Expr.cpp revision e6975e9b0985ad7f7ff9187e38d95bfe9ac4181b
1//===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expr class and subclasses.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/Expr.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/Lex/LiteralSupport.h"
25#include "clang/Lex/Lexer.h"
26#include "clang/Sema/SemaDiagnostic.h"
27#include "clang/Basic/Builtins.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "llvm/Support/ErrorHandling.h"
31#include "llvm/Support/raw_ostream.h"
32#include <algorithm>
33#include <cstring>
34using namespace clang;
35
36/// isKnownToHaveBooleanValue - Return true if this is an integer expression
37/// that is known to return 0 or 1.  This happens for _Bool/bool expressions
38/// but also int expressions which are produced by things like comparisons in
39/// C.
40bool Expr::isKnownToHaveBooleanValue() const {
41  const Expr *E = IgnoreParens();
42
43  // If this value has _Bool type, it is obvious 0/1.
44  if (E->getType()->isBooleanType()) return true;
45  // If this is a non-scalar-integer type, we don't care enough to try.
46  if (!E->getType()->isIntegralOrEnumerationType()) return false;
47
48  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
49    switch (UO->getOpcode()) {
50    case UO_Plus:
51      return UO->getSubExpr()->isKnownToHaveBooleanValue();
52    default:
53      return false;
54    }
55  }
56
57  // Only look through implicit casts.  If the user writes
58  // '(int) (a && b)' treat it as an arbitrary int.
59  if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
60    return CE->getSubExpr()->isKnownToHaveBooleanValue();
61
62  if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
63    switch (BO->getOpcode()) {
64    default: return false;
65    case BO_LT:   // Relational operators.
66    case BO_GT:
67    case BO_LE:
68    case BO_GE:
69    case BO_EQ:   // Equality operators.
70    case BO_NE:
71    case BO_LAnd: // AND operator.
72    case BO_LOr:  // Logical OR operator.
73      return true;
74
75    case BO_And:  // Bitwise AND operator.
76    case BO_Xor:  // Bitwise XOR operator.
77    case BO_Or:   // Bitwise OR operator.
78      // Handle things like (x==2)|(y==12).
79      return BO->getLHS()->isKnownToHaveBooleanValue() &&
80             BO->getRHS()->isKnownToHaveBooleanValue();
81
82    case BO_Comma:
83    case BO_Assign:
84      return BO->getRHS()->isKnownToHaveBooleanValue();
85    }
86  }
87
88  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
89    return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
90           CO->getFalseExpr()->isKnownToHaveBooleanValue();
91
92  return false;
93}
94
95// Amusing macro metaprogramming hack: check whether a class provides
96// a more specific implementation of getExprLoc().
97//
98// See also Stmt.cpp:{getLocStart(),getLocEnd()}.
99namespace {
100  /// This implementation is used when a class provides a custom
101  /// implementation of getExprLoc.
102  template <class E, class T>
103  SourceLocation getExprLocImpl(const Expr *expr,
104                                SourceLocation (T::*v)() const) {
105    return static_cast<const E*>(expr)->getExprLoc();
106  }
107
108  /// This implementation is used when a class doesn't provide
109  /// a custom implementation of getExprLoc.  Overload resolution
110  /// should pick it over the implementation above because it's
111  /// more specialized according to function template partial ordering.
112  template <class E>
113  SourceLocation getExprLocImpl(const Expr *expr,
114                                SourceLocation (Expr::*v)() const) {
115    return static_cast<const E*>(expr)->getLocStart();
116  }
117}
118
119SourceLocation Expr::getExprLoc() const {
120  switch (getStmtClass()) {
121  case Stmt::NoStmtClass: llvm_unreachable("statement without class");
122#define ABSTRACT_STMT(type)
123#define STMT(type, base) \
124  case Stmt::type##Class: llvm_unreachable(#type " is not an Expr"); break;
125#define EXPR(type, base) \
126  case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
127#include "clang/AST/StmtNodes.inc"
128  }
129  llvm_unreachable("unknown statement kind");
130}
131
132//===----------------------------------------------------------------------===//
133// Primary Expressions.
134//===----------------------------------------------------------------------===//
135
136/// \brief Compute the type-, value-, and instantiation-dependence of a
137/// declaration reference
138/// based on the declaration being referenced.
139static void computeDeclRefDependence(ASTContext &Ctx, NamedDecl *D, QualType T,
140                                     bool &TypeDependent,
141                                     bool &ValueDependent,
142                                     bool &InstantiationDependent) {
143  TypeDependent = false;
144  ValueDependent = false;
145  InstantiationDependent = false;
146
147  // (TD) C++ [temp.dep.expr]p3:
148  //   An id-expression is type-dependent if it contains:
149  //
150  // and
151  //
152  // (VD) C++ [temp.dep.constexpr]p2:
153  //  An identifier is value-dependent if it is:
154
155  //  (TD)  - an identifier that was declared with dependent type
156  //  (VD)  - a name declared with a dependent type,
157  if (T->isDependentType()) {
158    TypeDependent = true;
159    ValueDependent = true;
160    InstantiationDependent = true;
161    return;
162  } else if (T->isInstantiationDependentType()) {
163    InstantiationDependent = true;
164  }
165
166  //  (TD)  - a conversion-function-id that specifies a dependent type
167  if (D->getDeclName().getNameKind()
168                                == DeclarationName::CXXConversionFunctionName) {
169    QualType T = D->getDeclName().getCXXNameType();
170    if (T->isDependentType()) {
171      TypeDependent = true;
172      ValueDependent = true;
173      InstantiationDependent = true;
174      return;
175    }
176
177    if (T->isInstantiationDependentType())
178      InstantiationDependent = true;
179  }
180
181  //  (VD)  - the name of a non-type template parameter,
182  if (isa<NonTypeTemplateParmDecl>(D)) {
183    ValueDependent = true;
184    InstantiationDependent = true;
185    return;
186  }
187
188  //  (VD) - a constant with integral or enumeration type and is
189  //         initialized with an expression that is value-dependent.
190  //  (VD) - a constant with literal type and is initialized with an
191  //         expression that is value-dependent [C++11].
192  //  (VD) - FIXME: Missing from the standard:
193  //       -  an entity with reference type and is initialized with an
194  //          expression that is value-dependent [C++11]
195  if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
196    if ((Ctx.getLangOpts().CPlusPlus0x ?
197           Var->getType()->isLiteralType() :
198           Var->getType()->isIntegralOrEnumerationType()) &&
199        (Var->getType().getCVRQualifiers() == Qualifiers::Const ||
200         Var->getType()->isReferenceType())) {
201      if (const Expr *Init = Var->getAnyInitializer())
202        if (Init->isValueDependent()) {
203          ValueDependent = true;
204          InstantiationDependent = true;
205        }
206    }
207
208    // (VD) - FIXME: Missing from the standard:
209    //      -  a member function or a static data member of the current
210    //         instantiation
211    if (Var->isStaticDataMember() &&
212        Var->getDeclContext()->isDependentContext()) {
213      ValueDependent = true;
214      InstantiationDependent = true;
215    }
216
217    return;
218  }
219
220  // (VD) - FIXME: Missing from the standard:
221  //      -  a member function or a static data member of the current
222  //         instantiation
223  if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
224    ValueDependent = true;
225    InstantiationDependent = true;
226  }
227}
228
229void DeclRefExpr::computeDependence(ASTContext &Ctx) {
230  bool TypeDependent = false;
231  bool ValueDependent = false;
232  bool InstantiationDependent = false;
233  computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
234                           ValueDependent, InstantiationDependent);
235
236  // (TD) C++ [temp.dep.expr]p3:
237  //   An id-expression is type-dependent if it contains:
238  //
239  // and
240  //
241  // (VD) C++ [temp.dep.constexpr]p2:
242  //  An identifier is value-dependent if it is:
243  if (!TypeDependent && !ValueDependent &&
244      hasExplicitTemplateArgs() &&
245      TemplateSpecializationType::anyDependentTemplateArguments(
246                                                            getTemplateArgs(),
247                                                       getNumTemplateArgs(),
248                                                      InstantiationDependent)) {
249    TypeDependent = true;
250    ValueDependent = true;
251    InstantiationDependent = true;
252  }
253
254  ExprBits.TypeDependent = TypeDependent;
255  ExprBits.ValueDependent = ValueDependent;
256  ExprBits.InstantiationDependent = InstantiationDependent;
257
258  // Is the declaration a parameter pack?
259  if (getDecl()->isParameterPack())
260    ExprBits.ContainsUnexpandedParameterPack = true;
261}
262
263DeclRefExpr::DeclRefExpr(ASTContext &Ctx,
264                         NestedNameSpecifierLoc QualifierLoc,
265                         SourceLocation TemplateKWLoc,
266                         ValueDecl *D, bool RefersToEnclosingLocal,
267                         const DeclarationNameInfo &NameInfo,
268                         NamedDecl *FoundD,
269                         const TemplateArgumentListInfo *TemplateArgs,
270                         QualType T, ExprValueKind VK)
271  : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
272    D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
273  DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
274  if (QualifierLoc)
275    getInternalQualifierLoc() = QualifierLoc;
276  DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
277  if (FoundD)
278    getInternalFoundDecl() = FoundD;
279  DeclRefExprBits.HasTemplateKWAndArgsInfo
280    = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
281  DeclRefExprBits.RefersToEnclosingLocal = RefersToEnclosingLocal;
282  if (TemplateArgs) {
283    bool Dependent = false;
284    bool InstantiationDependent = false;
285    bool ContainsUnexpandedParameterPack = false;
286    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
287                                               Dependent,
288                                               InstantiationDependent,
289                                               ContainsUnexpandedParameterPack);
290    if (InstantiationDependent)
291      setInstantiationDependent(true);
292  } else if (TemplateKWLoc.isValid()) {
293    getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
294  }
295  DeclRefExprBits.HadMultipleCandidates = 0;
296
297  computeDependence(Ctx);
298}
299
300DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
301                                 NestedNameSpecifierLoc QualifierLoc,
302                                 SourceLocation TemplateKWLoc,
303                                 ValueDecl *D,
304                                 bool RefersToEnclosingLocal,
305                                 SourceLocation NameLoc,
306                                 QualType T,
307                                 ExprValueKind VK,
308                                 NamedDecl *FoundD,
309                                 const TemplateArgumentListInfo *TemplateArgs) {
310  return Create(Context, QualifierLoc, TemplateKWLoc, D,
311                RefersToEnclosingLocal,
312                DeclarationNameInfo(D->getDeclName(), NameLoc),
313                T, VK, FoundD, TemplateArgs);
314}
315
316DeclRefExpr *DeclRefExpr::Create(ASTContext &Context,
317                                 NestedNameSpecifierLoc QualifierLoc,
318                                 SourceLocation TemplateKWLoc,
319                                 ValueDecl *D,
320                                 bool RefersToEnclosingLocal,
321                                 const DeclarationNameInfo &NameInfo,
322                                 QualType T,
323                                 ExprValueKind VK,
324                                 NamedDecl *FoundD,
325                                 const TemplateArgumentListInfo *TemplateArgs) {
326  // Filter out cases where the found Decl is the same as the value refenenced.
327  if (D == FoundD)
328    FoundD = 0;
329
330  std::size_t Size = sizeof(DeclRefExpr);
331  if (QualifierLoc != 0)
332    Size += sizeof(NestedNameSpecifierLoc);
333  if (FoundD)
334    Size += sizeof(NamedDecl *);
335  if (TemplateArgs)
336    Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
337  else if (TemplateKWLoc.isValid())
338    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
339
340  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
341  return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
342                               RefersToEnclosingLocal,
343                               NameInfo, FoundD, TemplateArgs, T, VK);
344}
345
346DeclRefExpr *DeclRefExpr::CreateEmpty(ASTContext &Context,
347                                      bool HasQualifier,
348                                      bool HasFoundDecl,
349                                      bool HasTemplateKWAndArgsInfo,
350                                      unsigned NumTemplateArgs) {
351  std::size_t Size = sizeof(DeclRefExpr);
352  if (HasQualifier)
353    Size += sizeof(NestedNameSpecifierLoc);
354  if (HasFoundDecl)
355    Size += sizeof(NamedDecl *);
356  if (HasTemplateKWAndArgsInfo)
357    Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
358
359  void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
360  return new (Mem) DeclRefExpr(EmptyShell());
361}
362
363SourceRange DeclRefExpr::getSourceRange() const {
364  SourceRange R = getNameInfo().getSourceRange();
365  if (hasQualifier())
366    R.setBegin(getQualifierLoc().getBeginLoc());
367  if (hasExplicitTemplateArgs())
368    R.setEnd(getRAngleLoc());
369  return R;
370}
371SourceLocation DeclRefExpr::getLocStart() const {
372  if (hasQualifier())
373    return getQualifierLoc().getBeginLoc();
374  return getNameInfo().getLocStart();
375}
376SourceLocation DeclRefExpr::getLocEnd() const {
377  if (hasExplicitTemplateArgs())
378    return getRAngleLoc();
379  return getNameInfo().getLocEnd();
380}
381
382// FIXME: Maybe this should use DeclPrinter with a special "print predefined
383// expr" policy instead.
384std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
385  ASTContext &Context = CurrentDecl->getASTContext();
386
387  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
388    if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual)
389      return FD->getNameAsString();
390
391    SmallString<256> Name;
392    llvm::raw_svector_ostream Out(Name);
393
394    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
395      if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
396        Out << "virtual ";
397      if (MD->isStatic())
398        Out << "static ";
399    }
400
401    PrintingPolicy Policy(Context.getLangOpts());
402    std::string Proto = FD->getQualifiedNameAsString(Policy);
403    llvm::raw_string_ostream POut(Proto);
404
405    const FunctionDecl *Decl = FD;
406    if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
407      Decl = Pattern;
408    const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
409    const FunctionProtoType *FT = 0;
410    if (FD->hasWrittenPrototype())
411      FT = dyn_cast<FunctionProtoType>(AFT);
412
413    POut << "(";
414    if (FT) {
415      for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
416        if (i) POut << ", ";
417        std::string Param;
418        Decl->getParamDecl(i)->getType().getAsStringInternal(Param, Policy);
419        POut << Param;
420      }
421
422      if (FT->isVariadic()) {
423        if (FD->getNumParams()) POut << ", ";
424        POut << "...";
425      }
426    }
427    POut << ")";
428
429    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
430      Qualifiers ThisQuals = Qualifiers::fromCVRMask(MD->getTypeQualifiers());
431      if (ThisQuals.hasConst())
432        POut << " const";
433      if (ThisQuals.hasVolatile())
434        POut << " volatile";
435      RefQualifierKind Ref = MD->getRefQualifier();
436      if (Ref == RQ_LValue)
437        POut << " &";
438      else if (Ref == RQ_RValue)
439        POut << " &&";
440    }
441
442    typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
443    SpecsTy Specs;
444    const DeclContext *Ctx = FD->getDeclContext();
445    while (Ctx && isa<NamedDecl>(Ctx)) {
446      const ClassTemplateSpecializationDecl *Spec
447                               = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
448      if (Spec && !Spec->isExplicitSpecialization())
449        Specs.push_back(Spec);
450      Ctx = Ctx->getParent();
451    }
452
453    std::string TemplateParams;
454    llvm::raw_string_ostream TOut(TemplateParams);
455    for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
456         I != E; ++I) {
457      const TemplateParameterList *Params
458                  = (*I)->getSpecializedTemplate()->getTemplateParameters();
459      const TemplateArgumentList &Args = (*I)->getTemplateArgs();
460      assert(Params->size() == Args.size());
461      for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
462        StringRef Param = Params->getParam(i)->getName();
463        if (Param.empty()) continue;
464        TOut << Param << " = ";
465        Args.get(i).print(Policy, TOut);
466        TOut << ", ";
467      }
468    }
469
470    FunctionTemplateSpecializationInfo *FSI
471                                          = FD->getTemplateSpecializationInfo();
472    if (FSI && !FSI->isExplicitSpecialization()) {
473      const TemplateParameterList* Params
474                                  = FSI->getTemplate()->getTemplateParameters();
475      const TemplateArgumentList* Args = FSI->TemplateArguments;
476      assert(Params->size() == Args->size());
477      for (unsigned i = 0, e = Params->size(); i != e; ++i) {
478        StringRef Param = Params->getParam(i)->getName();
479        if (Param.empty()) continue;
480        TOut << Param << " = ";
481        Args->get(i).print(Policy, TOut);
482        TOut << ", ";
483      }
484    }
485
486    TOut.flush();
487    if (!TemplateParams.empty()) {
488      // remove the trailing comma and space
489      TemplateParams.resize(TemplateParams.size() - 2);
490      POut << " [" << TemplateParams << "]";
491    }
492
493    POut.flush();
494
495    if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
496      AFT->getResultType().getAsStringInternal(Proto, Policy);
497
498    Out << Proto;
499
500    Out.flush();
501    return Name.str().str();
502  }
503  if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
504    SmallString<256> Name;
505    llvm::raw_svector_ostream Out(Name);
506    Out << (MD->isInstanceMethod() ? '-' : '+');
507    Out << '[';
508
509    // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
510    // a null check to avoid a crash.
