CodeGenModule.cpp revision 005eedce54da6580de37bb115bf581008637e4b1
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CGCall.h"
18#include "CGObjCRuntime.h"
19#include "Mangle.h"
20#include "clang/Frontend/CompileOptions.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/Basic/Diagnostic.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Basic/ConvertUTF.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Module.h"
30#include "llvm/Intrinsics.h"
31#include "llvm/Target/TargetData.h"
32using namespace clang;
33using namespace CodeGen;
34
35
36CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
37                             llvm::Module &M, const llvm::TargetData &TD,
38                             Diagnostic &diags)
39  : BlockModule(C, M, TD, Types, *this), Context(C),
40    Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
41    TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
42    MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
43
44  if (!Features.ObjC1)
45    Runtime = 0;
46  else if (!Features.NeXTRuntime)
47    Runtime = CreateGNUObjCRuntime(*this);
48  else if (Features.ObjCNonFragileABI)
49    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
50  else
51    Runtime = CreateMacObjCRuntime(*this);
52
53  // If debug info generation is enabled, create the CGDebugInfo object.
54  DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
55}
56
57CodeGenModule::~CodeGenModule() {
58  delete Runtime;
59  delete DebugInfo;
60}
61
62void CodeGenModule::Release() {
63  EmitDeferred();
64  if (Runtime)
65    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
66      AddGlobalCtor(ObjCInitFunction);
67  EmitCtorList(GlobalCtors, "llvm.global_ctors");
68  EmitCtorList(GlobalDtors, "llvm.global_dtors");
69  EmitAnnotations();
70  EmitLLVMUsed();
71}
72
73/// ErrorUnsupported - Print out an error that codegen doesn't support the
74/// specified stmt yet.
75void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
76                                     bool OmitOnError) {
77  if (OmitOnError && getDiags().hasErrorOccurred())
78    return;
79  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
80                                               "cannot compile this %0 yet");
81  std::string Msg = Type;
82  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
83    << Msg << S->getSourceRange();
84}
85
86/// ErrorUnsupported - Print out an error that codegen doesn't support the
87/// specified decl yet.
88void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
89                                     bool OmitOnError) {
90  if (OmitOnError && getDiags().hasErrorOccurred())
91    return;
92  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
93                                               "cannot compile this %0 yet");
94  std::string Msg = Type;
95  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
96}
97
98LangOptions::VisibilityMode
99CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
100  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
101    if (VD->getStorageClass() == VarDecl::PrivateExtern)
102      return LangOptions::Hidden;
103
104  if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
105    switch (attr->getVisibility()) {
106    default: assert(0 && "Unknown visibility!");
107    case VisibilityAttr::DefaultVisibility:
108      return LangOptions::Default;
109    case VisibilityAttr::HiddenVisibility:
110      return LangOptions::Hidden;
111    case VisibilityAttr::ProtectedVisibility:
112      return LangOptions::Protected;
113    }
114  }
115
116  return getLangOptions().getVisibilityMode();
117}
118
119void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
120                                        const Decl *D) const {
121  // Internal definitions always have default visibility.
122  if (GV->hasLocalLinkage()) {
123    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
124    return;
125  }
126
127  switch (getDeclVisibilityMode(D)) {
128  default: assert(0 && "Unknown visibility!");
129  case LangOptions::Default:
130    return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131  case LangOptions::Hidden:
132    return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
133  case LangOptions::Protected:
134    return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
135  }
136}
137
138const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
139  const NamedDecl *ND = GD.getDecl();
140
141  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
142    return getMangledCXXCtorName(D, GD.getCtorType());
143  if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
144    return getMangledCXXDtorName(D, GD.getDtorType());
145
146  return getMangledName(ND);
147}
148
149/// \brief Retrieves the mangled name for the given declaration.
150///
151/// If the given declaration requires a mangled name, returns an
152/// const char* containing the mangled name.  Otherwise, returns
153/// the unmangled name.
154///
155const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
156  // In C, functions with no attributes never need to be mangled. Fastpath them.
157  if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
158    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
159    return ND->getNameAsCString();
160  }
161
162  llvm::SmallString<256> Name;
163  llvm::raw_svector_ostream Out(Name);
164  if (!mangleName(ND, Context, Out)) {
165    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
166    return ND->getNameAsCString();
167  }
168
169  Name += '\0';
170  return UniqueMangledName(Name.begin(), Name.end());
171}
172
173const char *CodeGenModule::UniqueMangledName(const char *NameStart,
174                                             const char *NameEnd) {
175  assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
176
177  return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
178}
179
180/// AddGlobalCtor - Add a function to the list that will be called before
181/// main() runs.
