Expr.cpp revision e1226d24d23510e422160eb2413d9bb90de9b144
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/DeclObjC.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/RecordLayout.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/Basic/TargetInfo.h"
20using namespace clang;
21
22//===----------------------------------------------------------------------===//
23// Primary Expressions.
24//===----------------------------------------------------------------------===//
25
26/// getValueAsApproximateDouble - This returns the value as an inaccurate
27/// double.  Note that this may cause loss of precision, but is useful for
28/// debugging dumps, etc.
29double FloatingLiteral::getValueAsApproximateDouble() const {
30  llvm::APFloat V = getValue();
31  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven);
32  return V.convertToDouble();
33}
34
35
36StringLiteral::StringLiteral(const char *strData, unsigned byteLength,
37                             bool Wide, QualType t, SourceLocation firstLoc,
38                             SourceLocation lastLoc) :
39  Expr(StringLiteralClass, t) {
40  // OPTIMIZE: could allocate this appended to the StringLiteral.
41  char *AStrData = new char[byteLength];
42  memcpy(AStrData, strData, byteLength);
43  StrData = AStrData;
44  ByteLength = byteLength;
45  IsWide = Wide;
46  firstTokLoc = firstLoc;
47  lastTokLoc = lastLoc;
48}
49
50StringLiteral::~StringLiteral() {
51  delete[] StrData;
52}
53
54bool UnaryOperator::isPostfix(Opcode Op) {
55  switch (Op) {
56  case PostInc:
57  case PostDec:
58    return true;
59  default:
60    return false;
61  }
62}
63
64bool UnaryOperator::isPrefix(Opcode Op) {
65  switch (Op) {
66    case PreInc:
67    case PreDec:
68      return true;
69    default:
70      return false;
71  }
72}
73
74/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
75/// corresponds to, e.g. "sizeof" or "[pre]++".
76const char *UnaryOperator::getOpcodeStr(Opcode Op) {
77  switch (Op) {
78  default: assert(0 && "Unknown unary operator");
79  case PostInc: return "++";
80  case PostDec: return "--";
81  case PreInc:  return "++";
82  case PreDec:  return "--";
83  case AddrOf:  return "&";
84  case Deref:   return "*";
85  case Plus:    return "+";
86  case Minus:   return "-";
87  case Not:     return "~";
88  case LNot:    return "!";
89  case Real:    return "__real";
90  case Imag:    return "__imag";
91  case SizeOf:  return "sizeof";
92  case AlignOf: return "alignof";
93  case Extension: return "__extension__";
94  case OffsetOf: return "__builtin_offsetof";
95  }
96}
97
98//===----------------------------------------------------------------------===//
99// Postfix Operators.
100//===----------------------------------------------------------------------===//
101
102
103CallExpr::CallExpr(Expr *fn, Expr **args, unsigned numargs, QualType t,
104                   SourceLocation rparenloc)
105  : Expr(CallExprClass, t), NumArgs(numargs) {
106  SubExprs = new Stmt*[numargs+1];
107  SubExprs[FN] = fn;
108  for (unsigned i = 0; i != numargs; ++i)
109    SubExprs[i+ARGS_START] = args[i];
110  RParenLoc = rparenloc;
111}
112
113/// setNumArgs - This changes the number of arguments present in this call.
114/// Any orphaned expressions are deleted by this, and any new operands are set
115/// to null.
116void CallExpr::setNumArgs(unsigned NumArgs) {
117  // No change, just return.
118  if (NumArgs == getNumArgs()) return;
119
120  // If shrinking # arguments, just delete the extras and forgot them.
121  if (NumArgs < getNumArgs()) {
122    for (unsigned i = NumArgs, e = getNumArgs(); i != e; ++i)
123      delete getArg(i);
124    this->NumArgs = NumArgs;
125    return;
126  }
127
128  // Otherwise, we are growing the # arguments.  New an bigger argument array.
129  Stmt **NewSubExprs = new Stmt*[NumArgs+1];
130  // Copy over args.
131  for (unsigned i = 0; i != getNumArgs()+ARGS_START; ++i)
132    NewSubExprs[i] = SubExprs[i];
133  // Null out new args.
134  for (unsigned i = getNumArgs()+ARGS_START; i != NumArgs+ARGS_START; ++i)
135    NewSubExprs[i] = 0;
136
137  delete[] SubExprs;
138  SubExprs = NewSubExprs;
139  this->NumArgs = NumArgs;
140}
141
142bool CallExpr::isBuiltinConstantExpr() const {
143  // All simple function calls (e.g. func()) are implicitly cast to pointer to
144  // function. As a result, we try and obtain the DeclRefExpr from the
145  // ImplicitCastExpr.
146  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
147  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
148    return false;
149
150  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
151  if (!DRE)
152    return false;
153
154  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
155  if (!FDecl)
156    return false;
157
158  unsigned builtinID = FDecl->getIdentifier()->getBuiltinID();
159  if (!builtinID)
160    return false;
161
162  // We have a builtin that is a constant expression
163  return builtinID == Builtin::BI__builtin___CFStringMakeConstantString ||
164         builtinID == Builtin::BI__builtin_classify_type ||
165         builtinID == Builtin::BI__builtin_huge_valf;
166}
167
168bool CallExpr::isBuiltinClassifyType(llvm::APSInt &Result) const {
169  // The following enum mimics gcc's internal "typeclass.h" file.
170  enum gcc_type_class {
171    no_type_class = -1,
172    void_type_class, integer_type_class, char_type_class,
173    enumeral_type_class, boolean_type_class,
174    pointer_type_class, reference_type_class, offset_type_class,
175    real_type_class, complex_type_class,
176    function_type_class, method_type_class,
177    record_type_class, union_type_class,
178    array_type_class, string_type_class,
179    lang_type_class
180  };
181  Result.setIsSigned(true);
182
183  // All simple function calls (e.g. func()) are implicitly cast to pointer to
184  // function. As a result, we try and obtain the DeclRefExpr from the
185  // ImplicitCastExpr.
186  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
187  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
188    return false;
189  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
190  if (!DRE)
191    return false;
192
193  // We have a DeclRefExpr.
194  if (strcmp(DRE->getDecl()->getName(), "__builtin_classify_type") == 0) {
195    // If no argument was supplied, default to "no_type_class". This isn't
196    // ideal, however it's what gcc does.
197    Result = static_cast<uint64_t>(no_type_class);
198    if (NumArgs >= 1) {
199      QualType argType = getArg(0)->getType();
200
201      if (argType->isVoidType())
202        Result = void_type_class;
203      else if (argType->isEnumeralType())
204        Result = enumeral_type_class;
205      else if (argType->isBooleanType())
206        Result = boolean_type_class;
207      else if (argType->isCharType())
208        Result = string_type_class; // gcc doesn't appear to use char_type_class
209      else if (argType->isIntegerType())
210        Result = integer_type_class;
211      else if (argType->isPointerType())
212        Result = pointer_type_class;
213      else if (argType->isReferenceType())
214        Result = reference_type_class;
215      else if (argType->isRealType())
216        Result = real_type_class;
217      else if (argType->isComplexType())
218        Result = complex_type_class;
219      else if (argType->isFunctionType())
220        Result = function_type_class;
221      else if (argType->isStructureType())
222        Result = record_type_class;
223      else if (argType->isUnionType())
224        Result = union_type_class;
225      else if (argType->isArrayType())
226        Result = array_type_class;
227      else if (argType->isUnionType())
228        Result = union_type_class;
229      else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
230        assert(0 && "CallExpr::isBuiltinClassifyType(): unimplemented type");
231    }
232    return true;
233  }
234  return false;
235}
236
237/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
238/// corresponds to, e.g. "<<=".