511    if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
512      Out << *ID;
513
514    if (const ObjCCategoryImplDecl *CID =
515        dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
516      Out << '(' << *CID << ')';
517
518    Out <<  ' ';
519    Out << MD->getSelector().getAsString();
520    Out <<  ']';
521
522    Out.flush();
523    return Name.str().str();
524  }
525  if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
526    // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
527    return "top level";
528  }
529  return "";
530}
531
532void APNumericStorage::setIntValue(ASTContext &C, const llvm::APInt &Val) {
533  if (hasAllocation())
534    C.Deallocate(pVal);
535
536  BitWidth = Val.getBitWidth();
537  unsigned NumWords = Val.getNumWords();
538  const uint64_t* Words = Val.getRawData();
539  if (NumWords > 1) {
540    pVal = new (C) uint64_t[NumWords];
541    std::copy(Words, Words + NumWords, pVal);
542  } else if (NumWords == 1)
543    VAL = Words[0];
544  else
545    VAL = 0;
546}
547
548IntegerLiteral *
549IntegerLiteral::Create(ASTContext &C, const llvm::APInt &V,
550                       QualType type, SourceLocation l) {
551  return new (C) IntegerLiteral(C, V, type, l);
552}
553
554IntegerLiteral *
555IntegerLiteral::Create(ASTContext &C, EmptyShell Empty) {
556  return new (C) IntegerLiteral(Empty);
557}
558
559FloatingLiteral *
560FloatingLiteral::Create(ASTContext &C, const llvm::APFloat &V,
561                        bool isexact, QualType Type, SourceLocation L) {
562  return new (C) FloatingLiteral(C, V, isexact, Type, L);
563}
564
565FloatingLiteral *
566FloatingLiteral::Create(ASTContext &C, EmptyShell Empty) {
567  return new (C) FloatingLiteral(C, Empty);
568}
569
570/// getValueAsApproximateDouble - This returns the value as an inaccurate
571/// double.  Note that this may cause loss of precision, but is useful for
572/// debugging dumps, etc.
573double FloatingLiteral::getValueAsApproximateDouble() const {
574  llvm::APFloat V = getValue();
575  bool ignored;
576  V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
577            &ignored);
578  return V.convertToDouble();
579}
580
581int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
582  int CharByteWidth = 0;
583  switch(k) {
584    case Ascii:
585    case UTF8:
586      CharByteWidth = target.getCharWidth();
587      break;
588    case Wide:
589      CharByteWidth = target.getWCharWidth();
590      break;
591    case UTF16:
592      CharByteWidth = target.getChar16Width();
593      break;
594    case UTF32:
595      CharByteWidth = target.getChar32Width();
596      break;
597  }
598  assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
599  CharByteWidth /= 8;
600  assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
601         && "character byte widths supported are 1, 2, and 4 only");
602  return CharByteWidth;
603}
604
605StringLiteral *StringLiteral::Create(ASTContext &C, StringRef Str,
606                                     StringKind Kind, bool Pascal, QualType Ty,
607                                     const SourceLocation *Loc,
608                                     unsigned NumStrs) {
609  // Allocate enough space for the StringLiteral plus an array of locations for
610  // any concatenated string tokens.
611  void *Mem = C.Allocate(sizeof(StringLiteral)+
612                         sizeof(SourceLocation)*(NumStrs-1),
613                         llvm::alignOf<StringLiteral>());
614  StringLiteral *SL = new (Mem) StringLiteral(Ty);
615
616  // OPTIMIZE: could allocate this appended to the StringLiteral.
617  SL->setString(C,Str,Kind,Pascal);
618
619  SL->TokLocs[0] = Loc[0];
620  SL->NumConcatenated = NumStrs;
621
622  if (NumStrs != 1)
623    memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
624  return SL;
625}
626
627StringLiteral *StringLiteral::CreateEmpty(ASTContext &C, unsigned NumStrs) {
628  void *Mem = C.Allocate(sizeof(StringLiteral)+
629                         sizeof(SourceLocation)*(NumStrs-1),
630                         llvm::alignOf<StringLiteral>());
631  StringLiteral *SL = new (Mem) StringLiteral(QualType());
632  SL->CharByteWidth = 0;
633  SL->Length = 0;
634  SL->NumConcatenated = NumStrs;
635  return SL;
636}
637
638void StringLiteral::setString(ASTContext &C, StringRef Str,
639                              StringKind Kind, bool IsPascal) {
640  //FIXME: we assume that the string data comes from a target that uses the same
641  // code unit size and endianess for the type of string.
642  this->Kind = Kind;
643  this->IsPascal = IsPascal;
644
645  CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
646  assert((Str.size()%CharByteWidth == 0)
647         && "size of data must be multiple of CharByteWidth");
648  Length = Str.size()/CharByteWidth;
649
650  switch(CharByteWidth) {
651    case 1: {
652      char *AStrData = new (C) char[Length];
653      std::memcpy(AStrData,Str.data(),Str.size());
654      StrData.asChar = AStrData;
655      break;
656    }
657    case 2: {
658      uint16_t *AStrData = new (C) uint16_t[Length];
659      std::memcpy(AStrData,Str.data(),Str.size());
660      StrData.asUInt16 = AStrData;
661      break;
662    }
663    case 4: {
664      uint32_t *AStrData = new (C) uint32_t[Length];
665      std::memcpy(AStrData,Str.data(),Str.size());
666      StrData.asUInt32 = AStrData;
667      break;
668    }
669    default:
670      assert(false && "unsupported CharByteWidth");
671  }
672}
673
674/// getLocationOfByte - Return a source location that points to the specified
675/// byte of this string literal.
676///
677/// Strings are amazingly complex.  They can be formed from multiple tokens and
678/// can have escape sequences in them in addition to the usual trigraph and
679/// escaped newline business.  This routine handles this complexity.
680///
681SourceLocation StringLiteral::
682getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
683                  const LangOptions &Features, const TargetInfo &Target) const {
684  assert(Kind == StringLiteral::Ascii && "This only works for ASCII strings");
685
686  // Loop over all of the tokens in this string until we find the one that
687  // contains the byte we're looking for.
688  unsigned TokNo = 0;
689  while (1) {
690    assert(TokNo < getNumConcatenated() && "Invalid byte number!");
691    SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
692
693    // Get the spelling of the string so that we can get the data that makes up
694    // the string literal, not the identifier for the macro it is potentially
695    // expanded through.
696    SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
697
698    // Re-lex the token to get its length and original spelling.
699    std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
700    bool Invalid = false;
701    StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
702    if (Invalid)
703      return StrTokSpellingLoc;
704
705    const char *StrData = Buffer.data()+LocInfo.second;
706
707    // Create a langops struct and enable trigraphs.  This is sufficient for
708    // relexing tokens.
709    LangOptions LangOpts;
710    LangOpts.Trigraphs = true;
711
712    // Create a lexer starting at the beginning of this token.
713    Lexer TheLexer(StrTokSpellingLoc, Features, Buffer.begin(), StrData,
714                   Buffer.end());
715    Token TheTok;
716    TheLexer.LexFromRawLexer(TheTok);
717
718    // Use the StringLiteralParser to compute the length of the string in bytes.
719    StringLiteralParser SLP(&TheTok, 1, SM, Features, Target);
720    unsigned TokNumBytes = SLP.GetStringLength();
721
722    // If the byte is in this token, return the location of the byte.
723    if (ByteNo < TokNumBytes ||
724        (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
725      unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
726
727      // Now that we know the offset of the token in the spelling, use the
728      // preprocessor to get the offset in the original source.
729      return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
730    }
731
732    // Move to the next string token.
733    ++TokNo;
734    ByteNo -= TokNumBytes;
735  }
736}
737
738
739
740/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
741/// corresponds to, e.g. "sizeof" or "[pre]++".
742const char *UnaryOperator::getOpcodeStr(Opcode Op) {
743  switch (Op) {
744  case UO_PostInc: return "++";
745  case UO_PostDec: return "--";
746  case UO_PreInc:  return "++";
747  case UO_PreDec:  return "--";
748  case UO_AddrOf:  return "&";
749  case UO_Deref:   return "*";
750  case UO_Plus:    return "+";
751  case UO_Minus:   return "-";
752  case UO_Not:     return "~";
753  case UO_LNot:    return "!";
754  case UO_Real:    return "__real";
755  case UO_Imag:    return "__imag";
756  case UO_Extension: return "__extension__";
757  }
758  llvm_unreachable("Unknown unary operator");
759}
760
761UnaryOperatorKind
762UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
763  switch (OO) {
764  default: llvm_unreachable("No unary operator for overloaded function");
765  case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
766  case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
767  case OO_Amp:        return UO_AddrOf;
768  case OO_Star:       return UO_Deref;
769  case OO_Plus:       return UO_Plus;
770  case OO_Minus:      return UO_Minus;
771  case OO_Tilde:      return UO_Not;
772  case OO_Exclaim:    return UO_LNot;
773  }
774}
775
776OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
777  switch (Opc) {
778  case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
779  case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
780  case UO_AddrOf: return OO_Amp;
781  case UO_Deref: return OO_Star;
782  case UO_Plus: return OO_Plus;
783  case UO_Minus: return OO_Minus;
784  case UO_Not: return OO_Tilde;
785  case UO_LNot: return OO_Exclaim;
786  default: return OO_None;
787  }
788}
789
790
791//===----------------------------------------------------------------------===//
792// Postfix Operators.
793//===----------------------------------------------------------------------===//
794
795CallExpr::CallExpr(ASTContext& C, StmtClass SC, Expr *fn, unsigned NumPreArgs,
796                   Expr **args, unsigned numargs, QualType t, ExprValueKind VK,
797                   SourceLocation rparenloc)
798  : Expr(SC, t, VK, OK_Ordinary,
799         fn->isTypeDependent(),
800         fn->isValueDependent(),
801         fn->isInstantiationDependent(),
802         fn->containsUnexpandedParameterPack()),
803    NumArgs(numargs) {
804
805  SubExprs = new (C) Stmt*[numargs+PREARGS_START+NumPreArgs];
806  SubExprs[FN] = fn;
807  for (unsigned i = 0; i != numargs; ++i) {
808    if (args[i]->isTypeDependent())
809      ExprBits.TypeDependent = true;
810    if (args[i]->isValueDependent())
811      ExprBits.ValueDependent = true;
812    if (args[i]->isInstantiationDependent())
813      ExprBits.InstantiationDependent = true;
814    if (args[i]->containsUnexpandedParameterPack())
815      ExprBits.ContainsUnexpandedParameterPack = true;
816
817    SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
818  }
819
820  CallExprBits.NumPreArgs = NumPreArgs;
821  RParenLoc = rparenloc;
822}
823
824CallExpr::CallExpr(ASTContext& C, Expr *fn, Expr **args, unsigned numargs,
825                   QualType t, ExprValueKind VK, SourceLocation rparenloc)
826  : Expr(CallExprClass, t, VK, OK_Ordinary,
827         fn->isTypeDependent(),
828         fn->isValueDependent(),
829         fn->isInstantiationDependent(),
830         fn->containsUnexpandedParameterPack()),
831    NumArgs(numargs) {
832
833  SubExprs = new (C) Stmt*[numargs+PREARGS_START];
834  SubExprs[FN] = fn;
835  for (unsigned i = 0; i != numargs; ++i) {
836    if (args[i]->isTypeDependent())
837      ExprBits.TypeDependent = true;
838    if (args[i]->isValueDependent())
839      ExprBits.ValueDependent = true;
840    if (args[i]->isInstantiationDependent())
841      ExprBits.InstantiationDependent = true;
842    if (args[i]->containsUnexpandedParameterPack())
843      ExprBits.ContainsUnexpandedParameterPack = true;
844
845    SubExprs[i+PREARGS_START] = args[i];
846  }
847
848  CallExprBits.NumPreArgs = 0;
849  RParenLoc = rparenloc;
850}
851
852CallExpr::CallExpr(ASTContext &C, StmtClass SC, EmptyShell Empty)
853  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
854  // FIXME: Why do we allocate this?
855  SubExprs = new (C) Stmt*[PREARGS_START];
856  CallExprBits.NumPreArgs = 0;
857}
858
859CallExpr::CallExpr(ASTContext &C, StmtClass SC, unsigned NumPreArgs,
860                   EmptyShell Empty)
861  : Expr(SC, Empty), SubExprs(0), NumArgs(0) {
862  // FIXME: Why do we allocate this?
863  SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
864  CallExprBits.NumPreArgs = NumPreArgs;
865}
866
867Decl *CallExpr::getCalleeDecl() {
868  Expr *CEE = getCallee()->IgnoreParenImpCasts();
869
870  while (SubstNonTypeTemplateParmExpr *NTTP
871                                = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
872    CEE = NTTP->getReplacement()->IgnoreParenCasts();
873  }
874
875  // If we're calling a dereference, look at the pointer instead.
876  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
877    if (BO->isPtrMemOp())
878      CEE = BO->getRHS()->IgnoreParenCasts();
879  } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
880    if (UO->getOpcode() == UO_Deref)
881      CEE = UO->getSubExpr()->IgnoreParenCasts();
882  }
883  if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
884    return DRE->getDecl();
885  if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
886    return ME->getMemberDecl();
887
888  return 0;
889}
890
891FunctionDecl *CallExpr::getDirectCallee() {
892  return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
893}
894
895/// setNumArgs - This changes the number of arguments present in this call.
896/// Any orphaned expressions are deleted by this, and any new operands are set
897/// to null.
898void CallExpr::setNumArgs(ASTContext& C, unsigned NumArgs) {
899  // No change, just return.
900  if (NumArgs == getNumArgs()) return;
901
902  // If shrinking # arguments, just delete the extras and forgot them.
903  if (NumArgs < getNumArgs()) {
904    this->NumArgs = NumArgs;
905    return;
906  }
907
908  // Otherwise, we are growing the # arguments.  New an bigger argument array.
909  unsigned NumPreArgs = getNumPreArgs();
910  Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
911  // Copy over args.
912  for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
913    NewSubExprs[i] = SubExprs[i];
914  // Null out new args.
915  for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
916       i != NumArgs+PREARGS_START+NumPreArgs; ++i)
917    NewSubExprs[i] = 0;
918
919  if (SubExprs) C.Deallocate(SubExprs);
920  SubExprs = NewSubExprs;
921  this->NumArgs = NumArgs;
922}
923
924/// isBuiltinCall - If this is a call to a builtin, return the builtin ID.  If
925/// not, return 0.
926unsigned CallExpr::isBuiltinCall() const {
927  // All simple function calls (e.g. func()) are implicitly cast to pointer to
928  // function. As a result, we try and obtain the DeclRefExpr from the
929  // ImplicitCastExpr.
