472  case CK_IntegralToBoolean:
1473    return "IntegralToBoolean";
1474  case CK_IntegralToFloating:
1475    return "IntegralToFloating";
1476  case CK_FloatingToIntegral:
1477    return "FloatingToIntegral";
1478  case CK_FloatingCast:
1479    return "FloatingCast";
1480  case CK_FloatingToBoolean:
1481    return "FloatingToBoolean";
1482  case CK_MemberPointerToBoolean:
1483    return "MemberPointerToBoolean";
1484  case CK_CPointerToObjCPointerCast:
1485    return "CPointerToObjCPointerCast";
1486  case CK_BlockPointerToObjCPointerCast:
1487    return "BlockPointerToObjCPointerCast";
1488  case CK_AnyPointerToBlockPointerCast:
1489    return "AnyPointerToBlockPointerCast";
1490  case CK_ObjCObjectLValueCast:
1491    return "ObjCObjectLValueCast";
1492  case CK_FloatingRealToComplex:
1493    return "FloatingRealToComplex";
1494  case CK_FloatingComplexToReal:
1495    return "FloatingComplexToReal";
1496  case CK_FloatingComplexToBoolean:
1497    return "FloatingComplexToBoolean";
1498  case CK_FloatingComplexCast:
1499    return "FloatingComplexCast";
1500  case CK_FloatingComplexToIntegralComplex:
1501    return "FloatingComplexToIntegralComplex";
1502  case CK_IntegralRealToComplex:
1503    return "IntegralRealToComplex";
1504  case CK_IntegralComplexToReal:
1505    return "IntegralComplexToReal";
1506  case CK_IntegralComplexToBoolean:
1507    return "IntegralComplexToBoolean";
1508  case CK_IntegralComplexCast:
1509    return "IntegralComplexCast";
1510  case CK_IntegralComplexToFloatingComplex:
1511    return "IntegralComplexToFloatingComplex";
1512  case CK_ARCConsumeObject:
1513    return "ARCConsumeObject";
1514  case CK_ARCProduceObject:
1515    return "ARCProduceObject";
1516  case CK_ARCReclaimReturnedObject:
1517    return "ARCReclaimReturnedObject";
1518  case CK_ARCExtendBlockObject:
1519    return "ARCCExtendBlockObject";
1520  case CK_AtomicToNonAtomic:
1521    return "AtomicToNonAtomic";
1522  case CK_NonAtomicToAtomic:
1523    return "NonAtomicToAtomic";
1524  case CK_CopyAndAutoreleaseBlockObject:
1525    return "CopyAndAutoreleaseBlockObject";
1526  case CK_BuiltinFnToFnPtr:
1527    return "BuiltinFnToFnPtr";
1528  }
1529
1530  llvm_unreachable("Unhandled cast kind!");
1531}
1532
1533Expr *CastExpr::getSubExprAsWritten() {
1534  Expr *SubExpr = 0;
1535  CastExpr *E = this;
1536  do {
1537    SubExpr = E->getSubExpr();
1538
1539    // Skip through reference binding to temporary.
1540    if (MaterializeTemporaryExpr *Materialize
1541                                  = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1542      SubExpr = Materialize->GetTemporaryExpr();
1543
1544    // Skip any temporary bindings; they're implicit.
1545    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1546      SubExpr = Binder->getSubExpr();
1547
1548    // Conversions by constructor and conversion functions have a
1549    // subexpression describing the call; strip it off.
1550    if (E->getCastKind() == CK_ConstructorConversion)
1551      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1552    else if (E->getCastKind() == CK_UserDefinedConversion)
1553      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1554
1555    // If the subexpression we're left with is an implicit cast, look
1556    // through that, too.
1557  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1558
1559  return SubExpr;
1560}
1561
1562CXXBaseSpecifier **CastExpr::path_buffer() {
1563  switch (getStmtClass()) {
1564#define ABSTRACT_STMT(x)
1565#define CASTEXPR(Type, Base) \
1566  case Stmt::Type##Class: \
1567    return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1568#define STMT(Type, Base)
1569#include "clang/AST/StmtNodes.inc"
1570  default:
1571    llvm_unreachable("non-cast expressions not possible here");
1572  }
1573}
1574
1575void CastExpr::setCastPath(const CXXCastPath &Path) {
1576  assert(Path.size() == path_size());
1577  memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1578}
1579
1580ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
1581                                           CastKind Kind, Expr *Operand,
1582                                           const CXXCastPath *BasePath,
1583                                           ExprValueKind VK) {
1584  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1585  void *Buffer =
1586    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1587  ImplicitCastExpr *E =
1588    new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1589  if (PathSize) E->setCastPath(*BasePath);
1590  return E;
1591}
1592
1593ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
1594                                                unsigned PathSize) {
1595  void *Buffer =
1596    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1597  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1598}
1599
1600
1601CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
1602                                       ExprValueKind VK, CastKind K, Expr *Op,
1603                                       const CXXCastPath *BasePath,
1604                                       TypeSourceInfo *WrittenTy,
1605                                       SourceLocation L, SourceLocation R) {
1606  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1607  void *Buffer =
1608    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1609  CStyleCastExpr *E =
1610    new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1611  if (PathSize) E->setCastPath(*BasePath);
1612  return E;
1613}
1614
1615CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
1616  void *Buffer =
1617    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1618  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1619}
1620
1621/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1622/// corresponds to, e.g. "<<=".
1623StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
1624  switch (Op) {
1625  case BO_PtrMemD:   return ".*";
1626  case BO_PtrMemI:   return "->*";
1627  case BO_Mul:       return "*";
1628  case BO_Div:       return "/";
1629  case BO_Rem:       return "%";
1630  case BO_Add:       return "+";
1631  case BO_Sub:       return "-";
1632  case BO_Shl:       return "<<";
1633  case BO_Shr:       return ">>";
1634  case BO_LT:        return "<";
1635  case BO_GT:        return ">";
1636  case BO_LE:        return "<=";
1637  case BO_GE:        return ">=";
1638  case BO_EQ:        return "==";
1639  case BO_NE:        return "!=";
1640  case BO_And:       return "&";
1641  case BO_Xor:       return "^";
1642  case BO_Or:        return "|";
1643  case BO_LAnd:      return "&&";
1644  case BO_LOr:       return "||";
1645  case BO_Assign:    return "=";
1646  case BO_MulAssign: return "*=";
1647  case BO_DivAssign: return "/=";
1648  case BO_RemAssign: return "%=";
1649  case BO_AddAssign: return "+=";
1650  case BO_SubAssign: return "-=";
1651  case BO_ShlAssign: return "<<=";
1652  case BO_ShrAssign: return ">>=";
1653  case BO_AndAssign: return "&=";
1654  case BO_XorAssign: return "^=";
1655  case BO_OrAssign:  return "|=";
1656  case BO_Comma:     return ",";
1657  }
1658
1659  llvm_unreachable("Invalid OpCode!");
1660}
1661
1662BinaryOperatorKind
1663BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1664  switch (OO) {
1665  default: llvm_unreachable("Not an overloadable binary operator");
1666  case OO_Plus: return BO_Add;
1667  case OO_Minus: return BO_Sub;
1668  case OO_Star: return BO_Mul;
1669  case OO_Slash: return BO_Div;
1670  case OO_Percent: return BO_Rem;
1671  case OO_Caret: return BO_Xor;
1672  case OO_Amp: return BO_And;
1673  case OO_Pipe: return BO_Or;
1674  case OO_Equal: return BO_Assign;
1675  case OO_Less: return BO_LT;
1676  case OO_Greater: return BO_GT;
1677  case OO_PlusEqual: return BO_AddAssign;
1678  case OO_MinusEqual: return BO_SubAssign;
1679  case OO_StarEqual: return BO_MulAssign;
1680  case OO_SlashEqual: return BO_DivAssign;
1681  case OO_PercentEqual: return BO_RemAssign;
1682  case OO_CaretEqual: return BO_XorAssign;
1683  case OO_AmpEqual: return BO_AndAssign;
1684  case OO_PipeEqual: return BO_OrAssign;
1685  case OO_LessLess: return BO_Shl;
1686  case OO_GreaterGreater: return BO_Shr;
1687  case OO_LessLessEqual: return BO_ShlAssign;
1688  case OO_GreaterGreaterEqual: return BO_ShrAssign;
1689  case OO_EqualEqual: return BO_EQ;
1690  case OO_ExclaimEqual: return BO_NE;
1691  case OO_LessEqual: return BO_LE;
1692  case OO_GreaterEqual: return BO_GE;
1693  case OO_AmpAmp: return BO_LAnd;
1694  case OO_PipePipe: return BO_LOr;
1695  case OO_Comma: return BO_Comma;
1696  case OO_ArrowStar: return BO_PtrMemI;
1697  }
1698}
1699
1700OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1701  static const OverloadedOperatorKind OverOps[] = {
1702    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1703    OO_Star, OO_Slash, OO_Percent,
1704    OO_Plus, OO_Minus,
1705    OO_LessLess, OO_GreaterGreater,
1706    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1707    OO_EqualEqual, OO_ExclaimEqual,
1708    OO_Amp,
1709    OO_Caret,
1710    OO_Pipe,
1711    OO_AmpAmp,
1712    OO_PipePipe,
1713    OO_Equal, OO_StarEqual,
1714    OO_SlashEqual, OO_PercentEqual,
1715    OO_PlusEqual, OO_MinusEqual,
1716    OO_LessLessEqual, OO_GreaterGreaterEqual,
1717    OO_AmpEqual, OO_CaretEqual,
1718    OO_PipeEqual,
1719    OO_Comma
1720  };
1721  return OverOps[Opc];
1722}
1723
1724InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
1725                           ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
1726  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1727         false, false),
1728    InitExprs(C, initExprs.size()),
1729    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(0, true)
1730{
1731  sawArrayRangeDesignator(false);
1732  setInitializesStdInitializerList(false);
1733  for (unsigned I = 0; I != initExprs.size(); ++I) {
1734    if (initExprs[I]->isTypeDependent())
1735      ExprBits.TypeDependent = true;
1736    if (initExprs[I]->isValueDependent())
1737      ExprBits.ValueDependent = true;
1738    if (initExprs[I]->isInstantiationDependent())
1739      ExprBits.InstantiationDependent = true;
1740    if (initExprs[I]->containsUnexpandedParameterPack())
1741      ExprBits.ContainsUnexpandedParameterPack = true;
1742  }
1743
1744  InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
1745}
1746
1747void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
1748  if (NumInits > InitExprs.size())
1749    InitExprs.reserve(C, NumInits);
1750}
1751
1752void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
1753  InitExprs.resize(C, NumInits, 0);
1754}
1755
1756Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
1757  if (Init >= InitExprs.size()) {
1758    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1759    InitExprs.back() = expr;
1760    return 0;
1761  }
1762
1763  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1764  InitExprs[Init] = expr;
1765  return Result;
1766}
1767
1768void InitListExpr::setArrayFiller(Expr *filler) {
1769  assert(!hasArrayFiller() && "Filler already set!");
1770  ArrayFillerOrUnionFieldInit = filler;
1771  // Fill out any "holes" in the array due to designated initializers.