239const char *BinaryOperator::getOpcodeStr(Opcode Op) {
240  switch (Op) {
241  default: assert(0 && "Unknown binary operator");
242  case Mul:       return "*";
243  case Div:       return "/";
244  case Rem:       return "%";
245  case Add:       return "+";
246  case Sub:       return "-";
247  case Shl:       return "<<";
248  case Shr:       return ">>";
249  case LT:        return "<";
250  case GT:        return ">";
251  case LE:        return "<=";
252  case GE:        return ">=";
253  case EQ:        return "==";
254  case NE:        return "!=";
255  case And:       return "&";
256  case Xor:       return "^";
257  case Or:        return "|";
258  case LAnd:      return "&&";
259  case LOr:       return "||";
260  case Assign:    return "=";
261  case MulAssign: return "*=";
262  case DivAssign: return "/=";
263  case RemAssign: return "%=";
264  case AddAssign: return "+=";
265  case SubAssign: return "-=";
266  case ShlAssign: return "<<=";
267  case ShrAssign: return ">>=";
268  case AndAssign: return "&=";
269  case XorAssign: return "^=";
270  case OrAssign:  return "|=";
271  case Comma:     return ",";
272  }
273}
274
275InitListExpr::InitListExpr(SourceLocation lbraceloc,
276                           Expr **initexprs, unsigned numinits,
277                           SourceLocation rbraceloc)
278  : Expr(InitListExprClass, QualType()),
279    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc)
280{
281  for (unsigned i = 0; i != numinits; i++)
282    InitExprs.push_back(initexprs[i]);
283}
284
285/// getFunctionType - Return the underlying function type for this block.
286///
287const FunctionType *BlockExpr::getFunctionType() const {
288  return getType()->getAsBlockPointerType()->
289                    getPointeeType()->getAsFunctionType();
290}
291
292//===----------------------------------------------------------------------===//
293// Generic Expression Routines
294//===----------------------------------------------------------------------===//
295
296/// hasLocalSideEffect - Return true if this immediate expression has side
297/// effects, not counting any sub-expressions.
298bool Expr::hasLocalSideEffect() const {
299  switch (getStmtClass()) {
300  default:
301    return false;
302  case ParenExprClass:
303    return cast<ParenExpr>(this)->getSubExpr()->hasLocalSideEffect();
304  case UnaryOperatorClass: {
305    const UnaryOperator *UO = cast<UnaryOperator>(this);
306
307    switch (UO->getOpcode()) {
308    default: return false;
309    case UnaryOperator::PostInc:
310    case UnaryOperator::PostDec:
311    case UnaryOperator::PreInc:
312    case UnaryOperator::PreDec:
313      return true;                     // ++/--
314
315    case UnaryOperator::Deref:
316      // Dereferencing a volatile pointer is a side-effect.
317      return getType().isVolatileQualified();
318    case UnaryOperator::Real:
319    case UnaryOperator::Imag:
320      // accessing a piece of a volatile complex is a side-effect.
321      return UO->getSubExpr()->getType().isVolatileQualified();
322
323    case UnaryOperator::Extension:
324      return UO->getSubExpr()->hasLocalSideEffect();
325    }
326  }
327  case BinaryOperatorClass: {
328    const BinaryOperator *BinOp = cast<BinaryOperator>(this);
329    // Consider comma to have side effects if the LHS and RHS both do.
330    if (BinOp->getOpcode() == BinaryOperator::Comma)
331      return BinOp->getLHS()->hasLocalSideEffect() &&
332             BinOp->getRHS()->hasLocalSideEffect();
333
334    return BinOp->isAssignmentOp();
335  }
336  case CompoundAssignOperatorClass:
337    return true;
338
339  case ConditionalOperatorClass: {
340    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
341    return Exp->getCond()->hasLocalSideEffect()
342           || (Exp->getLHS() && Exp->getLHS()->hasLocalSideEffect())
343           || (Exp->getRHS() && Exp->getRHS()->hasLocalSideEffect());
344  }
345
346  case MemberExprClass:
347  case ArraySubscriptExprClass:
348    // If the base pointer or element is to a volatile pointer/field, accessing
349    // if is a side effect.
350    return getType().isVolatileQualified();
351
352  case CallExprClass:
353    // TODO: check attributes for pure/const.   "void foo() { strlen("bar"); }"
354    // should warn.
355    return true;
356  case ObjCMessageExprClass:
357    return true;
358  case StmtExprClass: {
359    // Statement exprs don't logically have side effects themselves, but are
360    // sometimes used in macros in ways that give them a type that is unused.
361    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
362    // however, if the result of the stmt expr is dead, we don't want to emit a
363    // warning.
364    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
365    if (!CS->body_empty())
366      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
367        return E->hasLocalSideEffect();
368    return false;
369  }
370  case ExplicitCastExprClass:
371  case CXXFunctionalCastExprClass:
372    // If this is a cast to void, check the operand.  Otherwise, the result of
373    // the cast is unused.
374    if (getType()->isVoidType())
375      return cast<CastExpr>(this)->getSubExpr()->hasLocalSideEffect();
376    return false;
377
378  case ImplicitCastExprClass:
379    // Check the operand, since implicit casts are inserted by Sema
380    return cast<ImplicitCastExpr>(this)->getSubExpr()->hasLocalSideEffect();
381
382  case CXXDefaultArgExprClass:
383    return cast<CXXDefaultArgExpr>(this)->getExpr()->hasLocalSideEffect();
384  }
385}
386
387/// isLvalue - C99 6.3.2.1: an lvalue is an expression with an object type or an
388/// incomplete type other than void. Nonarray expressions that can be lvalues:
389///  - name, where name must be a variable
390///  - e[i]
391///  - (e), where e must be an lvalue
392///  - e.name, where e must be an lvalue
393///  - e->name
394///  - *e, the type of e cannot be a function type
395///  - string-constant
396///  - (__real__ e) and (__imag__ e) where e is an lvalue  [GNU extension]
397///  - reference type [C++ [expr]]
398///
399Expr::isLvalueResult Expr::isLvalue(ASTContext &Ctx) const {
400  // first, check the type (C99 6.3.2.1)
401  if (TR->isFunctionType()) // from isObjectType()
402    return LV_NotObjectType;
403
404  // Allow qualified void which is an incomplete type other than void (yuck).
405  if (TR->isVoidType() && !Ctx.getCanonicalType(TR).getCVRQualifiers())
406    return LV_IncompleteVoidType;
407
408  if (TR->isReferenceType()) // C++ [expr]
409    return LV_Valid;
410
411  // the type looks fine, now check the expression
412  switch (getStmtClass()) {
413  case StringLiteralClass: // C99 6.5.1p4
414    return LV_Valid;
415  case ArraySubscriptExprClass: // C99 6.5.3p4 (e1[e2] == (*((e1)+(e2))))
416    // For vectors, make sure base is an lvalue (i.e. not a function call).