930  const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
931  if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
932    return 0;
933
934  const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
935  if (!DRE)
936    return 0;
937
938  const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
939  if (!FDecl)
940    return 0;
941
942  if (!FDecl->getIdentifier())
943    return 0;
944
945  return FDecl->getBuiltinID();
946}
947
948QualType CallExpr::getCallReturnType() const {
949  QualType CalleeType = getCallee()->getType();
950  if (const PointerType *FnTypePtr = CalleeType->getAs<PointerType>())
951    CalleeType = FnTypePtr->getPointeeType();
952  else if (const BlockPointerType *BPT = CalleeType->getAs<BlockPointerType>())
953    CalleeType = BPT->getPointeeType();
954  else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember))
955    // This should never be overloaded and so should never return null.
956    CalleeType = Expr::findBoundMemberType(getCallee());
957
958  const FunctionType *FnType = CalleeType->castAs<FunctionType>();
959  return FnType->getResultType();
960}
961
962SourceRange CallExpr::getSourceRange() const {
963  if (isa<CXXOperatorCallExpr>(this))
964    return cast<CXXOperatorCallExpr>(this)->getSourceRange();
965
966  SourceLocation begin = getCallee()->getLocStart();
967  if (begin.isInvalid() && getNumArgs() > 0)
968    begin = getArg(0)->getLocStart();
969  SourceLocation end = getRParenLoc();
970  if (end.isInvalid() && getNumArgs() > 0)
971    end = getArg(getNumArgs() - 1)->getLocEnd();
972  return SourceRange(begin, end);
973}
974SourceLocation CallExpr::getLocStart() const {
975  if (isa<CXXOperatorCallExpr>(this))
976    return cast<CXXOperatorCallExpr>(this)->getSourceRange().getBegin();
977
978  SourceLocation begin = getCallee()->getLocStart();
979  if (begin.isInvalid() && getNumArgs() > 0)
980    begin = getArg(0)->getLocStart();
981  return begin;
982}
983SourceLocation CallExpr::getLocEnd() const {
984  if (isa<CXXOperatorCallExpr>(this))
985    return cast<CXXOperatorCallExpr>(this)->getSourceRange().getEnd();
986
987  SourceLocation end = getRParenLoc();
988  if (end.isInvalid() && getNumArgs() > 0)
989    end = getArg(getNumArgs() - 1)->getLocEnd();
990  return end;
991}
992
993OffsetOfExpr *OffsetOfExpr::Create(ASTContext &C, QualType type,
994                                   SourceLocation OperatorLoc,
995                                   TypeSourceInfo *tsi,
996                                   OffsetOfNode* compsPtr, unsigned numComps,
997                                   Expr** exprsPtr, unsigned numExprs,
998                                   SourceLocation RParenLoc) {
999  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1000                         sizeof(OffsetOfNode) * numComps +
1001                         sizeof(Expr*) * numExprs);
1002
1003  return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, compsPtr, numComps,
1004                                exprsPtr, numExprs, RParenLoc);
1005}
1006
1007OffsetOfExpr *OffsetOfExpr::CreateEmpty(ASTContext &C,
1008                                        unsigned numComps, unsigned numExprs) {
1009  void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1010                         sizeof(OffsetOfNode) * numComps +
1011                         sizeof(Expr*) * numExprs);
1012  return new (Mem) OffsetOfExpr(numComps, numExprs);
1013}
1014
1015OffsetOfExpr::OffsetOfExpr(ASTContext &C, QualType type,
1016                           SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1017                           OffsetOfNode* compsPtr, unsigned numComps,
1018                           Expr** exprsPtr, unsigned numExprs,
1019                           SourceLocation RParenLoc)
1020  : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1021         /*TypeDependent=*/false,
1022         /*ValueDependent=*/tsi->getType()->isDependentType(),
1023         tsi->getType()->isInstantiationDependentType(),
1024         tsi->getType()->containsUnexpandedParameterPack()),
1025    OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1026    NumComps(numComps), NumExprs(numExprs)
1027{
1028  for(unsigned i = 0; i < numComps; ++i) {
1029    setComponent(i, compsPtr[i]);
1030  }
1031
1032  for(unsigned i = 0; i < numExprs; ++i) {
1033    if (exprsPtr[i]->isTypeDependent() || exprsPtr[i]->isValueDependent())
1034      ExprBits.ValueDependent = true;
1035    if (exprsPtr[i]->containsUnexpandedParameterPack())
1036      ExprBits.ContainsUnexpandedParameterPack = true;
1037
1038    setIndexExpr(i, exprsPtr[i]);
1039  }
1040}
1041
1042IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
1043  assert(getKind() == Field || getKind() == Identifier);
1044  if (getKind() == Field)
1045    return getField()->getIdentifier();
1046
1047  return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1048}
1049
1050MemberExpr *MemberExpr::Create(ASTContext &C, Expr *base, bool isarrow,
1051                               NestedNameSpecifierLoc QualifierLoc,
1052                               SourceLocation TemplateKWLoc,
1053                               ValueDecl *memberdecl,
1054                               DeclAccessPair founddecl,
1055                               DeclarationNameInfo nameinfo,
1056                               const TemplateArgumentListInfo *targs,
1057                               QualType ty,
1058                               ExprValueKind vk,
1059                               ExprObjectKind ok) {
1060  std::size_t Size = sizeof(MemberExpr);
1061
1062  bool hasQualOrFound = (QualifierLoc ||
1063                         founddecl.getDecl() != memberdecl ||
1064                         founddecl.getAccess() != memberdecl->getAccess());
1065  if (hasQualOrFound)
1066    Size += sizeof(MemberNameQualifier);
1067
1068  if (targs)
1069    Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
1070  else if (TemplateKWLoc.isValid())
1071    Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
1072
1073  void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1074  MemberExpr *E = new (Mem) MemberExpr(base, isarrow, memberdecl, nameinfo,
1075                                       ty, vk, ok);
1076
1077  if (hasQualOrFound) {
1078    // FIXME: Wrong. We should be looking at the member declaration we found.
1079    if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1080      E->setValueDependent(true);
1081      E->setTypeDependent(true);
1082      E->setInstantiationDependent(true);
1083    }
1084    else if (QualifierLoc &&
1085             QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1086      E->setInstantiationDependent(true);
1087
1088    E->HasQualifierOrFoundDecl = true;
1089
1090    MemberNameQualifier *NQ = E->getMemberQualifier();
1091    NQ->QualifierLoc = QualifierLoc;
1092    NQ->FoundDecl = founddecl;
1093  }
1094
1095  E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1096
1097  if (targs) {
1098    bool Dependent = false;
1099    bool InstantiationDependent = false;
1100    bool ContainsUnexpandedParameterPack = false;
1101    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1102                                                  Dependent,
1103                                                  InstantiationDependent,
1104                                             ContainsUnexpandedParameterPack);
1105    if (InstantiationDependent)
1106      E->setInstantiationDependent(true);
1107  } else if (TemplateKWLoc.isValid()) {
1108    E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1109  }
1110
1111  return E;
1112}
1113
1114SourceRange MemberExpr::getSourceRange() const {
1115  return SourceRange(getLocStart(), getLocEnd());
1116}
1117SourceLocation MemberExpr::getLocStart() const {
1118  if (isImplicitAccess()) {
1119    if (hasQualifier())
1120      return getQualifierLoc().getBeginLoc();
1121    return MemberLoc;
1122  }
1123
1124  // FIXME: We don't want this to happen. Rather, we should be able to
1125  // detect all kinds of implicit accesses more cleanly.
1126  SourceLocation BaseStartLoc = getBase()->getLocStart();
1127  if (BaseStartLoc.isValid())
1128    return BaseStartLoc;
1129  return MemberLoc;
1130}
1131SourceLocation MemberExpr::getLocEnd() const {
1132  if (hasExplicitTemplateArgs())
1133    return getRAngleLoc();
1134  return getMemberNameInfo().getEndLoc();
1135}
1136
1137void CastExpr::CheckCastConsistency() const {
1138  switch (getCastKind()) {
1139  case CK_DerivedToBase:
1140  case CK_UncheckedDerivedToBase:
1141  case CK_DerivedToBaseMemberPointer:
1142  case CK_BaseToDerived:
1143  case CK_BaseToDerivedMemberPointer:
1144    assert(!path_empty() && "Cast kind should have a base path!");
1145    break;
1146
1147  case CK_CPointerToObjCPointerCast:
1148    assert(getType()->isObjCObjectPointerType());
1149    assert(getSubExpr()->getType()->isPointerType());
1150    goto CheckNoBasePath;
1151
1152  case CK_BlockPointerToObjCPointerCast:
1153    assert(getType()->isObjCObjectPointerType());
1154    assert(getSubExpr()->getType()->isBlockPointerType());
1155    goto CheckNoBasePath;
1156
1157  case CK_ReinterpretMemberPointer:
1158    assert(getType()->isMemberPointerType());
1159    assert(getSubExpr()->getType()->isMemberPointerType());
1160    goto CheckNoBasePath;
1161
1162  case CK_BitCast:
1163    // Arbitrary casts to C pointer types count as bitcasts.
1164    // Otherwise, we should only have block and ObjC pointer casts
1165    // here if they stay within the type kind.
1166    if (!getType()->isPointerType()) {
1167      assert(getType()->isObjCObjectPointerType() ==
1168             getSubExpr()->getType()->isObjCObjectPointerType());
1169      assert(getType()->isBlockPointerType() ==
1170             getSubExpr()->getType()->isBlockPointerType());
1171    }
1172    goto CheckNoBasePath;
1173
1174  case CK_AnyPointerToBlockPointerCast:
1175    assert(getType()->isBlockPointerType());
1176    assert(getSubExpr()->getType()->isAnyPointerType() &&
1177           !getSubExpr()->getType()->isBlockPointerType());
1178    goto CheckNoBasePath;
1179
1180  case CK_CopyAndAutoreleaseBlockObject:
1181    assert(getType()->isBlockPointerType());
1182    assert(getSubExpr()->getType()->isBlockPointerType());
1183    goto CheckNoBasePath;
1184
1185  // These should not have an inheritance path.
1186  case CK_Dynamic:
1187  case CK_ToUnion:
1188  case CK_ArrayToPointerDecay:
1189  case CK_FunctionToPointerDecay:
1190  case CK_NullToMemberPointer:
1191  case CK_NullToPointer:
1192  case CK_ConstructorConversion:
1193  case CK_IntegralToPointer:
1194  case CK_PointerToIntegral:
1195  case CK_ToVoid:
1196  case CK_VectorSplat:
1197  case CK_IntegralCast:
1198  case CK_IntegralToFloating:
1199  case CK_FloatingToIntegral:
1200  case CK_FloatingCast:
1201  case CK_ObjCObjectLValueCast:
1202  case CK_FloatingRealToComplex:
1203  case CK_FloatingComplexToReal:
1204  case CK_FloatingComplexCast:
1205  case CK_FloatingComplexToIntegralComplex:
1206  case CK_IntegralRealToComplex:
1207  case CK_IntegralComplexToReal:
1208  case CK_IntegralComplexCast:
1209  case CK_IntegralComplexToFloatingComplex:
1210  case CK_ARCProduceObject:
1211  case CK_ARCConsumeObject:
1212  case CK_ARCReclaimReturnedObject:
1213  case CK_ARCExtendBlockObject:
1214    assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1215    goto CheckNoBasePath;
1216
1217  case CK_Dependent:
1218  case CK_LValueToRValue:
1219  case CK_NoOp:
1220  case CK_AtomicToNonAtomic:
1221  case CK_NonAtomicToAtomic:
1222  case CK_PointerToBoolean:
1223  case CK_IntegralToBoolean:
1224  case CK_FloatingToBoolean:
1225  case CK_MemberPointerToBoolean:
1226  case CK_FloatingComplexToBoolean:
1227  case CK_IntegralComplexToBoolean:
1228  case CK_LValueBitCast:            // -> bool&
1229  case CK_UserDefinedConversion:    // operator bool()
1230  CheckNoBasePath:
1231    assert(path_empty() && "Cast kind should not have a base path!");
1232    break;
1233  }
1234}
1235
1236const char *CastExpr::getCastKindName() const {
1237  switch (getCastKind()) {
1238  case CK_Dependent:
1239    return "Dependent";
1240  case CK_BitCast:
1241    return "BitCast";
1242  case CK_LValueBitCast:
1243    return "LValueBitCast";
1244  case CK_LValueToRValue:
1245    return "LValueToRValue";
1246  case CK_NoOp:
1247    return "NoOp";
1248  case CK_BaseToDerived:
1249    return "BaseToDerived";
1250  case CK_DerivedToBase:
1251    return "DerivedToBase";
1252  case CK_UncheckedDerivedToBase:
1253    return "UncheckedDerivedToBase";
1254  case CK_Dynamic:
1255    return "Dynamic";
1256  case CK_ToUnion:
1257    return "ToUnion";
1258  case CK_ArrayToPointerDecay:
1259    return "ArrayToPointerDecay";
1260  case CK_FunctionToPointerDecay:
1261    return "FunctionToPointerDecay";
1262  case CK_NullToMemberPointer:
1263    return "NullToMemberPointer";
1264  case CK_NullToPointer:
1265    return "NullToPointer";
1266  case CK_BaseToDerivedMemberPointer:
1267    return "BaseToDerivedMemberPointer";
1268  case CK_DerivedToBaseMemberPointer:
1269    return "DerivedToBaseMemberPointer";
1270  case CK_ReinterpretMemberPointer:
1271    return "ReinterpretMemberPointer";
1272  case CK_UserDefinedConversion:
1273    return "UserDefinedConversion";
1274  case CK_ConstructorConversion:
1275    return "ConstructorConversion";
1276  case CK_IntegralToPointer:
1277    return "IntegralToPointer";
1278  case CK_PointerToIntegral:
1279    return "PointerToIntegral";
1280  case CK_PointerToBoolean:
1281    return "PointerToBoolean";
1282  case CK_ToVoid:
1283    return "ToVoid";
1284  case CK_VectorSplat:
1285    return "VectorSplat";
1286  case CK_IntegralCast:
1287    return "IntegralCast";
1288  case CK_IntegralToBoolean:
1289    return "IntegralToBoolean";
1290  case CK_IntegralToFloating:
1291    return "IntegralToFloating";
1292  case CK_FloatingToIntegral:
1293    return "FloatingToIntegral";
1294  case CK_FloatingCast:
1295    return "FloatingCast";
1296  case CK_FloatingToBoolean:
1297    return "FloatingToBoolean";
1298  case CK_MemberPointerToBoolean:
1299    return "MemberPointerToBoolean";
1300  case CK_CPointerToObjCPointerCast:
1301    return "CPointerToObjCPointerCast";
1302  case CK_BlockPointerToObjCPointerCast:
1303    return "BlockPointerToObjCPointerCast";
1304  case CK_AnyPointerToBlockPointerCast:
1305    return "AnyPointerToBlockPointerCast";
1306  case CK_ObjCObjectLValueCast:
1307    return "ObjCObjectLValueCast";
1308  case CK_FloatingRealToComplex:
1309    return "FloatingRealToComplex";
1310  case CK_FloatingComplexToReal:
1311    return "FloatingComplexToReal";
1312  case CK_FloatingComplexToBoolean:
1313    return "FloatingComplexToBoolean";
1314  case CK_FloatingComplexCast:
1315    return "FloatingComplexCast";
1316  case CK_FloatingComplexToIntegralComplex:
1317    return "FloatingComplexToIntegralComplex";
1318  case CK_IntegralRealToComplex:
1319    return "IntegralRealToComplex";
1320  case CK_IntegralComplexToReal:
1321    return "IntegralComplexToReal";
1322  case CK_IntegralComplexToBoolean:
1323    return "IntegralComplexToBoolean";
1324  case CK_IntegralComplexCast:
1325    return "IntegralComplexCast";
1326  case CK_IntegralComplexToFloatingComplex:
1327    return "IntegralComplexToFloatingComplex";
1328  case CK_ARCConsumeObject:
1329    return "ARCConsumeObject";
1330  case CK_ARCProduceObject:
1331    return "ARCProduceObject";
1332  case CK_ARCReclaimReturnedObject:
1333    return "ARCReclaimReturnedObject";
1334  case CK_ARCExtendBlockObject:
1335    return "ARCCExtendBlockObject";
1336  case CK_AtomicToNonAtomic:
1337    return "AtomicToNonAtomic";
1338  case CK_NonAtomicToAtomic:
1339    return "NonAtomicToAtomic";
1340  case CK_CopyAndAutoreleaseBlockObject:
1341    return "CopyAndAutoreleaseBlockObject";
1342  }
1343
1344  llvm_unreachable("Unhandled cast kind!");
1345}
1346
1347Expr *CastExpr::getSubExprAsWritten() {
1348  Expr *SubExpr = 0;
1349  CastExpr *E = this;
1350  do {
1351    SubExpr = E->getSubExpr();
1352
1353    // Skip through reference binding to temporary.
