Type.cpp revision 9f569cca2a4c5fb6026005434e27025b9e71309d
1//===--- Type.cpp - Type representation and manipulation ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements type-related functionality.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/CharUnits.h"
16#include "clang/AST/Type.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/PrettyPrinter.h"
22#include "clang/AST/TypeVisitor.h"
23#include "clang/Basic/Specifiers.h"
24#include "llvm/ADT/APSInt.h"
25#include "llvm/ADT/StringExtras.h"
26#include "llvm/Support/raw_ostream.h"
27#include <algorithm>
28using namespace clang;
29
30bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const {
31  return (*this != Other) &&
32    // CVR qualifiers superset
33    (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
34    // ObjC GC qualifiers superset
35    ((getObjCGCAttr() == Other.getObjCGCAttr()) ||
36     (hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
37    // Address space superset.
38    ((getAddressSpace() == Other.getAddressSpace()) ||
39     (hasAddressSpace()&& !Other.hasAddressSpace())) &&
40    // Lifetime qualifier superset.
41    ((getObjCLifetime() == Other.getObjCLifetime()) ||
42     (hasObjCLifetime() && !Other.hasObjCLifetime()));
43}
44
45const IdentifierInfo* QualType::getBaseTypeIdentifier() const {
46  const Type* ty = getTypePtr();
47  NamedDecl *ND = NULL;
48  if (ty->isPointerType() || ty->isReferenceType())
49    return ty->getPointeeType().getBaseTypeIdentifier();
50  else if (ty->isRecordType())
51    ND = ty->getAs<RecordType>()->getDecl();
52  else if (ty->isEnumeralType())
53    ND = ty->getAs<EnumType>()->getDecl();
54  else if (ty->getTypeClass() == Type::Typedef)
55    ND = ty->getAs<TypedefType>()->getDecl();
56  else if (ty->isArrayType())
57    return ty->castAsArrayTypeUnsafe()->
58        getElementType().getBaseTypeIdentifier();
59
60  if (ND)
61    return ND->getIdentifier();
62  return NULL;
63}
64
65bool QualType::isConstant(QualType T, ASTContext &Ctx) {
66  if (T.isConstQualified())
67    return true;
68
69  if (const ArrayType *AT = Ctx.getAsArrayType(T))
70    return AT->getElementType().isConstant(Ctx);
71
72  return false;
73}
74
75unsigned ConstantArrayType::getNumAddressingBits(ASTContext &Context,
76                                                 QualType ElementType,
77                                               const llvm::APInt &NumElements) {
78  llvm::APSInt SizeExtended(NumElements, true);
79  unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
80  SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
81                                              SizeExtended.getBitWidth()) * 2);
82
83  uint64_t ElementSize
84    = Context.getTypeSizeInChars(ElementType).getQuantity();
85  llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
86  TotalSize *= SizeExtended;
87
88  return TotalSize.getActiveBits();
89}
90
91unsigned ConstantArrayType::getMaxSizeBits(ASTContext &Context) {
92  unsigned Bits = Context.getTypeSize(Context.getSizeType());
93
94  // GCC appears to only allow 63 bits worth of address space when compiling
95  // for 64-bit, so we do the same.
96  if (Bits == 64)
97    --Bits;
98
99  return Bits;
100}
101
102DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
103                                                 QualType et, QualType can,
104                                                 Expr *e, ArraySizeModifier sm,
105                                                 unsigned tq,
106                                                 SourceRange brackets)
107    : ArrayType(DependentSizedArray, et, can, sm, tq,
108                (et->containsUnexpandedParameterPack() ||
109                 (e && e->containsUnexpandedParameterPack()))),
110      Context(Context), SizeExpr((Stmt*) e), Brackets(brackets)
111{
112}
113
114void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
115                                      const ASTContext &Context,
116                                      QualType ET,
117                                      ArraySizeModifier SizeMod,
118                                      unsigned TypeQuals,
119                                      Expr *E) {
120  ID.AddPointer(ET.getAsOpaquePtr());
121  ID.AddInteger(SizeMod);
122  ID.AddInteger(TypeQuals);
123  E->Profile(ID, Context, true);
124}
125
126DependentSizedExtVectorType::DependentSizedExtVectorType(const
127                                                         ASTContext &Context,
128                                                         QualType ElementType,
129                                                         QualType can,
130                                                         Expr *SizeExpr,
131                                                         SourceLocation loc)
132    : Type(DependentSizedExtVector, can, /*Dependent=*/true,
133           /*InstantiationDependent=*/true,
134           ElementType->isVariablyModifiedType(),
135           (ElementType->containsUnexpandedParameterPack() ||
136            (SizeExpr && SizeExpr->containsUnexpandedParameterPack()))),
137      Context(Context), SizeExpr(SizeExpr), ElementType(ElementType),
138      loc(loc)
139{
140}
141
142void
143DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
144                                     const ASTContext &Context,
145                                     QualType ElementType, Expr *SizeExpr) {
146  ID.AddPointer(ElementType.getAsOpaquePtr());
147  SizeExpr->Profile(ID, Context, true);
148}
149
150VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
151                       VectorKind vecKind)
152  : Type(Vector, canonType, vecType->isDependentType(),
153         vecType->isInstantiationDependentType(),
154         vecType->isVariablyModifiedType(),
155         vecType->containsUnexpandedParameterPack()),
156    ElementType(vecType)
157{
158  VectorTypeBits.VecKind = vecKind;
159  VectorTypeBits.NumElements = nElements;
160}
161
162VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
163                       QualType canonType, VectorKind vecKind)
164  : Type(tc, canonType, vecType->isDependentType(),
165         vecType->isInstantiationDependentType(),
166         vecType->isVariablyModifiedType(),
167         vecType->containsUnexpandedParameterPack()),
168    ElementType(vecType)
169{
170  VectorTypeBits.VecKind = vecKind;
171  VectorTypeBits.NumElements = nElements;
172}
173
174/// getArrayElementTypeNoTypeQual - If this is an array type, return the
175/// element type of the array, potentially with type qualifiers missing.
176/// This method should never be used when type qualifiers are meaningful.
177const Type *Type::getArrayElementTypeNoTypeQual() const {
178  // If this is directly an array type, return it.
179  if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
180    return ATy->getElementType().getTypePtr();
181
182  // If the canonical form of this type isn't the right kind, reject it.
183  if (!isa<ArrayType>(CanonicalType))
184    return 0;
185
186  // If this is a typedef for an array type, strip the typedef off without
187  // losing all typedef information.
188  return cast<ArrayType>(getUnqualifiedDesugaredType())
189    ->getElementType().getTypePtr();
190}
191
192/// getDesugaredType - Return the specified type with any "sugar" removed from
193/// the type.  This takes off typedefs, typeof's etc.  If the outer level of
194/// the type is already concrete, it returns it unmodified.  This is similar
195/// to getting the canonical type, but it doesn't remove *all* typedefs.  For
196/// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
197/// concrete.
198QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
199  SplitQualType split = getSplitDesugaredType(T);
200  return Context.getQualifiedType(split.first, split.second);
201}
202
203QualType QualType::getSingleStepDesugaredType(const ASTContext &Context) const {
204  QualifierCollector Qs;
205
206  const Type *CurTy = Qs.strip(*this);
207  switch (CurTy->getTypeClass()) {
208#define ABSTRACT_TYPE(Class, Parent)
209#define TYPE(Class, Parent) \
210  case Type::Class: { \
211    const Class##Type *Ty = cast<Class##Type>(CurTy); \
212    if (!Ty->isSugared()) \
213      return *this; \
214    return Context.getQualifiedType(Ty->desugar(), Qs); \
215    break; \
216  }
217#include "clang/AST/TypeNodes.def"
218  }
219
220  return *this;
221}
222
223SplitQualType QualType::getSplitDesugaredType(QualType T) {
224  QualifierCollector Qs;
225
226  QualType Cur = T;
227  while (true) {
228    const Type *CurTy = Qs.strip(Cur);
229    switch (CurTy->getTypeClass()) {
230#define ABSTRACT_TYPE(Class, Parent)
231#define TYPE(Class, Parent) \
232    case Type::Class: { \
233      const Class##Type *Ty = cast<Class##Type>(CurTy); \
234      if (!Ty->isSugared()) \
235        return SplitQualType(Ty, Qs); \
236      Cur = Ty->desugar(); \
237      break; \
238    }
239#include "clang/AST/TypeNodes.def"
240    }
241  }
242}
243
244SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
245  SplitQualType split = type.split();
246
247  // All the qualifiers we've seen so far.
248  Qualifiers quals = split.second;
249
250  // The last type node we saw with any nodes inside it.
251  const Type *lastTypeWithQuals = split.first;
252
253  while (true) {
254    QualType next;
255
256    // Do a single-step desugar, aborting the loop if the type isn't
257    // sugared.
258    switch (split.first->getTypeClass()) {
259#define ABSTRACT_TYPE(Class, Parent)
260#define TYPE(Class, Parent) \
261    case Type::Class: { \
262      const Class##Type *ty = cast<Class##Type>(split.first); \
263      if (!ty->isSugared()) goto done; \
264      next = ty->desugar(); \
265      break; \
266    }
267#include "clang/AST/TypeNodes.def"
268    }
269
270    // Otherwise, split the underlying type.  If that yields qualifiers,
271    // update the information.
272    split = next.split();
273    if (!split.second.empty()) {
274      lastTypeWithQuals = split.first;
275      quals.addConsistentQualifiers(split.second);
276    }
277  }
278
279 done:
280  return SplitQualType(lastTypeWithQuals, quals);
281}
282
283QualType QualType::IgnoreParens(QualType T) {
284  // FIXME: this seems inherently un-qualifiers-safe.
285  while (const ParenType *PT = T->getAs<ParenType>())
286    T = PT->getInnerType();
287  return T;
288}
289
290/// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
291/// sugar off the given type.  This should produce an object of the
292/// same dynamic type as the canonical type.