417    if (cast<ArraySubscriptExpr>(this)->getBase()->getType()->isVectorType())
418      return cast<ArraySubscriptExpr>(this)->getBase()->isLvalue(Ctx);
419    return LV_Valid;
420  case DeclRefExprClass: { // C99 6.5.1p2
421    const Decl *RefdDecl = cast<DeclRefExpr>(this)->getDecl();
422    if (isa<VarDecl>(RefdDecl) || isa<ImplicitParamDecl>(RefdDecl))
423      return LV_Valid;
424    break;
425  }
426  case BlockDeclRefExprClass: {
427    const BlockDeclRefExpr *BDR = cast<BlockDeclRefExpr>(this);
428    if (BDR->isByRef() && isa<VarDecl>(BDR->getDecl()))
429      return LV_Valid;
430    break;
431  }
432  case MemberExprClass: { // C99 6.5.2.3p4
433    const MemberExpr *m = cast<MemberExpr>(this);
434    return m->isArrow() ? LV_Valid : m->getBase()->isLvalue(Ctx);
435  }
436  case UnaryOperatorClass:
437    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Deref)
438      return LV_Valid; // C99 6.5.3p4
439
440    if (cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Real ||
441        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Imag ||
442        cast<UnaryOperator>(this)->getOpcode() == UnaryOperator::Extension)
443      return cast<UnaryOperator>(this)->getSubExpr()->isLvalue(Ctx);  // GNU.
444    break;
445  case ParenExprClass: // C99 6.5.1p5
446    return cast<ParenExpr>(this)->getSubExpr()->isLvalue(Ctx);
447  case CompoundLiteralExprClass: // C99 6.5.2.5p5
448    return LV_Valid;
449  case ExtVectorElementExprClass:
450    if (cast<ExtVectorElementExpr>(this)->containsDuplicateElements())
451      return LV_DuplicateVectorComponents;
452    return LV_Valid;
453  case ObjCIvarRefExprClass: // ObjC instance variables are lvalues.
454    return LV_Valid;
455  case ObjCPropertyRefExprClass: // FIXME: check if read-only property.
456    return LV_Valid;
457  case PredefinedExprClass:
458    return (cast<PredefinedExpr>(this)->getIdentType()
459               == PredefinedExpr::CXXThis
460            ? LV_InvalidExpression : LV_Valid);
461  case CXXDefaultArgExprClass:
462    return cast<CXXDefaultArgExpr>(this)->getExpr()->isLvalue(Ctx);
463  case CXXConditionDeclExprClass:
464    return LV_Valid;
465  default:
466    break;
467  }
468  return LV_InvalidExpression;
469}
470
471/// isModifiableLvalue - C99 6.3.2.1: an lvalue that does not have array type,
472/// does not have an incomplete type, does not have a const-qualified type, and
473/// if it is a structure or union, does not have any member (including,
474/// recursively, any member or element of all contained aggregates or unions)
475/// with a const-qualified type.
476Expr::isModifiableLvalueResult Expr::isModifiableLvalue(ASTContext &Ctx) const {
477  isLvalueResult lvalResult = isLvalue(Ctx);
478
479  switch (lvalResult) {
480  case LV_Valid: break;
481  case LV_NotObjectType: return MLV_NotObjectType;
482  case LV_IncompleteVoidType: return MLV_IncompleteVoidType;
483  case LV_DuplicateVectorComponents: return MLV_DuplicateVectorComponents;
484  case LV_InvalidExpression: return MLV_InvalidExpression;
485  }
486
487  QualType CT = Ctx.getCanonicalType(getType());
488
489  if (CT.isConstQualified())
490    return MLV_ConstQualified;
491  if (CT->isArrayType())
492    return MLV_ArrayType;
493  if (CT->isIncompleteType())
494    return MLV_IncompleteType;
495
496  if (const RecordType *r = CT->getAsRecordType()) {
497    if (r->hasConstFields())
498      return MLV_ConstQualified;
499  }
500  return MLV_Valid;
501}
502
503/// hasGlobalStorage - Return true if this expression has static storage
504/// duration.  This means that the address of this expression is a link-time
505/// constant.
506bool Expr::hasGlobalStorage() const {
507  switch (getStmtClass()) {
508  default:
509    return false;
510  case ParenExprClass:
511    return cast<ParenExpr>(this)->getSubExpr()->hasGlobalStorage();
512  case ImplicitCastExprClass:
513    return cast<ImplicitCastExpr>(this)->getSubExpr()->hasGlobalStorage();
514  case CompoundLiteralExprClass:
515    return cast<CompoundLiteralExpr>(this)->isFileScope();
516  case DeclRefExprClass: {
517    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
518    if (const VarDecl *VD = dyn_cast<VarDecl>(D))
519      return VD->hasGlobalStorage();
520    if (isa<FunctionDecl>(D))
521      return true;
522    return false;
523  }
524  case MemberExprClass: {
525    const MemberExpr *M = cast<MemberExpr>(this);
526    return !M->isArrow() && M->getBase()->hasGlobalStorage();
527  }
528  case ArraySubscriptExprClass:
529    return cast<ArraySubscriptExpr>(this)->getBase()->hasGlobalStorage();
530  case PredefinedExprClass:
531    return true;
532  case CXXDefaultArgExprClass:
533    return cast<CXXDefaultArgExpr>(this)->getExpr()->hasGlobalStorage();
534  }
535}
536
537Expr* Expr::IgnoreParens() {
538  Expr* E = this;
539  while (ParenExpr* P = dyn_cast<ParenExpr>(E))
540    E = P->getSubExpr();
541
542  return E;
543}
544
545/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
546/// or CastExprs or ImplicitCastExprs, returning their operand.
547Expr *Expr::IgnoreParenCasts() {
548  Expr *E = this;
549  while (true) {
550    if (ParenExpr *P = dyn_cast<ParenExpr>(E))
551      E = P->getSubExpr();
552    else if (CastExpr *P = dyn_cast<CastExpr>(E))
553      E = P->getSubExpr();
554    else
555      return E;
556  }
557}
558
559
560bool Expr::isConstantExpr(ASTContext &Ctx, SourceLocation *Loc) const {
561  switch (getStmtClass()) {
562  default:
563    if (Loc) *Loc = getLocStart();
564    return false;
565  case ParenExprClass:
566    return cast<ParenExpr>(this)->getSubExpr()->isConstantExpr(Ctx, Loc);
567  case StringLiteralClass:
568  case ObjCStringLiteralClass:
569  case FloatingLiteralClass:
570  case IntegerLiteralClass:
571  case CharacterLiteralClass:
572  case ImaginaryLiteralClass:
573  case TypesCompatibleExprClass:
574  case CXXBoolLiteralExprClass:
575  case AddrLabelExprClass:
576    return true;
577  case CallExprClass: {
578    const CallExpr *CE = cast<CallExpr>(this);
579    if (CE->isBuiltinConstantExpr())
580      return true;
581    if (Loc) *Loc = getLocStart();
582    return false;
583  }
584  case DeclRefExprClass: {
585    const Decl *D = cast<DeclRefExpr>(this)->getDecl();
586    // Accept address of function.