1354    if (MaterializeTemporaryExpr *Materialize
1355                                  = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1356      SubExpr = Materialize->GetTemporaryExpr();
1357
1358    // Skip any temporary bindings; they're implicit.
1359    if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1360      SubExpr = Binder->getSubExpr();
1361
1362    // Conversions by constructor and conversion functions have a
1363    // subexpression describing the call; strip it off.
1364    if (E->getCastKind() == CK_ConstructorConversion)
1365      SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1366    else if (E->getCastKind() == CK_UserDefinedConversion)
1367      SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1368
1369    // If the subexpression we're left with is an implicit cast, look
1370    // through that, too.
1371  } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1372
1373  return SubExpr;
1374}
1375
1376CXXBaseSpecifier **CastExpr::path_buffer() {
1377  switch (getStmtClass()) {
1378#define ABSTRACT_STMT(x)
1379#define CASTEXPR(Type, Base) \
1380  case Stmt::Type##Class: \
1381    return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1382#define STMT(Type, Base)
1383#include "clang/AST/StmtNodes.inc"
1384  default:
1385    llvm_unreachable("non-cast expressions not possible here");
1386  }
1387}
1388
1389void CastExpr::setCastPath(const CXXCastPath &Path) {
1390  assert(Path.size() == path_size());
1391  memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1392}
1393
1394ImplicitCastExpr *ImplicitCastExpr::Create(ASTContext &C, QualType T,
1395                                           CastKind Kind, Expr *Operand,
1396                                           const CXXCastPath *BasePath,
1397                                           ExprValueKind VK) {
1398  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1399  void *Buffer =
1400    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1401  ImplicitCastExpr *E =
1402    new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1403  if (PathSize) E->setCastPath(*BasePath);
1404  return E;
1405}
1406
1407ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(ASTContext &C,
1408                                                unsigned PathSize) {
1409  void *Buffer =
1410    C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1411  return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1412}
1413
1414
1415CStyleCastExpr *CStyleCastExpr::Create(ASTContext &C, QualType T,
1416                                       ExprValueKind VK, CastKind K, Expr *Op,
1417                                       const CXXCastPath *BasePath,
1418                                       TypeSourceInfo *WrittenTy,
1419                                       SourceLocation L, SourceLocation R) {
1420  unsigned PathSize = (BasePath ? BasePath->size() : 0);
1421  void *Buffer =
1422    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1423  CStyleCastExpr *E =
1424    new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1425  if (PathSize) E->setCastPath(*BasePath);
1426  return E;
1427}
1428
1429CStyleCastExpr *CStyleCastExpr::CreateEmpty(ASTContext &C, unsigned PathSize) {
1430  void *Buffer =
1431    C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1432  return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1433}
1434
1435/// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1436/// corresponds to, e.g. "<<=".
1437const char *BinaryOperator::getOpcodeStr(Opcode Op) {
1438  switch (Op) {
1439  case BO_PtrMemD:   return ".*";
1440  case BO_PtrMemI:   return "->*";
1441  case BO_Mul:       return "*";
1442  case BO_Div:       return "/";
1443  case BO_Rem:       return "%";
1444  case BO_Add:       return "+";
1445  case BO_Sub:       return "-";
1446  case BO_Shl:       return "<<";
1447  case BO_Shr:       return ">>";
1448  case BO_LT:        return "<";
1449  case BO_GT:        return ">";
1450  case BO_LE:        return "<=";
1451  case BO_GE:        return ">=";
1452  case BO_EQ:        return "==";
1453  case BO_NE:        return "!=";
1454  case BO_And:       return "&";
1455  case BO_Xor:       return "^";
1456  case BO_Or:        return "|";
1457  case BO_LAnd:      return "&&";
1458  case BO_LOr:       return "||";
1459  case BO_Assign:    return "=";
1460  case BO_MulAssign: return "*=";
1461  case BO_DivAssign: return "/=";
1462  case BO_RemAssign: return "%=";
1463  case BO_AddAssign: return "+=";
1464  case BO_SubAssign: return "-=";
1465  case BO_ShlAssign: return "<<=";
1466  case BO_ShrAssign: return ">>=";
1467  case BO_AndAssign: return "&=";
1468  case BO_XorAssign: return "^=";
1469  case BO_OrAssign:  return "|=";
1470  case BO_Comma:     return ",";
1471  }
1472
1473  llvm_unreachable("Invalid OpCode!");
1474}
1475
1476BinaryOperatorKind
1477BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1478  switch (OO) {
1479  default: llvm_unreachable("Not an overloadable binary operator");
1480  case OO_Plus: return BO_Add;
1481  case OO_Minus: return BO_Sub;
1482  case OO_Star: return BO_Mul;
1483  case OO_Slash: return BO_Div;
1484  case OO_Percent: return BO_Rem;
1485  case OO_Caret: return BO_Xor;
1486  case OO_Amp: return BO_And;
1487  case OO_Pipe: return BO_Or;
1488  case OO_Equal: return BO_Assign;
1489  case OO_Less: return BO_LT;
1490  case OO_Greater: return BO_GT;
1491  case OO_PlusEqual: return BO_AddAssign;
1492  case OO_MinusEqual: return BO_SubAssign;
1493  case OO_StarEqual: return BO_MulAssign;
1494  case OO_SlashEqual: return BO_DivAssign;
1495  case OO_PercentEqual: return BO_RemAssign;
1496  case OO_CaretEqual: return BO_XorAssign;
1497  case OO_AmpEqual: return BO_AndAssign;
1498  case OO_PipeEqual: return BO_OrAssign;
1499  case OO_LessLess: return BO_Shl;
1500  case OO_GreaterGreater: return BO_Shr;
1501  case OO_LessLessEqual: return BO_ShlAssign;
1502  case OO_GreaterGreaterEqual: return BO_ShrAssign;
1503  case OO_EqualEqual: return BO_EQ;
1504  case OO_ExclaimEqual: return BO_NE;
1505  case OO_LessEqual: return BO_LE;
1506  case OO_GreaterEqual: return BO_GE;
1507  case OO_AmpAmp: return BO_LAnd;
1508  case OO_PipePipe: return BO_LOr;
1509  case OO_Comma: return BO_Comma;
1510  case OO_ArrowStar: return BO_PtrMemI;
1511  }
1512}
1513
1514OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1515  static const OverloadedOperatorKind OverOps[] = {
1516    /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1517    OO_Star, OO_Slash, OO_Percent,
1518    OO_Plus, OO_Minus,
1519    OO_LessLess, OO_GreaterGreater,
1520    OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1521    OO_EqualEqual, OO_ExclaimEqual,
1522    OO_Amp,
1523    OO_Caret,
1524    OO_Pipe,
1525    OO_AmpAmp,
1526    OO_PipePipe,
1527    OO_Equal, OO_StarEqual,
1528    OO_SlashEqual, OO_PercentEqual,
1529    OO_PlusEqual, OO_MinusEqual,
1530    OO_LessLessEqual, OO_GreaterGreaterEqual,
1531    OO_AmpEqual, OO_CaretEqual,
1532    OO_PipeEqual,
1533    OO_Comma
1534  };
1535  return OverOps[Opc];
1536}
1537
1538InitListExpr::InitListExpr(ASTContext &C, SourceLocation lbraceloc,
1539                           Expr **initExprs, unsigned numInits,
1540                           SourceLocation rbraceloc)
1541  : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1542         false, false),
1543    InitExprs(C, numInits),
1544    LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), SyntacticForm(0)
1545{
1546  sawArrayRangeDesignator(false);
1547  setInitializesStdInitializerList(false);
1548  for (unsigned I = 0; I != numInits; ++I) {
1549    if (initExprs[I]->isTypeDependent())
1550      ExprBits.TypeDependent = true;
1551    if (initExprs[I]->isValueDependent())
1552      ExprBits.ValueDependent = true;
1553    if (initExprs[I]->isInstantiationDependent())
1554      ExprBits.InstantiationDependent = true;
1555    if (initExprs[I]->containsUnexpandedParameterPack())
1556      ExprBits.ContainsUnexpandedParameterPack = true;
1557  }
1558
1559  InitExprs.insert(C, InitExprs.end(), initExprs, initExprs+numInits);
1560}
1561
1562void InitListExpr::reserveInits(ASTContext &C, unsigned NumInits) {
1563  if (NumInits > InitExprs.size())
1564    InitExprs.reserve(C, NumInits);
1565}
1566
1567void InitListExpr::resizeInits(ASTContext &C, unsigned NumInits) {
1568  InitExprs.resize(C, NumInits, 0);
1569}
1570
1571Expr *InitListExpr::updateInit(ASTContext &C, unsigned Init, Expr *expr) {
1572  if (Init >= InitExprs.size()) {
1573    InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, 0);
1574    InitExprs.back() = expr;
1575    return 0;
1576  }
1577
1578  Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1579  InitExprs[Init] = expr;
1580  return Result;
1581}
1582
1583void InitListExpr::setArrayFiller(Expr *filler) {
1584  assert(!hasArrayFiller() && "Filler already set!");
1585  ArrayFillerOrUnionFieldInit = filler;
1586  // Fill out any "holes" in the array due to designated initializers.
1587  Expr **inits = getInits();
1588  for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1589    if (inits[i] == 0)
1590      inits[i] = filler;
1591}
1592
1593bool InitListExpr::isStringLiteralInit() const {
1594  if (getNumInits() != 1)
1595    return false;
1596  const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(getType());
1597  if (!CAT || !CAT->getElementType()->isIntegerType())
1598    return false;
1599  const Expr *Init = getInit(0)->IgnoreParenImpCasts();
1600  return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
1601}
1602
1603SourceRange InitListExpr::getSourceRange() const {
1604  if (SyntacticForm)
1605    return SyntacticForm->getSourceRange();
1606  SourceLocation Beg = LBraceLoc, End = RBraceLoc;
1607  if (Beg.isInvalid()) {
1608    // Find the first non-null initializer.
1609    for (InitExprsTy::const_iterator I = InitExprs.begin(),
1610                                     E = InitExprs.end();
1611      I != E; ++I) {
1612      if (Stmt *S = *I) {
1613        Beg = S->getLocStart();
1614        break;
1615      }
1616    }
1617  }
1618  if (End.isInvalid()) {
1619    // Find the first non-null initializer from the end.
1620    for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1621                                             E = InitExprs.rend();
1622      I != E; ++I) {
1623      if (Stmt *S = *I) {
1624        End = S->getSourceRange().getEnd();
1625        break;
1626      }
1627    }
1628  }
1629  return SourceRange(Beg, End);
1630}
1631
1632/// getFunctionType - Return the underlying function type for this block.
1633///
1634const FunctionProtoType *BlockExpr::getFunctionType() const {
1635  // The block pointer is never sugared, but the function type might be.
1636  return cast<BlockPointerType>(getType())
1637           ->getPointeeType()->castAs<FunctionProtoType>();
1638}
1639
1640SourceLocation BlockExpr::getCaretLocation() const {
1641  return TheBlock->getCaretLocation();
1642}
1643const Stmt *BlockExpr::getBody() const {
1644  return TheBlock->getBody();
1645}
1646Stmt *BlockExpr::getBody() {
1647  return TheBlock->getBody();
1648}
1649
1650
1651//===----------------------------------------------------------------------===//
1652// Generic Expression Routines
1653//===----------------------------------------------------------------------===//
1654
1655/// isUnusedResultAWarning - Return true if this immediate expression should
1656/// be warned about if the result is unused.  If so, fill in Loc and Ranges
1657/// with location to warn on and the source range[s] to report with the
1658/// warning.
1659bool Expr::isUnusedResultAWarning(SourceLocation &Loc, SourceRange &R1,
1660                                  SourceRange &R2, ASTContext &Ctx) const {
1661  // Don't warn if the expr is type dependent. The type could end up
1662  // instantiating to void.
1663  if (isTypeDependent())
1664    return false;
1665
1666  switch (getStmtClass()) {
1667  default:
1668    if (getType()->isVoidType())
1669      return false;
1670    Loc = getExprLoc();
1671    R1 = getSourceRange();
1672    return true;
1673  case ParenExprClass:
1674    return cast<ParenExpr>(this)->getSubExpr()->
1675      isUnusedResultAWarning(Loc, R1, R2, Ctx);
1676  case GenericSelectionExprClass:
1677    return cast<GenericSelectionExpr>(this)->getResultExpr()->
1678      isUnusedResultAWarning(Loc, R1, R2, Ctx);
1679  case UnaryOperatorClass: {
1680    const UnaryOperator *UO = cast<UnaryOperator>(this);
1681
1682    switch (UO->getOpcode()) {
1683    default: break;
1684    case UO_PostInc:
1685    case UO_PostDec:
1686    case UO_PreInc:
1687    case UO_PreDec:                 // ++/--
1688      return false;  // Not a warning.
1689    case UO_Deref:
1690      // Dereferencing a volatile pointer is a side-effect.
1691      if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1692        return false;
1693      break;
1694    case UO_Real:
1695    case UO_Imag:
1696      // accessing a piece of a volatile complex is a side-effect.
1697      if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1698          .isVolatileQualified())
1699        return false;
1700      break;
1701    case UO_Extension:
1702      return UO->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1703    }
1704    Loc = UO->getOperatorLoc();
1705    R1 = UO->getSubExpr()->getSourceRange();
1706    return true;
1707  }
1708  case BinaryOperatorClass: {
1709    const BinaryOperator *BO = cast<BinaryOperator>(this);
1710    switch (BO->getOpcode()) {
1711      default:
1712        break;
1713      // Consider the RHS of comma for side effects. LHS was checked by
1714      // Sema::CheckCommaOperands.
1715      case BO_Comma:
1716        // ((foo = <blah>), 0) is an idiom for hiding the result (and
1717        // lvalue-ness) of an assignment written in a macro.
1718        if (IntegerLiteral *IE =
1719              dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1720          if (IE->getValue() == 0)
1721            return false;
1722        return BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1723      // Consider '||', '&&' to have side effects if the LHS or RHS does.
1724      case BO_LAnd:
1725      case BO_LOr:
1726        if (!BO->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx) ||
1727            !BO->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1728          return false;
1729        break;
1730    }
1731    if (BO->isAssignmentOp())
1732      return false;
1733    Loc = BO->getOperatorLoc();
1734    R1 = BO->getLHS()->getSourceRange();
1735    R2 = BO->getRHS()->getSourceRange();
1736    return true;
1737  }
1738  case CompoundAssignOperatorClass:
1739  case VAArgExprClass:
1740  case AtomicExprClass:
1741    return false;
1742
1743  case ConditionalOperatorClass: {
1744    // If only one of the LHS or RHS is a warning, the operator might
1745    // be being used for control flow. Only warn if both the LHS and
1746    // RHS are warnings.
1747    const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1748    if (!Exp->getRHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx))
1749      return false;
1750    if (!Exp->getLHS())
1751      return true;
1752    return Exp->getLHS()->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1753  }
1754
1755  case MemberExprClass:
1756    // If the base pointer or element is to a volatile pointer/field, accessing
1757    // it is a side effect.