293const Type *Type::getUnqualifiedDesugaredType() const {
294  const Type *Cur = this;
295
296  while (true) {
297    switch (Cur->getTypeClass()) {
298#define ABSTRACT_TYPE(Class, Parent)
299#define TYPE(Class, Parent) \
300    case Class: { \
301      const Class##Type *Ty = cast<Class##Type>(Cur); \
302      if (!Ty->isSugared()) return Cur; \
303      Cur = Ty->desugar().getTypePtr(); \
304      break; \
305    }
306#include "clang/AST/TypeNodes.def"
307    }
308  }
309}
310
311/// isVoidType - Helper method to determine if this is the 'void' type.
312bool Type::isVoidType() const {
313  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
314    return BT->getKind() == BuiltinType::Void;
315  return false;
316}
317
318bool Type::isDerivedType() const {
319  switch (CanonicalType->getTypeClass()) {
320  case Pointer:
321  case VariableArray:
322  case ConstantArray:
323  case IncompleteArray:
324  case FunctionProto:
325  case FunctionNoProto:
326  case LValueReference:
327  case RValueReference:
328  case Record:
329    return true;
330  default:
331    return false;
332  }
333}
334bool Type::isClassType() const {
335  if (const RecordType *RT = getAs<RecordType>())
336    return RT->getDecl()->isClass();
337  return false;
338}
339bool Type::isStructureType() const {
340  if (const RecordType *RT = getAs<RecordType>())
341    return RT->getDecl()->isStruct();
342  return false;
343}
344bool Type::isStructureOrClassType() const {
345  if (const RecordType *RT = getAs<RecordType>())
346    return RT->getDecl()->isStruct() || RT->getDecl()->isClass();
347  return false;
348}
349bool Type::isVoidPointerType() const {
350  if (const PointerType *PT = getAs<PointerType>())
351    return PT->getPointeeType()->isVoidType();
352  return false;
353}
354
355bool Type::isUnionType() const {
356  if (const RecordType *RT = getAs<RecordType>())
357    return RT->getDecl()->isUnion();
358  return false;
359}
360
361bool Type::isComplexType() const {
362  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
363    return CT->getElementType()->isFloatingType();
364  return false;
365}
366
367bool Type::isComplexIntegerType() const {
368  // Check for GCC complex integer extension.
369  return getAsComplexIntegerType();
370}
371
372const ComplexType *Type::getAsComplexIntegerType() const {
373  if (const ComplexType *Complex = getAs<ComplexType>())
374    if (Complex->getElementType()->isIntegerType())
375      return Complex;
376  return 0;
377}
378
379QualType Type::getPointeeType() const {
380  if (const PointerType *PT = getAs<PointerType>())
381    return PT->getPointeeType();
382  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>())
383    return OPT->getPointeeType();
384  if (const BlockPointerType *BPT = getAs<BlockPointerType>())
385    return BPT->getPointeeType();
386  if (const ReferenceType *RT = getAs<ReferenceType>())
387    return RT->getPointeeType();
388  return QualType();
389}
390
391const RecordType *Type::getAsStructureType() const {
392  // If this is directly a structure type, return it.
393  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
394    if (RT->getDecl()->isStruct())
395      return RT;
396  }
397
398  // If the canonical form of this type isn't the right kind, reject it.
399  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
400    if (!RT->getDecl()->isStruct())
401      return 0;
402
403    // If this is a typedef for a structure type, strip the typedef off without
404    // losing all typedef information.
405    return cast<RecordType>(getUnqualifiedDesugaredType());
406  }
407  return 0;
408}
409
410const RecordType *Type::getAsUnionType() const {
411  // If this is directly a union type, return it.
412  if (const RecordType *RT = dyn_cast<RecordType>(this)) {
413    if (RT->getDecl()->isUnion())
414      return RT;
415  }
416
417  // If the canonical form of this type isn't the right kind, reject it.
418  if (const RecordType *RT = dyn_cast<RecordType>(CanonicalType)) {
419    if (!RT->getDecl()->isUnion())
420      return 0;
421
422    // If this is a typedef for a union type, strip the typedef off without
423    // losing all typedef information.
424    return cast<RecordType>(getUnqualifiedDesugaredType());
425  }
426
427  return 0;
428}
429
430ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
431                               ObjCProtocolDecl * const *Protocols,
432                               unsigned NumProtocols)
433  : Type(ObjCObject, Canonical, false, false, false, false),
434    BaseType(Base)
435{
436  ObjCObjectTypeBits.NumProtocols = NumProtocols;
437  assert(getNumProtocols() == NumProtocols &&
438         "bitfield overflow in protocol count");
439  if (NumProtocols)
440    memcpy(getProtocolStorage(), Protocols,
441           NumProtocols * sizeof(ObjCProtocolDecl*));
442}
443
444const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
445  // There is no sugar for ObjCObjectType's, just return the canonical
446  // type pointer if it is the right class.  There is no typedef information to
447  // return and these cannot be Address-space qualified.
448  if (const ObjCObjectType *T = getAs<ObjCObjectType>())
449    if (T->getNumProtocols() && T->getInterface())
450      return T;
451  return 0;
452}
453
454bool Type::isObjCQualifiedInterfaceType() const {
455  return getAsObjCQualifiedInterfaceType() != 0;
456}
457
458const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
459  // There is no sugar for ObjCQualifiedIdType's, just return the canonical
460  // type pointer if it is the right class.
461  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
462    if (OPT->isObjCQualifiedIdType())
463      return OPT;
464  }
465  return 0;
466}
467
468const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
469  // There is no sugar for ObjCQualifiedClassType's, just return the canonical
470  // type pointer if it is the right class.
471  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
472    if (OPT->isObjCQualifiedClassType())
473      return OPT;
474  }
475  return 0;
476}
477
478const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
479  if (const ObjCObjectPointerType *OPT = getAs<ObjCObjectPointerType>()) {
480    if (OPT->getInterfaceType())
481      return OPT;
482  }
483  return 0;
484}
485
486const CXXRecordDecl *Type::getCXXRecordDeclForPointerType() const {
487  if (const PointerType *PT = getAs<PointerType>())
488    if (const RecordType *RT = PT->getPointeeType()->getAs<RecordType>())
489      return dyn_cast<CXXRecordDecl>(RT->getDecl());
490  return 0;
491}
492
493CXXRecordDecl *Type::getAsCXXRecordDecl() const {
494  if (const RecordType *RT = getAs<RecordType>())
495    return dyn_cast<CXXRecordDecl>(RT->getDecl());
496  else if (const InjectedClassNameType *Injected
497                                  = getAs<InjectedClassNameType>())
498    return Injected->getDecl();
499
500  return 0;
501}
502
503namespace {
504  class GetContainedAutoVisitor :
505    public TypeVisitor<GetContainedAutoVisitor, AutoType*> {
506  public:
507    using TypeVisitor<GetContainedAutoVisitor, AutoType*>::Visit;
508    AutoType *Visit(QualType T) {
509      if (T.isNull())
510        return 0;
511      return Visit(T.getTypePtr());
512    }
513
514    // The 'auto' type itself.
515    AutoType *VisitAutoType(const AutoType *AT) {
516      return const_cast<AutoType*>(AT);
517    }
518
519    // Only these types can contain the desired 'auto' type.
520    AutoType *VisitPointerType(const PointerType *T) {
521      return Visit(T->getPointeeType());
522    }
523    AutoType *VisitBlockPointerType(const BlockPointerType *T) {
524      return Visit(T->getPointeeType());
525    }
526    AutoType *VisitReferenceType(const ReferenceType *T) {
527      return Visit(T->getPointeeTypeAsWritten());
528    }
529    AutoType *VisitMemberPointerType(const MemberPointerType *T) {
530      return Visit(T->getPointeeType());
531    }
532    AutoType *VisitArrayType(const ArrayType *T) {
533      return Visit(T->getElementType());
534    }
535    AutoType *VisitDependentSizedExtVectorType(
536      const DependentSizedExtVectorType *T) {
537      return Visit(T->getElementType());
538    }
539    AutoType *VisitVectorType(const VectorType *T) {
540      return Visit(T->getElementType());
541    }
542    AutoType *VisitFunctionType(const FunctionType *T) {
543      return Visit(T->getResultType());
544    }
545    AutoType *VisitParenType(const ParenType *T) {
546      return Visit(T->getInnerType());
547    }
548    AutoType *VisitAttributedType(const AttributedType *T) {
549      return Visit(T->getModifiedType());
550    }
551  };
552}
553
554AutoType *Type::getContainedAutoType() const {
555  return GetContainedAutoVisitor().Visit(this);
556}
557
558bool Type::isIntegerType() const {
559  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
560    return BT->getKind() >= BuiltinType::Bool &&
561           BT->getKind() <= BuiltinType::Int128;
562  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
563    // Incomplete enum types are not treated as integer types.
564    // FIXME: In C++, enum types are never integer types.
565    return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
566  return false;
567}
568
569bool Type::hasIntegerRepresentation() const {
570  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
571    return VT->getElementType()->isIntegerType();
572  else
573    return isIntegerType();
574}
575
576/// \brief Determine whether this type is an integral type.
577///
578/// This routine determines whether the given type is an integral type per
579/// C++ [basic.fundamental]p7. Although the C standard does not define the
580/// term "integral type", it has a similar term "integer type", and in C++
581/// the two terms are equivalent. However, C's "integer type" includes
582/// enumeration types, while C++'s "integer type" does not. The \c ASTContext
583/// parameter is used to determine whether we should be following the C or
584/// C++ rules when determining whether this type is an integral/integer type.
585///
586/// For cases where C permits "an integer type" and C++ permits "an integral
587/// type", use this routine.
588///
589/// For cases where C permits "an integer type" and C++ permits "an integral
590/// or enumeration type", use \c isIntegralOrEnumerationType() instead.
591///
592/// \param Ctx The context in which this type occurs.
593///
594/// \returns true if the type is considered an integral type, false otherwise.
595bool Type::isIntegralType(ASTContext &Ctx) const {
596  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
597    return BT->getKind() >= BuiltinType::Bool &&
598    BT->getKind() <= BuiltinType::Int128;
599
600  if (!Ctx.getLangOptions().CPlusPlus)
601    if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
602      return ET->getDecl()->isComplete(); // Complete enum types are integral in C.
603
604  return false;
605}
606
607bool Type::isIntegralOrEnumerationType() const {
608  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
609    return BT->getKind() >= BuiltinType::Bool &&
610           BT->getKind() <= BuiltinType::Int128;
611
612  // Check for a complete enum type; incomplete enum types are not properly an
613  // enumeration type in the sense required here.