1772  Expr **inits = getInits();
1773  for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1774    if (inits[i] == 0)
1775      inits[i] = filler;
1776}
1777
1778bool InitListExpr::isStringLiteralInit() const {
1779  if (getNumInits() != 1)
1780    return false;
1781  const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
1782  if (!AT || !AT->getElementType()->isIntegerType())
1783    return false;
1784  const Expr *Init = getInit(0)->IgnoreParens();
1785  return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
1786}
1787
1788SourceLocation InitListExpr::getLocStart() const {
1789  if (InitListExpr *SyntacticForm = getSyntacticForm())
1790    return SyntacticForm->getLocStart();
1791  SourceLocation Beg = LBraceLoc;
1792  if (Beg.isInvalid()) {
1793    // Find the first non-null initializer.
1794    for (InitExprsTy::const_iterator I = InitExprs.begin(),
1795                                     E = InitExprs.end();
1796      I != E; ++I) {
1797      if (Stmt *S = *I) {
1798        Beg = S->getLocStart();
1799        break;
1800      }
1801    }
1802  }
1803  return Beg;
1804}
1805
1806SourceLocation InitListExpr::getLocEnd() const {
1807  if (InitListExpr *SyntacticForm = getSyntacticForm())
1808    return SyntacticForm->getLocEnd();
1809  SourceLocation End = RBraceLoc;
1810  if (End.isInvalid()) {
1811    // Find the first non-null initializer from the end.
1812    for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1813         E = InitExprs.rend();
1814         I != E; ++I) {
1815      if (Stmt *S = *I) {
1816        End = S->getLocEnd();
1817        break;
1818      }
1819    }
1820  }
1821  return End;
1822}
1823
1824/// getFunctionType - Return the underlying function type for this block.
1825///
1826const FunctionProtoType *BlockExpr::getFunctionType() const {
1827  // The block pointer is never sugared, but the function type might be.
1828  return cast<BlockPointerType>(getType())
1829           ->getPointeeType()->castAs<FunctionProtoType>();
1830}
1831
1832SourceLocation BlockExpr::getCaretLocation() const {
1833  return TheBlock->getCaretLocation();
1834}
1835const Stmt *BlockExpr::getBody() const {
1836  return TheBlock->getBody();
1837}
1838Stmt *BlockExpr::getBody() {
1839  return TheBlock->getBody();
1840}
1841
1842
1843//===----------------------------------------------------------------------===//
1844// Generic Expression Routines
1845//===----------------------------------------------------------------------===//
1846
1847/// isUnusedResultAWarning - Return true if this immediate expression should
1848/// be warned about if the result is unused.  If so, fill in Loc and Ranges
1849/// with location to warn on and the source range[s] to report with the
1850/// warning.
1851bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
1852                                  SourceRange &R1, SourceRange &R2,
1853                                  ASTContext &Ctx) const {
1854  // Don't warn if the expr is type dependent. The type could end up
1855  // instantiating to void.
1856  if (isTypeDependent())
1857    return false;
1858
1859  switch (getStmtClass()) {
1860  default:
1861    if (getType()->isVoidType())
1862      return false;
1863    WarnE = this;
1864    Loc = getExprLoc();
1865    R1 = getSourceRange();
1866    return true;
1867  case ParenExprClass:
1868    return cast<ParenExpr>(this)->getSubExpr()->
1869      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1870  case GenericSelectionExprClass:
1871    return cast<GenericSelectionExpr>(this)->getResultExpr()->
1872      isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1873  case UnaryOperatorClass: {
1874    const UnaryOperator *UO = cast<UnaryOperator>(this);
1875
1876    switch (UO->getOpcode()) {
1877    case UO_Plus:
1878    case UO_Minus:
1879    case UO_AddrOf:
1880    case UO_Not:
1881    case UO_LNot:
1882    case UO_Deref:
1883      break;
1884    case UO_PostInc:
1885    case UO_PostDec:
1886    case UO_PreInc:
1887    case UO_PreDec:                 // ++/--
1888      return false;  // Not a warning.
1889    case UO_Real:
1890    case UO_Imag:
1891      // accessing a piece of a volatile complex is a side-effect.
1892      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1893          .isVolatileQualified())
1894        return false;
1895      break;
1896    case UO_Extension:
1897      return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1898    }
1899    WarnE = this;
1900    Loc = UO->getOperatorLoc();
1901    R1 = UO->getSubExpr()->getSourceRange();
1902    return true;
1903  }
1904  case BinaryOperatorClass: {
1905    const BinaryOperator *BO = cast<BinaryOperator>(this);
1906    switch (BO->getOpcode()) {
1907      default:
1908        break;
1909      // Consider the RHS of comma for side effects. LHS was checked by
1910      // Sema::CheckCommaOperands.
1911      case BO_Comma:
1912        // ((foo = <blah>), 0) is an idiom for hiding the result (and
1913        // lvalue-ness) of an assignment written in a macro.
1914        if (IntegerLiteral *IE =
1915              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1916          if (IE->getValue() == 0)
1917            return false;
1918        return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1919      // Consider '||', '&&' to have side effects if the LHS or RHS does.
1920      case BO_LAnd:
1921      case BO_LOr:
1922        if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
1923            !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
1924          return false;
1925        break;
1926    }
1927    if (BO->isAssignmentOp())
1928      return false;
1929    WarnE = this;
1930    Loc = BO->getOperatorLoc();
1931    R1 = BO->getLHS()->getSourceRange();
1932    R2 = BO->getRHS()->getSourceRange();
1933    return true;
1934  }
1935  case CompoundAssignOperatorClass:
1936  case VAArgExprClass:
1937  case AtomicExprClass:
1938    return false;
1939
1940  case ConditionalOperatorClass: {
1941    // If only one of the LHS or RHS is a warning, the operator might
1942    // be being used for control flow. Only warn if both the LHS and
1943    // RHS are warnings.
1944    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1945    if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
1946      return false;
1947    if (!Exp->getLHS())
1948      return true;
1949    return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1950  }
1951
1952  case MemberExprClass:
1953    WarnE = this;
1954    Loc = cast<MemberExpr>(this)->getMemberLoc();
1955    R1 = SourceRange(Loc, Loc);
1956    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
1957    return true;
1958
1959  case ArraySubscriptExprClass:
1960    WarnE = this;
1961    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
1962    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
1963    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
1964    return true;
1965
1966  case CXXOperatorCallExprClass: {
1967    // We warn about operator== and operator!= even when user-defined operator
1968    // overloads as there is no reasonable way to define these such that they
1969    // have non-trivial, desirable side-effects. See the -Wunused-comparison
1970    // warning: these operators are commonly typo'ed, and so warning on them
1971    // provides additional value as well. If this list is updated,
1972    // DiagnoseUnusedComparison should be as well.
1973    const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
1974    if (Op->getOperator() == OO_EqualEqual ||
1975        Op->getOperator() == OO_ExclaimEqual) {
1976      WarnE = this;
1977      Loc = Op->getOperatorLoc();
1978      R1 = Op->getSourceRange();
1979      return true;
1980    }
1981
1982    // Fallthrough for generic call handling.
1983  }
1984  case CallExprClass:
1985  case CXXMemberCallExprClass:
1986  case UserDefinedLiteralClass: {
1987    // If this is a direct call, get the callee.
1988    const CallExpr *CE = cast<CallExpr>(this);
1989    if (const Decl *FD = CE->getCalleeDecl()) {
1990      // If the callee has attribute pure, const, or warn_unused_result, warn
1991      // about it. void foo() { strlen("bar"); } should warn.
1992      //
1993      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
1994      // updated to match for QoI.
1995      if (FD->getAttr<WarnUnusedResultAttr>() ||
1996          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
1997        WarnE = this;
1998        Loc = CE->getCallee()->getLocStart();
1999        R1 = CE->getCallee()->getSourceRange();
2000
2001        if (unsigned NumArgs = CE->getNumArgs())
2002          R2 = SourceRange(CE->getArg(0)->getLocStart(),
2003                           CE->getArg(NumArgs-1)->getLocEnd());
2004        return true;
2005      }
2006    }
2007    return false;
2008  }
2009
2010  // If we don't know precisely what we're looking at, let's not warn.
2011  case UnresolvedLookupExprClass:
2012  case CXXUnresolvedConstructExprClass:
2013    return false;
2014
2015  case CXXTemporaryObjectExprClass:
2016  case CXXConstructExprClass:
2017    return false;
2018
2019  case ObjCMessageExprClass: {
2020    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2021    if (Ctx.getLangOpts().ObjCAutoRefCount &&
2022        ME->isInstanceMessage() &&
2023        !ME->getType()->isVoidType() &&
2024        ME->getSelector().getIdentifierInfoForSlot(0) &&
2025        ME->getSelector().getIdentifierInfoForSlot(0)
2026                                               ->getName().startswith("init")) {
2027      WarnE = this;
2028      Loc = getExprLoc();
2029      R1 = ME->getSourceRange();
2030      return true;
2031    }
2032
2033    const ObjCMethodDecl *MD = ME->getMethodDecl();
2034    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
2035      WarnE = this;
2036      Loc = getExprLoc();
2037      return true;
2038    }
2039    return false;
2040  }
2041
2042  case ObjCPropertyRefExprClass:
2043    WarnE = this;
2044    Loc = getExprLoc();
2045    R1 = getSourceRange();
2046    return true;
2047
2048  case PseudoObjectExprClass: {
2049    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2050
2051    // Only complain about things that have the form of a getter.
2052    if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2053        isa<BinaryOperator>(PO->getSyntacticForm()))
2054      return false;
2055
2056    WarnE = this;
2057    Loc = getExprLoc();
2058    R1 = getSourceRange();
2059    return true;
2060  }
2061
2062  case StmtExprClass: {
2063    // Statement exprs don't logically have side effects themselves, but are
2064    // sometimes used in macros in ways that give them a type that is unused.
2065    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2066    // however, if the result of the stmt expr is dead, we don't want to emit a
2067    // warning.
2068    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2069    if (!CS->body_empty()) {
2070      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2071        return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2072      if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2073        if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2074          return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2075    }
2076
2077    if (getType()->isVoidType())
2078      return false;
2079    WarnE = this;
2080    Loc = cast<StmtExpr>(this)->getLParenLoc();
2081    R1 = getSourceRange();
2082    return true;
2083  }
2084  case CXXFunctionalCastExprClass:
2085  case CStyleCastExprClass: {
2086    // Ignore an explicit cast to void unless the operand is a non-trivial
2087    // volatile lvalue.