1758    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1759      return false;
1760    Loc = cast<MemberExpr>(this)->getMemberLoc();
1761    R1 = SourceRange(Loc, Loc);
1762    R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
1763    return true;
1764
1765  case ArraySubscriptExprClass:
1766    // If the base pointer or element is to a volatile pointer/field, accessing
1767    // it is a side effect.
1768    if (Ctx.getCanonicalType(getType()).isVolatileQualified())
1769      return false;
1770    Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
1771    R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
1772    R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
1773    return true;
1774
1775  case CXXOperatorCallExprClass: {
1776    // We warn about operator== and operator!= even when user-defined operator
1777    // overloads as there is no reasonable way to define these such that they
1778    // have non-trivial, desirable side-effects. See the -Wunused-comparison
1779    // warning: these operators are commonly typo'ed, and so warning on them
1780    // provides additional value as well. If this list is updated,
1781    // DiagnoseUnusedComparison should be as well.
1782    const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
1783    if (Op->getOperator() == OO_EqualEqual ||
1784        Op->getOperator() == OO_ExclaimEqual) {
1785      Loc = Op->getOperatorLoc();
1786      R1 = Op->getSourceRange();
1787      return true;
1788    }
1789
1790    // Fallthrough for generic call handling.
1791  }
1792  case CallExprClass:
1793  case CXXMemberCallExprClass:
1794  case UserDefinedLiteralClass: {
1795    // If this is a direct call, get the callee.
1796    const CallExpr *CE = cast<CallExpr>(this);
1797    if (const Decl *FD = CE->getCalleeDecl()) {
1798      // If the callee has attribute pure, const, or warn_unused_result, warn
1799      // about it. void foo() { strlen("bar"); } should warn.
1800      //
1801      // Note: If new cases are added here, DiagnoseUnusedExprResult should be
1802      // updated to match for QoI.
1803      if (FD->getAttr<WarnUnusedResultAttr>() ||
1804          FD->getAttr<PureAttr>() || FD->getAttr<ConstAttr>()) {
1805        Loc = CE->getCallee()->getLocStart();
1806        R1 = CE->getCallee()->getSourceRange();
1807
1808        if (unsigned NumArgs = CE->getNumArgs())
1809          R2 = SourceRange(CE->getArg(0)->getLocStart(),
1810                           CE->getArg(NumArgs-1)->getLocEnd());
1811        return true;
1812      }
1813    }
1814    return false;
1815  }
1816
1817  case CXXTemporaryObjectExprClass:
1818  case CXXConstructExprClass:
1819    return false;
1820
1821  case ObjCMessageExprClass: {
1822    const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
1823    if (Ctx.getLangOpts().ObjCAutoRefCount &&
1824        ME->isInstanceMessage() &&
1825        !ME->getType()->isVoidType() &&
1826        ME->getSelector().getIdentifierInfoForSlot(0) &&
1827        ME->getSelector().getIdentifierInfoForSlot(0)
1828                                               ->getName().startswith("init")) {
1829      Loc = getExprLoc();
1830      R1 = ME->getSourceRange();
1831      return true;
1832    }
1833
1834    const ObjCMethodDecl *MD = ME->getMethodDecl();
1835    if (MD && MD->getAttr<WarnUnusedResultAttr>()) {
1836      Loc = getExprLoc();
1837      return true;
1838    }
1839    return false;
1840  }
1841
1842  case ObjCPropertyRefExprClass:
1843    Loc = getExprLoc();
1844    R1 = getSourceRange();
1845    return true;
1846
1847  case PseudoObjectExprClass: {
1848    const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
1849
1850    // Only complain about things that have the form of a getter.
1851    if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
1852        isa<BinaryOperator>(PO->getSyntacticForm()))
1853      return false;
1854
1855    Loc = getExprLoc();
1856    R1 = getSourceRange();
1857    return true;
1858  }
1859
1860  case StmtExprClass: {
1861    // Statement exprs don't logically have side effects themselves, but are
1862    // sometimes used in macros in ways that give them a type that is unused.
1863    // For example ({ blah; foo(); }) will end up with a type if foo has a type.
1864    // however, if the result of the stmt expr is dead, we don't want to emit a
1865    // warning.
1866    const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
1867    if (!CS->body_empty()) {
1868      if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
1869        return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1870      if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
1871        if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
1872          return E->isUnusedResultAWarning(Loc, R1, R2, Ctx);
1873    }
1874
1875    if (getType()->isVoidType())
1876      return false;
1877    Loc = cast<StmtExpr>(this)->getLParenLoc();
1878    R1 = getSourceRange();
1879    return true;
1880  }
1881  case CStyleCastExprClass:
1882    // If this is an explicit cast to void, allow it.  People do this when they
1883    // think they know what they're doing :).
1884    if (getType()->isVoidType())
1885      return false;
1886    Loc = cast<CStyleCastExpr>(this)->getLParenLoc();
1887    R1 = cast<CStyleCastExpr>(this)->getSubExpr()->getSourceRange();
1888    return true;
1889  case CXXFunctionalCastExprClass: {
1890    if (getType()->isVoidType())
1891      return false;
1892    const CastExpr *CE = cast<CastExpr>(this);
1893
1894    // If this is a cast to void or a constructor conversion, check the operand.
1895    // Otherwise, the result of the cast is unused.
1896    if (CE->getCastKind() == CK_ToVoid ||
1897        CE->getCastKind() == CK_ConstructorConversion)
1898      return (cast<CastExpr>(this)->getSubExpr()
1899              ->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1900    Loc = cast<CXXFunctionalCastExpr>(this)->getTypeBeginLoc();
1901    R1 = cast<CXXFunctionalCastExpr>(this)->getSubExpr()->getSourceRange();
1902    return true;
1903  }
1904
1905  case ImplicitCastExprClass:
1906    // Check the operand, since implicit casts are inserted by Sema
1907    return (cast<ImplicitCastExpr>(this)
1908            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1909
1910  case CXXDefaultArgExprClass:
1911    return (cast<CXXDefaultArgExpr>(this)
1912            ->getExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1913
1914  case CXXNewExprClass:
1915    // FIXME: In theory, there might be new expressions that don't have side
1916    // effects (e.g. a placement new with an uninitialized POD).
1917  case CXXDeleteExprClass:
1918    return false;
1919  case CXXBindTemporaryExprClass:
1920    return (cast<CXXBindTemporaryExpr>(this)
1921            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1922  case ExprWithCleanupsClass:
1923    return (cast<ExprWithCleanups>(this)
1924            ->getSubExpr()->isUnusedResultAWarning(Loc, R1, R2, Ctx));
1925  }
1926}
1927
1928/// isOBJCGCCandidate - Check if an expression is objc gc'able.
1929/// returns true, if it is; false otherwise.
1930bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
1931  const Expr *E = IgnoreParens();
1932  switch (E->getStmtClass()) {
1933  default:
1934    return false;
1935  case ObjCIvarRefExprClass:
1936    return true;
1937  case Expr::UnaryOperatorClass:
1938    return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
1939  case ImplicitCastExprClass:
1940    return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
1941  case MaterializeTemporaryExprClass:
1942    return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
1943                                                      ->isOBJCGCCandidate(Ctx);
1944  case CStyleCastExprClass:
1945    return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
1946  case DeclRefExprClass: {
1947    const Decl *D = cast<DeclRefExpr>(E)->getDecl();
1948
1949    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1950      if (VD->hasGlobalStorage())
1951        return true;
1952      QualType T = VD->getType();
1953      // dereferencing to a  pointer is always a gc'able candidate,
1954      // unless it is __weak.
1955      return T->isPointerType() &&
1956             (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
1957    }
1958    return false;
1959  }
1960  case MemberExprClass: {
1961    const MemberExpr *M = cast<MemberExpr>(E);
1962    return M->getBase()->isOBJCGCCandidate(Ctx);
1963  }
1964  case ArraySubscriptExprClass:
1965    return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
1966  }
1967}
1968
1969bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
1970  if (isTypeDependent())
1971    return false;
1972  return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
1973}
1974
1975QualType Expr::findBoundMemberType(const Expr *expr) {
1976  assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
1977
1978  // Bound member expressions are always one of these possibilities:
1979  //   x->m      x.m      x->*y      x.*y
1980  // (possibly parenthesized)
1981
1982  expr = expr->IgnoreParens();
1983  if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
1984    assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
1985    return mem->getMemberDecl()->getType();
1986  }
1987
1988  if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
1989    QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
1990                      ->getPointeeType();
1991    assert(type->isFunctionType());
1992    return type;
1993  }
1994
1995  assert(isa<UnresolvedMemberExpr>(expr));
1996  return QualType();
1997}
1998
1999Expr* Expr::IgnoreParens() {
2000  Expr* E = this;
2001  while (true) {
2002    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2003      E = P->getSubExpr();
2004      continue;
2005    }
2006    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2007      if (P->getOpcode() == UO_Extension) {
2008        E = P->getSubExpr();
2009        continue;
2010      }
2011    }
2012    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2013      if (!P->isResultDependent()) {
2014        E = P->getResultExpr();
2015        continue;
2016      }
2017    }
2018    return E;
2019  }
2020}
2021
2022/// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
2023/// or CastExprs or ImplicitCastExprs, returning their operand.
2024Expr *Expr::IgnoreParenCasts() {
2025  Expr *E = this;
2026  while (true) {
2027    if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2028      E = P->getSubExpr();
2029      continue;
2030    }
2031    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2032      E = P->getSubExpr();
2033      continue;
2034    }
2035    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2036      if (P->getOpcode() == UO_Extension) {
2037        E = P->getSubExpr();
2038        continue;
2039      }
2040    }
2041    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2042      if (!P->isResultDependent()) {
2043        E = P->getResultExpr();
2044        continue;
2045      }
2046    }
2047    if (MaterializeTemporaryExpr *Materialize
2048                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2049      E = Materialize->GetTemporaryExpr();
2050      continue;
2051    }
2052    if (SubstNonTypeTemplateParmExpr *NTTP
2053                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2054      E = NTTP->getReplacement();
2055      continue;
2056    }
2057    return E;
2058  }
2059}
2060
2061/// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2062/// casts.  This is intended purely as a temporary workaround for code
2063/// that hasn't yet been rewritten to do the right thing about those
2064/// casts, and may disappear along with the last internal use.
2065Expr *Expr::IgnoreParenLValueCasts() {
2066  Expr *E = this;
2067  while (true) {
2068    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2069      E = P->getSubExpr();
2070      continue;
2071    } else if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2072      if (P->getCastKind() == CK_LValueToRValue) {
2073        E = P->getSubExpr();
2074        continue;
2075      }
2076    } else if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2077      if (P->getOpcode() == UO_Extension) {
2078        E = P->getSubExpr();
2079        continue;
2080      }
2081    } else if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2082      if (!P->isResultDependent()) {
2083        E = P->getResultExpr();
2084        continue;
2085      }
2086    } else if (MaterializeTemporaryExpr *Materialize
2087                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2088      E = Materialize->GetTemporaryExpr();
2089      continue;
2090    } else if (SubstNonTypeTemplateParmExpr *NTTP
2091                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2092      E = NTTP->getReplacement();
2093      continue;
2094    }
2095    break;
2096  }
2097  return E;
2098}
2099
2100Expr *Expr::IgnoreParenImpCasts() {
2101  Expr *E = this;
2102  while (true) {
2103    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2104      E = P->getSubExpr();
2105      continue;
2106    }
2107    if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2108      E = P->getSubExpr();
2109      continue;
2110    }
2111    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2112      if (P->getOpcode() == UO_Extension) {
2113        E = P->getSubExpr();
2114        continue;
2115      }
2116    }
2117    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2118      if (!P->isResultDependent()) {
2119        E = P->getResultExpr();
2120        continue;
2121      }
2122    }
2123    if (MaterializeTemporaryExpr *Materialize
2124                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2125      E = Materialize->GetTemporaryExpr();
2126      continue;
2127    }
2128    if (SubstNonTypeTemplateParmExpr *NTTP
2129                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2130      E = NTTP->getReplacement();
2131      continue;
2132    }
2133    return E;
2134  }
2135}
2136
2137Expr *Expr::IgnoreConversionOperator() {
2138  if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2139    if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2140      return MCE->getImplicitObjectArgument();
2141  }
2142  return this;
2143}
2144
2145/// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2146/// value (including ptr->int casts of the same size).  Strip off any
2147/// ParenExpr or CastExprs, returning their operand.
2148Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2149  Expr *E = this;
2150  while (true) {
2151    if (ParenExpr *P = dyn_cast<ParenExpr>(E)) {
2152      E = P->getSubExpr();
2153      continue;
2154    }
2155
2156    if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2157      // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2158      // ptr<->int casts of the same width.  We also ignore all identity casts.
2159      Expr *SE = P->getSubExpr();
2160
2161      if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2162        E = SE;
2163        continue;
2164      }
2165
2166      if ((E->getType()->isPointerType() ||
2167           E->getType()->isIntegralType(Ctx)) &&
2168          (SE->getType()->isPointerType() ||
2169           SE->getType()->isIntegralType(Ctx)) &&
2170          Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2171        E = SE;
2172        continue;
2173      }
2174    }
2175
2176    if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2177      if (P->getOpcode() == UO_Extension) {
2178        E = P->getSubExpr();
2179        continue;
2180      }
2181    }
2182
2183    if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2184      if (!P->isResultDependent()) {
2185        E = P->getResultExpr();
2186        continue;
2187      }
2188    }
2189
2190    if (SubstNonTypeTemplateParmExpr *NTTP
2191                                  = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2192      E = NTTP->getReplacement();
2193      continue;
2194    }
2195
2196    return E;
2197  }
2198}
2199
2200bool Expr::isDefaultArgument() const {
2201  const Expr *E = this;
2202  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2203    E = M->GetTemporaryExpr();
2204
2205  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2206    E = ICE->getSubExprAsWritten();
2207
2208  return isa<CXXDefaultArgExpr>(E);
2209}
2210
2211/// \brief Skip over any no-op casts and any temporary-binding
2212/// expressions.
2213static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2214  if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2215    E = M->GetTemporaryExpr();
2216
2217  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2218    if (ICE->getCastKind() == CK_NoOp)
2219      E = ICE->getSubExpr();
2220    else
2221      break;
2222  }
2223
2224  while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2225    E = BE->getSubExpr();
2226
2227  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2228    if (ICE->getCastKind() == CK_NoOp)
2229      E = ICE->getSubExpr();
2230    else
2231      break;
2232  }
2233
2234  return E->IgnoreParens();
2235}
2236
2237/// isTemporaryObject - Determines if this expression produces a
2238/// temporary of the given class type.
2239bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2240  if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2241    return false;
2242
2243  const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2244
2245  // Temporaries are by definition pr-values of class type.
2246  if (!E->Classify(C).isPRValue()) {
2247    // In this context, property reference is a message call and is pr-value.
2248    if (!isa<ObjCPropertyRefExpr>(E))
2249      return false;
2250  }
2251
2252  // Black-list a few cases which yield pr-values of class type that don't
2253  // refer to temporaries of that type:
2254
2255  // - implicit derived-to-base conversions
2256  if (isa<ImplicitCastExpr>(E)) {
2257    switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2258    case CK_DerivedToBase:
2259    case CK_UncheckedDerivedToBase:
2260      return false;
2261    default:
2262      break;
2263    }
2264  }
2265
2266  // - member expressions (all)
2267  if (isa<MemberExpr>(E))
2268    return false;
2269
2270  // - opaque values (all)
2271  if (isa<OpaqueValueExpr>(E))
2272    return false;
2273
2274  return true;
2275}
2276
2277bool Expr::isImplicitCXXThis() const {
2278  const Expr *E = this;
2279
2280  // Strip away parentheses and casts we don't care about.