614  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
615    return ET->getDecl()->isComplete();
616
617  return false;
618}
619
620bool Type::isIntegralOrUnscopedEnumerationType() const {
621  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
622    return BT->getKind() >= BuiltinType::Bool &&
623           BT->getKind() <= BuiltinType::Int128;
624
625  // Check for a complete enum type; incomplete enum types are not properly an
626  // enumeration type in the sense required here.
627  // C++0x: However, if the underlying type of the enum is fixed, it is
628  // considered complete.
629  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
630    return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
631
632  return false;
633}
634
635
636bool Type::isBooleanType() const {
637  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
638    return BT->getKind() == BuiltinType::Bool;
639  return false;
640}
641
642bool Type::isCharType() const {
643  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
644    return BT->getKind() == BuiltinType::Char_U ||
645           BT->getKind() == BuiltinType::UChar ||
646           BT->getKind() == BuiltinType::Char_S ||
647           BT->getKind() == BuiltinType::SChar;
648  return false;
649}
650
651bool Type::isWideCharType() const {
652  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
653    return BT->getKind() == BuiltinType::WChar_S ||
654           BT->getKind() == BuiltinType::WChar_U;
655  return false;
656}
657
658bool Type::isChar16Type() const {
659  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
660    return BT->getKind() == BuiltinType::Char16;
661  return false;
662}
663
664bool Type::isChar32Type() const {
665  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
666    return BT->getKind() == BuiltinType::Char32;
667  return false;
668}
669
670/// \brief Determine whether this type is any of the built-in character
671/// types.
672bool Type::isAnyCharacterType() const {
673  const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType);
674  if (BT == 0) return false;
675  switch (BT->getKind()) {
676  default: return false;
677  case BuiltinType::Char_U:
678  case BuiltinType::UChar:
679  case BuiltinType::WChar_U:
680  case BuiltinType::Char16:
681  case BuiltinType::Char32:
682  case BuiltinType::Char_S:
683  case BuiltinType::SChar:
684  case BuiltinType::WChar_S:
685    return true;
686  }
687}
688
689/// isSignedIntegerType - Return true if this is an integer type that is
690/// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
691/// an enum decl which has a signed representation
692bool Type::isSignedIntegerType() const {
693  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
694    return BT->getKind() >= BuiltinType::Char_S &&
695           BT->getKind() <= BuiltinType::Int128;
696  }
697
698  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
699    // Incomplete enum types are not treated as integer types.
700    // FIXME: In C++, enum types are never integer types.
701    if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
702      return ET->getDecl()->getIntegerType()->isSignedIntegerType();
703  }
704
705  return false;
706}
707
708bool Type::isSignedIntegerOrEnumerationType() const {
709  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
710    return BT->getKind() >= BuiltinType::Char_S &&
711    BT->getKind() <= BuiltinType::Int128;
712  }
713
714  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
715    if (ET->getDecl()->isComplete())
716      return ET->getDecl()->getIntegerType()->isSignedIntegerType();
717  }
718
719  return false;
720}
721
722bool Type::hasSignedIntegerRepresentation() const {
723  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
724    return VT->getElementType()->isSignedIntegerType();
725  else
726    return isSignedIntegerType();
727}
728
729/// isUnsignedIntegerType - Return true if this is an integer type that is
730/// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
731/// decl which has an unsigned representation
732bool Type::isUnsignedIntegerType() const {
733  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
734    return BT->getKind() >= BuiltinType::Bool &&
735           BT->getKind() <= BuiltinType::UInt128;
736  }
737
738  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
739    // Incomplete enum types are not treated as integer types.
740    // FIXME: In C++, enum types are never integer types.
741    if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
742      return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
743  }
744
745  return false;
746}
747
748bool Type::isUnsignedIntegerOrEnumerationType() const {
749  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType)) {
750    return BT->getKind() >= BuiltinType::Bool &&
751    BT->getKind() <= BuiltinType::UInt128;
752  }
753
754  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
755    if (ET->getDecl()->isComplete())
756      return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
757  }
758
759  return false;
760}
761
762bool Type::hasUnsignedIntegerRepresentation() const {
763  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
764    return VT->getElementType()->isUnsignedIntegerType();
765  else
766    return isUnsignedIntegerType();
767}
768
769bool Type::isFloatingType() const {
770  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
771    return BT->getKind() >= BuiltinType::Float &&
772           BT->getKind() <= BuiltinType::LongDouble;
773  if (const ComplexType *CT = dyn_cast<ComplexType>(CanonicalType))
774    return CT->getElementType()->isFloatingType();
775  return false;
776}
777
778bool Type::hasFloatingRepresentation() const {
779  if (const VectorType *VT = dyn_cast<VectorType>(CanonicalType))
780    return VT->getElementType()->isFloatingType();
781  else
782    return isFloatingType();
783}
784
785bool Type::isRealFloatingType() const {
786  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
787    return BT->isFloatingPoint();
788  return false;
789}
790
791bool Type::isRealType() const {
792  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
793    return BT->getKind() >= BuiltinType::Bool &&
794           BT->getKind() <= BuiltinType::LongDouble;
795  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
796      return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
797  return false;
798}
799
800bool Type::isArithmeticType() const {
801  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
802    return BT->getKind() >= BuiltinType::Bool &&
803           BT->getKind() <= BuiltinType::LongDouble;
804  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
805    // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
806    // If a body isn't seen by the time we get here, return false.
807    //
808    // C++0x: Enumerations are not arithmetic types. For now, just return
809    // false for scoped enumerations since that will disable any
810    // unwanted implicit conversions.
811    return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
812  return isa<ComplexType>(CanonicalType);
813}
814
815bool Type::isScalarType() const {
816  if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
817    return BT->getKind() > BuiltinType::Void &&
818           BT->getKind() <= BuiltinType::NullPtr;
819  if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
820    // Enums are scalar types, but only if they are defined.  Incomplete enums
821    // are not treated as scalar types.
822    return ET->getDecl()->isComplete();
823  return isa<PointerType>(CanonicalType) ||
824         isa<BlockPointerType>(CanonicalType) ||
825         isa<MemberPointerType>(CanonicalType) ||
826         isa<ComplexType>(CanonicalType) ||
827         isa<ObjCObjectPointerType>(CanonicalType);
828}
829
830Type::ScalarTypeKind Type::getScalarTypeKind() const {
831  assert(isScalarType());
832
833  const Type *T = CanonicalType.getTypePtr();
834  if (const BuiltinType *BT = dyn_cast<BuiltinType>(T)) {
835    if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
836    if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer;
837    if (BT->isInteger()) return STK_Integral;
838    if (BT->isFloatingPoint()) return STK_Floating;
839    llvm_unreachable("unknown scalar builtin type");
840  } else if (isa<PointerType>(T)) {
841    return STK_CPointer;
842  } else if (isa<BlockPointerType>(T)) {
843    return STK_BlockPointer;
844  } else if (isa<ObjCObjectPointerType>(T)) {
845    return STK_ObjCObjectPointer;
846  } else if (isa<MemberPointerType>(T)) {
847    return STK_MemberPointer;
848  } else if (isa<EnumType>(T)) {
849    assert(cast<EnumType>(T)->getDecl()->isComplete());
850    return STK_Integral;
851  } else if (const ComplexType *CT = dyn_cast<ComplexType>(T)) {
852    if (CT->getElementType()->isRealFloatingType())
853      return STK_FloatingComplex;
854    return STK_IntegralComplex;
855  }
856
857  llvm_unreachable("unknown scalar type");
858}
859
860/// \brief Determines whether the type is a C++ aggregate type or C
861/// aggregate or union type.
862///
863/// An aggregate type is an array or a class type (struct, union, or
864/// class) that has no user-declared constructors, no private or
865/// protected non-static data members, no base classes, and no virtual
866/// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
867/// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
868/// includes union types.
869bool Type::isAggregateType() const {
870  if (const RecordType *Record = dyn_cast<RecordType>(CanonicalType)) {
871    if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
872      return ClassDecl->isAggregate();
873
874    return true;
875  }
876
877  return isa<ArrayType>(CanonicalType);
878}
879
880/// isConstantSizeType - Return true if this is not a variable sized type,
881/// according to the rules of C99 6.7.5p3.  It is not legal to call this on
882/// incomplete types or dependent types.
883bool Type::isConstantSizeType() const {
884  assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
885  assert(!isDependentType() && "This doesn't make sense for dependent types");
886  // The VAT must have a size, as it is known to be complete.
887  return !isa<VariableArrayType>(CanonicalType);
888}
889
890/// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
891/// - a type that can describe objects, but which lacks information needed to
892/// determine its size.
893bool Type::isIncompleteType() const {
894  switch (CanonicalType->getTypeClass()) {
895  default: return false;
896  case Builtin:
897    // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
898    // be completed.
899    return isVoidType();
900  case Enum:
901    // An enumeration with fixed underlying type is complete (C++0x 7.2p3).
902    if (cast<EnumType>(CanonicalType)->getDecl()->isFixed())
903        return false;
904    // Fall through.
905  case Record:
906    // A tagged type (struct/union/enum/class) is incomplete if the decl is a
907    // forward declaration, but not a full definition (C99 6.2.5p22).
908    return !cast<TagType>(CanonicalType)->getDecl()->isDefinition();
909  case ConstantArray:
910    // An array is incomplete if its element type is incomplete
911    // (C++ [dcl.array]p1).
912    // We don't handle variable arrays (they're not allowed in C++) or
913    // dependent-sized arrays (dependent types are never treated as incomplete).
914    return cast<ArrayType>(CanonicalType)->getElementType()->isIncompleteType();
915  case IncompleteArray:
916    // An array of unknown size is an incomplete type (C99 6.2.5p22).
917    return true;
918  case ObjCObject:
919    return cast<ObjCObjectType>(CanonicalType)->getBaseType()
920                                                         ->isIncompleteType();
921  case ObjCInterface:
922    // ObjC interfaces are incomplete if they are @class, not @interface.
923    return cast<ObjCInterfaceType>(CanonicalType)->getDecl()->isForwardDecl();
924  }
925}
926
927bool QualType::isPODType(ASTContext &Context) const {
928  // The compiler shouldn't query this for incomplete types, but the user might.