2088    const CastExpr *CE = cast<CastExpr>(this);
2089    if (CE->getCastKind() == CK_ToVoid) {
2090      if (CE->getSubExpr()->isGLValue() &&
2091          CE->getSubExpr()->getType().isVolatileQualified()) {
2092        const DeclRefExpr *DRE =
2093            dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2094        if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2095              cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
2096          return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2097                                                          R1, R2, Ctx);
2098        }
2099      }
2100      return false;
2101    }
2102
2103    // Ignore casts within macro expansions.
2104    if (getExprLoc().isMacroID())
2105      return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2106
2107    // If this is a cast to a constructor conversion, check the operand.
2108    // Otherwise, the result of the cast is unused.
2109    if (CE->getCastKind() == CK_ConstructorConversion)
2110      return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2111
2112    WarnE = this;
2113    if (const CXXFunctionalCastExpr *CXXCE =
2114            dyn_cast<CXXFunctionalCastExpr>(this)) {
2115      Loc = CXXCE->getTypeBeginLoc();
2116      R1 = CXXCE->getSubExpr()->getSourceRange();
2117    } else {
2118      const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2119      Loc = CStyleCE->getLParenLoc();
2120      R1 = CStyleCE->getSubExpr()->getSourceRange();
2121    }
2122    return true;
2123  }
2124  case ImplicitCastExprClass: {
2125    const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2126
2127    // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2128    if (ICE->getCastKind() == CK_LValueToRValue &&
2129        ICE->getSubExpr()->getType().isVolatileQualified())
2130      return false;
2131
2132    return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2133  }
2134  case CXXDefaultArgExprClass:
2135    return (cast<CXXDefaultArgExpr>(this)
2136            ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2137
2138  case CXXNewExprClass:
2139    // FIXME: In theory, there might be new expressions that don't have side
2140    // effects (e.g. a placement new with an uninitialized POD).
2141  case CXXDeleteExprClass:
2142    return false;
2143  case CXXBindTemporaryExprClass:
2144    return (cast<CXXBindTemporaryExpr>(this)
2145            ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2146  case ExprWithCleanupsClass:
2147    return (cast<ExprWithCleanups>(this)
2148            ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2149  }
2150}
2151
2152/// isOBJCGCCandidate - Check if an expression is objc gc'able.
2153/// returns true, if it is; false otherwise.
2154bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2155  const Expr *E = IgnoreParens();
2156  switch (E->getStmtClass()) {
2157  default:
2158    return false;
2159  case ObjCIvarRefExprClass:
2160    return true;
2161  case Expr::UnaryOperatorClass:
2162    return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2163  case ImplicitCastExprClass:
2164    return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2165  case MaterializeTemporaryExprClass:
2166    return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2167                                                      ->isOBJCGCCandidate(Ctx);
2168  case CStyleCastExprClass:
2169    return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2170  case DeclRefExprClass: {
2171    const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2172
2173    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2174      if (VD->hasGlobalStorage())
2175        return true;
2176      QualType T = VD->getType();
2177      // dereferencing to a  pointer is always a gc'able candidate,
2178      // unless it is __weak.
2179      return T->isPointerType() &&
2180             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2181    }
2182    return false;
2183  }
2184  case MemberExprClass: {
2185    const MemberExpr *M = cast<MemberExpr>(E);
2186    return M->getBase()->isOBJCGCCandidate(Ctx);
2187  }
2188  case ArraySubscriptExprClass:
2189    return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2190  }
2191}
2192
2193bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2194  if (isTypeDependent())
2195    return false;
2196  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2197}
2198
2199QualType Expr::findBoundMemberType(const Expr *expr) {
2200  assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2201
2202  // Bound member expressions are always one of these possibilities:
2203  //   x->m      x.m      x->*y      x.*y
2204  // (possibly parenthesized)
2205
2206  expr = expr->IgnoreParens();
2207  if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2208    assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2209    return mem->getMemberDecl()->getType();
2210  }
2211
2212  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2213    QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2214                      ->getPointeeType();
2215    assert(type->isFunctionType());
2216    return type;
2217  }
2218
2219  assert(isa<UnresolvedMemberExpr>(expr));
2220  return QualType();
2221}
2222
2223Expr* Expr::IgnoreParens() {
2224  Expr* E = this;
2225  while (true) {
2226    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2227      E = P->getSubExpr();
2228      continue;
2229    }
2230    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2231      if (P->getOpcode() == UO_Extension) {
2232        E = P->getSubExpr();
2233        continue;
2234      }
2235    }
2236    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2237      if (!P->isResultDependent()) {
2238        E = P->getResultExpr();
2239        continue;
2240      }
2241    }
2242    return E;
2243  }
2244}
2245
2246/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
2247/// or CastExprs or ImplicitCastExprs, returning their operand.
2248Expr *Expr::IgnoreParenCasts() {
2249  Expr *E = this;
2250  while (true) {
2251    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2252      E = P->getSubExpr();
2253      continue;
2254    }
2255    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2256      E = P->getSubExpr();
2257      continue;
2258    }
2259    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2260      if (P->getOpcode() == UO_Extension) {
2261        E = P->getSubExpr();
2262        continue;
2263      }
2264    }
2265    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2266      if (!P->isResultDependent()) {
2267        E = P->getResultExpr();
2268        continue;
2269      }
2270    }
2271    if (MaterializeTemporaryExpr *Materialize
2272                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2273      E = Materialize->GetTemporaryExpr();
2274      continue;
2275    }
2276    if (SubstNonTypeTemplateParmExpr *NTTP
2277                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2278      E = NTTP->getReplacement();
2279      continue;
2280    }
2281    return E;
2282  }
2283}
2284
2285/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2286/// casts.  This is intended purely as a temporary workaround for code
2287/// that hasn't yet been rewritten to do the right thing about those
2288/// casts, and may disappear along with the last internal use.
2289Expr *Expr::IgnoreParenLValueCasts() {
2290  Expr *E = this;
2291  while (true) {
2292    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2293      E = P->getSubExpr();
2294      continue;
2295    } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2296      if (P->getCastKind() == CK_LValueToRValue) {
2297        E = P->getSubExpr();
2298        continue;
2299      }
2300    } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2301      if (P->getOpcode() == UO_Extension) {
2302        E = P->getSubExpr();
2303        continue;
2304      }
2305    } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2306      if (!P->isResultDependent()) {
2307        E = P->getResultExpr();
2308        continue;
2309      }
2310    } else if (MaterializeTemporaryExpr *Materialize
2311                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2312      E = Materialize->GetTemporaryExpr();
2313      continue;
2314    } else if (SubstNonTypeTemplateParmExpr *NTTP
2315                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2316      E = NTTP->getReplacement();
2317      continue;
2318    }
2319    break;
2320  }
2321  return E;
2322}
2323
2324Expr *Expr::ignoreParenBaseCasts() {
2325  Expr *E = this;
2326  while (true) {
2327    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2328      E = P->getSubExpr();
2329      continue;
2330    }
2331    if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
2332      if (CE->getCastKind() == CK_DerivedToBase ||
2333          CE->getCastKind() == CK_UncheckedDerivedToBase ||
2334          CE->getCastKind() == CK_NoOp) {
2335        E = CE->getSubExpr();
2336        continue;
2337      }
2338    }
2339
2340    return E;
2341  }
2342}
2343
2344Expr *Expr::IgnoreParenImpCasts() {
2345  Expr *E = this;
2346  while (true) {
2347    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2348      E = P->getSubExpr();
2349      continue;
2350    }
2351    if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2352      E = P->getSubExpr();
2353      continue;
2354    }
2355    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2356      if (P->getOpcode() == UO_Extension) {
2357        E = P->getSubExpr();
2358        continue;
2359      }
2360    }
2361    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2362      if (!P->isResultDependent()) {
2363        E = P->getResultExpr();
2364        continue;
2365      }
2366    }
2367    if (MaterializeTemporaryExpr *Materialize
2368                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2369      E = Materialize->GetTemporaryExpr();
2370      continue;
2371    }
2372    if (SubstNonTypeTemplateParmExpr *NTTP
2373                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2374      E = NTTP->getReplacement();
2375      continue;
2376    }
2377    return E;
2378  }
2379}
2380
2381Expr *Expr::IgnoreConversionOperator() {
2382  if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2383    if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2384      return MCE->getImplicitObjectArgument();
2385  }
2386  return this;
2387}
2388
2389/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2390/// value (including ptr->int casts of the same size).  Strip off any
2391/// ParenExpr or CastExprs, returning their operand.
2392Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2393  Expr *E = this;
2394  while (true) {
2395    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2396      E = P->getSubExpr();
2397      continue;
2398    }
2399
2400    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2401      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2402      // ptr<->int casts of the same width.  We also ignore all identity casts.
2403      Expr *SE = P->getSubExpr();
2404
2405      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2406        E = SE;
2407        continue;
2408      }
2409
2410      if ((E->getType()->isPointerType() ||
2411           E->getType()->isIntegralType(Ctx)) &&
2412          (SE->getType()->isPointerType() ||
2413           SE->getType()->isIntegralType(Ctx)) &&
2414          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2415        E = SE;
2416        continue;
2417      }
2418    }
2419
2420    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2421      if (P->getOpcode() == UO_Extension) {
2422        E = P->getSubExpr();
2423        continue;
2424      }
2425    }
2426
2427    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2428      if (!P->isResultDependent()) {
2429        E = P->getResultExpr();
2430        continue;
2431      }
2432    }
2433
2434    if (SubstNonTypeTemplateParmExpr *NTTP
2435                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2436      E = NTTP->getReplacement();
2437      continue;
2438    }
2439
2440    return E;
2441  }
2442}
2443
2444bool Expr::isDefaultArgument() const {
2445  const Expr *E = this;
2446  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2447    E = M->GetTemporaryExpr();
2448
2449  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2450    E = ICE->getSubExprAsWritten();
2451
2452  return isa<CXXDefaultArgExpr>(E);
2453}
2454
2455/// \brief Skip over any no-op casts and any temporary-binding
2456/// expressions.
2457static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2458  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2459    E = M->GetTemporaryExpr();
2460
2461  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2462    if (ICE->getCastKind() == CK_NoOp)
2463      E = ICE->getSubExpr();
2464    else
2465      break;
2466  }
2467
2468  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2469    E = BE->getSubExpr();
2470
2471  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2472    if (ICE->getCastKind() == CK_NoOp)
2473      E = ICE->getSubExpr();
2474    else
2475      break;
2476  }
2477
2478  return E->IgnoreParens();
2479}
2480
2481/// isTemporaryObject - Determines if this expression produces a
2482/// temporary of the given class type.
2483bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2484  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2485    return false;
2486
2487  const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2488
2489  // Temporaries are by definition pr-values of class type.
2490  if (!E->Classify(C).isPRValue()) {
2491    // In this context, property reference is a message call and is pr-value.