2281  while (true) {
2282    if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2283      E = Paren->getSubExpr();
2284      continue;
2285    }
2286
2287    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2288      if (ICE->getCastKind() == CK_NoOp ||
2289          ICE->getCastKind() == CK_LValueToRValue ||
2290          ICE->getCastKind() == CK_DerivedToBase ||
2291          ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2292        E = ICE->getSubExpr();
2293        continue;
2294      }
2295    }
2296
2297    if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2298      if (UnOp->getOpcode() == UO_Extension) {
2299        E = UnOp->getSubExpr();
2300        continue;
2301      }
2302    }
2303
2304    if (const MaterializeTemporaryExpr *M
2305                                      = dyn_cast<MaterializeTemporaryExpr>(E)) {
2306      E = M->GetTemporaryExpr();
2307      continue;
2308    }
2309
2310    break;
2311  }
2312
2313  if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2314    return This->isImplicit();
2315
2316  return false;
2317}
2318
2319/// hasAnyTypeDependentArguments - Determines if any of the expressions
2320/// in Exprs is type-dependent.
2321bool Expr::hasAnyTypeDependentArguments(llvm::ArrayRef<Expr *> Exprs) {
2322  for (unsigned I = 0; I < Exprs.size(); ++I)
2323    if (Exprs[I]->isTypeDependent())
2324      return true;
2325
2326  return false;
2327}
2328
2329bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef) const {
2330  // This function is attempting whether an expression is an initializer
2331  // which can be evaluated at compile-time.  isEvaluatable handles most
2332  // of the cases, but it can't deal with some initializer-specific
2333  // expressions, and it can't deal with aggregates; we deal with those here,
2334  // and fall back to isEvaluatable for the other cases.
2335
2336  // If we ever capture reference-binding directly in the AST, we can
2337  // kill the second parameter.
2338
2339  if (IsForRef) {
2340    EvalResult Result;
2341    return EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects;
2342  }
2343
2344  switch (getStmtClass()) {
2345  default: break;
2346  case IntegerLiteralClass:
2347  case FloatingLiteralClass:
2348  case StringLiteralClass:
2349  case ObjCStringLiteralClass:
2350  case ObjCEncodeExprClass:
2351    return true;
2352  case CXXTemporaryObjectExprClass:
2353  case CXXConstructExprClass: {
2354    const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2355
2356    // Only if it's
2357    if (CE->getConstructor()->isTrivial()) {
2358      // 1) an application of the trivial default constructor or
2359      if (!CE->getNumArgs()) return true;
2360
2361      // 2) an elidable trivial copy construction of an operand which is
2362      //    itself a constant initializer.  Note that we consider the
2363      //    operand on its own, *not* as a reference binding.
2364      if (CE->isElidable() &&
2365          CE->getArg(0)->isConstantInitializer(Ctx, false))
2366        return true;
2367    }
2368
2369    // 3) a foldable constexpr constructor.
2370    break;
2371  }
2372  case CompoundLiteralExprClass: {
2373    // This handles gcc's extension that allows global initializers like
2374    // "struct x {int x;} x = (struct x) {};".
2375    // FIXME: This accepts other cases it shouldn't!
2376    const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2377    return Exp->isConstantInitializer(Ctx, false);
2378  }
2379  case InitListExprClass: {
2380    // FIXME: This doesn't deal with fields with reference types correctly.
2381    // FIXME: This incorrectly allows pointers cast to integers to be assigned
2382    // to bitfields.
2383    const InitListExpr *Exp = cast<InitListExpr>(this);
2384    unsigned numInits = Exp->getNumInits();
2385    for (unsigned i = 0; i < numInits; i++) {
2386      if (!Exp->getInit(i)->isConstantInitializer(Ctx, false))
2387        return false;
2388    }
2389    return true;
2390  }
2391  case ImplicitValueInitExprClass:
2392    return true;
2393  case ParenExprClass:
2394    return cast<ParenExpr>(this)->getSubExpr()
2395      ->isConstantInitializer(Ctx, IsForRef);
2396  case GenericSelectionExprClass:
2397    if (cast<GenericSelectionExpr>(this)->isResultDependent())
2398      return false;
2399    return cast<GenericSelectionExpr>(this)->getResultExpr()
2400      ->isConstantInitializer(Ctx, IsForRef);
2401  case ChooseExprClass:
2402    return cast<ChooseExpr>(this)->getChosenSubExpr(Ctx)
2403      ->isConstantInitializer(Ctx, IsForRef);
2404  case UnaryOperatorClass: {
2405    const UnaryOperator* Exp = cast<UnaryOperator>(this);
2406    if (Exp->getOpcode() == UO_Extension)
2407      return Exp->getSubExpr()->isConstantInitializer(Ctx, false);
2408    break;
2409  }
2410  case CXXFunctionalCastExprClass:
2411  case CXXStaticCastExprClass:
2412  case ImplicitCastExprClass:
2413  case CStyleCastExprClass: {
2414    const CastExpr *CE = cast<CastExpr>(this);
2415
2416    // If we're promoting an integer to an _Atomic type then this is constant
2417    // if the integer is constant.  We also need to check the converse in case
2418    // someone does something like:
2419    //
2420    // int a = (_Atomic(int))42;
2421    //
2422    // I doubt anyone would write code like this directly, but it's quite
2423    // possible as the result of macro expansions.
2424    if (CE->getCastKind() == CK_NonAtomicToAtomic ||
2425        CE->getCastKind() == CK_AtomicToNonAtomic)
2426      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2427
2428    // Handle bitcasts of vector constants.
2429    if (getType()->isVectorType() && CE->getCastKind() == CK_BitCast)
2430      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2431
2432    // Handle misc casts we want to ignore.
2433    // FIXME: Is it really safe to ignore all these?
2434    if (CE->getCastKind() == CK_NoOp ||
2435        CE->getCastKind() == CK_LValueToRValue ||
2436        CE->getCastKind() == CK_ToUnion ||
2437        CE->getCastKind() == CK_ConstructorConversion)
2438      return CE->getSubExpr()->isConstantInitializer(Ctx, false);
2439
2440    break;
2441  }
2442  case MaterializeTemporaryExprClass:
2443    return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2444                                            ->isConstantInitializer(Ctx, false);
2445  }
2446  return isEvaluatable(Ctx);
2447}
2448
2449namespace {
2450  /// \brief Look for a call to a non-trivial function within an expression.
2451  class NonTrivialCallFinder : public EvaluatedExprVisitor<NonTrivialCallFinder>
2452  {
2453    typedef EvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
2454
2455    bool NonTrivial;
2456
2457  public:
2458    explicit NonTrivialCallFinder(ASTContext &Context)
2459      : Inherited(Context), NonTrivial(false) { }
2460
2461    bool hasNonTrivialCall() const { return NonTrivial; }
2462
2463    void VisitCallExpr(CallExpr *E) {
2464      if (CXXMethodDecl *Method
2465          = dyn_cast_or_null<CXXMethodDecl>(E->getCalleeDecl())) {
2466        if (Method->isTrivial()) {
2467          // Recurse to children of the call.
2468          Inherited::VisitStmt(E);
2469          return;
2470        }
2471      }
2472
2473      NonTrivial = true;
2474    }
2475
2476    void VisitCXXConstructExpr(CXXConstructExpr *E) {
2477      if (E->getConstructor()->isTrivial()) {
2478        // Recurse to children of the call.
2479        Inherited::VisitStmt(E);
2480        return;
2481      }
2482
2483      NonTrivial = true;
2484    }
2485
2486    void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
2487      if (E->getTemporary()->getDestructor()->isTrivial()) {
2488        Inherited::VisitStmt(E);
2489        return;
2490      }
2491
2492      NonTrivial = true;
2493    }
2494  };
2495}
2496
2497bool Expr::hasNonTrivialCall(ASTContext &Ctx) {
2498  NonTrivialCallFinder Finder(Ctx);
2499  Finder.Visit(this);
2500  return Finder.hasNonTrivialCall();
2501}
2502
2503/// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
2504/// pointer constant or not, as well as the specific kind of constant detected.
2505/// Null pointer constants can be integer constant expressions with the
2506/// value zero, casts of zero to void*, nullptr (C++0X), or __null
2507/// (a GNU extension).
2508Expr::NullPointerConstantKind
2509Expr::isNullPointerConstant(ASTContext &Ctx,
2510                            NullPointerConstantValueDependence NPC) const {
2511  if (isValueDependent()) {
2512    switch (NPC) {
2513    case NPC_NeverValueDependent:
2514      llvm_unreachable("Unexpected value dependent expression!");
2515    case NPC_ValueDependentIsNull:
2516      if (isTypeDependent() || getType()->isIntegralType(Ctx))
2517        return NPCK_ZeroInteger;
2518      else
2519        return NPCK_NotNull;
2520
2521    case NPC_ValueDependentIsNotNull:
2522      return NPCK_NotNull;
2523    }
2524  }
2525
2526  // Strip off a cast to void*, if it exists. Except in C++.
2527  if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
2528    if (!Ctx.getLangOpts().CPlusPlus) {
2529      // Check that it is a cast to void*.
2530      if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
2531        QualType Pointee = PT->getPointeeType();
2532        if (!Pointee.hasQualifiers() &&
2533            Pointee->isVoidType() &&                              // to void*
2534            CE->getSubExpr()->getType()->isIntegerType())         // from int.
2535          return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2536      }
2537    }
2538  } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
2539    // Ignore the ImplicitCastExpr type entirely.
2540    return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2541  } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
2542    // Accept ((void*)0) as a null pointer constant, as many other
2543    // implementations do.
2544    return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
2545  } else if (const GenericSelectionExpr *GE =
2546               dyn_cast<GenericSelectionExpr>(this)) {
2547    return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
2548  } else if (const CXXDefaultArgExpr *DefaultArg
2549               = dyn_cast<CXXDefaultArgExpr>(this)) {
2550    // See through default argument expressions
2551    return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
2552  } else if (isa<GNUNullExpr>(this)) {
2553    // The GNU __null extension is always a null pointer constant.
2554    return NPCK_GNUNull;
2555  } else if (const MaterializeTemporaryExpr *M
2556                                   = dyn_cast<MaterializeTemporaryExpr>(this)) {
2557    return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
2558  } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
2559    if (const Expr *Source = OVE->getSourceExpr())
2560      return Source->isNullPointerConstant(Ctx, NPC);
2561  }
2562
2563  // C++0x nullptr_t is always a null pointer constant.
2564  if (getType()->isNullPtrType())
2565    return NPCK_CXX0X_nullptr;
2566
2567  if (const RecordType *UT = getType()->getAsUnionType())
2568    if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
2569      if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
2570        const Expr *InitExpr = CLE->getInitializer();
2571        if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
2572          return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
2573      }
2574  // This expression must be an integer type.
2575  if (!getType()->isIntegerType() ||
2576      (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
2577    return NPCK_NotNull;
2578
2579  // If we have an integer constant expression, we need to *evaluate* it and
2580  // test for the value 0. Don't use the C++11 constant expression semantics
2581  // for this, for now; once the dust settles on core issue 903, we might only
2582  // allow a literal 0 here in C++11 mode.
2583  if (Ctx.getLangOpts().CPlusPlus0x) {
2584    if (!isCXX98IntegralConstantExpr(Ctx))
2585      return NPCK_NotNull;
2586  } else {
2587    if (!isIntegerConstantExpr(Ctx))
2588      return NPCK_NotNull;
2589  }
2590
2591  return (EvaluateKnownConstInt(Ctx) == 0) ? NPCK_ZeroInteger : NPCK_NotNull;
2592}
2593
2594/// \brief If this expression is an l-value for an Objective C
2595/// property, find the underlying property reference expression.
2596const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
2597  const Expr *E = this;
2598  while (true) {
2599    assert((E->getValueKind() == VK_LValue &&
2600            E->getObjectKind() == OK_ObjCProperty) &&
2601           "expression is not a property reference");
2602    E = E->IgnoreParenCasts();
2603    if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2604      if (BO->getOpcode() == BO_Comma) {
2605        E = BO->getRHS();
2606        continue;
2607      }
2608    }
2609
2610    break;
2611  }
2612
2613  return cast<ObjCPropertyRefExpr>(E);
2614}
2615
2616FieldDecl *Expr::getBitField() {
2617  Expr *E = this->IgnoreParens();
2618
2619  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2620    if (ICE->getCastKind() == CK_LValueToRValue ||
2621        (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
2622      E = ICE->getSubExpr()->IgnoreParens();
2623    else
2624      break;
2625  }
2626
2627  if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
2628    if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
2629      if (Field->isBitField())
2630        return Field;
2631
2632  if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
2633    if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
2634      if (Field->isBitField())
2635        return Field;
2636
2637  if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
2638    if (BinOp->isAssignmentOp() && BinOp->getLHS())
2639      return BinOp->getLHS()->getBitField();
2640
2641    if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
2642      return BinOp->getRHS()->getBitField();
2643  }
2644
2645  return 0;
2646}
2647
2648bool Expr::refersToVectorElement() const {
2649  const Expr *E = this->IgnoreParens();
2650
2651  while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2652    if (ICE->getValueKind() != VK_RValue &&
2653        ICE->getCastKind() == CK_NoOp)
2654      E = ICE->getSubExpr()->IgnoreParens();
2655    else
2656      break;
2657  }
2658
2659  if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
2660    return ASE->getBase()->getType()->isVectorType();
2661
2662  if (isa<ExtVectorElementExpr>(E))
2663    return true;
2664
2665  return false;
2666}
2667
2668/// isArrow - Return true if the base expression is a pointer to vector,
2669/// return false if the base expression is a vector.
2670bool ExtVectorElementExpr::isArrow() const {
2671  return getBase()->getType()->isPointerType();
2672}
2673
2674unsigned ExtVectorElementExpr::getNumElements() const {
2675  if (const VectorType *VT = getType()->getAs<VectorType>())
2676    return VT->getNumElements();
2677  return 1;
2678}
2679
2680/// containsDuplicateElements - Return true if any element access is repeated.
2681bool ExtVectorElementExpr::containsDuplicateElements() const {
2682  // FIXME: Refactor this code to an accessor on the AST node which returns the
2683  // "type" of component access, and share with code below and in Sema.
2684  StringRef Comp = Accessor->getName();
2685
2686  // Halving swizzles do not contain duplicate elements.
2687  if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
2688    return false;
2689
2690  // Advance past s-char prefix on hex swizzles.