929  // We return false for that case. Except for incomplete arrays of PODs, which
930  // are PODs according to the standard.
931  if (isNull())
932    return 0;
933
934  if ((*this)->isIncompleteArrayType())
935    return Context.getBaseElementType(*this).isPODType(Context);
936
937  if ((*this)->isIncompleteType())
938    return false;
939
940  if (Context.getLangOptions().ObjCAutoRefCount) {
941    switch (getObjCLifetime()) {
942    case Qualifiers::OCL_ExplicitNone:
943      return true;
944
945    case Qualifiers::OCL_Strong:
946    case Qualifiers::OCL_Weak:
947    case Qualifiers::OCL_Autoreleasing:
948      return false;
949
950    case Qualifiers::OCL_None:
951      break;
952    }
953  }
954
955  QualType CanonicalType = getTypePtr()->CanonicalType;
956  switch (CanonicalType->getTypeClass()) {
957    // Everything not explicitly mentioned is not POD.
958  default: return false;
959  case Type::VariableArray:
960  case Type::ConstantArray:
961    // IncompleteArray is handled above.
962    return Context.getBaseElementType(*this).isPODType(Context);
963
964  case Type::ObjCObjectPointer:
965  case Type::BlockPointer:
966  case Type::Builtin:
967  case Type::Complex:
968  case Type::Pointer:
969  case Type::MemberPointer:
970  case Type::Vector:
971  case Type::ExtVector:
972    return true;
973
974  case Type::Enum:
975    return true;
976
977  case Type::Record:
978    if (CXXRecordDecl *ClassDecl
979          = dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
980      return ClassDecl->isPOD();
981
982    // C struct/union is POD.
983    return true;
984  }
985}
986
987bool QualType::isTrivialType(ASTContext &Context) const {
988  // The compiler shouldn't query this for incomplete types, but the user might.
989  // We return false for that case. Except for incomplete arrays of PODs, which
990  // are PODs according to the standard.
991  if (isNull())
992    return 0;
993
994  if ((*this)->isArrayType())
995    return Context.getBaseElementType(*this).isTrivialType(Context);
996
997  // Return false for incomplete types after skipping any incomplete array
998  // types which are expressly allowed by the standard and thus our API.
999  if ((*this)->isIncompleteType())
1000    return false;
1001
1002  if (Context.getLangOptions().ObjCAutoRefCount) {
1003    switch (getObjCLifetime()) {
1004    case Qualifiers::OCL_ExplicitNone:
1005      return true;
1006
1007    case Qualifiers::OCL_Strong:
1008    case Qualifiers::OCL_Weak:
1009    case Qualifiers::OCL_Autoreleasing:
1010      return false;
1011
1012    case Qualifiers::OCL_None:
1013      if ((*this)->isObjCLifetimeType())
1014        return false;
1015      break;
1016    }
1017  }
1018
1019  QualType CanonicalType = getTypePtr()->CanonicalType;
1020  if (CanonicalType->isDependentType())
1021    return false;
1022
1023  // C++0x [basic.types]p9:
1024  //   Scalar types, trivial class types, arrays of such types, and
1025  //   cv-qualified versions of these types are collectively called trivial
1026  //   types.
1027
1028  // As an extension, Clang treats vector types as Scalar types.
1029  if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
1030    return true;
1031  if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
1032    if (const CXXRecordDecl *ClassDecl =
1033        dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1034      // C++0x [class]p5:
1035      //   A trivial class is a class that has a trivial default constructor
1036      if (!ClassDecl->hasTrivialDefaultConstructor()) return false;
1037      //   and is trivially copyable.
1038      if (!ClassDecl->isTriviallyCopyable()) return false;
1039    }
1040
1041    return true;
1042  }
1043
1044  // No other types can match.
1045  return false;
1046}
1047
1048bool QualType::isTriviallyCopyableType(ASTContext &Context) const {
1049  if ((*this)->isArrayType())
1050    return Context.getBaseElementType(*this).isTrivialType(Context);
1051
1052  if (Context.getLangOptions().ObjCAutoRefCount) {
1053    switch (getObjCLifetime()) {
1054    case Qualifiers::OCL_ExplicitNone:
1055      return true;
1056
1057    case Qualifiers::OCL_Strong:
1058    case Qualifiers::OCL_Weak:
1059    case Qualifiers::OCL_Autoreleasing:
1060      return false;
1061
1062    case Qualifiers::OCL_None:
1063      if ((*this)->isObjCLifetimeType())
1064        return false;
1065      break;
1066    }
1067  }
1068
1069  // C++0x [basic.types]p9
1070  //   Scalar types, trivially copyable class types, arrays of such types, and
1071  //   cv-qualified versions of these types are collectively called trivial
1072  //   types.
1073
1074  QualType CanonicalType = getCanonicalType();
1075  if (CanonicalType->isDependentType())
1076    return false;
1077
1078  // Return false for incomplete types after skipping any incomplete array types
1079  // which are expressly allowed by the standard and thus our API.
1080  if (CanonicalType->isIncompleteType())
1081    return false;
1082
1083  // As an extension, Clang treats vector types as Scalar types.
1084  if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
1085    return true;
1086
1087  if (const RecordType *RT = CanonicalType->getAs<RecordType>()) {
1088    if (const CXXRecordDecl *ClassDecl =
1089          dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1090      if (!ClassDecl->isTriviallyCopyable()) return false;
1091    }
1092
1093    return true;
1094  }
1095
1096  // No other types can match.
1097  return false;
1098}
1099
1100
1101
1102bool Type::isLiteralType() const {
1103  if (isDependentType())
1104    return false;
1105
1106  // C++0x [basic.types]p10:
1107  //   A type is a literal type if it is:
1108  //   [...]
1109  //   -- an array of literal type.
1110  // Extension: variable arrays cannot be literal types, since they're
1111  // runtime-sized.
1112  if (isVariableArrayType())
1113    return false;
1114  const Type *BaseTy = getBaseElementTypeUnsafe();
1115  assert(BaseTy && "NULL element type");
1116
1117  // Return false for incomplete types after skipping any incomplete array
1118  // types; those are expressly allowed by the standard and thus our API.
1119  if (BaseTy->isIncompleteType())
1120    return false;
1121
1122  // Objective-C lifetime types are not literal types.
1123  if (BaseTy->isObjCRetainableType())
1124    return false;
1125
1126  // C++0x [basic.types]p10:
1127  //   A type is a literal type if it is:
1128  //    -- a scalar type; or
1129  // As an extension, Clang treats vector types as literal types.
1130  if (BaseTy->isScalarType() || BaseTy->isVectorType())
1131    return true;
1132  //    -- a reference type; or
1133  if (BaseTy->isReferenceType())
1134    return true;
1135  //    -- a class type that has all of the following properties:
1136  if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1137    //    -- a trivial destructor,
1138    //    -- every constructor call and full-expression in the
1139    //       brace-or-equal-initializers for non-static data members (if any)
1140    //       is a constant expression,
1141    //    -- it is an aggregate type or has at least one constexpr
1142    //       constructor or constructor template that is not a copy or move
1143    //       constructor, and
1144    //    -- all non-static data members and base classes of literal types
1145    //
1146    // We resolve DR1361 by ignoring the second bullet.
1147    if (const CXXRecordDecl *ClassDecl =
1148        dyn_cast<CXXRecordDecl>(RT->getDecl()))
1149      return ClassDecl->isLiteral();
1150
1151    return true;
1152  }
1153
1154  return false;
1155}
1156
1157bool Type::isStandardLayoutType() const {
1158  if (isDependentType())
1159    return false;
1160
1161  // C++0x [basic.types]p9:
1162  //   Scalar types, standard-layout class types, arrays of such types, and
1163  //   cv-qualified versions of these types are collectively called
1164  //   standard-layout types.
1165  const Type *BaseTy = getBaseElementTypeUnsafe();
1166  assert(BaseTy && "NULL element type");
1167
1168  // Return false for incomplete types after skipping any incomplete array
1169  // types which are expressly allowed by the standard and thus our API.
1170  if (BaseTy->isIncompleteType())
1171    return false;
1172
1173  // As an extension, Clang treats vector types as Scalar types.
1174  if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
1175  if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1176    if (const CXXRecordDecl *ClassDecl =
1177        dyn_cast<CXXRecordDecl>(RT->getDecl()))
1178      if (!ClassDecl->isStandardLayout())
1179        return false;
1180
1181    // Default to 'true' for non-C++ class types.
1182    // FIXME: This is a bit dubious, but plain C structs should trivially meet
1183    // all the requirements of standard layout classes.
1184    return true;
1185  }
1186
1187  // No other types can match.
1188  return false;
1189}
1190
1191// This is effectively the intersection of isTrivialType and
1192// isStandardLayoutType. We implement it directly to avoid redundant
1193// conversions from a type to a CXXRecordDecl.
1194bool QualType::isCXX11PODType(ASTContext &Context) const {
1195  const Type *ty = getTypePtr();
1196  if (ty->isDependentType())
1197    return false;
1198
1199  if (Context.getLangOptions().ObjCAutoRefCount) {
1200    switch (getObjCLifetime()) {
1201    case Qualifiers::OCL_ExplicitNone:
1202      return true;
1203
1204    case Qualifiers::OCL_Strong:
1205    case Qualifiers::OCL_Weak:
1206    case Qualifiers::OCL_Autoreleasing:
1207      return false;
1208
1209    case Qualifiers::OCL_None:
1210      if (ty->isObjCLifetimeType())
1211        return false;
1212      break;
1213    }
1214  }
1215
1216  // C++11 [basic.types]p9:
1217  //   Scalar types, POD classes, arrays of such types, and cv-qualified
1218  //   versions of these types are collectively called trivial types.
1219  const Type *BaseTy = ty->getBaseElementTypeUnsafe();
1220  assert(BaseTy && "NULL element type");
1221
1222  // Return false for incomplete types after skipping any incomplete array
1223  // types which are expressly allowed by the standard and thus our API.
1224  if (BaseTy->isIncompleteType())
1225    return false;
1226
1227  // As an extension, Clang treats vector types as Scalar types.