182void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
183  // FIXME: Type coercion of void()* types.
184  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
185}
186
187/// AddGlobalDtor - Add a function to the list that will be called
188/// when the module is unloaded.
189void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
190  // FIXME: Type coercion of void()* types.
191  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
192}
193
194void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
195  // Ctor function type is void()*.
196  llvm::FunctionType* CtorFTy =
197    llvm::FunctionType::get(llvm::Type::VoidTy,
198                            std::vector<const llvm::Type*>(),
199                            false);
200  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
201
202  // Get the type of a ctor entry, { i32, void ()* }.
203  llvm::StructType* CtorStructTy =
204    llvm::StructType::get(llvm::Type::Int32Ty,
205                          llvm::PointerType::getUnqual(CtorFTy), NULL);
206
207  // Construct the constructor and destructor arrays.
208  std::vector<llvm::Constant*> Ctors;
209  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
210    std::vector<llvm::Constant*> S;
211    S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
212    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
213    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
214  }
215
216  if (!Ctors.empty()) {
217    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
218    new llvm::GlobalVariable(AT, false,
219                             llvm::GlobalValue::AppendingLinkage,
220                             llvm::ConstantArray::get(AT, Ctors),
221                             GlobalName,
222                             &TheModule);
223  }
224}
225
226void CodeGenModule::EmitAnnotations() {
227  if (Annotations.empty())
228    return;
229
230  // Create a new global variable for the ConstantStruct in the Module.
231  llvm::Constant *Array =
232  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
233                                                Annotations.size()),
234                           Annotations);
235  llvm::GlobalValue *gv =
236  new llvm::GlobalVariable(Array->getType(), false,
237                           llvm::GlobalValue::AppendingLinkage, Array,
238                           "llvm.global.annotations", &TheModule);
239  gv->setSection("llvm.metadata");
240}
241
242static CodeGenModule::GVALinkage
243GetLinkageForFunction(const FunctionDecl *FD, const LangOptions &Features) {
244  // "static" functions get internal linkage.
245  if (FD->getStorageClass() == FunctionDecl::Static)
246    return CodeGenModule::GVA_Internal;
247
248  if (!FD->isInline())
249    return CodeGenModule::GVA_StrongExternal;
250
251  // If the inline function explicitly has the GNU inline attribute on it, or if
252  // this is C89 mode, we use to GNU semantics.
253  if (!Features.C99 && !Features.CPlusPlus) {
254    // extern inline in GNU mode is like C99 inline.
255    if (FD->getStorageClass() == FunctionDecl::Extern)
256      return CodeGenModule::GVA_C99Inline;
257    // Normal inline is a strong symbol.
258    return CodeGenModule::GVA_StrongExternal;
259  } else if (FD->hasActiveGNUInlineAttribute()) {
260    // GCC in C99 mode seems to use a different decision-making
261    // process for extern inline, which factors in previous
262    // declarations.
263    if (FD->isExternGNUInline())
264      return CodeGenModule::GVA_C99Inline;
265    // Normal inline is a strong symbol.
266    return CodeGenModule::GVA_StrongExternal;
267  }
268
269  // The definition of inline changes based on the language.  Note that we
270  // have already handled "static inline" above, with the GVA_Internal case.
271  if (Features.CPlusPlus)  // inline and extern inline.
272    return CodeGenModule::GVA_CXXInline;
273
274  assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
275  if (FD->isC99InlineDefinition())
276    return CodeGenModule::GVA_C99Inline;
277
278  return CodeGenModule::GVA_StrongExternal;
279}
280
281/// SetFunctionDefinitionAttributes - Set attributes for a global.
282///
283/// FIXME: This is currently only done for aliases and functions, but
284/// not for variables (these details are set in
285/// EmitGlobalVarDefinition for variables).
286void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
287                                                    llvm::GlobalValue *GV) {
288  GVALinkage Linkage = GetLinkageForFunction(D, Features);
289
290  if (Linkage == GVA_Internal) {
291    GV->setLinkage(llvm::Function::InternalLinkage);
292  } else if (D->hasAttr<DLLExportAttr>()) {
293    GV->setLinkage(llvm::Function::DLLExportLinkage);
294  } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
295    GV->setLinkage(llvm::Function::WeakAnyLinkage);
296  } else if (Linkage == GVA_C99Inline) {
297    // In C99 mode, 'inline' functions are guaranteed to have a strong
298    // definition somewhere else, so we can use available_externally linkage.