2492    if (!isa<ObjCPropertyRefExpr>(E))
2493      return false;
2494  }
2495
2496  // Black-list a few cases which yield pr-values of class type that don't
2497  // refer to temporaries of that type:
2498
2499  // - implicit derived-to-base conversions
2500  if (isa<ImplicitCastExpr>(E)) {
2501    switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2502    case CK_DerivedToBase:
2503    case CK_UncheckedDerivedToBase:
2504      return false;
2505    default:
2506      break;
2507    }
2508  }
2509
2510  // - member expressions (all)
2511  if (isa<MemberExpr>(E))
2512    return false;
2513
2514  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2515    if (BO->isPtrMemOp())
2516      return false;
2517
2518  // - opaque values (all)
2519  if (isa<OpaqueValueExpr>(E))
2520    return false;
2521
2522  return true;
2523}
2524
2525bool Expr::isImplicitCXXThis() const {
2526  const Expr *E = this;
2527
2528  // Strip away parentheses and casts we don't care about.
2529  while (true) {
2530    if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2531      E = Paren->getSubExpr();
2532      continue;
2533    }
2534
2535    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2536      if (ICE->getCastKind() == CK_NoOp ||
2537          ICE->getCastKind() == CK_LValueToRValue ||
2538          ICE->getCastKind() == CK_DerivedToBase ||
2539          ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2540        E = ICE->getSubExpr();
2541        continue;
2542      }
2543    }
2544
2545    if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2546      if (UnOp->getOpcode() == UO_Extension) {
2547        E = UnOp->getSubExpr();
2548        continue;
2549      }
2550    }
2551
2552    if (const MaterializeTemporaryExpr *M
2553                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2554      E = M->GetTemporaryExpr();
2555      continue;
2556    }
2557
2558    break;
2559  }
2560
2561  if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2562    return This->isImplicit();
2563
2564  return false;
2565}
2566
2567/// hasAnyTypeDependentArguments - Determines if any of the expressions
2568/// in Exprs is type-dependent.
2569bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
2570  for (unsigned I = 0; I < Exprs.size(); ++I)
2571    if (Exprs[I]->isTypeDependent())
2572      return true;
2573
2574  return false;
2575}
2576
2577bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
2578  // This function is attempting whether an expression is an initializer
2579  // which can be evaluated at compile-time.  isEvaluatable handles most
2580  // of the cases, but it can't deal with some initializer-specific
2581  // expressions, and it can't deal with aggregates; we deal with those here,
2582  // and fall back to isEvaluatable for the other cases.
2583
2584  // If we ever capture reference-binding directly in the AST, we can
2585  // kill the second parameter.
2586
2587  if (IsForRef) {
2588    EvalResult Result;
2589    return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
2590  }
2591
2592  switch (getStmtClass()) {
2593  default: break;
2594  case IntegerLiteralClass:
2595  case FloatingLiteralClass:
2596  case StringLiteralClass:
2597  case ObjCStringLiteralClass:
2598  case ObjCEncodeExprClass:
2599    return true;
2600  case CXXTemporaryObjectExprClass:
2601  case CXXConstructExprClass: {
2602    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2603
2604    // Only if it's
2605    if (CE->getConstructor()->isTrivial()) {
2606      // 1) an application of the trivial default constructor or
2607      if (!CE->getNumArgs()) return true;
2608
2609      // 2) an elidable trivial copy construction of an operand which is
2610      //    itself a constant initializer.  Note that we consider the
2611      //    operand on its own, *not* as a reference binding.
2612      if (CE->isElidable() &&
2613          CE->getArg(0)->isConstantInitializer(Ctx, false))
2614        return true;
2615    }
2616
2617    // 3) a foldable constexpr constructor.
2618    break;
2619  }
2620  case CompoundLiteralExprClass: {
2621    // This handles gcc's extension that allows global initializers like
2622    // "struct x {int x;} x = (struct x) {};".
2623    // FIXME: This accepts other cases it shouldn't!
2624    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2625    return Exp->isConstantInitializer(Ctx, false);
2626  }
2627  case InitListExprClass: {
2628    // FIXME: This doesn't deal with fields with reference types correctly.
2629    // FIXME: This incorrectly allows pointers cast to integers to be assigned
2630    // to bitfields.
2631    const InitListExpr *Exp = cast<InitListExpr>(this);
2632    unsigned numInits = Exp->getNumInits();
2633    for (unsigned i = 0; i < numInits; i++) {
2634      if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
2635        return false;
2636    }
2637    return true;
2638  }
2639  case ImplicitValueInitExprClass:
2640    return true;
2641  case ParenExprClass:
2642    return cast<ParenExpr>(this)->getSubExpr()
2643      ->isConstantInitializer(Ctx, IsForRef);
2644  case GenericSelectionExprClass:
2645    if (cast<GenericSelectionExpr>(this)->isResultDependent())
2646      return false;
2647    return cast<GenericSelectionExpr>(this)->getResultExpr()
2648      ->isConstantInitializer(Ctx, IsForRef);
2649  case ChooseExprClass:
2650    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
2651      ->isConstantInitializer(Ctx, IsForRef);
2652  case UnaryOperatorClass: {
2653    const UnaryOperator* Exp = cast<UnaryOperator>(this);
2654    if (Exp->getOpcode() == UO_Extension)
2655      return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
2656    break;
2657  }
2658  case CXXFunctionalCastExprClass:
2659  case CXXStaticCastExprClass:
2660  case ImplicitCastExprClass:
2661  case CStyleCastExprClass: {
2662    const CastExpr *CE = cast<CastExpr>(this);
2663
2664    // If we're promoting an integer to an _Atomic type then this is constant
2665    // if the integer is constant.  We also need to check the converse in case
2666    // someone does something like:
2667    //
2668    // int a = (_Atomic(int))42;
2669    //
2670    // I doubt anyone would write code like this directly, but it's quite
2671    // possible as the result of macro expansions.
2672    if (CE->getCastKind() == CK_NonAtomicToAtomic ||
2673        CE->getCastKind() == CK_AtomicToNonAtomic)
2674      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2675
2676    // Handle bitcasts of vector constants.
2677    if (getType()->isVectorType() && CE->getCastKind() == CK_BitCast)
2678      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2679
2680    // Handle misc casts we want to ignore.
2681    // FIXME: Is it really safe to ignore all these?
2682    if (CE->getCastKind() == CK_NoOp ||
2683        CE->getCastKind() == CK_LValueToRValue ||
2684        CE->getCastKind() == CK_ToUnion ||
2685        CE->getCastKind() == CK_ConstructorConversion)
2686      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2687
2688    break;
2689  }
2690  case MaterializeTemporaryExprClass:
2691    return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2692                                            ->isConstantInitializer(Ctx, false);
2693  }
2694  return isEvaluatable(Ctx);
2695}
2696
2697bool Expr::HasSideEffects(const ASTContext &Ctx) const {
2698  if (isInstantiationDependent())
2699    return true;
2700
2701  switch (getStmtClass()) {
2702  case NoStmtClass:
2703  #define ABSTRACT_STMT(Type)
2704  #define STMT(Type, Base) case Type##Class:
2705  #define EXPR(Type, Base)
2706  #include "clang/AST/StmtNodes.inc"
2707    llvm_unreachable("unexpected Expr kind");
2708
2709  case DependentScopeDeclRefExprClass:
2710  case CXXUnresolvedConstructExprClass:
2711  case CXXDependentScopeMemberExprClass:
2712  case UnresolvedLookupExprClass:
2713  case UnresolvedMemberExprClass:
2714  case PackExpansionExprClass:
2715  case SubstNonTypeTemplateParmPackExprClass:
2716  case FunctionParmPackExprClass:
2717    llvm_unreachable("shouldn't see dependent / unresolved nodes here");
2718
2719  case DeclRefExprClass:
2720  case ObjCIvarRefExprClass:
2721  case PredefinedExprClass:
2722  case IntegerLiteralClass:
2723  case FloatingLiteralClass:
2724  case ImaginaryLiteralClass:
2725  case StringLiteralClass:
2726  case CharacterLiteralClass:
2727  case OffsetOfExprClass:
2728  case ImplicitValueInitExprClass:
2729  case UnaryExprOrTypeTraitExprClass:
2730  case AddrLabelExprClass:
2731  case GNUNullExprClass:
2732  case CXXBoolLiteralExprClass:
2733  case CXXNullPtrLiteralExprClass:
2734  case CXXThisExprClass:
2735  case CXXScalarValueInitExprClass:
2736  case TypeTraitExprClass:
2737  case UnaryTypeTraitExprClass:
2738  case BinaryTypeTraitExprClass:
2739  case ArrayTypeTraitExprClass:
2740  case ExpressionTraitExprClass:
2741  case CXXNoexceptExprClass:
2742  case SizeOfPackExprClass:
2743  case ObjCStringLiteralClass:
2744  case ObjCEncodeExprClass:
2745  case ObjCBoolLiteralExprClass:
2746  case CXXUuidofExprClass:
2747  case OpaqueValueExprClass:
2748    // These never have a side-effect.
2749    return false;
2750
2751  case CallExprClass:
2752  case CompoundAssignOperatorClass:
2753  case VAArgExprClass:
2754  case AtomicExprClass:
2755  case StmtExprClass:
2756  case CXXOperatorCallExprClass:
2757  case CXXMemberCallExprClass:
2758  case UserDefinedLiteralClass:
2759  case CXXThrowExprClass:
2760  case CXXNewExprClass:
2761  case CXXDeleteExprClass:
2762  case ExprWithCleanupsClass:
2763  case CXXBindTemporaryExprClass:
2764  case BlockExprClass:
2765  case CUDAKernelCallExprClass:
2766    // These always have a side-effect.
2767    return true;
2768
2769  case ParenExprClass:
2770  case ArraySubscriptExprClass:
2771  case MemberExprClass:
2772  case ConditionalOperatorClass:
2773  case BinaryConditionalOperatorClass:
2774  case CompoundLiteralExprClass:
2775  case ExtVectorElementExprClass:
2776  case DesignatedInitExprClass:
2777  case ParenListExprClass:
2778  case CXXPseudoDestructorExprClass:
2779  case SubstNonTypeTemplateParmExprClass:
2780  case MaterializeTemporaryExprClass:
2781  case ShuffleVectorExprClass:
2782  case AsTypeExprClass:
2783    // These have a side-effect if any subexpression does.
2784    break;
2785
2786  case UnaryOperatorClass:
2787    if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
2788      return true;
2789    break;
2790
2791  case BinaryOperatorClass:
2792    if (cast<BinaryOperator>(this)->isAssignmentOp())
2793      return true;
2794    break;
2795
2796  case InitListExprClass:
2797    // FIXME: The children for an InitListExpr doesn't include the array filler.