587    if (isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D))
588      return true;
589    if (Loc) *Loc = getLocStart();
590    if (isa<VarDecl>(D))
591      return TR->isArrayType();
592    return false;
593  }
594  case CompoundLiteralExprClass:
595    if (Loc) *Loc = getLocStart();
596    // Allow "(int []){2,4}", since the array will be converted to a pointer.
597    // Allow "(vector type){2,4}" since the elements are all constant.
598    return TR->isArrayType() || TR->isVectorType();
599  case UnaryOperatorClass: {
600    const UnaryOperator *Exp = cast<UnaryOperator>(this);
601
602    // C99 6.6p9
603    if (Exp->getOpcode() == UnaryOperator::AddrOf) {
604      if (!Exp->getSubExpr()->hasGlobalStorage()) {
605        if (Loc) *Loc = getLocStart();
606        return false;
607      }
608      return true;
609    }
610
611    // Get the operand value.  If this is sizeof/alignof, do not evalute the
612    // operand.  This affects C99 6.6p3.
613    if (!Exp->isSizeOfAlignOfOp() &&
614        Exp->getOpcode() != UnaryOperator::OffsetOf &&
615        !Exp->getSubExpr()->isConstantExpr(Ctx, Loc))
616      return false;
617
618    switch (Exp->getOpcode()) {
619    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
620    // See C99 6.6p3.
621    default:
622      if (Loc) *Loc = Exp->getOperatorLoc();
623      return false;
624    case UnaryOperator::Extension:
625      return true;  // FIXME: this is wrong.
626    case UnaryOperator::SizeOf:
627    case UnaryOperator::AlignOf:
628    case UnaryOperator::OffsetOf:
629      // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
630      if (!Exp->getSubExpr()->getType()->isConstantSizeType()) {
631        if (Loc) *Loc = Exp->getOperatorLoc();
632        return false;
633      }
634      return true;
635    case UnaryOperator::LNot:
636    case UnaryOperator::Plus:
637    case UnaryOperator::Minus:
638    case UnaryOperator::Not:
639      return true;
640    }
641  }
642  case SizeOfAlignOfTypeExprClass: {
643    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(this);
644    // alignof always evaluates to a constant.
645    if (Exp->isSizeOf() && !Exp->getArgumentType()->isVoidType() &&
646        !Exp->getArgumentType()->isConstantSizeType()) {
647      if (Loc) *Loc = Exp->getOperatorLoc();
648      return false;
649    }
650    return true;
651  }
652  case BinaryOperatorClass: {
653    const BinaryOperator *Exp = cast<BinaryOperator>(this);
654
655    // The LHS of a constant expr is always evaluated and needed.
656    if (!Exp->getLHS()->isConstantExpr(Ctx, Loc))
657      return false;
658
659    if (!Exp->getRHS()->isConstantExpr(Ctx, Loc))
660      return false;
661    return true;
662  }
663  case ImplicitCastExprClass:
664  case ExplicitCastExprClass:
665  case CXXFunctionalCastExprClass: {
666    const Expr *SubExpr = cast<CastExpr>(this)->getSubExpr();
667    SourceLocation CastLoc = getLocStart();
668    if (!SubExpr->isConstantExpr(Ctx, Loc)) {
669      if (Loc) *Loc = SubExpr->getLocStart();
670      return false;
671    }
672    return true;
673  }
674  case ConditionalOperatorClass: {
675    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
676    if (!Exp->getCond()->isConstantExpr(Ctx, Loc) ||
677        // Handle the GNU extension for missing LHS.
678        !(Exp->getLHS() && Exp->getLHS()->isConstantExpr(Ctx, Loc)) ||
679        !Exp->getRHS()->isConstantExpr(Ctx, Loc))
680      return false;
681    return true;
682  }
683  case InitListExprClass: {
684    const InitListExpr *Exp = cast<InitListExpr>(this);
685    unsigned numInits = Exp->getNumInits();
686    for (unsigned i = 0; i < numInits; i++) {
687      if (!Exp->getInit(i)->isConstantExpr(Ctx, Loc)) {
688        if (Loc) *Loc = Exp->getInit(i)->getLocStart();
689        return false;
690      }
691    }
692    return true;
693  }
694  case CXXDefaultArgExprClass:
695    return cast<CXXDefaultArgExpr>(this)->getExpr()->isConstantExpr(Ctx, Loc);
696  }
697}
698
699/// isIntegerConstantExpr - this recursive routine will test if an expression is
700/// an integer constant expression. Note: With the introduction of VLA's in
701/// C99 the result of the sizeof operator is no longer always a constant
702/// expression. The generalization of the wording to include any subexpression
703/// that is not evaluated (C99 6.6p3) means that nonconstant subexpressions
704/// can appear as operands to other operators (e.g. &&, ||, ?:). For instance,
705/// "0 || f()" can be treated as a constant expression. In C90 this expression,
706/// occurring in a context requiring a constant, would have been a constraint
707/// violation. FIXME: This routine currently implements C90 semantics.
708/// To properly implement C99 semantics this routine will need to evaluate
709/// expressions involving operators previously mentioned.
710
711/// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
712/// comma, etc
713///
714/// FIXME: This should ext-warn on overflow during evaluation!  ISO C does not
715/// permit this.  This includes things like (int)1e1000
716///
717/// FIXME: Handle offsetof.  Two things to do:  Handle GCC's __builtin_offsetof
718/// to support gcc 4.0+  and handle the idiom GCC recognizes with a null pointer
719/// cast+dereference.
720bool Expr::isIntegerConstantExpr(llvm::APSInt &Result, ASTContext &Ctx,
721                                 SourceLocation *Loc, bool isEvaluated) const {
722  switch (getStmtClass()) {
723  default:
724    if (Loc) *Loc = getLocStart();
725    return false;
726  case ParenExprClass:
727    return cast<ParenExpr>(this)->getSubExpr()->
728                     isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
729  case IntegerLiteralClass:
730    Result = cast<IntegerLiteral>(this)->getValue();
731    break;
732  case CharacterLiteralClass: {
733    const CharacterLiteral *CL = cast<CharacterLiteral>(this);
734    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
735    Result = CL->getValue();
736    Result.setIsUnsigned(!getType()->isSignedIntegerType());
737    break;
738  }
739  case CXXBoolLiteralExprClass: {
740    const CXXBoolLiteralExpr *BL = cast<CXXBoolLiteralExpr>(this);
741    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
742    Result = BL->getValue();
743    Result.setIsUnsigned(!getType()->isSignedIntegerType());
744    break;
745  }
746  case CXXZeroInitValueExprClass:
747    Result.clear();
748    break;
749  case TypesCompatibleExprClass: {
750    const TypesCompatibleExpr *TCE = cast<TypesCompatibleExpr>(this);
751    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
752    Result = Ctx.typesAreCompatible(TCE->getArgType1(), TCE->getArgType2());
753    break;
754  }
755  case CallExprClass: {
756    const CallExpr *CE = cast<CallExpr>(this);
757    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
758    if (CE->isBuiltinClassifyType(Result))
759      break;
760    if (Loc) *Loc = getLocStart();
761    return false;
762  }
763  case DeclRefExprClass:
764    if (const EnumConstantDecl *D =
765          dyn_cast<EnumConstantDecl>(cast<DeclRefExpr>(this)->getDecl())) {
766      Result = D->getInitVal();
767      break;
768    }
769    if (Loc) *Loc = getLocStart();
770    return false;
771  case UnaryOperatorClass: {
772    const UnaryOperator *Exp = cast<UnaryOperator>(this);
773
774    // Get the operand value.  If this is sizeof/alignof, do not evalute the
775    // operand.  This affects C99 6.6p3.