2691  if (Comp[0] == 's' || Comp[0] == 'S')
2692    Comp = Comp.substr(1);
2693
2694  for (unsigned i = 0, e = Comp.size(); i != e; ++i)
2695    if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
2696        return true;
2697
2698  return false;
2699}
2700
2701/// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
2702void ExtVectorElementExpr::getEncodedElementAccess(
2703                                  SmallVectorImpl<unsigned> &Elts) const {
2704  StringRef Comp = Accessor->getName();
2705  if (Comp[0] == 's' || Comp[0] == 'S')
2706    Comp = Comp.substr(1);
2707
2708  bool isHi =   Comp == "hi";
2709  bool isLo =   Comp == "lo";
2710  bool isEven = Comp == "even";
2711  bool isOdd  = Comp == "odd";
2712
2713  for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
2714    uint64_t Index;
2715
2716    if (isHi)
2717      Index = e + i;
2718    else if (isLo)
2719      Index = i;
2720    else if (isEven)
2721      Index = 2 * i;
2722    else if (isOdd)
2723      Index = 2 * i + 1;
2724    else
2725      Index = ExtVectorType::getAccessorIdx(Comp[i]);
2726
2727    Elts.push_back(Index);
2728  }
2729}
2730
2731ObjCMessageExpr::ObjCMessageExpr(QualType T,
2732                                 ExprValueKind VK,
2733                                 SourceLocation LBracLoc,
2734                                 SourceLocation SuperLoc,
2735                                 bool IsInstanceSuper,
2736                                 QualType SuperType,
2737                                 Selector Sel,
2738                                 ArrayRef<SourceLocation> SelLocs,
2739                                 SelectorLocationsKind SelLocsK,
2740                                 ObjCMethodDecl *Method,
2741                                 ArrayRef<Expr *> Args,
2742                                 SourceLocation RBracLoc,
2743                                 bool isImplicit)
2744  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
2745         /*TypeDependent=*/false, /*ValueDependent=*/false,
2746         /*InstantiationDependent=*/false,
2747         /*ContainsUnexpandedParameterPack=*/false),
2748    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2749                                                       : Sel.getAsOpaquePtr())),
2750    Kind(IsInstanceSuper? SuperInstance : SuperClass),
2751    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
2752    SuperLoc(SuperLoc), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2753{
2754  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
2755  setReceiverPointer(SuperType.getAsOpaquePtr());
2756}
2757
2758ObjCMessageExpr::ObjCMessageExpr(QualType T,
2759                                 ExprValueKind VK,
2760                                 SourceLocation LBracLoc,
2761                                 TypeSourceInfo *Receiver,
2762                                 Selector Sel,
2763                                 ArrayRef<SourceLocation> SelLocs,
2764                                 SelectorLocationsKind SelLocsK,
2765                                 ObjCMethodDecl *Method,
2766                                 ArrayRef<Expr *> Args,
2767                                 SourceLocation RBracLoc,
2768                                 bool isImplicit)
2769  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
2770         T->isDependentType(), T->isInstantiationDependentType(),
2771         T->containsUnexpandedParameterPack()),
2772    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2773                                                       : Sel.getAsOpaquePtr())),
2774    Kind(Class),
2775    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
2776    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2777{
2778  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
2779  setReceiverPointer(Receiver);
2780}
2781
2782ObjCMessageExpr::ObjCMessageExpr(QualType T,
2783                                 ExprValueKind VK,
2784                                 SourceLocation LBracLoc,
2785                                 Expr *Receiver,
2786                                 Selector Sel,
2787                                 ArrayRef<SourceLocation> SelLocs,
2788                                 SelectorLocationsKind SelLocsK,
2789                                 ObjCMethodDecl *Method,
2790                                 ArrayRef<Expr *> Args,
2791                                 SourceLocation RBracLoc,
2792                                 bool isImplicit)
2793  : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
2794         Receiver->isTypeDependent(),
2795         Receiver->isInstantiationDependent(),
2796         Receiver->containsUnexpandedParameterPack()),
2797    SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
2798                                                       : Sel.getAsOpaquePtr())),
2799    Kind(Instance),
2800    HasMethod(Method != 0), IsDelegateInitCall(false), IsImplicit(isImplicit),
2801    LBracLoc(LBracLoc), RBracLoc(RBracLoc)
2802{
2803  initArgsAndSelLocs(Args, SelLocs, SelLocsK);
2804  setReceiverPointer(Receiver);
2805}
2806
2807void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
2808                                         ArrayRef<SourceLocation> SelLocs,
2809                                         SelectorLocationsKind SelLocsK) {
2810  setNumArgs(Args.size());
2811  Expr **MyArgs = getArgs();
2812  for (unsigned I = 0; I != Args.size(); ++I) {
2813    if (Args[I]->isTypeDependent())
2814      ExprBits.TypeDependent = true;
2815    if (Args[I]->isValueDependent())
2816      ExprBits.ValueDependent = true;
2817    if (Args[I]->isInstantiationDependent())
2818      ExprBits.InstantiationDependent = true;
2819    if (Args[I]->containsUnexpandedParameterPack())
2820      ExprBits.ContainsUnexpandedParameterPack = true;
2821
2822    MyArgs[I] = Args[I];
2823  }
2824
2825  SelLocsKind = SelLocsK;
2826  if (!isImplicit()) {
2827    if (SelLocsK == SelLoc_NonStandard)
2828      std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
2829  }
2830}
2831
2832ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2833                                         ExprValueKind VK,
2834                                         SourceLocation LBracLoc,
2835                                         SourceLocation SuperLoc,
2836                                         bool IsInstanceSuper,
2837                                         QualType SuperType,
2838                                         Selector Sel,
2839                                         ArrayRef<SourceLocation> SelLocs,
2840                                         ObjCMethodDecl *Method,
2841                                         ArrayRef<Expr *> Args,
2842                                         SourceLocation RBracLoc,
2843                                         bool isImplicit) {
2844  assert((!SelLocs.empty() || isImplicit) &&
2845         "No selector locs for non-implicit message");
2846  ObjCMessageExpr *Mem;
2847  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
2848  if (isImplicit)
2849    Mem = alloc(Context, Args.size(), 0);
2850  else
2851    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
2852  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
2853                                   SuperType, Sel, SelLocs, SelLocsK,
2854                                   Method, Args, RBracLoc, isImplicit);
2855}
2856
2857ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2858                                         ExprValueKind VK,
2859                                         SourceLocation LBracLoc,
2860                                         TypeSourceInfo *Receiver,
2861                                         Selector Sel,
2862                                         ArrayRef<SourceLocation> SelLocs,
2863                                         ObjCMethodDecl *Method,
2864                                         ArrayRef<Expr *> Args,
2865                                         SourceLocation RBracLoc,
2866                                         bool isImplicit) {
2867  assert((!SelLocs.empty() || isImplicit) &&
2868         "No selector locs for non-implicit message");
2869  ObjCMessageExpr *Mem;
2870  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
2871  if (isImplicit)
2872    Mem = alloc(Context, Args.size(), 0);
2873  else
2874    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
2875  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
2876                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
2877                                   isImplicit);
2878}
2879
2880ObjCMessageExpr *ObjCMessageExpr::Create(ASTContext &Context, QualType T,
2881                                         ExprValueKind VK,
2882                                         SourceLocation LBracLoc,
2883                                         Expr *Receiver,
2884                                         Selector Sel,
2885                                         ArrayRef<SourceLocation> SelLocs,
2886                                         ObjCMethodDecl *Method,
2887                                         ArrayRef<Expr *> Args,
2888                                         SourceLocation RBracLoc,
2889                                         bool isImplicit) {
2890  assert((!SelLocs.empty() || isImplicit) &&
2891         "No selector locs for non-implicit message");
2892  ObjCMessageExpr *Mem;
2893  SelectorLocationsKind SelLocsK = SelectorLocationsKind();
2894  if (isImplicit)
2895    Mem = alloc(Context, Args.size(), 0);
2896  else
2897    Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
2898  return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
2899                                   SelLocs, SelLocsK, Method, Args, RBracLoc,
2900                                   isImplicit);
2901}
2902
2903ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(ASTContext &Context,
2904                                              unsigned NumArgs,
2905                                              unsigned NumStoredSelLocs) {
2906  ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
2907  return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
2908}
2909
2910ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
2911                                        ArrayRef<Expr *> Args,
2912                                        SourceLocation RBraceLoc,
2913                                        ArrayRef<SourceLocation> SelLocs,
2914                                        Selector Sel,
2915                                        SelectorLocationsKind &SelLocsK) {
2916  SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
2917  unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
2918                                                               : 0;
2919  return alloc(C, Args.size(), NumStoredSelLocs);
2920}
2921
2922ObjCMessageExpr *ObjCMessageExpr::alloc(ASTContext &C,
2923                                        unsigned NumArgs,
2924                                        unsigned NumStoredSelLocs) {
2925  unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) +
2926    NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
2927  return (ObjCMessageExpr *)C.Allocate(Size,
2928                                     llvm::AlignOf<ObjCMessageExpr>::Alignment);
2929}
2930
2931void ObjCMessageExpr::getSelectorLocs(
2932                               SmallVectorImpl<SourceLocation> &SelLocs) const {
2933  for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
2934    SelLocs.push_back(getSelectorLoc(i));
2935}
2936
2937SourceRange ObjCMessageExpr::getReceiverRange() const {
2938  switch (getReceiverKind()) {
2939  case Instance:
2940    return getInstanceReceiver()->getSourceRange();
2941
2942  case Class:
2943    return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
2944
2945  case SuperInstance:
2946  case SuperClass:
2947    return getSuperLoc();
2948  }
2949
2950  llvm_unreachable("Invalid ReceiverKind!");
2951}
2952
2953Selector ObjCMessageExpr::getSelector() const {
2954  if (HasMethod)
2955    return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
2956                                                               ->getSelector();
2957  return Selector(SelectorOrMethod);
2958}
2959
2960ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
2961  switch (getReceiverKind()) {
2962  case Instance:
2963    if (const ObjCObjectPointerType *Ptr
2964          = getInstanceReceiver()->getType()->getAs<ObjCObjectPointerType>())
2965      return Ptr->getInterfaceDecl();
2966    break;
2967
2968  case Class:
2969    if (const ObjCObjectType *Ty
2970          = getClassReceiver()->getAs<ObjCObjectType>())
2971      return Ty->getInterface();
2972    break;
2973
2974  case SuperInstance:
2975    if (const ObjCObjectPointerType *Ptr
2976          = getSuperType()->getAs<ObjCObjectPointerType>())
2977      return Ptr->getInterfaceDecl();
2978    break;
2979
2980  case SuperClass:
2981    if (const ObjCObjectType *Iface
2982          = getSuperType()->getAs<ObjCObjectType>())
2983      return Iface->getInterface();
2984    break;
2985  }
2986
2987  return 0;
2988}
2989
2990StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
2991  switch (getBridgeKind()) {
2992  case OBC_Bridge:
2993    return "__bridge";
2994  case OBC_BridgeTransfer:
2995    return "__bridge_transfer";
2996  case OBC_BridgeRetained:
2997    return "__bridge_retained";
2998  }
2999
3000  llvm_unreachable("Invalid BridgeKind!");
3001}
3002
3003bool ChooseExpr::isConditionTrue(const ASTContext &C) const {
3004  return getCond()->EvaluateKnownConstInt(C) != 0;
3005}
3006
3007ShuffleVectorExpr::ShuffleVectorExpr(ASTContext &C, Expr **args, unsigned nexpr,
3008                                     QualType Type, SourceLocation BLoc,
3009                                     SourceLocation RP)
3010   : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3011          Type->isDependentType(), Type->isDependentType(),
3012          Type->isInstantiationDependentType(),
3013          Type->containsUnexpandedParameterPack()),
3014     BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(nexpr)
3015{
3016  SubExprs = new (C) Stmt*[nexpr];
3017  for (unsigned i = 0; i < nexpr; i++) {
3018    if (args[i]->isTypeDependent())
3019      ExprBits.TypeDependent = true;
3020    if (args[i]->isValueDependent())
3021      ExprBits.ValueDependent = true;
3022    if (args[i]->isInstantiationDependent())
3023      ExprBits.InstantiationDependent = true;
3024    if (args[i]->containsUnexpandedParameterPack())
3025      ExprBits.ContainsUnexpandedParameterPack = true;
3026
3027    SubExprs[i] = args[i];
3028  }
3029}
3030
3031void ShuffleVectorExpr::setExprs(ASTContext &C, Expr ** Exprs,
3032                                 unsigned NumExprs) {
3033  if (SubExprs) C.Deallocate(SubExprs);
3034
3035  SubExprs = new (C) Stmt* [NumExprs];
3036  this->NumExprs = NumExprs;
3037  memcpy(SubExprs, Exprs, sizeof(Expr *) * NumExprs);
3038}
3039
3040GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3041                               SourceLocation GenericLoc, Expr *ControllingExpr,
3042                               TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3043                               unsigned NumAssocs, SourceLocation DefaultLoc,
3044                               SourceLocation RParenLoc,
3045                               bool ContainsUnexpandedParameterPack,
3046                               unsigned ResultIndex)
3047  : Expr(GenericSelectionExprClass,
3048         AssocExprs[ResultIndex]->getType(),
3049         AssocExprs[ResultIndex]->getValueKind(),
3050         AssocExprs[ResultIndex]->getObjectKind(),
3051         AssocExprs[ResultIndex]->isTypeDependent(),
3052         AssocExprs[ResultIndex]->isValueDependent(),
3053         AssocExprs[ResultIndex]->isInstantiationDependent(),
3054         ContainsUnexpandedParameterPack),
3055    AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
3056    SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
3057    ResultIndex(ResultIndex), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
3058    RParenLoc(RParenLoc) {
3059  SubExprs[CONTROLLING] = ControllingExpr;
3060  std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
3061  std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
3062}
3063
3064GenericSelectionExpr::GenericSelectionExpr(ASTContext &Context,
3065                               SourceLocation GenericLoc, Expr *ControllingExpr,
3066                               TypeSourceInfo **AssocTypes, Expr **AssocExprs,
3067                               unsigned NumAssocs, SourceLocation DefaultLoc,
3068                               SourceLocation RParenLoc,
3069                               bool ContainsUnexpandedParameterPack)
3070  : Expr(GenericSelectionExprClass,
3071         Context.DependentTy,
3072         VK_RValue,
3073         OK_Ordinary,
3074         /*isTypeDependent=*/true,
3075         /*isValueDependent=*/true,
3076         /*isInstantiationDependent=*/true,
3077         ContainsUnexpandedParameterPack),
3078    AssocTypes(new (Context) TypeSourceInfo*[NumAssocs]),
3079    SubExprs(new (Context) Stmt*[END_EXPR+NumAssocs]), NumAssocs(NumAssocs),
3080    ResultIndex(-1U), GenericLoc(GenericLoc), DefaultLoc(DefaultLoc),
3081    RParenLoc(RParenLoc) {
3082  SubExprs[CONTROLLING] = ControllingExpr;
3083  std::copy(AssocTypes, AssocTypes+NumAssocs, this->AssocTypes);
3084  std::copy(AssocExprs, AssocExprs+NumAssocs, SubExprs+END_EXPR);
3085}
3086
3087//===----------------------------------------------------------------------===//
3088//  DesignatedInitExpr
3089//===----------------------------------------------------------------------===//
3090
3091IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3092  assert(Kind == FieldDesignator && "Only valid on a field designator");
3093  if (Field.NameOrField & 0x01)
3094    return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3095  else
3096    return getField()->getIdentifier();
3097}
3098
3099DesignatedInitExpr::DesignatedInitExpr(ASTContext &C, QualType Ty,
3100                                       unsigned NumDesignators,
3101                                       const Designator *Designators,
3102                                       SourceLocation EqualOrColonLoc,
3103                                       bool GNUSyntax,
3104                                       Expr **IndexExprs,
3105                                       unsigned NumIndexExprs,
3106                                       Expr *Init)
3107  : Expr(DesignatedInitExprClass, Ty,
3108         Init->getValueKind(), Init->getObjectKind(),
3109         Init->isTypeDependent(), Init->isValueDependent(),
3110         Init->isInstantiationDependent(),
3111         Init->containsUnexpandedParameterPack()),
3112    EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3113    NumDesignators(NumDesignators), NumSubExprs(NumIndexExprs + 1) {
3114  this->Designators = new (C) Designator[NumDesignators];
3115
3116  // Record the initializer itself.
3117  child_range Child = children();
3118  *Child++ = Init;
3119
3120  // Copy the designators and their subexpressions, computing
3121  // value-dependence along the way.
3122  unsigned IndexIdx = 0;
3123  for (unsigned I = 0; I != NumDesignators; ++I) {
3124    this->Designators[I] = Designators[I];
3125
3126    if (this->Designators[I].isArrayDesignator()) {
3127      // Compute type- and value-dependence.
3128      Expr *Index = IndexExprs[IndexIdx];
3129      if (Index->isTypeDependent() || Index->isValueDependent())
3130        ExprBits.ValueDependent = true;
3131      if (Index->isInstantiationDependent())
3132        ExprBits.InstantiationDependent = true;
3133      // Propagate unexpanded parameter packs.
3134      if (Index->containsUnexpandedParameterPack())
3135        ExprBits.ContainsUnexpandedParameterPack = true;
3136
3137      // Copy the index expressions into permanent storage.
3138      *Child++ = IndexExprs[IndexIdx++];
3139    } else if (this->Designators[I].isArrayRangeDesignator()) {
3140      // Compute type- and value-dependence.
3141      Expr *Start = IndexExprs[IndexIdx];
3142      Expr *End = IndexExprs[IndexIdx + 1];
3143      if (Start->isTypeDependent() || Start->isValueDependent() ||
3144          End->isTypeDependent() || End->isValueDependent()) {
3145        ExprBits.ValueDependent = true;
3146        ExprBits.InstantiationDependent = true;
3147      } else if (Start->isInstantiationDependent() ||
3148                 End->isInstantiationDependent()) {
3149        ExprBits.InstantiationDependent = true;
3150      }
3151
3152      // Propagate unexpanded parameter packs.