2798    if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
2799      if (E->HasSideEffects(Ctx))
2800        return true;
2801    break;
2802
2803  case GenericSelectionExprClass:
2804    return cast<GenericSelectionExpr>(this)->getResultExpr()->
2805        HasSideEffects(Ctx);
2806
2807  case ChooseExprClass:
2808    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)->HasSideEffects(Ctx);
2809
2810  case CXXDefaultArgExprClass:
2811    return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(Ctx);
2812
2813  case CXXDynamicCastExprClass: {
2814    // A dynamic_cast expression has side-effects if it can throw.
2815    const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
2816    if (DCE->getTypeAsWritten()->isReferenceType() &&
2817        DCE->getCastKind() == CK_Dynamic)
2818      return true;
2819  } // Fall through.
2820  case ImplicitCastExprClass:
2821  case CStyleCastExprClass:
2822  case CXXStaticCastExprClass:
2823  case CXXReinterpretCastExprClass:
2824  case CXXConstCastExprClass:
2825  case CXXFunctionalCastExprClass: {
2826    const CastExpr *CE = cast<CastExpr>(this);
2827    if (CE->getCastKind() == CK_LValueToRValue &&
2828        CE->getSubExpr()->getType().isVolatileQualified())
2829      return true;
2830    break;
2831  }
2832
2833  case CXXTypeidExprClass:
2834    // typeid might throw if its subexpression is potentially-evaluated, so has
2835    // side-effects in that case whether or not its subexpression does.
2836    return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
2837
2838  case CXXConstructExprClass:
2839  case CXXTemporaryObjectExprClass: {
2840    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2841    if (!CE->getConstructor()->isTrivial())
2842      return true;
2843    // A trivial constructor does not add any side-effects of its own. Just look
2844    // at its arguments.
2845    break;
2846  }
2847
2848  case LambdaExprClass: {
2849    const LambdaExpr *LE = cast<LambdaExpr>(this);
2850    for (LambdaExpr::capture_iterator I = LE->capture_begin(),
2851                                      E = LE->capture_end(); I != E; ++I)
2852      if (I->getCaptureKind() == LCK_ByCopy)
2853        // FIXME: Only has a side-effect if the variable is volatile or if
2854        // the copy would invoke a non-trivial copy constructor.
2855        return true;
2856    return false;
2857  }
2858
2859  case PseudoObjectExprClass: {
2860    // Only look for side-effects in the semantic form, and look past
2861    // OpaqueValueExpr bindings in that form.
2862    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2863    for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
2864                                                    E = PO->semantics_end();
2865         I != E; ++I) {
2866      const Expr *Subexpr = *I;
2867      if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
2868        Subexpr = OVE->getSourceExpr();
2869      if (Subexpr->HasSideEffects(Ctx))
2870        return true;
2871    }
2872    return false;
2873  }
2874
2875  case ObjCBoxedExprClass:
2876  case ObjCArrayLiteralClass:
2877  case ObjCDictionaryLiteralClass:
2878  case ObjCMessageExprClass:
2879  case ObjCSelectorExprClass:
2880  case ObjCProtocolExprClass:
2881  case ObjCPropertyRefExprClass:
2882  case ObjCIsaExprClass:
2883  case ObjCIndirectCopyRestoreExprClass:
2884  case ObjCSubscriptRefExprClass:
2885  case ObjCBridgedCastExprClass:
2886    // FIXME: Classify these cases better.
2887    return true;
2888  }
2889
2890  // Recurse to children.
2891  for (const_child_range SubStmts = children(); SubStmts; ++SubStmts)
2892    if (const Stmt *S = *SubStmts)
2893      if (cast<Expr>(S)->HasSideEffects(Ctx))
2894        return true;
2895
2896  return false;
2897}
2898
2899namespace {
2900  /// \brief Look for a call to a non-trivial function within an expression.
2901  class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
2902  {
2903    typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
2904
2905    bool NonTrivial;
2906
2907  public:
2908    explicit NonTrivialCallFinder(ASTContext &Context)
2909      : Inherited(Context), NonTrivial(false) { }
2910
2911    bool hasNonTrivialCall() const { return NonTrivial; }
2912
2913    void VisitCallExpr(CallExpr *E) {
2914      if (CXXMethodDecl *Method
2915          = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
2916        if (Method->isTrivial()) {
2917          // Recurse to children of the call.
2918          Inherited::VisitStmt(E);
2919          return;
2920        }
2921      }
2922
2923      NonTrivial = true;
2924    }
2925
2926    void VisitCXXConstructExpr(CXXConstructExpr *E) {
2927      if (E->getConstructor()->isTrivial()) {
2928        // Recurse to children of the call.
2929        Inherited::VisitStmt(E);
2930        return;
2931      }
2932
2933      NonTrivial = true;
2934    }
2935
2936    void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2937      if (E->getTemporary()->getDestructor()->isTrivial()) {
2938        Inherited::VisitStmt(E);
2939        return;
2940      }
2941
2942      NonTrivial = true;
2943    }
2944  };
2945}
2946
2947bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
2948  NonTrivialCallFinder Finder(Ctx);
2949  Finder.Visit(this);
2950  return Finder.hasNonTrivialCall();
2951}
2952
2953/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
2954/// pointer constant or not, as well as the specific kind of constant detected.
2955/// Null pointer constants can be integer constant expressions with the
2956/// value zero, casts of zero to void*, nullptr (C++0X), or __null
2957/// (a GNU extension).
2958Expr::NullPointerConstantKind
2959Expr::isNullPointerConstant(ASTContext &Ctx,
2960                            NullPointerConstantValueDependence NPC) const {
2961  if (isValueDependent()) {
2962    switch (NPC) {
2963    case NPC_NeverValueDependent:
2964      llvm_unreachable("Unexpected value dependent expression!");
2965    case NPC_ValueDependentIsNull:
2966      if (isTypeDependent() || getType()->isIntegralType(Ctx))
2967        return NPCK_ZeroExpression;
2968      else
2969        return NPCK_NotNull;
2970
2971    case NPC_ValueDependentIsNotNull:
2972      return NPCK_NotNull;
2973    }
2974  }
2975
2976  // Strip off a cast to void*, if it exists. Except in C++.
2977  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
2978    if (!Ctx.getLangOpts().CPlusPlus) {
2979      // Check that it is a cast to void*.
2980      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
2981        QualType Pointee = PT->getPointeeType();
2982        if (!Pointee.hasQualifiers() &&
2983            Pointee->isVoidType() &&                              // to void*
2984            CE->getSubExpr()->getType()->isIntegerType())         // from int.
2985          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2986      }
2987    }
2988  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
2989    // Ignore the ImplicitCastExpr type entirely.
2990    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2991  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
2992    // Accept ((void*)0) as a null pointer constant, as many other
2993    // implementations do.
2994    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2995  } else if (const GenericSelectionExpr *GE =
2996               dyn_cast<GenericSelectionExpr>(this)) {
2997    return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
2998  } else if (const CXXDefaultArgExpr *DefaultArg
2999               = dyn_cast<CXXDefaultArgExpr>(this)) {
3000    // See through default argument expressions
3001    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3002  } else if (isa<GNUNullExpr>(this)) {
3003    // The GNU __null extension is always a null pointer constant.
3004    return NPCK_GNUNull;
3005  } else if (const MaterializeTemporaryExpr *M
3006                                   = dyn_cast<MaterializeTemporaryExpr>(this)) {
3007    return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
3008  } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3009    if (const Expr *Source = OVE->getSourceExpr())
3010      return Source->isNullPointerConstant(Ctx, NPC);
3011  }
3012
3013  // C++11 nullptr_t is always a null pointer constant.
3014  if (getType()->isNullPtrType())
3015    return NPCK_CXX11_nullptr;
3016
3017  if (const RecordType *UT = getType()->getAsUnionType())
3018    if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3019      if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3020        const Expr *InitExpr = CLE->getInitializer();
3021        if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3022          return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3023      }
3024  // This expression must be an integer type.
3025  if (!getType()->isIntegerType() ||
3026      (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3027    return NPCK_NotNull;
3028
3029  // If we have an integer constant expression, we need to *evaluate* it and
3030  // test for the value 0. Don't use the C++11 constant expression semantics
3031  // for this, for now; once the dust settles on core issue 903, we might only
3032  // allow a literal 0 here in C++11 mode.
3033  if (Ctx.getLangOpts().CPlusPlus11) {
3034    if (!isCXX98IntegralConstantExpr(Ctx))
3035      return NPCK_NotNull;
3036  } else {
3037    if (!isIntegerConstantExpr(Ctx))
3038      return NPCK_NotNull;
3039  }
3040
3041  if (EvaluateKnownConstInt(Ctx) != 0)
3042    return NPCK_NotNull;
3043
3044  if (isa<IntegerLiteral>(this))
3045    return NPCK_ZeroLiteral;
3046  return NPCK_ZeroExpression;
3047}
3048
3049/// \brief If this expression is an l-value for an Objective C
3050/// property, find the underlying property reference expression.
3051const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3052  const Expr *E = this;
3053  while (true) {
3054    assert((E->getValueKind() == VK_LValue &&
3055            E->getObjectKind() == OK_ObjCProperty) &&
3056           "expression is not a property reference");
3057    E = E->IgnoreParenCasts();
3058    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3059      if (BO->getOpcode() == BO_Comma) {
3060        E = BO->getRHS();
3061        continue;
3062      }
3063    }
3064
3065    break;
3066  }
3067
3068  return cast<ObjCPropertyRefExpr>(E);
3069}
3070
3071bool Expr::isObjCSelfExpr() const {
3072  const Expr *E = IgnoreParenImpCasts();
3073
3074  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3075  if (!DRE)
3076    return false;
3077
3078  const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3079  if (!Param)
3080    return false;
3081
3082  const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3083  if (!M)
3084    return false;
3085
3086  return M->getSelfDecl() == Param;
3087}
3088
3089FieldDecl *Expr::getBitField() {
3090  Expr *E = this->IgnoreParens();
3091
3092  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3093    if (ICE->getCastKind() == CK_LValueToRValue ||
3094        (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3095      E = ICE->getSubExpr()->IgnoreParens();
3096    else
3097      break;
3098  }
3099
3100  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3101    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3102      if (Field->isBitField())
3103        return Field;
3104
3105  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
3106    if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3107      if (Field->isBitField())
3108        return Field;
3109
3110  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3111    if (BinOp->isAssignmentOp() && BinOp->getLHS())
3112      return BinOp->getLHS()->getBitField();
3113
3114    if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3115      return BinOp->getRHS()->getBitField();
3116  }
3117
3118  return 0;
3119}
3120
3121bool Expr::refersToVectorElement() const {
3122  const Expr *E = this->IgnoreParens();
3123
3124  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3125    if (ICE->getValueKind() != VK_RValue &&
3126        ICE->getCastKind() == CK_NoOp)
3127      E = ICE->getSubExpr()->IgnoreParens();
3128    else
3129      break;
3130  }
3131
3132  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3133    return ASE->getBase()->getType()->isVectorType();
3134
3135  if (isa<ExtVectorElementExpr>(E))
3136    return true;
3137
3138  return false;
3139}
3140
3141/// isArrow - Return true if the base expression is a pointer to vector,
3142/// return false if the base expression is a vector.