776    if (!Exp->isSizeOfAlignOfOp() && !Exp->isOffsetOfOp() &&
777        !Exp->getSubExpr()->isIntegerConstantExpr(Result, Ctx, Loc,isEvaluated))
778      return false;
779
780    switch (Exp->getOpcode()) {
781    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
782    // See C99 6.6p3.
783    default:
784      if (Loc) *Loc = Exp->getOperatorLoc();
785      return false;
786    case UnaryOperator::Extension:
787      return true;  // FIXME: this is wrong.
788    case UnaryOperator::SizeOf:
789    case UnaryOperator::AlignOf:
790      // Return the result in the right width.
791      Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
792
793      // sizeof(void) and __alignof__(void) = 1 as a gcc extension.
794      if (Exp->getSubExpr()->getType()->isVoidType()) {
795        Result = 1;
796        break;
797      }
798
799      // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
800      if (!Exp->getSubExpr()->getType()->isConstantSizeType()) {
801        if (Loc) *Loc = Exp->getOperatorLoc();
802        return false;
803      }
804
805      // Get information about the size or align.
806      if (Exp->getSubExpr()->getType()->isFunctionType()) {
807        // GCC extension: sizeof(function) = 1.
808        Result = Exp->getOpcode() == UnaryOperator::AlignOf ? 4 : 1;
809      } else {
810        unsigned CharSize = Ctx.Target.getCharWidth();
811        if (Exp->getOpcode() == UnaryOperator::AlignOf)
812          Result = Ctx.getTypeAlign(Exp->getSubExpr()->getType()) / CharSize;
813        else
814          Result = Ctx.getTypeSize(Exp->getSubExpr()->getType()) / CharSize;
815      }
816      break;
817    case UnaryOperator::LNot: {
818      bool Val = Result == 0;
819      Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
820      Result = Val;
821      break;
822    }
823    case UnaryOperator::Plus:
824      break;
825    case UnaryOperator::Minus:
826      Result = -Result;
827      break;
828    case UnaryOperator::Not:
829      Result = ~Result;
830      break;
831    case UnaryOperator::OffsetOf:
832      Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
833      Result = Exp->evaluateOffsetOf(Ctx);
834    }
835    break;
836  }
837  case SizeOfAlignOfTypeExprClass: {
838    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(this);
839
840    // Return the result in the right width.
841    Result.zextOrTrunc(static_cast<uint32_t>(Ctx.getTypeSize(getType())));
842
843    // sizeof(void) and __alignof__(void) = 1 as a gcc extension.
844    if (Exp->getArgumentType()->isVoidType()) {
845      Result = 1;
846      break;
847    }
848
849    // alignof always evaluates to a constant, sizeof does if arg is not VLA.
850    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
851      if (Loc) *Loc = Exp->getOperatorLoc();
852      return false;
853    }
854
855    // Get information about the size or align.
856    if (Exp->getArgumentType()->isFunctionType()) {
857      // GCC extension: sizeof(function) = 1.
858      Result = Exp->isSizeOf() ? 1 : 4;
859    } else {
860      unsigned CharSize = Ctx.Target.getCharWidth();
861      if (Exp->isSizeOf())
862        Result = Ctx.getTypeSize(Exp->getArgumentType()) / CharSize;
863      else
864        Result = Ctx.getTypeAlign(Exp->getArgumentType()) / CharSize;
865    }
866    break;
867  }
868  case BinaryOperatorClass: {
869    const BinaryOperator *Exp = cast<BinaryOperator>(this);
870    llvm::APSInt LHS, RHS;
871
872    // Initialize result to have correct signedness and width.
873    Result = llvm::APSInt(static_cast<uint32_t>(Ctx.getTypeSize(getType())),
874                          !getType()->isSignedIntegerType());
875
876    // The LHS of a constant expr is always evaluated and needed.
877    if (!Exp->getLHS()->isIntegerConstantExpr(LHS, Ctx, Loc, isEvaluated))
878      return false;
879
880    // The short-circuiting &&/|| operators don't necessarily evaluate their
881    // RHS.  Make sure to pass isEvaluated down correctly.
882    if (Exp->isLogicalOp()) {
883      bool RHSEval;
884      if (Exp->getOpcode() == BinaryOperator::LAnd)
885        RHSEval = LHS != 0;
886      else {
887        assert(Exp->getOpcode() == BinaryOperator::LOr &&"Unexpected logical");
888        RHSEval = LHS == 0;
889      }
890
891      if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc,
892                                                isEvaluated & RHSEval))
893        return false;
894    } else {
895      if (!Exp->getRHS()->isIntegerConstantExpr(RHS, Ctx, Loc, isEvaluated))
896        return false;
897    }
898
899    switch (Exp->getOpcode()) {
900    default:
901      if (Loc) *Loc = getLocStart();
902      return false;
903    case BinaryOperator::Mul:
904      Result = LHS * RHS;
905      break;
906    case BinaryOperator::Div:
907      if (RHS == 0) {
908        if (!isEvaluated) break;
909        if (Loc) *Loc = getLocStart();
910        return false;
911      }
912      Result = LHS / RHS;
913      break;
914    case BinaryOperator::Rem:
915      if (RHS == 0) {
916        if (!isEvaluated) break;
917        if (Loc) *Loc = getLocStart();
918        return false;
919      }
920      Result = LHS % RHS;
921      break;
922    case BinaryOperator::Add: Result = LHS + RHS; break;
923    case BinaryOperator::Sub: Result = LHS - RHS; break;
924    case BinaryOperator::Shl:
925      Result = LHS <<
926        static_cast<uint32_t>(RHS.getLimitedValue(LHS.getBitWidth()-1));
927    break;
928    case BinaryOperator::Shr:
929      Result = LHS >>
930        static_cast<uint32_t>(RHS.getLimitedValue(LHS.getBitWidth()-1));
931      break;
932    case BinaryOperator::LT:  Result = LHS < RHS; break;
933    case BinaryOperator::GT:  Result = LHS > RHS; break;
934    case BinaryOperator::LE:  Result = LHS <= RHS; break;
935    case BinaryOperator::GE:  Result = LHS >= RHS; break;
936    case BinaryOperator::EQ:  Result = LHS == RHS; break;
937    case BinaryOperator::NE:  Result = LHS != RHS; break;
938    case BinaryOperator::And: Result = LHS & RHS; break;
939    case BinaryOperator::Xor: Result = LHS ^ RHS; break;
940    case BinaryOperator::Or:  Result = LHS | RHS; break;
941    case BinaryOperator::LAnd:
942      Result = LHS != 0 && RHS != 0;
943      break;
944    case BinaryOperator::LOr:
945      Result = LHS != 0 || RHS != 0;
946      break;
947
948    case BinaryOperator::Comma:
949      // C99 6.6p3: "shall not contain assignment, ..., or comma operators,
950      // *except* when they are contained within a subexpression that is not
951      // evaluated".  Note that Assignment can never happen due to constraints
952      // on the LHS subexpr, so we don't need to check it here.