1228  if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
1229  if (const RecordType *RT = BaseTy->getAs<RecordType>()) {
1230    if (const CXXRecordDecl *ClassDecl =
1231        dyn_cast<CXXRecordDecl>(RT->getDecl())) {
1232      // C++11 [class]p10:
1233      //   A POD struct is a non-union class that is both a trivial class [...]
1234      if (!ClassDecl->isTrivial()) return false;
1235
1236      // C++11 [class]p10:
1237      //   A POD struct is a non-union class that is both a trivial class and
1238      //   a standard-layout class [...]
1239      if (!ClassDecl->isStandardLayout()) return false;
1240
1241      // C++11 [class]p10:
1242      //   A POD struct is a non-union class that is both a trivial class and
1243      //   a standard-layout class, and has no non-static data members of type
1244      //   non-POD struct, non-POD union (or array of such types). [...]
1245      //
1246      // We don't directly query the recursive aspect as the requiremets for
1247      // both standard-layout classes and trivial classes apply recursively
1248      // already.
1249    }
1250
1251    return true;
1252  }
1253
1254  // No other types can match.
1255  return false;
1256}
1257
1258bool Type::isPromotableIntegerType() const {
1259  if (const BuiltinType *BT = getAs<BuiltinType>())
1260    switch (BT->getKind()) {
1261    case BuiltinType::Bool:
1262    case BuiltinType::Char_S:
1263    case BuiltinType::Char_U:
1264    case BuiltinType::SChar:
1265    case BuiltinType::UChar:
1266    case BuiltinType::Short:
1267    case BuiltinType::UShort:
1268      return true;
1269    default:
1270      return false;
1271    }
1272
1273  // Enumerated types are promotable to their compatible integer types
1274  // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
1275  if (const EnumType *ET = getAs<EnumType>()){
1276    if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
1277        || ET->getDecl()->isScoped())
1278      return false;
1279
1280    const BuiltinType *BT
1281      = ET->getDecl()->getPromotionType()->getAs<BuiltinType>();
1282    return BT->getKind() == BuiltinType::Int
1283           || BT->getKind() == BuiltinType::UInt;
1284  }
1285
1286  return false;
1287}
1288
1289bool Type::isNullPtrType() const {
1290  if (const BuiltinType *BT = getAs<BuiltinType>())
1291    return BT->getKind() == BuiltinType::NullPtr;
1292  return false;
1293}
1294
1295bool Type::isSpecifierType() const {
1296  // Note that this intentionally does not use the canonical type.
1297  switch (getTypeClass()) {
1298  case Builtin:
1299  case Record:
1300  case Enum:
1301  case Typedef:
1302  case Complex:
1303  case TypeOfExpr:
1304  case TypeOf:
1305  case TemplateTypeParm:
1306  case SubstTemplateTypeParm:
1307  case TemplateSpecialization:
1308  case Elaborated:
1309  case DependentName:
1310  case DependentTemplateSpecialization:
1311  case ObjCInterface:
1312  case ObjCObject:
1313  case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
1314    return true;
1315  default:
1316    return false;
1317  }
1318}
1319
1320ElaboratedTypeKeyword
1321TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
1322  switch (TypeSpec) {
1323  default: return ETK_None;
1324  case TST_typename: return ETK_Typename;
1325  case TST_class: return ETK_Class;
1326  case TST_struct: return ETK_Struct;
1327  case TST_union: return ETK_Union;
1328  case TST_enum: return ETK_Enum;
1329  }
1330}
1331
1332TagTypeKind
1333TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
1334  switch(TypeSpec) {
1335  case TST_class: return TTK_Class;
1336  case TST_struct: return TTK_Struct;
1337  case TST_union: return TTK_Union;
1338  case TST_enum: return TTK_Enum;
1339  }
1340
1341  llvm_unreachable("Type specifier is not a tag type kind.");
1342  return TTK_Union;
1343}
1344
1345ElaboratedTypeKeyword
1346TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
1347  switch (Kind) {
1348  case TTK_Class: return ETK_Class;
1349  case TTK_Struct: return ETK_Struct;
1350  case TTK_Union: return ETK_Union;
1351  case TTK_Enum: return ETK_Enum;
1352  }
1353  llvm_unreachable("Unknown tag type kind.");
1354}
1355
1356TagTypeKind
1357TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
1358  switch (Keyword) {
1359  case ETK_Class: return TTK_Class;
1360  case ETK_Struct: return TTK_Struct;
1361  case ETK_Union: return TTK_Union;
1362  case ETK_Enum: return TTK_Enum;
1363  case ETK_None: // Fall through.
1364  case ETK_Typename:
1365    llvm_unreachable("Elaborated type keyword is not a tag type kind.");
1366  }
1367  llvm_unreachable("Unknown elaborated type keyword.");
1368}
1369
1370bool
1371TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
1372  switch (Keyword) {
1373  case ETK_None:
1374  case ETK_Typename:
1375    return false;
1376  case ETK_Class:
1377  case ETK_Struct:
1378  case ETK_Union:
1379  case ETK_Enum:
1380    return true;
1381  }
1382  llvm_unreachable("Unknown elaborated type keyword.");
1383}
1384
1385const char*
1386TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
1387  switch (Keyword) {
1388  case ETK_None: return "";
1389  case ETK_Typename: return "typename";
1390  case ETK_Class:  return "class";
1391  case ETK_Struct: return "struct";
1392  case ETK_Union:  return "union";
1393  case ETK_Enum:   return "enum";
1394  }
1395
1396  llvm_unreachable("Unknown elaborated type keyword.");
1397  return "";
1398}
1399
1400DependentTemplateSpecializationType::DependentTemplateSpecializationType(
1401                         ElaboratedTypeKeyword Keyword,
1402                         NestedNameSpecifier *NNS, const IdentifierInfo *Name,
1403                         unsigned NumArgs, const TemplateArgument *Args,
1404                         QualType Canon)
1405  : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon, true, true,
1406                    /*VariablyModified=*/false,
1407                    NNS && NNS->containsUnexpandedParameterPack()),
1408    NNS(NNS), Name(Name), NumArgs(NumArgs) {
1409  assert((!NNS || NNS->isDependent()) &&
1410         "DependentTemplateSpecializatonType requires dependent qualifier");
1411  for (unsigned I = 0; I != NumArgs; ++I) {
1412    if (Args[I].containsUnexpandedParameterPack())
1413      setContainsUnexpandedParameterPack();
1414
1415    new (&getArgBuffer()[I]) TemplateArgument(Args[I]);
1416  }
1417}
1418
1419void
1420DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1421                                             const ASTContext &Context,
1422                                             ElaboratedTypeKeyword Keyword,
1423                                             NestedNameSpecifier *Qualifier,
1424                                             const IdentifierInfo *Name,
1425                                             unsigned NumArgs,
1426                                             const TemplateArgument *Args) {
1427  ID.AddInteger(Keyword);
1428  ID.AddPointer(Qualifier);
1429  ID.AddPointer(Name);
1430  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1431    Args[Idx].Profile(ID, Context);
1432}
1433
1434bool Type::isElaboratedTypeSpecifier() const {
1435  ElaboratedTypeKeyword Keyword;
1436  if (const ElaboratedType *Elab = dyn_cast<ElaboratedType>(this))
1437    Keyword = Elab->getKeyword();
1438  else if (const DependentNameType *DepName = dyn_cast<DependentNameType>(this))
1439    Keyword = DepName->getKeyword();
1440  else if (const DependentTemplateSpecializationType *DepTST =
1441             dyn_cast<DependentTemplateSpecializationType>(this))
1442    Keyword = DepTST->getKeyword();
1443  else
1444    return false;
1445
1446  return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
1447}
1448
1449const char *Type::getTypeClassName() const {
1450  switch (TypeBits.TC) {
1451#define ABSTRACT_TYPE(Derived, Base)
1452#define TYPE(Derived, Base) case Derived: return #Derived;
1453#include "clang/AST/TypeNodes.def"
1454  }
1455
1456  llvm_unreachable("Invalid type class.");
1457  return 0;
1458}
1459
1460const char *BuiltinType::getName(const PrintingPolicy &Policy) const {
1461  switch (getKind()) {
1462  case Void:              return "void";
1463  case Bool:              return Policy.Bool ? "bool" : "_Bool";
1464  case Char_S:            return "char";
1465  case Char_U:            return "char";
1466  case SChar:             return "signed char";
1467  case Short:             return "short";
1468  case Int:               return "int";
1469  case Long:              return "long";
1470  case LongLong:          return "long long";
1471  case Int128:            return "__int128_t";
1472  case UChar:             return "unsigned char";
1473  case UShort:            return "unsigned short";
1474  case UInt:              return "unsigned int";
1475  case ULong:             return "unsigned long";
1476  case ULongLong:         return "unsigned long long";
1477  case UInt128:           return "__uint128_t";
1478  case Float:             return "float";
1479  case Double:            return "double";
1480  case LongDouble:        return "long double";
1481  case WChar_S:
1482  case WChar_U:           return "wchar_t";
1483  case Char16:            return "char16_t";
1484  case Char32:            return "char32_t";
1485  case NullPtr:           return "nullptr_t";
1486  case Overload:          return "<overloaded function type>";
1487  case BoundMember:       return "<bound member function type>";
1488  case Dependent:         return "<dependent type>";
1489  case UnknownAny:        return "<unknown type>";
1490  case ObjCId:            return "id";
1491  case ObjCClass:         return "Class";
1492  case ObjCSel:           return "SEL";
1493  }
1494
1495  llvm_unreachable("Invalid builtin type.");
1496  return 0;
1497}
1498
1499QualType QualType::getNonLValueExprType(ASTContext &Context) const {
1500  if (const ReferenceType *RefType = getTypePtr()->getAs<ReferenceType>())
1501    return RefType->getPointeeType();
1502
1503  // C++0x [basic.lval]:
1504  //   Class prvalues can have cv-qualified types; non-class prvalues always
1505  //   have cv-unqualified types.
1506  //
1507  // See also C99 6.3.2.1p2.