3143bool ExtVectorElementExpr::isArrow() const {
3144  return getBase()->getType()->isPointerType();
3145}
3146
3147unsigned ExtVectorElementExpr::getNumElements() const {
3148  if (const VectorType *VT = getType()->getAs<VectorType>())
3149    return VT->getNumElements();
3150  return 1;
3151}
3152
3153/// containsDuplicateElements - Return true if any element access is repeated.
3154bool ExtVectorElementExpr::containsDuplicateElements() const {
3155  // FIXME: Refactor this code to an accessor on the AST node which returns the
3156  // "type" of component access, and share with code below and in Sema.
3157  StringRef Comp = Accessor->getName();
3158
3159  // Halving swizzles do not contain duplicate elements.
3160  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3161    return false;
3162
3163  // Advance past s-char prefix on hex swizzles.
3164  if (Comp[0] == 's' || Comp[0] == 'S')
3165    Comp = Comp.substr(1);
3166
3167  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3168    if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3169        return true;
3170
3171  return false;
3172}
3173
3174/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
3175void ExtVectorElementExpr::getEncodedElementAccess(
3176                                  SmallVectorImpl<unsigned> &Elts) const {
3177  StringRef Comp = Accessor->getName();
3178  if (Comp[0] == 's' || Comp[0] == 'S')
3179    Comp = Comp.substr(1);
3180
3181  bool isHi =   Comp == "hi";
3182  bool isLo =   Comp == "lo";
3183  bool isEven = Comp == "even";
3184  bool isOdd  = Comp == "odd";
3185
3186  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3187    uint64_t Index;
3188
3189    if (isHi)
3190      Index = e + i;
3191    else if (isLo)
3192      Index = i;
3193    else if (isEven)
3194      Index = 2 * i;
3195    else if (isOdd)
3196      Index = 2 * i + 1;
3197    else
3198      Index = ExtVectorType::getAccessorIdx(Comp[i]);
3199
3200    Elts.push_back(Index);
3201  }
3202}
3203
3204ObjCMessageExpr::ObjCMessageExpr(QualType T,
3205                                 ExprValueKind VK,
3206                                 SourceLocation LBracLoc,
3207                                 SourceLocation SuperLoc,
3208                                 bool IsInstanceSuper,
3209                                 QualType SuperType,
3210                                 Selector Sel,
3211                                 ArrayRef<SourceLocation> SelLocs,
3212                                 SelectorLocationsKind SelLocsK,
3213                                 ObjCMethodDecl *Method,
3214                                 ArrayRef<Expr *> Args,
3215                                 SourceLocation RBracLoc,
3216                                 bool isImplicit)
3217  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
3218         /*TypeDependent=*/false, /*ValueDependent=*/false,
3219         /*InstantiationDependent=*/false,
3220         /*ContainsUnexpandedParameterPack=*/false),
3221    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3222                                                       : Sel.getAsOpaquePtr())),
3223    Kind(IsInstanceSuper? SuperInstance : SuperClass),
3224    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3225    SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3226{
3227  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3228  setReceiverPointer(SuperType.getAsOpaquePtr());
3229}
3230
3231ObjCMessageExpr::ObjCMessageExpr(QualType T,
3232                                 ExprValueKind VK,
3233                                 SourceLocation LBracLoc,
3234                                 TypeSourceInfo *Receiver,
3235                                 Selector Sel,
3236                                 ArrayRef<SourceLocation> SelLocs,
3237                                 SelectorLocationsKind SelLocsK,
3238                                 ObjCMethodDecl *Method,
3239                                 ArrayRef<Expr *> Args,
3240                                 SourceLocation RBracLoc,
3241                                 bool isImplicit)
3242  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
3243         T->isDependentType(), T->isInstantiationDependentType(),
3244         T->containsUnexpandedParameterPack()),
3245    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3246                                                       : Sel.getAsOpaquePtr())),
3247    Kind(Class),
3248    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3249    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3250{
3251  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3252  setReceiverPointer(Receiver);
3253}
3254
3255ObjCMessageExpr::ObjCMessageExpr(QualType T,
3256                                 ExprValueKind VK,
3257                                 SourceLocation LBracLoc,
3258                                 Expr *Receiver,
3259                                 Selector Sel,
3260                                 ArrayRef<SourceLocation> SelLocs,
3261                                 SelectorLocationsKind SelLocsK,
3262                                 ObjCMethodDecl *Method,
3263                                 ArrayRef<Expr *> Args,
3264                                 SourceLocation RBracLoc,
3265                                 bool isImplicit)
3266  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
3267         Receiver->isTypeDependent(),
3268         Receiver->isInstantiationDependent(),
3269         Receiver->containsUnexpandedParameterPack()),
3270    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3271                                                       : Sel.getAsOpaquePtr())),
3272    Kind(Instance),
3273    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
3274    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3275{
3276  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3277  setReceiverPointer(Receiver);
3278}
3279
3280void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
3281                                         ArrayRef<SourceLocation> SelLocs,
3282                                         SelectorLocationsKind SelLocsK) {
3283  setNumArgs(Args.size());
3284  Expr **MyArgs = getArgs();
3285  for (unsigned I = 0; I != Args.size(); ++I) {
3286    if (Args[I]->isTypeDependent())
3287      ExprBits.TypeDependent = true;
3288    if (Args[I]->isValueDependent())
3289      ExprBits.ValueDependent = true;
3290    if (Args[I]->isInstantiationDependent())
3291      ExprBits.InstantiationDependent = true;
3292    if (Args[I]->containsUnexpandedParameterPack())
3293      ExprBits.ContainsUnexpandedParameterPack = true;
3294
3295    MyArgs[I] = Args[I];
3296  }
3297
3298  SelLocsKind = SelLocsK;
3299  if (!isImplicit()) {
3300    if (SelLocsK == SelLoc_NonStandard)
3301      std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
3302  }
3303}
3304
3305ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3306                                         ExprValueKind VK,
3307                                         SourceLocation LBracLoc,
3308                                         SourceLocation SuperLoc,
3309                                         bool IsInstanceSuper,
3310                                         QualType SuperType,
3311                                         Selector Sel,
3312                                         ArrayRef<SourceLocation> SelLocs,
3313                                         ObjCMethodDecl *Method,
3314                                         ArrayRef<Expr *> Args,
3315                                         SourceLocation RBracLoc,
3316                                         bool isImplicit) {
3317  assert((!SelLocs.empty() || isImplicit) &&
3318         "No selector locs for non-implicit message");
3319  ObjCMessageExpr *Mem;
3320  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3321  if (isImplicit)
3322    Mem = alloc(Context, Args.size(), 0);
3323  else
3324    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3325  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
3326                                   SuperType, Sel, SelLocs, SelLocsK,
3327                                   Method, Args, RBracLoc, isImplicit);
3328}
3329
3330ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3331                                         ExprValueKind VK,
3332                                         SourceLocation LBracLoc,
3333                                         TypeSourceInfo *Receiver,
3334                                         Selector Sel,
3335                                         ArrayRef<SourceLocation> SelLocs,
3336                                         ObjCMethodDecl *Method,
3337                                         ArrayRef<Expr *> Args,
3338                                         SourceLocation RBracLoc,
3339                                         bool isImplicit) {
3340  assert((!SelLocs.empty() || isImplicit) &&
3341         "No selector locs for non-implicit message");
3342  ObjCMessageExpr *Mem;
3343  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3344  if (isImplicit)
3345    Mem = alloc(Context, Args.size(), 0);
3346  else
3347    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3348  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3349                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
3350                                   isImplicit);
3351}
3352
3353ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
3354                                         ExprValueKind VK,
3355                                         SourceLocation LBracLoc,
3356                                         Expr *Receiver,
3357                                         Selector Sel,
3358                                         ArrayRef<SourceLocation> SelLocs,
3359                                         ObjCMethodDecl *Method,
3360                                         ArrayRef<Expr *> Args,
3361                                         SourceLocation RBracLoc,
3362                                         bool isImplicit) {
3363  assert((!SelLocs.empty() || isImplicit) &&
3364         "No selector locs for non-implicit message");
3365  ObjCMessageExpr *Mem;
3366  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3367  if (isImplicit)
3368    Mem = alloc(Context, Args.size(), 0);
3369  else
3370    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3371  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3372                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
3373                                   isImplicit);
3374}
3375
3376ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
3377                                              unsigned NumArgs,
3378                                              unsigned NumStoredSelLocs) {
3379  ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
3380  return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
3381}
3382
3383ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3384                                        ArrayRef<Expr *> Args,
3385                                        SourceLocation RBraceLoc,
3386                                        ArrayRef<SourceLocation> SelLocs,
3387                                        Selector Sel,
3388                                        SelectorLocationsKind &SelLocsK) {
3389  SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
3390  unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
3391                                                               : 0;
3392  return alloc(C, Args.size(), NumStoredSelLocs);
3393}
3394
3395ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
3396                                        unsigned NumArgs,
3397                                        unsigned NumStoredSelLocs) {
3398  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
3399    NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
3400  return (ObjCMessageExpr *)C.Allocate(Size,
3401                                     llvm::AlignOf<ObjCMessageExpr>::Alignment);
3402}
3403
3404void ObjCMessageExpr::getSelectorLocs(
3405                               SmallVectorImpl<SourceLocation> &SelLocs) const {
3406  for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
3407    SelLocs.push_back(getSelectorLoc(i));
3408}
3409
3410SourceRange ObjCMessageExpr::getReceiverRange() const {
3411  switch (getReceiverKind()) {
3412  case Instance:
3413    return getInstanceReceiver()->getSourceRange();
3414
3415  case Class:
3416    return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
3417
3418  case SuperInstance:
3419  case SuperClass:
3420    return getSuperLoc();