953      if (isEvaluated) {
954        if (Loc) *Loc = getLocStart();
955        return false;
956      }
957
958      // The result of the constant expr is the RHS.
959      Result = RHS;
960      return true;
961    }
962
963    assert(!Exp->isAssignmentOp() && "LHS can't be a constant expr!");
964    break;
965  }
966  case ImplicitCastExprClass:
967  case ExplicitCastExprClass:
968  case CXXFunctionalCastExprClass: {
969    const Expr *SubExpr = cast<CastExpr>(this)->getSubExpr();
970    SourceLocation CastLoc = getLocStart();
971
972    // C99 6.6p6: shall only convert arithmetic types to integer types.
973    if (!SubExpr->getType()->isArithmeticType() ||
974        !getType()->isIntegerType()) {
975      if (Loc) *Loc = SubExpr->getLocStart();
976      return false;
977    }
978
979    uint32_t DestWidth = static_cast<uint32_t>(Ctx.getTypeSize(getType()));
980
981    // Handle simple integer->integer casts.
982    if (SubExpr->getType()->isIntegerType()) {
983      if (!SubExpr->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
984        return false;
985
986      // Figure out if this is a truncate, extend or noop cast.
987      // If the input is signed, do a sign extend, noop, or truncate.
988      if (getType()->isBooleanType()) {
989        // Conversion to bool compares against zero.
990        Result = Result != 0;
991        Result.zextOrTrunc(DestWidth);
992      } else if (SubExpr->getType()->isSignedIntegerType())
993        Result.sextOrTrunc(DestWidth);
994      else  // If the input is unsigned, do a zero extend, noop, or truncate.
995        Result.zextOrTrunc(DestWidth);
996      break;
997    }
998
999    // Allow floating constants that are the immediate operands of casts or that
1000    // are parenthesized.
1001    const Expr *Operand = SubExpr;
1002    while (const ParenExpr *PE = dyn_cast<ParenExpr>(Operand))
1003      Operand = PE->getSubExpr();
1004
1005    // If this isn't a floating literal, we can't handle it.
1006    const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(Operand);
1007    if (!FL) {
1008      if (Loc) *Loc = Operand->getLocStart();
1009      return false;
1010    }
1011
1012    // If the destination is boolean, compare against zero.
1013    if (getType()->isBooleanType()) {
1014      Result = !FL->getValue().isZero();
1015      Result.zextOrTrunc(DestWidth);
1016      break;
1017    }
1018
1019    // Determine whether we are converting to unsigned or signed.
1020    bool DestSigned = getType()->isSignedIntegerType();
1021
1022    // TODO: Warn on overflow, but probably not here: isIntegerConstantExpr can
1023    // be called multiple times per AST.
1024    uint64_t Space[4];
1025    (void)FL->getValue().convertToInteger(Space, DestWidth, DestSigned,
1026                                          llvm::APFloat::rmTowardZero);
1027    Result = llvm::APInt(DestWidth, 4, Space);
1028    break;
1029  }
1030  case ConditionalOperatorClass: {
1031    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1032
1033    if (!Exp->getCond()->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
1034      return false;
1035
1036    const Expr *TrueExp  = Exp->getLHS();
1037    const Expr *FalseExp = Exp->getRHS();
1038    if (Result == 0) std::swap(TrueExp, FalseExp);
1039
1040    // Evaluate the false one first, discard the result.
1041    if (FalseExp && !FalseExp->isIntegerConstantExpr(Result, Ctx, Loc, false))
1042      return false;
1043    // Evalute the true one, capture the result.
1044    if (TrueExp &&
1045        !TrueExp->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated))
1046      return false;
1047    break;
1048  }
1049  case CXXDefaultArgExprClass:
1050    return cast<CXXDefaultArgExpr>(this)
1051             ->isIntegerConstantExpr(Result, Ctx, Loc, isEvaluated);
1052  }
1053
1054  // Cases that are valid constant exprs fall through to here.
1055  Result.setIsUnsigned(getType()->isUnsignedIntegerType());
1056  return true;
1057}
1058
1059/// isNullPointerConstant - C99 6.3.2.3p3 -  Return true if this is either an
1060/// integer constant expression with the value zero, or if this is one that is
1061/// cast to void*.
1062bool Expr::isNullPointerConstant(ASTContext &Ctx) const {
1063  // Strip off a cast to void*, if it exists.
1064  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
1065    // Check that it is a cast to void*.
1066    if (const PointerType *PT = CE->getType()->getAsPointerType()) {
1067      QualType Pointee = PT->getPointeeType();
1068      if (Pointee.getCVRQualifiers() == 0 &&
1069          Pointee->isVoidType() &&                                 // to void*
1070          CE->getSubExpr()->getType()->isIntegerType())            // from int.
1071        return CE->getSubExpr()->isNullPointerConstant(Ctx);
1072    }
1073  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
1074    // Ignore the ImplicitCastExpr type entirely.
1075    return ICE->getSubExpr()->isNullPointerConstant(Ctx);
1076  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
1077    // Accept ((void*)0) as a null pointer constant, as many other
1078    // implementations do.
1079    return PE->getSubExpr()->isNullPointerConstant(Ctx);
1080  } else if (const CXXDefaultArgExpr *DefaultArg
1081               = dyn_cast<CXXDefaultArgExpr>(this)) {
1082    // See through default argument expressions
1083    return DefaultArg->getExpr()->isNullPointerConstant(Ctx);
1084  }
1085
1086  // This expression must be an integer type.
1087  if (!getType()->isIntegerType())
1088    return false;
1089
1090  // If we have an integer constant expression, we need to *evaluate* it and
1091  // test for the value 0.
1092  llvm::APSInt Val(32);
1093  return isIntegerConstantExpr(Val, Ctx, 0, true) && Val == 0;
1094}
1095
1096unsigned ExtVectorElementExpr::getNumElements() const {
1097  if (const VectorType *VT = getType()->getAsVectorType())
1098    return VT->getNumElements();
1099  return 1;
1100}
1101
1102/// containsDuplicateElements - Return true if any element access is repeated.
1103bool ExtVectorElementExpr::containsDuplicateElements() const {
1104  const char *compStr = Accessor.getName();
1105  unsigned length = strlen(compStr);
1106
1107  for (unsigned i = 0; i < length-1; i++) {
1108    const char *s = compStr+i;
1109    for (const char c = *s++; *s; s++)
1110      if (c == *s)
1111        return true;
1112  }
1113  return false;
1114}
1115
1116/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
1117void ExtVectorElementExpr::getEncodedElementAccess(
1118                                  llvm::SmallVectorImpl<unsigned> &Elts) const {
1119  const char *compStr = Accessor.getName();
1120
1121  bool isHi =   !strcmp(compStr, "hi");
1122  bool isLo =   !strcmp(compStr, "lo");
1123  bool isEven = !strcmp(compStr, "e");
1124  bool isOdd  = !strcmp(compStr, "o");
1125
1126  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
1127    uint64_t Index;
1128
1129    if (isHi)
1130      Index = e + i;
1131    else if (isLo)
1132      Index = i;
1133    else if (isEven)
1134      Index = 2 * i;
1135    else if (isOdd)
1136      Index = 2 * i + 1;
1137    else
1138      Index = ExtVectorType::getAccessorIdx(compStr[i]);
1139
1140    Elts.push_back(Index);
1141  }
1142}
1143
1144// constructor for instance messages.