1508  if (!Context.getLangOptions().CPlusPlus ||
1509      (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
1510    return getUnqualifiedType();
1511
1512  return *this;
1513}
1514
1515StringRef FunctionType::getNameForCallConv(CallingConv CC) {
1516  switch (CC) {
1517  case CC_Default:
1518    llvm_unreachable("no name for default cc");
1519    return "";
1520
1521  case CC_C: return "cdecl";
1522  case CC_X86StdCall: return "stdcall";
1523  case CC_X86FastCall: return "fastcall";
1524  case CC_X86ThisCall: return "thiscall";
1525  case CC_X86Pascal: return "pascal";
1526  case CC_AAPCS: return "aapcs";
1527  case CC_AAPCS_VFP: return "aapcs-vfp";
1528  }
1529
1530  llvm_unreachable("Invalid calling convention.");
1531  return "";
1532}
1533
1534FunctionProtoType::FunctionProtoType(QualType result, const QualType *args,
1535                                     unsigned numArgs, QualType canonical,
1536                                     const ExtProtoInfo &epi)
1537  : FunctionType(FunctionProto, result, epi.Variadic, epi.TypeQuals,
1538                 epi.RefQualifier, canonical,
1539                 result->isDependentType(),
1540                 result->isInstantiationDependentType(),
1541                 result->isVariablyModifiedType(),
1542                 result->containsUnexpandedParameterPack(),
1543                 epi.ExtInfo),
1544    NumArgs(numArgs), NumExceptions(epi.NumExceptions),
1545    ExceptionSpecType(epi.ExceptionSpecType),
1546    HasAnyConsumedArgs(epi.ConsumedArguments != 0)
1547{
1548  // Fill in the trailing argument array.
1549  QualType *argSlot = reinterpret_cast<QualType*>(this+1);
1550  for (unsigned i = 0; i != numArgs; ++i) {
1551    if (args[i]->isDependentType())
1552      setDependent();
1553    else if (args[i]->isInstantiationDependentType())
1554      setInstantiationDependent();
1555
1556    if (args[i]->containsUnexpandedParameterPack())
1557      setContainsUnexpandedParameterPack();
1558
1559    argSlot[i] = args[i];
1560  }
1561
1562  if (getExceptionSpecType() == EST_Dynamic) {
1563    // Fill in the exception array.
1564    QualType *exnSlot = argSlot + numArgs;
1565    for (unsigned i = 0, e = epi.NumExceptions; i != e; ++i) {
1566      if (epi.Exceptions[i]->isDependentType())
1567        setDependent();
1568      else if (epi.Exceptions[i]->isInstantiationDependentType())
1569        setInstantiationDependent();
1570
1571      if (epi.Exceptions[i]->containsUnexpandedParameterPack())
1572        setContainsUnexpandedParameterPack();
1573
1574      exnSlot[i] = epi.Exceptions[i];
1575    }
1576  } else if (getExceptionSpecType() == EST_ComputedNoexcept) {
1577    // Store the noexcept expression and context.
1578    Expr **noexSlot = reinterpret_cast<Expr**>(argSlot + numArgs);
1579    *noexSlot = epi.NoexceptExpr;
1580
1581    if (epi.NoexceptExpr) {
1582      if (epi.NoexceptExpr->isValueDependent()
1583          || epi.NoexceptExpr->isTypeDependent())
1584        setDependent();
1585      else if (epi.NoexceptExpr->isInstantiationDependent())
1586        setInstantiationDependent();
1587    }
1588  }
1589
1590  if (epi.ConsumedArguments) {
1591    bool *consumedArgs = const_cast<bool*>(getConsumedArgsBuffer());
1592    for (unsigned i = 0; i != numArgs; ++i)
1593      consumedArgs[i] = epi.ConsumedArguments[i];
1594  }
1595}
1596
1597FunctionProtoType::NoexceptResult
1598FunctionProtoType::getNoexceptSpec(ASTContext &ctx) const {
1599  ExceptionSpecificationType est = getExceptionSpecType();
1600  if (est == EST_BasicNoexcept)
1601    return NR_Nothrow;
1602
1603  if (est != EST_ComputedNoexcept)
1604    return NR_NoNoexcept;
1605
1606  Expr *noexceptExpr = getNoexceptExpr();
1607  if (!noexceptExpr)
1608    return NR_BadNoexcept;
1609  if (noexceptExpr->isValueDependent())
1610    return NR_Dependent;
1611
1612  llvm::APSInt value;
1613  bool isICE = noexceptExpr->isIntegerConstantExpr(value, ctx, 0,
1614                                                   /*evaluated*/false);
1615  (void)isICE;
1616  assert(isICE && "AST should not contain bad noexcept expressions.");
1617
1618  return value.getBoolValue() ? NR_Nothrow : NR_Throw;
1619}
1620
1621bool FunctionProtoType::isTemplateVariadic() const {
1622  for (unsigned ArgIdx = getNumArgs(); ArgIdx; --ArgIdx)
1623    if (isa<PackExpansionType>(getArgType(ArgIdx - 1)))
1624      return true;
1625
1626  return false;
1627}
1628
1629void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
1630                                const QualType *ArgTys, unsigned NumArgs,
1631                                const ExtProtoInfo &epi,
1632                                const ASTContext &Context) {
1633
1634  // We have to be careful not to get ambiguous profile encodings.
1635  // Note that valid type pointers are never ambiguous with anything else.
1636  //
1637  // The encoding grammar begins:
1638  //      type type* bool int bool
1639  // If that final bool is true, then there is a section for the EH spec:
1640  //      bool type*
1641  // This is followed by an optional "consumed argument" section of the
1642  // same length as the first type sequence:
1643  //      bool*
1644  // Finally, we have the ext info:
1645  //      int
1646  //
1647  // There is no ambiguity between the consumed arguments and an empty EH
1648  // spec because of the leading 'bool' which unambiguously indicates
1649  // whether the following bool is the EH spec or part of the arguments.
1650
1651  ID.AddPointer(Result.getAsOpaquePtr());
1652  for (unsigned i = 0; i != NumArgs; ++i)
1653    ID.AddPointer(ArgTys[i].getAsOpaquePtr());
1654  // This method is relatively performance sensitive, so as a performance
1655  // shortcut, use one AddInteger call instead of four for the next four
1656  // fields.
1657  assert(!(unsigned(epi.Variadic) & ~1) &&
1658         !(unsigned(epi.TypeQuals) & ~255) &&
1659         !(unsigned(epi.RefQualifier) & ~3) &&
1660         !(unsigned(epi.ExceptionSpecType) & ~7) &&
1661         "Values larger than expected.");
1662  ID.AddInteger(unsigned(epi.Variadic) +
1663                (epi.TypeQuals << 1) +
1664                (epi.RefQualifier << 9) +
1665                (epi.ExceptionSpecType << 11));
1666  if (epi.ExceptionSpecType == EST_Dynamic) {
1667    for (unsigned i = 0; i != epi.NumExceptions; ++i)
1668      ID.AddPointer(epi.Exceptions[i].getAsOpaquePtr());
1669  } else if (epi.ExceptionSpecType == EST_ComputedNoexcept && epi.NoexceptExpr){
1670    epi.NoexceptExpr->Profile(ID, Context, false);
1671  }
1672  if (epi.ConsumedArguments) {
1673    for (unsigned i = 0; i != NumArgs; ++i)
1674      ID.AddBoolean(epi.ConsumedArguments[i]);
1675  }
1676  epi.ExtInfo.Profile(ID);
1677}
1678
1679void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
1680                                const ASTContext &Ctx) {
1681  Profile(ID, getResultType(), arg_type_begin(), NumArgs, getExtProtoInfo(),
1682          Ctx);
1683}
1684
1685QualType TypedefType::desugar() const {
1686  return getDecl()->getUnderlyingType();
1687}
1688
1689TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
1690  : Type(TypeOfExpr, can, E->isTypeDependent(),
1691         E->isInstantiationDependent(),
1692         E->getType()->isVariablyModifiedType(),
1693         E->containsUnexpandedParameterPack()),
1694    TOExpr(E) {
1695}
1696
1697bool TypeOfExprType::isSugared() const {
1698  return !TOExpr->isTypeDependent();
1699}
1700
1701QualType TypeOfExprType::desugar() const {
1702  if (isSugared())
1703    return getUnderlyingExpr()->getType();
1704
1705  return QualType(this, 0);
1706}
1707
1708void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
1709                                      const ASTContext &Context, Expr *E) {
1710  E->Profile(ID, Context, true);
1711}
1712
1713DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
1714  : Type(Decltype, can, E->isTypeDependent(),
1715         E->isInstantiationDependent(),
1716         E->getType()->isVariablyModifiedType(),
1717         E->containsUnexpandedParameterPack()),
1718    E(E),
1719  UnderlyingType(underlyingType) {
1720}
1721
1722bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); }
1723
1724QualType DecltypeType::desugar() const {
1725  if (isSugared())
1726    return getUnderlyingType();
1727
1728  return QualType(this, 0);
1729}
1730
1731DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
1732  : DecltypeType(E, Context.DependentTy), Context(Context) { }
1733
1734void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
1735                                    const ASTContext &Context, Expr *E) {
1736  E->Profile(ID, Context, true);
1737}
1738
1739TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
1740  : Type(TC, can, D->isDependentType(),
1741         /*InstantiationDependent=*/D->isDependentType(),
1742         /*VariablyModified=*/false,
1743         /*ContainsUnexpandedParameterPack=*/false),
1744    decl(const_cast<TagDecl*>(D)) {}
1745
1746static TagDecl *getInterestingTagDecl(TagDecl *decl) {
1747  for (TagDecl::redecl_iterator I = decl->redecls_begin(),
1748                                E = decl->redecls_end();
1749       I != E; ++I) {
1750    if (I->isDefinition() || I->isBeingDefined())
1751      return *I;
1752  }
1753  // If there's no definition (not even in progress), return what we have.