3421  }
3422
3423  llvm_unreachable("Invalid ReceiverKind!");
3424}
3425
3426Selector ObjCMessageExpr::getSelector() const {
3427  if (HasMethod)
3428    return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
3429                                                               ->getSelector();
3430  return Selector(SelectorOrMethod);
3431}
3432
3433QualType ObjCMessageExpr::getReceiverType() const {
3434  switch (getReceiverKind()) {
3435  case Instance:
3436    return getInstanceReceiver()->getType();
3437  case Class:
3438    return getClassReceiver();
3439  case SuperInstance:
3440  case SuperClass:
3441    return getSuperType();
3442  }
3443
3444  llvm_unreachable("unexpected receiver kind");
3445}
3446
3447ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
3448  QualType T = getReceiverType();
3449
3450  if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>())
3451    return Ptr->getInterfaceDecl();
3452
3453  if (const ObjCObjectType *Ty = T->getAs<ObjCObjectType>())
3454    return Ty->getInterface();
3455
3456  return 0;
3457}
3458
3459StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
3460  switch (getBridgeKind()) {
3461  case OBC_Bridge:
3462    return "__bridge";
3463  case OBC_BridgeTransfer:
3464    return "__bridge_transfer";
3465  case OBC_BridgeRetained:
3466    return "__bridge_retained";
3467  }
3468
3469  llvm_unreachable("Invalid BridgeKind!");
3470}
3471
3472bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
3473  return getCond()->EvaluateKnownConstInt(C) != 0;
3474}
3475
3476ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, ArrayRef<Expr*> args,
3477                                     QualType Type, SourceLocation BLoc,
3478                                     SourceLocation RP)
3479   : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3480          Type->isDependentType(), Type->isDependentType(),
3481          Type->isInstantiationDependentType(),
3482          Type->containsUnexpandedParameterPack()),
3483     BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3484{
3485  SubExprs = new (C) Stmt*[args.size()];
3486  for (unsigned i = 0; i != args.size(); i++) {
3487    if (args[i]->isTypeDependent())
3488      ExprBits.TypeDependent = true;
3489    if (args[i]->isValueDependent())
3490      ExprBits.ValueDependent = true;
3491    if (args[i]->isInstantiationDependent())
3492      ExprBits.InstantiationDependent = true;
3493    if (args[i]->containsUnexpandedParameterPack())
3494      ExprBits.ContainsUnexpandedParameterPack = true;
3495
3496    SubExprs[i] = args[i];
3497  }
3498}
3499
3500void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
3501                                 unsigned NumExprs) {
3502  if (SubExprs) C.Deallocate(SubExprs);
3503
3504  SubExprs = new (C) Stmt* [NumExprs];
3505  this->NumExprs = NumExprs;
3506  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
3507}
3508
3509GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3510                               SourceLocation GenericLoc, Expr *ControllingExpr,
3511                               ArrayRef<TypeSourceInfo*> AssocTypes,
3512                               ArrayRef<Expr*> AssocExprs,
3513                               SourceLocation DefaultLoc,
3514                               SourceLocation RParenLoc,
3515                               bool ContainsUnexpandedParameterPack,
3516                               unsigned ResultIndex)
3517  : Expr(GenericSelectionExprClass,
3518         AssocExprs[ResultIndex]->getType(),
3519         AssocExprs[ResultIndex]->getValueKind(),
3520         AssocExprs[ResultIndex]->getObjectKind(),
3521         AssocExprs[ResultIndex]->isTypeDependent(),
3522         AssocExprs[ResultIndex]->isValueDependent(),
3523         AssocExprs[ResultIndex]->isInstantiationDependent(),
3524         ContainsUnexpandedParameterPack),
3525    AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3526    SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3527    NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
3528    GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3529  SubExprs[CONTROLLING] = ControllingExpr;
3530  assert(AssocTypes.size() == AssocExprs.size());
3531  std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3532  std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3533}
3534
3535GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3536                               SourceLocation GenericLoc, Expr *ControllingExpr,
3537                               ArrayRef<TypeSourceInfo*> AssocTypes,
3538                               ArrayRef<Expr*> AssocExprs,
3539                               SourceLocation DefaultLoc,
3540                               SourceLocation RParenLoc,
3541                               bool ContainsUnexpandedParameterPack)
3542  : Expr(GenericSelectionExprClass,
3543         Context.DependentTy,
3544         VK_RValue,
3545         OK_Ordinary,
3546         /*isTypeDependent=*/true,
3547         /*isValueDependent=*/true,
3548         /*isInstantiationDependent=*/true,
3549         ContainsUnexpandedParameterPack),
3550    AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3551    SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3552    NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
3553    DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3554  SubExprs[CONTROLLING] = ControllingExpr;
3555  assert(AssocTypes.size() == AssocExprs.size());
3556  std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3557  std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3558}
3559
3560//===----------------------------------------------------------------------===//
3561//  DesignatedInitExpr
3562//===----------------------------------------------------------------------===//
3563
3564IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3565  assert(Kind == FieldDesignator && "Only valid on a field designator");
3566  if (Field.NameOrField & 0x01)
3567    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3568  else
3569    return getField()->getIdentifier();
3570}
3571
3572DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
3573                                       unsigned NumDesignators,
3574                                       const Designator *Designators,
3575                                       SourceLocation EqualOrColonLoc,
3576                                       bool GNUSyntax,
3577                                       ArrayRef<Expr*> IndexExprs,
3578                                       Expr *Init)
3579  : Expr(DesignatedInitExprClass, Ty,
3580         Init->getValueKind(), Init->getObjectKind(),
3581         Init->isTypeDependent(), Init->isValueDependent(),
3582         Init->isInstantiationDependent(),
3583         Init->containsUnexpandedParameterPack()),
3584    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3585    NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
3586  this->Designators = new (C) Designator[NumDesignators];
3587
3588  // Record the initializer itself.
3589  child_range Child = children();
3590  *Child++ = Init;
3591
3592  // Copy the designators and their subexpressions, computing
3593  // value-dependence along the way.
3594  unsigned IndexIdx = 0;
3595  for (unsigned I = 0; I != NumDesignators; ++I) {
3596    this->Designators[I] = Designators[I];
3597
3598    if (this->Designators[I].isArrayDesignator()) {
3599      // Compute type- and value-dependence.
3600      Expr *Index = IndexExprs[IndexIdx];
3601      if (Index->isTypeDependent() || Index->isValueDependent())
3602        ExprBits.ValueDependent = true;
3603      if (Index->isInstantiationDependent())
3604        ExprBits.InstantiationDependent = true;
3605      // Propagate unexpanded parameter packs.
3606      if (Index->containsUnexpandedParameterPack())
3607        ExprBits.ContainsUnexpandedParameterPack = true;
3608
3609      // Copy the index expressions into permanent storage.
3610      *Child++ = IndexExprs[IndexIdx++];
3611    } else if (this->Designators[I].isArrayRangeDesignator()) {
3612      // Compute type- and value-dependence.
3613      Expr *Start = IndexExprs[IndexIdx];
3614      Expr *End = IndexExprs[IndexIdx + 1];
3615      if (Start->isTypeDependent() || Start->isValueDependent() ||
3616          End->isTypeDependent() || End->isValueDependent()) {
3617        ExprBits.ValueDependent = true;
3618        ExprBits.InstantiationDependent = true;
3619      } else if (Start->isInstantiationDependent() ||
3620                 End->isInstantiationDependent()) {
3621        ExprBits.InstantiationDependent = true;
3622      }
3623
3624      // Propagate unexpanded parameter packs.
3625      if (Start->containsUnexpandedParameterPack() ||
3626          End->containsUnexpandedParameterPack())
3627        ExprBits.ContainsUnexpandedParameterPack = true;
3628
3629      // Copy the start/end expressions into permanent storage.
3630      *Child++ = IndexExprs[IndexIdx++];
3631      *Child++ = IndexExprs[IndexIdx++];
3632    }
3633  }
3634
3635  assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
3636}
3637
3638DesignatedInitExpr *
3639DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
3640                           unsigned NumDesignators,
3641                           ArrayRef<Expr*> IndexExprs,
3642                           SourceLocation ColonOrEqualLoc,
3643                           bool UsesColonSyntax, Expr *Init) {
3644  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3645                         sizeof(Stmt *) * (IndexExprs.size() + 1), 8);
3646  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3647                                      ColonOrEqualLoc, UsesColonSyntax,
3648                                      IndexExprs, Init);
3649}
3650
3651DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
3652                                                    unsigned NumIndexExprs) {
3653  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3654                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3655  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3656}
3657
3658void DesignatedInitExpr::setDesignators(ASTContext &C,
3659                                        const Designator *Desigs,
3660                                        unsigned NumDesigs) {
3661  Designators = new (C) Designator[NumDesigs];
3662  NumDesignators = NumDesigs;
3663  for (unsigned I = 0; I != NumDesigs; ++I)
3664    Designators[I] = Desigs[I];
3665}
3666
3667SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3668  DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3669  if (size() == 1)
3670    return DIE->getDesignator(0)->getSourceRange();
3671  return SourceRange(DIE->getDesignator(0)->getLocStart(),
3672                     DIE->getDesignator(size()-1)->getLocEnd());
3673}
3674
3675SourceLocation DesignatedInitExpr::getLocStart() const {
3676  SourceLocation StartLoc;
3677  Designator &First =
3678    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3679  if (First.isFieldDesignator()) {
3680    if (GNUSyntax)
3681      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3682    else
3683      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3684  } else
3685    StartLoc =
3686      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3687  return StartLoc;
3688}
3689
3690SourceLocation DesignatedInitExpr::getLocEnd() const {
3691  return getInit()->getLocEnd();
3692}
3693
3694Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
3695  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3696  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3697  Ptr += sizeof(DesignatedInitExpr);
3698  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3699  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3700}
3701
3702Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
3703  assert(D.Kind == Designator::ArrayRangeDesignator &&
3704         "Requires array range designator");
3705  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3706  Ptr += sizeof(DesignatedInitExpr);
3707  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3708  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3709}
3710
3711Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
3712  assert(D.Kind == Designator::ArrayRangeDesignator &&
3713         "Requires array range designator");
3714  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3715  Ptr += sizeof(DesignatedInitExpr);
3716  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3717  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3718}
3719
3720/// \brief Replaces the designator at index @p Idx with the series
3721/// of designators in [First, Last).