299    GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
300  } else if (Linkage == GVA_CXXInline) {
301    // In C++, the compiler has to emit a definition in every translation unit
302    // that references the function.  We should use linkonce_odr because
303    // a) if all references in this translation unit are optimized away, we
304    // don't need to codegen it.  b) if the function persists, it needs to be
305    // merged with other definitions. c) C++ has the ODR, so we know the
306    // definition is dependable.
307    GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
308  } else {
309    assert(Linkage == GVA_StrongExternal);
310    // Otherwise, we have strong external linkage.
311    GV->setLinkage(llvm::Function::ExternalLinkage);
312  }
313
314  SetCommonAttributes(D, GV);
315}
316
317void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
318                                              const CGFunctionInfo &Info,
319                                              llvm::Function *F) {
320  AttributeListType AttributeList;
321  ConstructAttributeList(Info, D, AttributeList);
322
323  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
324                                        AttributeList.size()));
325
326  // Set the appropriate calling convention for the Function.
327  if (D->hasAttr<FastCallAttr>())
328    F->setCallingConv(llvm::CallingConv::X86_FastCall);
329
330  if (D->hasAttr<StdCallAttr>())
331    F->setCallingConv(llvm::CallingConv::X86_StdCall);
332}
333
334void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
335                                                           llvm::Function *F) {
336  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
337    F->addFnAttr(llvm::Attribute::NoUnwind);
338
339  if (D->hasAttr<AlwaysInlineAttr>())
340    F->addFnAttr(llvm::Attribute::AlwaysInline);
341
342  if (D->hasAttr<NoinlineAttr>())
343    F->addFnAttr(llvm::Attribute::NoInline);
344}
345
346void CodeGenModule::SetCommonAttributes(const Decl *D,
347                                        llvm::GlobalValue *GV) {
348  setGlobalVisibility(GV, D);
349
350  if (D->hasAttr<UsedAttr>())
351    AddUsedGlobal(GV);
352
353  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
354    GV->setSection(SA->getName());
355}
356
357void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
358                                                  llvm::Function *F,
359                                                  const CGFunctionInfo &FI) {
360  SetLLVMFunctionAttributes(D, FI, F);
361  SetLLVMFunctionAttributesForDefinition(D, F);
362
363  F->setLinkage(llvm::Function::InternalLinkage);
364
365  SetCommonAttributes(D, F);
366}
367
368void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
369                                          llvm::Function *F) {
370  SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
371
372  // Only a few attributes are set on declarations; these may later be
373  // overridden by a definition.
374
375  if (FD->hasAttr<DLLImportAttr>()) {
376    F->setLinkage(llvm::Function::DLLImportLinkage);
377  } else if (FD->hasAttr<WeakAttr>() || FD->hasAttr<WeakImportAttr>()) {
378    // "extern_weak" is overloaded in LLVM; we probably should have
379    // separate linkage types for this.
380    F->setLinkage(llvm::Function::ExternalWeakLinkage);
381  } else {
382    F->setLinkage(llvm::Function::ExternalLinkage);
383  }
384
385  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
386    F->setSection(SA->getName());
387}
388
389void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
390  assert(!GV->isDeclaration() &&
391         "Only globals with definition can force usage.");
392  LLVMUsed.push_back(GV);
393}
394
395void CodeGenModule::EmitLLVMUsed() {
396  // Don't create llvm.used if there is no need.
397  if (LLVMUsed.empty())
398    return;
399
400  llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
401  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size());
402
403  // Convert LLVMUsed to what ConstantArray needs.
404  std::vector<llvm::Constant*> UsedArray;
405  UsedArray.resize(LLVMUsed.size());
406  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
407    UsedArray[i] =
408     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
409  }
410
411  llvm::GlobalVariable *GV =
412    new llvm::GlobalVariable(ATy, false,
413                             llvm::GlobalValue::AppendingLinkage,
414                             llvm::ConstantArray::get(ATy, UsedArray),
415                             "llvm.used", &getModule());
416
417  GV->setSection("llvm.metadata");
418}
419
420void CodeGenModule::EmitDeferred() {
421  // Emit code for any potentially referenced deferred decls.  Since a
422  // previously unused static decl may become used during the generation of code
423  // for a static function, iterate until no  changes are made.
424  while (!DeferredDeclsToEmit.empty()) {
425    GlobalDecl D = DeferredDeclsToEmit.back();
426    DeferredDeclsToEmit.pop_back();
427
428    // The mangled name for the decl must have been emitted in GlobalDeclMap.
429    // Look it up to see if it was defined with a stronger definition (e.g. an
430    // extern inline function with a strong function redefinition).  If so,
431    // just ignore the deferred decl.
432    llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
433    assert(CGRef && "Deferred decl wasn't referenced?");
434
435    if (!CGRef->isDeclaration())
436      continue;
437
438    // Otherwise, emit the definition and move on to the next one.