1754  return decl;
1755}
1756
1757UnaryTransformType::UnaryTransformType(QualType BaseType,
1758                                       QualType UnderlyingType,
1759                                       UTTKind UKind,
1760                                       QualType CanonicalType)
1761  : Type(UnaryTransform, CanonicalType, UnderlyingType->isDependentType(),
1762         UnderlyingType->isInstantiationDependentType(),
1763         UnderlyingType->isVariablyModifiedType(),
1764         BaseType->containsUnexpandedParameterPack())
1765  , BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind)
1766{}
1767
1768TagDecl *TagType::getDecl() const {
1769  return getInterestingTagDecl(decl);
1770}
1771
1772bool TagType::isBeingDefined() const {
1773  return getDecl()->isBeingDefined();
1774}
1775
1776CXXRecordDecl *InjectedClassNameType::getDecl() const {
1777  return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
1778}
1779
1780bool RecordType::classof(const TagType *TT) {
1781  return isa<RecordDecl>(TT->getDecl());
1782}
1783
1784bool EnumType::classof(const TagType *TT) {
1785  return isa<EnumDecl>(TT->getDecl());
1786}
1787
1788IdentifierInfo *TemplateTypeParmType::getIdentifier() const {
1789  return isCanonicalUnqualified() ? 0 : getDecl()->getIdentifier();
1790}
1791
1792SubstTemplateTypeParmPackType::
1793SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
1794                              QualType Canon,
1795                              const TemplateArgument &ArgPack)
1796  : Type(SubstTemplateTypeParmPack, Canon, true, true, false, true),
1797    Replaced(Param),
1798    Arguments(ArgPack.pack_begin()), NumArguments(ArgPack.pack_size())
1799{
1800}
1801
1802TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
1803  return TemplateArgument(Arguments, NumArguments);
1804}
1805
1806void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
1807  Profile(ID, getReplacedParameter(), getArgumentPack());
1808}
1809
1810void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
1811                                           const TemplateTypeParmType *Replaced,
1812                                            const TemplateArgument &ArgPack) {
1813  ID.AddPointer(Replaced);
1814  ID.AddInteger(ArgPack.pack_size());
1815  for (TemplateArgument::pack_iterator P = ArgPack.pack_begin(),
1816                                    PEnd = ArgPack.pack_end();
1817       P != PEnd; ++P)
1818    ID.AddPointer(P->getAsType().getAsOpaquePtr());
1819}
1820
1821bool TemplateSpecializationType::
1822anyDependentTemplateArguments(const TemplateArgumentListInfo &Args,
1823                              bool &InstantiationDependent) {
1824  return anyDependentTemplateArguments(Args.getArgumentArray(), Args.size(),
1825                                       InstantiationDependent);
1826}
1827
1828bool TemplateSpecializationType::
1829anyDependentTemplateArguments(const TemplateArgumentLoc *Args, unsigned N,
1830                              bool &InstantiationDependent) {
1831  for (unsigned i = 0; i != N; ++i) {
1832    if (Args[i].getArgument().isDependent()) {
1833      InstantiationDependent = true;
1834      return true;
1835    }
1836
1837    if (Args[i].getArgument().isInstantiationDependent())
1838      InstantiationDependent = true;
1839  }
1840  return false;
1841}
1842
1843bool TemplateSpecializationType::
1844anyDependentTemplateArguments(const TemplateArgument *Args, unsigned N,
1845                              bool &InstantiationDependent) {
1846  for (unsigned i = 0; i != N; ++i) {
1847    if (Args[i].isDependent()) {
1848      InstantiationDependent = true;
1849      return true;
1850    }
1851
1852    if (Args[i].isInstantiationDependent())
1853      InstantiationDependent = true;
1854  }
1855  return false;
1856}
1857
1858TemplateSpecializationType::
1859TemplateSpecializationType(TemplateName T,
1860                           const TemplateArgument *Args, unsigned NumArgs,
1861                           QualType Canon, QualType AliasedType)
1862  : Type(TemplateSpecialization,
1863         Canon.isNull()? QualType(this, 0) : Canon,
1864         Canon.isNull()? T.isDependent() : Canon->isDependentType(),
1865         Canon.isNull()? T.isDependent()
1866                       : Canon->isInstantiationDependentType(),
1867         false, T.containsUnexpandedParameterPack()),
1868    Template(T), NumArgs(NumArgs) {
1869  assert(!T.getAsDependentTemplateName() &&
1870         "Use DependentTemplateSpecializationType for dependent template-name");
1871  assert((T.getKind() == TemplateName::Template ||
1872          T.getKind() == TemplateName::SubstTemplateTemplateParm ||
1873          T.getKind() == TemplateName::SubstTemplateTemplateParmPack) &&
1874         "Unexpected template name for TemplateSpecializationType");
1875  bool InstantiationDependent;
1876  (void)InstantiationDependent;
1877  assert((!Canon.isNull() ||
1878          T.isDependent() ||
1879          anyDependentTemplateArguments(Args, NumArgs,
1880                                        InstantiationDependent)) &&
1881         "No canonical type for non-dependent class template specialization");
1882
1883  TemplateArgument *TemplateArgs
1884    = reinterpret_cast<TemplateArgument *>(this + 1);
1885  for (unsigned Arg = 0; Arg < NumArgs; ++Arg) {
1886    // Update dependent and variably-modified bits.
1887    // If the canonical type exists and is non-dependent, the template
1888    // specialization type can be non-dependent even if one of the type
1889    // arguments is. Given:
1890    //   template<typename T> using U = int;
1891    // U<T> is always non-dependent, irrespective of the type T.
1892    if (Canon.isNull() && Args[Arg].isDependent())
1893      setDependent();
1894    else if (Args[Arg].isInstantiationDependent())
1895      setInstantiationDependent();
1896
1897    if (Args[Arg].getKind() == TemplateArgument::Type &&
1898        Args[Arg].getAsType()->isVariablyModifiedType())
1899      setVariablyModified();
1900    if (Args[Arg].containsUnexpandedParameterPack())
1901      setContainsUnexpandedParameterPack();
1902
1903    new (&TemplateArgs[Arg]) TemplateArgument(Args[Arg]);
1904  }
1905
1906  // Store the aliased type if this is a type alias template specialization.
1907  bool IsTypeAlias = !AliasedType.isNull();
1908  assert(IsTypeAlias == isTypeAlias() &&
1909         "allocated wrong size for type alias");
1910  if (IsTypeAlias) {
1911    TemplateArgument *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
1912    *reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType;
1913  }
1914}
1915
1916void
1917TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
1918                                    TemplateName T,
1919                                    const TemplateArgument *Args,
1920                                    unsigned NumArgs,
1921                                    const ASTContext &Context) {
1922  T.Profile(ID);
1923  for (unsigned Idx = 0; Idx < NumArgs; ++Idx)
1924    Args[Idx].Profile(ID, Context);
1925}
1926
1927bool TemplateSpecializationType::isTypeAlias() const {
1928  TemplateDecl *D = Template.getAsTemplateDecl();
1929  return D && isa<TypeAliasTemplateDecl>(D);
1930}
1931
1932QualType
1933QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
1934  if (!hasNonFastQualifiers())
1935    return QT.withFastQualifiers(getFastQualifiers());
1936
1937  return Context.getQualifiedType(QT, *this);
1938}
1939
1940QualType
1941QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
1942  if (!hasNonFastQualifiers())
1943    return QualType(T, getFastQualifiers());
1944
1945  return Context.getQualifiedType(T, *this);
1946}
1947
1948void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
1949                                 QualType BaseType,
1950                                 ObjCProtocolDecl * const *Protocols,
1951                                 unsigned NumProtocols) {
1952  ID.AddPointer(BaseType.getAsOpaquePtr());
1953  for (unsigned i = 0; i != NumProtocols; i++)
1954    ID.AddPointer(Protocols[i]);
1955}
1956
1957void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
1958  Profile(ID, getBaseType(), qual_begin(), getNumProtocols());
1959}
1960
1961namespace {
1962
1963/// \brief The cached properties of a type.
1964class CachedProperties {
1965  char linkage;
1966  char visibility;
1967  bool local;
1968
1969public:
1970  CachedProperties(Linkage linkage, Visibility visibility, bool local)
1971    : linkage(linkage), visibility(visibility), local(local) {}
1972
1973  Linkage getLinkage() const { return (Linkage) linkage; }
1974  Visibility getVisibility() const { return (Visibility) visibility; }
1975  bool hasLocalOrUnnamedType() const { return local; }
1976
1977  friend CachedProperties merge(CachedProperties L, CachedProperties R) {
1978    return CachedProperties(minLinkage(L.getLinkage(), R.getLinkage()),
1979                            minVisibility(L.getVisibility(), R.getVisibility()),
1980                         L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
1981  }
1982};
1983}
1984
1985static CachedProperties computeCachedProperties(const Type *T);
1986
1987namespace clang {
1988/// The type-property cache.  This is templated so as to be
1989/// instantiated at an internal type to prevent unnecessary symbol
1990/// leakage.
1991template <class Private> class TypePropertyCache {
1992public:
1993  static CachedProperties get(QualType T) {
1994    return get(T.getTypePtr());
1995  }
1996
1997  static CachedProperties get(const Type *T) {
1998    ensure(T);
1999    return CachedProperties(T->TypeBits.getLinkage(),
2000                            T->TypeBits.getVisibility(),
2001                            T->TypeBits.hasLocalOrUnnamedType());
2002  }
2003
2004  static void ensure(const Type *T) {
2005    // If the cache is valid, we're okay.
2006    if (T->TypeBits.isCacheValid()) return;
2007
2008    // If this type is non-canonical, ask its canonical type for the
2009    // relevant information.
2010    if (!T->isCanonicalUnqualified()) {
2011      const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
2012      ensure(CT);
2013      T->TypeBits.CacheValidAndVisibility =
2014        CT->TypeBits.CacheValidAndVisibility;
2015      T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
2016      T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
2017      return;
2018    }
2019
2020    // Compute the cached properties and then set the cache.
2021    CachedProperties Result = computeCachedProperties(T);
2022    T->TypeBits.CacheValidAndVisibility = Result.getVisibility() + 1U;
2023    assert(T->TypeBits.isCacheValid() &&
2024           T->TypeBits.getVisibility() == Result.getVisibility());
2025    T->TypeBits.CachedLinkage = Result.getLinkage();
2026    T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
2027  }
2028};
2029}
2030
2031// Instantiate the friend template at a private class.  In a
2032// reasonable implementation, these symbols will be internal.
2033// It is terrible that this is the best way to accomplish this.