1145ObjCMessageExpr::ObjCMessageExpr(Expr *receiver, Selector selInfo,
1146                QualType retType, ObjCMethodDecl *mproto,
1147                SourceLocation LBrac, SourceLocation RBrac,
1148                Expr **ArgExprs, unsigned nargs)
1149  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1150    MethodProto(mproto) {
1151  NumArgs = nargs;
1152  SubExprs = new Stmt*[NumArgs+1];
1153  SubExprs[RECEIVER] = receiver;
1154  if (NumArgs) {
1155    for (unsigned i = 0; i != NumArgs; ++i)
1156      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1157  }
1158  LBracloc = LBrac;
1159  RBracloc = RBrac;
1160}
1161
1162// constructor for class messages.
1163// FIXME: clsName should be typed to ObjCInterfaceType
1164ObjCMessageExpr::ObjCMessageExpr(IdentifierInfo *clsName, Selector selInfo,
1165                QualType retType, ObjCMethodDecl *mproto,
1166                SourceLocation LBrac, SourceLocation RBrac,
1167                Expr **ArgExprs, unsigned nargs)
1168  : Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1169    MethodProto(mproto) {
1170  NumArgs = nargs;
1171  SubExprs = new Stmt*[NumArgs+1];
1172  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) clsName | IsClsMethDeclUnknown);
1173  if (NumArgs) {
1174    for (unsigned i = 0; i != NumArgs; ++i)
1175      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1176  }
1177  LBracloc = LBrac;
1178  RBracloc = RBrac;
1179}
1180
1181// constructor for class messages.
1182ObjCMessageExpr::ObjCMessageExpr(ObjCInterfaceDecl *cls, Selector selInfo,
1183                                 QualType retType, ObjCMethodDecl *mproto,
1184                                 SourceLocation LBrac, SourceLocation RBrac,
1185                                 Expr **ArgExprs, unsigned nargs)
1186: Expr(ObjCMessageExprClass, retType), SelName(selInfo),
1187MethodProto(mproto) {
1188  NumArgs = nargs;
1189  SubExprs = new Stmt*[NumArgs+1];
1190  SubExprs[RECEIVER] = (Expr*) ((uintptr_t) cls | IsClsMethDeclKnown);
1191  if (NumArgs) {
1192    for (unsigned i = 0; i != NumArgs; ++i)
1193      SubExprs[i+ARGS_START] = static_cast<Expr *>(ArgExprs[i]);
1194  }
1195  LBracloc = LBrac;
1196  RBracloc = RBrac;
1197}
1198
1199ObjCMessageExpr::ClassInfo ObjCMessageExpr::getClassInfo() const {
1200  uintptr_t x = (uintptr_t) SubExprs[RECEIVER];
1201  switch (x & Flags) {
1202    default:
1203      assert(false && "Invalid ObjCMessageExpr.");
1204    case IsInstMeth:
1205      return ClassInfo(0, 0);
1206    case IsClsMethDeclUnknown:
1207      return ClassInfo(0, (IdentifierInfo*) (x & ~Flags));
1208    case IsClsMethDeclKnown: {
1209      ObjCInterfaceDecl* D = (ObjCInterfaceDecl*) (x & ~Flags);
1210      return ClassInfo(D, D->getIdentifier());
1211    }
1212  }
1213}
1214
1215bool ChooseExpr::isConditionTrue(ASTContext &C) const {
1216  return getCond()->getIntegerConstantExprValue(C) != 0;
1217}
1218
1219static int64_t evaluateOffsetOf(ASTContext& C, const Expr *E)
1220{
1221  if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
1222    QualType Ty = ME->getBase()->getType();
1223
1224    RecordDecl *RD = Ty->getAsRecordType()->getDecl();
1225    const ASTRecordLayout &RL = C.getASTRecordLayout(RD);
1226    FieldDecl *FD = ME->getMemberDecl();
1227
1228    // FIXME: This is linear time.
1229    unsigned i = 0, e = 0;
1230    for (i = 0, e = RD->getNumMembers(); i != e; i++) {
1231      if (RD->getMember(i) == FD)
1232        break;
1233    }
1234
1235    return RL.getFieldOffset(i) + evaluateOffsetOf(C, ME->getBase());
1236  } else if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E)) {
1237    const Expr *Base = ASE->getBase();
1238
1239    int64_t size = C.getTypeSize(ASE->getType());
1240    size *= ASE->getIdx()->getIntegerConstantExprValue(C).getSExtValue();
1241
1242    return size + evaluateOffsetOf(C, Base);
1243  } else if (isa<CompoundLiteralExpr>(E))
1244    return 0;
1245
1246  assert(0 && "Unknown offsetof subexpression!");
1247  return 0;
1248}
1249
1250int64_t UnaryOperator::evaluateOffsetOf(ASTContext& C) const
1251{
1252  assert(Opc == OffsetOf && "Unary operator not offsetof!");
1253
1254  unsigned CharSize = C.Target.getCharWidth();
1255  return ::evaluateOffsetOf(C, cast<Expr>(Val)) / CharSize;
1256}
1257
1258void SizeOfAlignOfTypeExpr::Destroy(ASTContext& C) {
1259  // Override default behavior of traversing children. We do not want
1260  // to delete the type.
1261}
1262
1263//===----------------------------------------------------------------------===//
1264//  Child Iterators for iterating over subexpressions/substatements
1265//===----------------------------------------------------------------------===//
1266
1267// DeclRefExpr
1268Stmt::child_iterator DeclRefExpr::child_begin() { return child_iterator(); }
1269Stmt::child_iterator DeclRefExpr::child_end() { return child_iterator(); }
1270
1271// ObjCIvarRefExpr
1272Stmt::child_iterator ObjCIvarRefExpr::child_begin() { return &Base; }
1273Stmt::child_iterator ObjCIvarRefExpr::child_end() { return &Base+1; }
1274
1275// ObjCPropertyRefExpr
1276Stmt::child_iterator ObjCPropertyRefExpr::child_begin() { return &Base; }
1277Stmt::child_iterator ObjCPropertyRefExpr::child_end() { return &Base+1; }
1278
1279// PredefinedExpr
1280Stmt::child_iterator PredefinedExpr::child_begin() { return child_iterator(); }
1281Stmt::child_iterator PredefinedExpr::child_end() { return child_iterator(); }
1282
1283// IntegerLiteral
1284Stmt::child_iterator IntegerLiteral::child_begin() { return child_iterator(); }
1285Stmt::child_iterator IntegerLiteral::child_end() { return child_iterator(); }
1286
1287// CharacterLiteral
1288Stmt::child_iterator CharacterLiteral::child_begin() { return child_iterator(); }
1289Stmt::child_iterator CharacterLiteral::child_end() { return child_iterator(); }
1290
1291// FloatingLiteral
1292Stmt::child_iterator FloatingLiteral::child_begin() { return child_iterator(); }
1293Stmt::child_iterator FloatingLiteral::child_end() { return child_iterator(); }
1294
1295// ImaginaryLiteral
1296Stmt::child_iterator ImaginaryLiteral::child_begin() { return &Val; }
1297Stmt::child_iterator ImaginaryLiteral::child_end() { return &Val+1; }
1298
1299// StringLiteral
1300Stmt::child_iterator StringLiteral::child_begin() { return child_iterator(); }
1301Stmt::child_iterator StringLiteral::child_end() { return child_iterator(); }
1302
1303// ParenExpr
1304Stmt::child_iterator ParenExpr::child_begin() { return &Val; }
1305Stmt::child_iterator ParenExpr::child_end() { return &Val+1; }
1306
1307// UnaryOperator
1308Stmt::child_iterator UnaryOperator::child_begin() { return &Val; }
1309Stmt::child_iterator UnaryOperator::child_end() { return &Val+1; }
1310
1311// SizeOfAlignOfTypeExpr
1312Stmt::child_iterator SizeOfAlignOfTypeExpr::child_begin() {
1313  // If the type is a VLA type (and not a typedef), the size expression of the
1314  // VLA needs to be treated as an executable expression.