3153      if (Start->containsUnexpandedParameterPack() ||
3154          End->containsUnexpandedParameterPack())
3155        ExprBits.ContainsUnexpandedParameterPack = true;
3156
3157      // Copy the start/end expressions into permanent storage.
3158      *Child++ = IndexExprs[IndexIdx++];
3159      *Child++ = IndexExprs[IndexIdx++];
3160    }
3161  }
3162
3163  assert(IndexIdx == NumIndexExprs && "Wrong number of index expressions");
3164}
3165
3166DesignatedInitExpr *
3167DesignatedInitExpr::Create(ASTContext &C, Designator *Designators,
3168                           unsigned NumDesignators,
3169                           Expr **IndexExprs, unsigned NumIndexExprs,
3170                           SourceLocation ColonOrEqualLoc,
3171                           bool UsesColonSyntax, Expr *Init) {
3172  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3173                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3174  return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3175                                      ColonOrEqualLoc, UsesColonSyntax,
3176                                      IndexExprs, NumIndexExprs, Init);
3177}
3178
3179DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(ASTContext &C,
3180                                                    unsigned NumIndexExprs) {
3181  void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3182                         sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3183  return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3184}
3185
3186void DesignatedInitExpr::setDesignators(ASTContext &C,
3187                                        const Designator *Desigs,
3188                                        unsigned NumDesigs) {
3189  Designators = new (C) Designator[NumDesigs];
3190  NumDesignators = NumDesigs;
3191  for (unsigned I = 0; I != NumDesigs; ++I)
3192    Designators[I] = Desigs[I];
3193}
3194
3195SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3196  DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3197  if (size() == 1)
3198    return DIE->getDesignator(0)->getSourceRange();
3199  return SourceRange(DIE->getDesignator(0)->getStartLocation(),
3200                     DIE->getDesignator(size()-1)->getEndLocation());
3201}
3202
3203SourceRange DesignatedInitExpr::getSourceRange() const {
3204  SourceLocation StartLoc;
3205  Designator &First =
3206    *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3207  if (First.isFieldDesignator()) {
3208    if (GNUSyntax)
3209      StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3210    else
3211      StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3212  } else
3213    StartLoc =
3214      SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3215  return SourceRange(StartLoc, getInit()->getSourceRange().getEnd());
3216}
3217
3218Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) {
3219  assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3220  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3221  Ptr += sizeof(DesignatedInitExpr);
3222  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3223  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3224}
3225
3226Expr *DesignatedInitExpr::getArrayRangeStart(const Designator& D) {
3227  assert(D.Kind == Designator::ArrayRangeDesignator &&
3228         "Requires array range designator");
3229  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3230  Ptr += sizeof(DesignatedInitExpr);
3231  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3232  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3233}
3234
3235Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator& D) {
3236  assert(D.Kind == Designator::ArrayRangeDesignator &&
3237         "Requires array range designator");
3238  char* Ptr = static_cast<char*>(static_cast<void *>(this));
3239  Ptr += sizeof(DesignatedInitExpr);
3240  Stmt **SubExprs = reinterpret_cast<Stmt**>(reinterpret_cast<void**>(Ptr));
3241  return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
3242}
3243
3244/// \brief Replaces the designator at index @p Idx with the series
3245/// of designators in [First, Last).
3246void DesignatedInitExpr::ExpandDesignator(ASTContext &C, unsigned Idx,
3247                                          const Designator *First,
3248                                          const Designator *Last) {
3249  unsigned NumNewDesignators = Last - First;
3250  if (NumNewDesignators == 0) {
3251    std::copy_backward(Designators + Idx + 1,
3252                       Designators + NumDesignators,
3253                       Designators + Idx);
3254    --NumNewDesignators;
3255    return;
3256  } else if (NumNewDesignators == 1) {
3257    Designators[Idx] = *First;
3258    return;
3259  }
3260
3261  Designator *NewDesignators
3262    = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3263  std::copy(Designators, Designators + Idx, NewDesignators);
3264  std::copy(First, Last, NewDesignators + Idx);
3265  std::copy(Designators + Idx + 1, Designators + NumDesignators,
3266            NewDesignators + Idx + NumNewDesignators);
3267  Designators = NewDesignators;
3268  NumDesignators = NumDesignators - 1 + NumNewDesignators;
3269}
3270
3271ParenListExpr::ParenListExpr(ASTContext& C, SourceLocation lparenloc,
3272                             Expr **exprs, unsigned nexprs,
3273                             SourceLocation rparenloc)
3274  : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3275         false, false, false, false),
3276    NumExprs(nexprs), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3277  Exprs = new (C) Stmt*[nexprs];
3278  for (unsigned i = 0; i != nexprs; ++i) {
3279    if (exprs[i]->isTypeDependent())
3280      ExprBits.TypeDependent = true;
3281    if (exprs[i]->isValueDependent())
3282      ExprBits.ValueDependent = true;
3283    if (exprs[i]->isInstantiationDependent())
3284      ExprBits.InstantiationDependent = true;
3285    if (exprs[i]->containsUnexpandedParameterPack())
3286      ExprBits.ContainsUnexpandedParameterPack = true;
3287
3288    Exprs[i] = exprs[i];
3289  }
3290}
3291
3292const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3293  if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3294    e = ewc->getSubExpr();
3295  if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3296    e = m->GetTemporaryExpr();
3297  e = cast<CXXConstructExpr>(e)->getArg(0);
3298  while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3299    e = ice->getSubExpr();
3300  return cast<OpaqueValueExpr>(e);
3301}
3302
3303PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &Context, EmptyShell sh,
3304                                           unsigned numSemanticExprs) {
3305  void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
3306                                    (1 + numSemanticExprs) * sizeof(Expr*),
3307                                  llvm::alignOf<PseudoObjectExpr>());
3308  return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3309}
3310
3311PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3312  : Expr(PseudoObjectExprClass, shell) {
3313  PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3314}
3315
3316PseudoObjectExpr *PseudoObjectExpr::Create(ASTContext &C, Expr *syntax,
3317                                           ArrayRef<Expr*> semantics,
3318                                           unsigned resultIndex) {
3319  assert(syntax && "no syntactic expression!");
3320  assert(semantics.size() && "no semantic expressions!");
3321
3322  QualType type;
3323  ExprValueKind VK;
3324  if (resultIndex == NoResult) {
3325    type = C.VoidTy;
3326    VK = VK_RValue;
3327  } else {
3328    assert(resultIndex < semantics.size());
3329    type = semantics[resultIndex]->getType();
3330    VK = semantics[resultIndex]->getValueKind();
3331    assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3332  }
3333
3334  void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
3335                              (1 + semantics.size()) * sizeof(Expr*),
3336                            llvm::alignOf<PseudoObjectExpr>());
3337  return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3338                                      resultIndex);
3339}
3340
3341PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3342                                   Expr *syntax, ArrayRef<Expr*> semantics,
3343                                   unsigned resultIndex)
3344  : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3345         /*filled in at end of ctor*/ false, false, false, false) {
3346  PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3347  PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3348
3349  for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3350    Expr *E = (i == 0 ? syntax : semantics[i-1]);
3351    getSubExprsBuffer()[i] = E;
3352
3353    if (E->isTypeDependent())
3354      ExprBits.TypeDependent = true;
3355    if (E->isValueDependent())
3356      ExprBits.ValueDependent = true;
3357    if (E->isInstantiationDependent())
3358      ExprBits.InstantiationDependent = true;
3359    if (E->containsUnexpandedParameterPack())
3360      ExprBits.ContainsUnexpandedParameterPack = true;
3361
3362    if (isa<OpaqueValueExpr>(E))
3363      assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != 0 &&
3364             "opaque-value semantic expressions for pseudo-object "
3365             "operations must have sources");
3366  }
3367}
3368
3369//===----------------------------------------------------------------------===//
3370//  ExprIterator.
3371//===----------------------------------------------------------------------===//
3372
3373Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
3374Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
3375Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
3376const Expr* ConstExprIterator::operator[](size_t idx) const {
3377  return cast<Expr>(I[idx]);
3378}
3379const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
3380const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
3381
3382//===----------------------------------------------------------------------===//
3383//  Child Iterators for iterating over subexpressions/substatements
3384//===----------------------------------------------------------------------===//
3385
3386// UnaryExprOrTypeTraitExpr
3387Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
3388  // If this is of a type and the type is a VLA type (and not a typedef), the
3389  // size expression of the VLA needs to be treated as an executable expression.
3390  // Why isn't this weirdness documented better in StmtIterator?
3391  if (isArgumentType()) {
3392    if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
3393                                   getArgumentType().getTypePtr()))
3394      return child_range(child_iterator(T), child_iterator());
3395    return child_range();
3396  }
3397  return child_range(&Argument.Ex, &Argument.Ex + 1);
3398}
3399
3400// ObjCMessageExpr
3401Stmt::child_range ObjCMessageExpr::children() {
3402  Stmt **begin;
3403  if (getReceiverKind() == Instance)
3404    begin = reinterpret_cast<Stmt **>(this + 1);
3405  else
3406    begin = reinterpret_cast<Stmt **>(getArgs());
3407  return child_range(begin,
3408                     reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
3409}
3410
3411ObjCArrayLiteral::ObjCArrayLiteral(llvm::ArrayRef<Expr *> Elements,
3412                                   QualType T, ObjCMethodDecl *Method,
3413                                   SourceRange SR)
3414  : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary,
3415         false, false, false, false),
3416    NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
3417{
3418  Expr **SaveElements = getElements();
3419  for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
3420    if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
3421      ExprBits.ValueDependent = true;
3422    if (Elements[I]->isInstantiationDependent())
3423      ExprBits.InstantiationDependent = true;
3424    if (Elements[I]->containsUnexpandedParameterPack())
3425      ExprBits.ContainsUnexpandedParameterPack = true;
3426
3427    SaveElements[I] = Elements[I];
3428  }
3429}
3430
3431ObjCArrayLiteral *ObjCArrayLiteral::Create(ASTContext &C,
3432                                           llvm::ArrayRef<Expr *> Elements,
3433                                           QualType T, ObjCMethodDecl * Method,
3434                                           SourceRange SR) {
3435  void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3436                         + Elements.size() * sizeof(Expr *));
3437  return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
3438}
3439
3440ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(ASTContext &C,
3441                                                unsigned NumElements) {
3442
3443  void *Mem = C.Allocate(sizeof(ObjCArrayLiteral)
3444                         + NumElements * sizeof(Expr *));
3445  return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
3446}
3447
3448ObjCDictionaryLiteral::ObjCDictionaryLiteral(
3449                                             ArrayRef<ObjCDictionaryElement> VK,
3450                                             bool HasPackExpansions,
3451                                             QualType T, ObjCMethodDecl *method,
3452                                             SourceRange SR)
3453  : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
3454         false, false),
3455    NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR),
3456    DictWithObjectsMethod(method)
3457{
3458  KeyValuePair *KeyValues = getKeyValues();
3459  ExpansionData *Expansions = getExpansionData();
3460  for (unsigned I = 0; I < NumElements; I++) {
3461    if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
3462        VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
3463      ExprBits.ValueDependent = true;
3464    if (VK[I].Key->isInstantiationDependent() ||
3465        VK[I].Value->isInstantiationDependent())
3466      ExprBits.InstantiationDependent = true;
3467    if (VK[I].EllipsisLoc.isInvalid() &&
3468        (VK[I].Key->containsUnexpandedParameterPack() ||
3469         VK[I].Value->containsUnexpandedParameterPack()))
3470      ExprBits.ContainsUnexpandedParameterPack = true;
3471
3472    KeyValues[I].Key = VK[I].Key;
3473    KeyValues[I].Value = VK[I].Value;
3474    if (Expansions) {
3475      Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
3476      if (VK[I].NumExpansions)
3477        Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
3478      else
3479        Expansions[I].NumExpansionsPlusOne = 0;
3480    }
3481  }
3482}
3483
3484ObjCDictionaryLiteral *
3485ObjCDictionaryLiteral::Create(ASTContext &C,
3486                              ArrayRef<ObjCDictionaryElement> VK,
3487                              bool HasPackExpansions,
3488                              QualType T, ObjCMethodDecl *method,
3489                              SourceRange SR) {
3490  unsigned ExpansionsSize = 0;
3491  if (HasPackExpansions)
3492    ExpansionsSize = sizeof(ExpansionData) * VK.size();
3493
3494  void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
3495                         sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
3496  return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
3497}
3498
3499ObjCDictionaryLiteral *
3500ObjCDictionaryLiteral::CreateEmpty(ASTContext &C, unsigned NumElements,
3501                                   bool HasPackExpansions) {
3502  unsigned ExpansionsSize = 0;
3503  if (HasPackExpansions)
3504    ExpansionsSize = sizeof(ExpansionData) * NumElements;
3505  void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) +
3506                         sizeof(KeyValuePair) * NumElements + ExpansionsSize);
3507  return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements,
3508                                         HasPackExpansions);
3509}
3510
3511ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(ASTContext &C,
3512                                                   Expr *base,
3513                                                   Expr *key, QualType T,
3514                                                   ObjCMethodDecl *getMethod,
3515                                                   ObjCMethodDecl *setMethod,
3516                                                   SourceLocation RB) {
3517  void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
3518  return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue,
3519                                        OK_ObjCSubscript,
3520                                        getMethod, setMethod, RB);
3521}
3522
3523AtomicExpr::AtomicExpr(SourceLocation BLoc, Expr **args, unsigned nexpr,
3524                       QualType t, AtomicOp op, SourceLocation RP)
3525  : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
3526         false, false, false, false),
3527    NumSubExprs(nexpr), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
3528{
3529  assert(nexpr == getNumSubExprs(op) && "wrong number of subexpressions");
3530  for (unsigned i = 0; i < nexpr; i++) {
3531    if (args[i]->isTypeDependent())
3532      ExprBits.TypeDependent = true;
3533    if (args[i]->isValueDependent())
3534      ExprBits.ValueDependent = true;
3535    if (args[i]->isInstantiationDependent())
3536      ExprBits.InstantiationDependent = true;
3537    if (args[i]->containsUnexpandedParameterPack())
3538      ExprBits.ContainsUnexpandedParameterPack = true;
3539
3540    SubExprs[i] = args[i];
3541  }
3542}
3543
3544unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
3545  switch (Op) {
3546  case AO__c11_atomic_init:
3547  case AO__c11_atomic_load:
3548  case AO__atomic_load_n:
3549    return 2;
3550
3551  case AO__c11_atomic_store:
3552  case AO__c11_atomic_exchange:
3553  case AO__atomic_load:
3554  case AO__atomic_store:
3555  case AO__atomic_store_n:
3556  case AO__atomic_exchange_n:
3557  case AO__c11_atomic_fetch_add:
3558  case AO__c11_atomic_fetch_sub:
3559  case AO__c11_atomic_fetch_and:
3560  case AO__c11_atomic_fetch_or:
3561  case AO__c11_atomic_fetch_xor:
3562  case AO__atomic_fetch_add:
3563  case AO__atomic_fetch_sub:
3564  case AO__atomic_fetch_and:
3565  case AO__atomic_fetch_or:
3566  case AO__atomic_fetch_xor:
3567  case AO__atomic_fetch_nand:
3568  case AO__atomic_add_fetch:
3569  case AO__atomic_sub_fetch:
3570  case AO__atomic_and_fetch:
3571  case AO__atomic_or_fetch:
3572  case AO__atomic_xor_fetch:
3573  case AO__atomic_nand_fetch:
3574    return 3;
3575
3576  case AO__atomic_exchange:
3577    return 4;
3578
3579  case AO__c11_atomic_compare_exchange_strong:
3580  case AO__c11_atomic_compare_exchange_weak:
3581    return 5;
3582
3583  case AO__atomic_compare_exchange:
3584  case AO__atomic_compare_exchange_n:
3585    return 6;
3586  }
3587  llvm_unreachable("unknown atomic op");
3588}
3589