2034namespace { class Private {}; }
2035typedef TypePropertyCache<Private> Cache;
2036
2037static CachedProperties computeCachedProperties(const Type *T) {
2038  switch (T->getTypeClass()) {
2039#define TYPE(Class,Base)
2040#define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
2041#include "clang/AST/TypeNodes.def"
2042    llvm_unreachable("didn't expect a non-canonical type here");
2043
2044#define TYPE(Class,Base)
2045#define DEPENDENT_TYPE(Class,Base) case Type::Class:
2046#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
2047#include "clang/AST/TypeNodes.def"
2048    // Treat instantiation-dependent types as external.
2049    assert(T->isInstantiationDependentType());
2050    return CachedProperties(ExternalLinkage, DefaultVisibility, false);
2051
2052  case Type::Builtin:
2053    // C++ [basic.link]p8:
2054    //   A type is said to have linkage if and only if:
2055    //     - it is a fundamental type (3.9.1); or
2056    return CachedProperties(ExternalLinkage, DefaultVisibility, false);
2057
2058  case Type::Record:
2059  case Type::Enum: {
2060    const TagDecl *Tag = cast<TagType>(T)->getDecl();
2061
2062    // C++ [basic.link]p8:
2063    //     - it is a class or enumeration type that is named (or has a name
2064    //       for linkage purposes (7.1.3)) and the name has linkage; or
2065    //     -  it is a specialization of a class template (14); or
2066    NamedDecl::LinkageInfo LV = Tag->getLinkageAndVisibility();
2067    bool IsLocalOrUnnamed =
2068      Tag->getDeclContext()->isFunctionOrMethod() ||
2069      (!Tag->getIdentifier() && !Tag->getTypedefNameForAnonDecl());
2070    return CachedProperties(LV.linkage(), LV.visibility(), IsLocalOrUnnamed);
2071  }
2072
2073    // C++ [basic.link]p8:
2074    //   - it is a compound type (3.9.2) other than a class or enumeration,
2075    //     compounded exclusively from types that have linkage; or
2076  case Type::Complex:
2077    return Cache::get(cast<ComplexType>(T)->getElementType());
2078  case Type::Pointer:
2079    return Cache::get(cast<PointerType>(T)->getPointeeType());
2080  case Type::BlockPointer:
2081    return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
2082  case Type::LValueReference:
2083  case Type::RValueReference:
2084    return Cache::get(cast<ReferenceType>(T)->getPointeeType());
2085  case Type::MemberPointer: {
2086    const MemberPointerType *MPT = cast<MemberPointerType>(T);
2087    return merge(Cache::get(MPT->getClass()),
2088                 Cache::get(MPT->getPointeeType()));
2089  }
2090  case Type::ConstantArray:
2091  case Type::IncompleteArray:
2092  case Type::VariableArray:
2093    return Cache::get(cast<ArrayType>(T)->getElementType());
2094  case Type::Vector:
2095  case Type::ExtVector:
2096    return Cache::get(cast<VectorType>(T)->getElementType());
2097  case Type::FunctionNoProto:
2098    return Cache::get(cast<FunctionType>(T)->getResultType());
2099  case Type::FunctionProto: {
2100    const FunctionProtoType *FPT = cast<FunctionProtoType>(T);
2101    CachedProperties result = Cache::get(FPT->getResultType());
2102    for (FunctionProtoType::arg_type_iterator ai = FPT->arg_type_begin(),
2103           ae = FPT->arg_type_end(); ai != ae; ++ai)
2104      result = merge(result, Cache::get(*ai));
2105    return result;
2106  }
2107  case Type::ObjCInterface: {
2108    NamedDecl::LinkageInfo LV =
2109      cast<ObjCInterfaceType>(T)->getDecl()->getLinkageAndVisibility();
2110    return CachedProperties(LV.linkage(), LV.visibility(), false);
2111  }
2112  case Type::ObjCObject:
2113    return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
2114  case Type::ObjCObjectPointer:
2115    return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
2116  }
2117
2118  llvm_unreachable("unhandled type class");
2119
2120  // C++ [basic.link]p8:
2121  //   Names not covered by these rules have no linkage.
2122  return CachedProperties(NoLinkage, DefaultVisibility, false);
2123}
2124
2125/// \brief Determine the linkage of this type.
2126Linkage Type::getLinkage() const {
2127  Cache::ensure(this);
2128  return TypeBits.getLinkage();
2129}
2130
2131/// \brief Determine the linkage of this type.
2132Visibility Type::getVisibility() const {
2133  Cache::ensure(this);
2134  return TypeBits.getVisibility();
2135}
2136
2137bool Type::hasUnnamedOrLocalType() const {
2138  Cache::ensure(this);
2139  return TypeBits.hasLocalOrUnnamedType();
2140}
2141
2142std::pair<Linkage,Visibility> Type::getLinkageAndVisibility() const {
2143  Cache::ensure(this);
2144  return std::make_pair(TypeBits.getLinkage(), TypeBits.getVisibility());
2145}
2146
2147void Type::ClearLinkageCache() {
2148  TypeBits.CacheValidAndVisibility = 0;
2149  if (QualType(this, 0) != CanonicalType)
2150    CanonicalType->TypeBits.CacheValidAndVisibility = 0;
2151}
2152
2153Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const {
2154  if (isObjCARCImplicitlyUnretainedType())
2155    return Qualifiers::OCL_ExplicitNone;
2156  return Qualifiers::OCL_Strong;
2157}
2158
2159bool Type::isObjCARCImplicitlyUnretainedType() const {
2160  assert(isObjCLifetimeType() &&
2161         "cannot query implicit lifetime for non-inferrable type");
2162
2163  const Type *canon = getCanonicalTypeInternal().getTypePtr();
2164
2165  // Walk down to the base type.  We don't care about qualifiers for this.
2166  while (const ArrayType *array = dyn_cast<ArrayType>(canon))
2167    canon = array->getElementType().getTypePtr();
2168
2169  if (const ObjCObjectPointerType *opt
2170        = dyn_cast<ObjCObjectPointerType>(canon)) {
2171    // Class and Class<Protocol> don't require retension.
2172    if (opt->getObjectType()->isObjCClass())
2173      return true;
2174  }
2175
2176  return false;
2177}
2178
2179bool Type::isObjCNSObjectType() const {
2180  if (const TypedefType *typedefType = dyn_cast<TypedefType>(this))
2181    return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
2182  return false;
2183}
2184bool Type::isObjCRetainableType() const {
2185  return isObjCObjectPointerType() ||
2186         isBlockPointerType() ||
2187         isObjCNSObjectType();
2188}
2189bool Type::isObjCIndirectLifetimeType() const {
2190  if (isObjCLifetimeType())
2191    return true;
2192  if (const PointerType *OPT = getAs<PointerType>())
2193    return OPT->getPointeeType()->isObjCIndirectLifetimeType();
2194  if (const ReferenceType *Ref = getAs<ReferenceType>())
2195    return Ref->getPointeeType()->isObjCIndirectLifetimeType();
2196  if (const MemberPointerType *MemPtr = getAs<MemberPointerType>())
2197    return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
2198  return false;
2199}
2200
2201/// Returns true if objects of this type have lifetime semantics under
2202/// ARC.
2203bool Type::isObjCLifetimeType() const {
2204  const Type *type = this;
2205  while (const ArrayType *array = type->getAsArrayTypeUnsafe())
2206    type = array->getElementType().getTypePtr();
2207  return type->isObjCRetainableType();
2208}
2209
2210/// \brief Determine whether the given type T is a "bridgable" Objective-C type,
2211/// which is either an Objective-C object pointer type or an
2212bool Type::isObjCARCBridgableType() const {
2213  return isObjCObjectPointerType() || isBlockPointerType();
2214}
2215
2216/// \brief Determine whether the given type T is a "bridgeable" C type.
2217bool Type::isCARCBridgableType() const {
2218  const PointerType *Pointer = getAs<PointerType>();
2219  if (!Pointer)
2220    return false;
2221
2222  QualType Pointee = Pointer->getPointeeType();
2223  return Pointee->isVoidType() || Pointee->isRecordType();
2224}
2225
2226bool Type::hasSizedVLAType() const {
2227  if (!isVariablyModifiedType()) return false;
2228
2229  if (const PointerType *ptr = getAs<PointerType>())
2230    return ptr->getPointeeType()->hasSizedVLAType();
2231  if (const ReferenceType *ref = getAs<ReferenceType>())
2232    return ref->getPointeeType()->hasSizedVLAType();
2233  if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
2234    if (isa<VariableArrayType>(arr) &&
2235        cast<VariableArrayType>(arr)->getSizeExpr())
2236      return true;
2237
2238    return arr->getElementType()->hasSizedVLAType();
2239  }
2240
2241  return false;
2242}
2243
2244QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
2245  switch (type.getObjCLifetime()) {
2246  case Qualifiers::OCL_None:
2247  case Qualifiers::OCL_ExplicitNone:
2248  case Qualifiers::OCL_Autoreleasing:
2249    break;
2250
2251  case Qualifiers::OCL_Strong:
2252    return DK_objc_strong_lifetime;
2253  case Qualifiers::OCL_Weak:
2254    return DK_objc_weak_lifetime;
2255  }
2256
2257  /// Currently, the only destruction kind we recognize is C++ objects
2258  /// with non-trivial destructors.
2259  const CXXRecordDecl *record =
2260    type->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2261  if (record && record->hasDefinition() && !record->hasTrivialDestructor())
2262    return DK_cxx_destructor;
2263
2264  return DK_none;
2265}
2266
2267bool QualType::hasTrivialAssignment(ASTContext &Context, bool Copying) const {
2268  switch (getObjCLifetime()) {
2269  case Qualifiers::OCL_None:
2270    break;
2271
2272  case Qualifiers::OCL_ExplicitNone:
2273    return true;
2274
2275  case Qualifiers::OCL_Autoreleasing:
2276  case Qualifiers::OCL_Strong:
2277  case Qualifiers::OCL_Weak:
2278    return !Context.getLangOptions().ObjCAutoRefCount;
2279  }
2280
2281  if (const CXXRecordDecl *Record
2282            = getTypePtr()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl())
2283    return Copying ? Record->hasTrivialCopyAssignment() :
2284                     Record->hasTrivialMoveAssignment();
2285
2286  return true;
2287}
2288