3722void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
3723                                          const Designator *First,
3724                                          const Designator *Last) {
3725  unsigned NumNewDesignators = Last - First;
3726  if (NumNewDesignators == 0) {
3727    std::copy_backward(Designators + Idx + 1,
3728                       Designators + NumDesignators,
3729                       Designators + Idx);
3730    --NumNewDesignators;
3731    return;
3732  } else if (NumNewDesignators == 1) {
3733    Designators[Idx] = *First;
3734    return;
3735  }
3736
3737  Designator *NewDesignators
3738    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3739  std::copy(Designators, Designators + Idx, NewDesignators);
3740  std::copy(First, Last, NewDesignators + Idx);
3741  std::copy(Designators + Idx + 1, Designators + NumDesignators,
3742            NewDesignators + Idx + NumNewDesignators);
3743  Designators = NewDesignators;
3744  NumDesignators = NumDesignators - 1 + NumNewDesignators;
3745}
3746
3747ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
3748                             ArrayRef<Expr*> exprs,
3749                             SourceLocation rparenloc)
3750  : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3751         false, false, false, false),
3752    NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3753  Exprs = new (C) Stmt*[exprs.size()];
3754  for (unsigned i = 0; i != exprs.size(); ++i) {
3755    if (exprs[i]->isTypeDependent())
3756      ExprBits.TypeDependent = true;
3757    if (exprs[i]->isValueDependent())
3758      ExprBits.ValueDependent = true;
3759    if (exprs[i]->isInstantiationDependent())
3760      ExprBits.InstantiationDependent = true;
3761    if (exprs[i]->containsUnexpandedParameterPack())
3762      ExprBits.ContainsUnexpandedParameterPack = true;
3763
3764    Exprs[i] = exprs[i];
3765  }
3766}
3767
3768const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3769  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3770    e = ewc->getSubExpr();
3771  if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3772    e = m->GetTemporaryExpr();
3773  e = cast<CXXConstructExpr>(e)->getArg(0);
3774  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3775    e = ice->getSubExpr();
3776  return cast<OpaqueValueExpr>(e);
3777}
3778
3779PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &Context, EmptyShell sh,
3780                                           unsigned numSemanticExprs) {
3781  void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
3782                                    (1 + numSemanticExprs) * sizeof(Expr*),
3783                                  llvm::alignOf<PseudoObjectExpr>());
3784  return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3785}
3786
3787PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3788  : Expr(PseudoObjectExprClass, shell) {
3789  PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3790}
3791
3792PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &C, Expr *syntax,
3793                                           ArrayRef<Expr*> semantics,
3794                                           unsigned resultIndex) {
3795  assert(syntax && "no syntactic expression!");
3796  assert(semantics.size() && "no semantic expressions!");
3797
3798  QualType type;
3799  ExprValueKind VK;
3800  if (resultIndex == NoResult) {
3801    type = C.VoidTy;
3802    VK = VK_RValue;
3803  } else {
3804    assert(resultIndex < semantics.size());
3805    type = semantics[resultIndex]->getType();
3806    VK = semantics[resultIndex]->getValueKind();
3807    assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3808  }
3809
3810  void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
3811                              (1 + semantics.size()) * sizeof(Expr*),
3812                            llvm::alignOf<PseudoObjectExpr>());
3813  return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3814                                      resultIndex);
3815}
3816
3817PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3818                                   Expr *syntax, ArrayRef<Expr*> semantics,
3819                                   unsigned resultIndex)
3820  : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3821         /*filled in at end of ctor*/ false, false, false, false) {
3822  PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3823  PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3824
3825  for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3826    Expr *E = (i == 0 ? syntax : semantics[i-1]);
3827    getSubExprsBuffer()[i] = E;
3828
3829    if (E->isTypeDependent())
3830      ExprBits.TypeDependent = true;
3831    if (E->isValueDependent())
3832      ExprBits.ValueDependent = true;
3833    if (E->isInstantiationDependent())
3834      ExprBits.InstantiationDependent = true;
3835    if (E->containsUnexpandedParameterPack())
3836      ExprBits.ContainsUnexpandedParameterPack = true;
3837
3838    if (isa<OpaqueValueExpr>(E))
3839      assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 &&
3840             "opaque-value semantic expressions for pseudo-object "
3841             "operations must have sources");
3842  }
3843}
3844
3845//===----------------------------------------------------------------------===//
3846//  ExprIterator.
3847//===----------------------------------------------------------------------===//
3848
3849Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
3850Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
3851Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
3852const Expr* ConstExprIterator::operator[](size_t idx) const {
3853  return cast<Expr>(I[idx]);
3854}
3855const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
3856const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
3857
3858//===----------------------------------------------------------------------===//
3859//  Child Iterators for iterating over subexpressions/substatements
3860//===----------------------------------------------------------------------===//
3861
3862// UnaryExprOrTypeTraitExpr
3863Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
3864  // If this is of a type and the type is a VLA type (and not a typedef), the
3865  // size expression of the VLA needs to be treated as an executable expression.
3866  // Why isn't this weirdness documented better in StmtIterator?
3867  if (isArgumentType()) {
3868    if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
3869                                   getArgumentType().getTypePtr()))
3870      return child_range(child_iterator(T), child_iterator());
3871    return child_range();
3872  }
3873  return child_range(&Argument.Ex, &Argument.Ex + 1);
3874}
3875
3876// ObjCMessageExpr
3877Stmt::child_range ObjCMessageExpr::children() {
3878  Stmt **begin;
3879  if (getReceiverKind() == Instance)
3880    begin = reinterpret_cast<Stmt **>(this + 1);
3881  else
3882    begin = reinterpret_cast<Stmt **>(getArgs());
3883  return child_range(begin,
3884                     reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
3885}
3886
3887ObjCArrayLiteral::ObjCArrayLiteral(ArrayRef<Expr *> Elements,
3888                                   QualType T, ObjCMethodDecl *Method,
3889                                   SourceRange SR)
3890  : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
3891         false, false, false, false),
3892    NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
3893{
3894  Expr **SaveElements = getElements();
3895  for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
3896    if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
3897      ExprBits.ValueDependent = true;
3898    if (Elements[I]->isInstantiationDependent())
3899      ExprBits.InstantiationDependent = true;
3900    if (Elements[I]->containsUnexpandedParameterPack())
3901      ExprBits.ContainsUnexpandedParameterPack = true;
3902
3903    SaveElements[I] = Elements[I];
3904  }
3905}
3906
3907ObjCArrayLiteral *ObjCArrayLiteral::Create(ASTContext &C,
3908                                           ArrayRef<Expr *> Elements,
3909                                           QualType T, ObjCMethodDecl * Method,
3910                                           SourceRange SR) {
3911  void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3912                         + Elements.size() * sizeof(Expr *));
3913  return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
3914}
3915
3916ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(ASTContext &C,
3917                                                unsigned NumElements) {
3918
3919  void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3920                         + NumElements * sizeof(Expr *));
3921  return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
3922}
3923
3924ObjCDictionaryLiteral::ObjCDictionaryLiteral(
3925                                             ArrayRef<ObjCDictionaryElement> VK,
3926                                             bool HasPackExpansions,
3927                                             QualType T, ObjCMethodDecl *method,
3928                                             SourceRange SR)
3929  : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
3930         false, false),
3931    NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
3932    DictWithObjectsMethod(method)
3933{
3934  KeyValuePair *KeyValues = getKeyValues();
3935  ExpansionData *Expansions = getExpansionData();
3936  for (unsigned I = 0; I < NumElements; I++) {
3937    if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
3938        VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
3939      ExprBits.ValueDependent = true;
3940    if (VK[I].Key->isInstantiationDependent() ||
3941        VK[I].Value->isInstantiationDependent())
3942      ExprBits.InstantiationDependent = true;
3943    if (VK[I].EllipsisLoc.isInvalid() &&
3944        (VK[I].Key->containsUnexpandedParameterPack() ||
3945         VK[I].Value->containsUnexpandedParameterPack()))
3946      ExprBits.ContainsUnexpandedParameterPack = true;
3947
3948    KeyValues[I].Key = VK[I].Key;
3949    KeyValues[I].Value = VK[I].Value;
3950    if (Expansions) {
3951      Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
3952      if (VK[I].NumExpansions)
3953        Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
3954      else
3955        Expansions[I].NumExpansionsPlusOne = 0;
3956    }
3957  }
3958}
3959
3960ObjCDictionaryLiteral *
3961ObjCDictionaryLiteral::Create(ASTContext &C,
3962                              ArrayRef<ObjCDictionaryElement> VK,
3963                              bool HasPackExpansions,
3964                              QualType T, ObjCMethodDecl *method,
3965                              SourceRange SR) {
3966  unsigned ExpansionsSize = 0;
3967  if (HasPackExpansions)
3968    ExpansionsSize = sizeof(ExpansionData) * VK.size();
3969
3970  void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
3971                         sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
3972  return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
3973}
3974
3975ObjCDictionaryLiteral *
3976ObjCDictionaryLiteral::CreateEmpty(ASTContext &C, unsigned NumElements,
3977                                   bool HasPackExpansions) {
3978  unsigned ExpansionsSize = 0;
3979  if (HasPackExpansions)
3980    ExpansionsSize = sizeof(ExpansionData) * NumElements;
3981  void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
3982                         sizeof(KeyValuePair) * NumElements + ExpansionsSize);
3983  return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
3984                                         HasPackExpansions);
3985}
3986
3987ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(ASTContext &C,
3988                                                   Expr *base,
3989                                                   Expr *key, QualType T,
3990                                                   ObjCMethodDecl *getMethod,
3991                                                   ObjCMethodDecl *setMethod,
3992                                                   SourceLocation RB) {
3993  void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
3994  return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
3995                                        OK_ObjCSubscript,
3996                                        getMethod, setMethod, RB);
3997}
3998
3999AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
4000                       QualType t, AtomicOp op, SourceLocation RP)
4001  : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
4002         false, false, false, false),
4003    NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
4004{
4005  assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4006  for (unsigned i = 0; i != args.size(); i++) {
4007    if (args[i]->isTypeDependent())
4008      ExprBits.TypeDependent = true;
4009    if (args[i]->isValueDependent())
4010      ExprBits.ValueDependent = true;
4011    if (args[i]->isInstantiationDependent())
4012      ExprBits.InstantiationDependent = true;
4013    if (args[i]->containsUnexpandedParameterPack())
4014      ExprBits.ContainsUnexpandedParameterPack = true;
4015
4016    SubExprs[i] = args[i];
4017  }
4018}
4019
4020unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4021  switch (Op) {
4022  case AO__c11_atomic_init:
4023  case AO__c11_atomic_load:
4024  case AO__atomic_load_n:
4025    return 2;
4026
4027  case AO__c11_atomic_store:
4028  case AO__c11_atomic_exchange:
4029  case AO__atomic_load:
4030  case AO__atomic_store:
4031  case AO__atomic_store_n:
4032  case AO__atomic_exchange_n:
4033  case AO__c11_atomic_fetch_add:
4034  case AO__c11_atomic_fetch_sub:
4035  case AO__c11_atomic_fetch_and:
4036  case AO__c11_atomic_fetch_or:
4037  case AO__c11_atomic_fetch_xor:
4038  case AO__atomic_fetch_add:
4039  case AO__atomic_fetch_sub:
4040  case AO__atomic_fetch_and:
4041  case AO__atomic_fetch_or:
4042  case AO__atomic_fetch_xor:
4043  case AO__atomic_fetch_nand:
4044  case AO__atomic_add_fetch:
4045  case AO__atomic_sub_fetch:
4046  case AO__atomic_and_fetch:
4047  case AO__atomic_or_fetch:
4048  case AO__atomic_xor_fetch:
4049  case AO__atomic_nand_fetch:
4050    return 3;
4051
4052  case AO__atomic_exchange:
4053    return 4;
4054
4055  case AO__c11_atomic_compare_exchange_strong:
4056  case AO__c11_atomic_compare_exchange_weak:
4057    return 5;
4058
4059  case AO__atomic_compare_exchange:
4060  case AO__atomic_compare_exchange_n:
4061    return 6;
4062  }
4063  llvm_unreachable("unknown atomic op");
4064}
4065