1315  if (VariableArrayType* T = dyn_cast<VariableArrayType>(Ty.getTypePtr()))
1316    return child_iterator(T);
1317  else
1318    return child_iterator();
1319}
1320Stmt::child_iterator SizeOfAlignOfTypeExpr::child_end() {
1321  return child_iterator();
1322}
1323
1324// ArraySubscriptExpr
1325Stmt::child_iterator ArraySubscriptExpr::child_begin() {
1326  return &SubExprs[0];
1327}
1328Stmt::child_iterator ArraySubscriptExpr::child_end() {
1329  return &SubExprs[0]+END_EXPR;
1330}
1331
1332// CallExpr
1333Stmt::child_iterator CallExpr::child_begin() {
1334  return &SubExprs[0];
1335}
1336Stmt::child_iterator CallExpr::child_end() {
1337  return &SubExprs[0]+NumArgs+ARGS_START;
1338}
1339
1340// MemberExpr
1341Stmt::child_iterator MemberExpr::child_begin() { return &Base; }
1342Stmt::child_iterator MemberExpr::child_end() { return &Base+1; }
1343
1344// ExtVectorElementExpr
1345Stmt::child_iterator ExtVectorElementExpr::child_begin() { return &Base; }
1346Stmt::child_iterator ExtVectorElementExpr::child_end() { return &Base+1; }
1347
1348// CompoundLiteralExpr
1349Stmt::child_iterator CompoundLiteralExpr::child_begin() { return &Init; }
1350Stmt::child_iterator CompoundLiteralExpr::child_end() { return &Init+1; }
1351
1352// CastExpr
1353Stmt::child_iterator CastExpr::child_begin() { return &Op; }
1354Stmt::child_iterator CastExpr::child_end() { return &Op+1; }
1355
1356// BinaryOperator
1357Stmt::child_iterator BinaryOperator::child_begin() {
1358  return &SubExprs[0];
1359}
1360Stmt::child_iterator BinaryOperator::child_end() {
1361  return &SubExprs[0]+END_EXPR;
1362}
1363
1364// ConditionalOperator
1365Stmt::child_iterator ConditionalOperator::child_begin() {
1366  return &SubExprs[0];
1367}
1368Stmt::child_iterator ConditionalOperator::child_end() {
1369  return &SubExprs[0]+END_EXPR;
1370}
1371
1372// AddrLabelExpr
1373Stmt::child_iterator AddrLabelExpr::child_begin() { return child_iterator(); }
1374Stmt::child_iterator AddrLabelExpr::child_end() { return child_iterator(); }
1375
1376// StmtExpr
1377Stmt::child_iterator StmtExpr::child_begin() { return &SubStmt; }
1378Stmt::child_iterator StmtExpr::child_end() { return &SubStmt+1; }
1379
1380// TypesCompatibleExpr
1381Stmt::child_iterator TypesCompatibleExpr::child_begin() {
1382  return child_iterator();
1383}
1384
1385Stmt::child_iterator TypesCompatibleExpr::child_end() {
1386  return child_iterator();
1387}
1388
1389// ChooseExpr
1390Stmt::child_iterator ChooseExpr::child_begin() { return &SubExprs[0]; }
1391Stmt::child_iterator ChooseExpr::child_end() { return &SubExprs[0]+END_EXPR; }
1392
1393// OverloadExpr
1394Stmt::child_iterator OverloadExpr::child_begin() { return &SubExprs[0]; }
1395Stmt::child_iterator OverloadExpr::child_end() { return &SubExprs[0]+NumExprs; }
1396
1397// ShuffleVectorExpr
1398Stmt::child_iterator ShuffleVectorExpr::child_begin() {
1399  return &SubExprs[0];
1400}
1401Stmt::child_iterator ShuffleVectorExpr::child_end() {
1402  return &SubExprs[0]+NumExprs;
1403}
1404
1405// VAArgExpr
1406Stmt::child_iterator VAArgExpr::child_begin() { return &Val; }
1407Stmt::child_iterator VAArgExpr::child_end() { return &Val+1; }
1408
1409// InitListExpr
1410Stmt::child_iterator InitListExpr::child_begin() {
1411  return InitExprs.size() ? &InitExprs[0] : 0;
1412}
1413Stmt::child_iterator InitListExpr::child_end() {
1414  return InitExprs.size() ? &InitExprs[0] + InitExprs.size() : 0;
1415}
1416
1417// ObjCStringLiteral
1418Stmt::child_iterator ObjCStringLiteral::child_begin() {
1419  return child_iterator();
1420}
1421Stmt::child_iterator ObjCStringLiteral::child_end() {
1422  return child_iterator();
1423}
1424
1425// ObjCEncodeExpr
1426Stmt::child_iterator ObjCEncodeExpr::child_begin() { return child_iterator(); }
1427Stmt::child_iterator ObjCEncodeExpr::child_end() { return child_iterator(); }
1428
1429// ObjCSelectorExpr
1430Stmt::child_iterator ObjCSelectorExpr::child_begin() {
1431  return child_iterator();
1432}
1433Stmt::child_iterator ObjCSelectorExpr::child_end() {
1434  return child_iterator();
1435}
1436
1437// ObjCProtocolExpr
1438Stmt::child_iterator ObjCProtocolExpr::child_begin() {
1439  return child_iterator();
1440}
1441Stmt::child_iterator ObjCProtocolExpr::child_end() {
1442  return child_iterator();
1443}
1444
1445// ObjCMessageExpr
1446Stmt::child_iterator ObjCMessageExpr::child_begin() {
1447  return getReceiver() ? &SubExprs[0] : &SubExprs[0] + ARGS_START;
1448}
1449Stmt::child_iterator ObjCMessageExpr::child_end() {
1450  return &SubExprs[0]+ARGS_START+getNumArgs();
1451}
1452
1453// Blocks
1454Stmt::child_iterator BlockExpr::child_begin() {
1455  return reinterpret_cast<Stmt**>(&Body);
1456}
1457Stmt::child_iterator BlockExpr::child_end() {
1458  return reinterpret_cast<Stmt**>(&Body)+1;
1459}
1460
1461Stmt::child_iterator BlockDeclRefExpr::child_begin(){return child_iterator();}
1462Stmt::child_iterator BlockDeclRefExpr::child_end() { return child_iterator();}
1463
1464