439    EmitGlobalDefinition(D);
440  }
441}
442
443/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
444/// annotation information for a given GlobalValue.  The annotation struct is
445/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
446/// GlobalValue being annotated.  The second field is the constant string
447/// created from the AnnotateAttr's annotation.  The third field is a constant
448/// string containing the name of the translation unit.  The fourth field is
449/// the line number in the file of the annotated value declaration.
450///
451/// FIXME: this does not unique the annotation string constants, as llvm-gcc
452///        appears to.
453///
454llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
455                                                const AnnotateAttr *AA,
456                                                unsigned LineNo) {
457  llvm::Module *M = &getModule();
458
459  // get [N x i8] constants for the annotation string, and the filename string
460  // which are the 2nd and 3rd elements of the global annotation structure.
461  const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
462  llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
463  llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
464                                                  true);
465
466  // Get the two global values corresponding to the ConstantArrays we just
467  // created to hold the bytes of the strings.
468  const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
469  llvm::GlobalValue *annoGV =
470  new llvm::GlobalVariable(anno->getType(), false,
471                           llvm::GlobalValue::InternalLinkage, anno,
472                           GV->getName() + StringPrefix, M);
473  // translation unit name string, emitted into the llvm.metadata section.
474  llvm::GlobalValue *unitGV =
475  new llvm::GlobalVariable(unit->getType(), false,
476                           llvm::GlobalValue::InternalLinkage, unit,
477                           StringPrefix, M);
478
479  // Create the ConstantStruct for the global annotation.
480  llvm::Constant *Fields[4] = {
481    llvm::ConstantExpr::getBitCast(GV, SBP),
482    llvm::ConstantExpr::getBitCast(annoGV, SBP),
483    llvm::ConstantExpr::getBitCast(unitGV, SBP),
484    llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
485  };
486  return llvm::ConstantStruct::get(Fields, 4, false);
487}
488
489bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
490  // Never defer when EmitAllDecls is specified or the decl has
491  // attribute used.
492  if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
493    return false;
494
495  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
496    // Constructors and destructors should never be deferred.
497    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
498      return false;
499
500    GVALinkage Linkage = GetLinkageForFunction(FD, Features);
501
502    // static, static inline, always_inline, and extern inline functions can
503    // always be deferred.  Normal inline functions can be deferred in C99/C++.
504    if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
505        Linkage == GVA_CXXInline)
506      return true;
507    return false;
508  }
509
510  const VarDecl *VD = cast<VarDecl>(Global);
511  assert(VD->isFileVarDecl() && "Invalid decl");
512
513  return VD->getStorageClass() == VarDecl::Static;
514}
515
516void CodeGenModule::EmitGlobal(const GlobalDecl &GD) {
517  const ValueDecl *Global = GD.getDecl();
518
519  // If this is an alias definition (which otherwise looks like a declaration)
520  // emit it now.
521  if (Global->hasAttr<AliasAttr>())
522    return EmitAliasDefinition(Global);
523
524  // Ignore declarations, they will be emitted on their first use.
525  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
526    // Forward declarations are emitted lazily on first use.
527    if (!FD->isThisDeclarationADefinition())
528      return;
529  } else {
530    const VarDecl *VD = cast<VarDecl>(Global);
531    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
532
533    // In C++, if this is marked "extern", defer code generation.
534    if (getLangOptions().CPlusPlus &&
535        VD->getStorageClass() == VarDecl::Extern && !VD->getInit())
536      return;
537
538    // In C, if this isn't a definition, defer code generation.
539    if (!getLangOptions().CPlusPlus && !VD->getInit())
540      return;
541  }
542
543  // Defer code generation when possible if this is a static definition, inline
544  // function etc.  These we only want to emit if they are used.
545  if (MayDeferGeneration(Global)) {
546    // If the value has already been used, add it directly to the
547    // DeferredDeclsToEmit list.
548    const char *MangledName = getMangledName(GD);
549    if (GlobalDeclMap.count(MangledName))
550      DeferredDeclsToEmit.push_back(GD);
551    else {
552      // Otherwise, remember that we saw a deferred decl with this name.  The
553      // first use of the mangled name will cause it to move into
554      // DeferredDeclsToEmit.
555      DeferredDecls[MangledName] = GD;
556    }
557    return;
558  }
559
560  // Otherwise emit the definition.
561  EmitGlobalDefinition(GD);
562}
563
564void CodeGenModule::EmitGlobalDefinition(const GlobalDecl &GD) {
565  const ValueDecl *D = GD.getDecl();
566
567  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
568    EmitCXXConstructor(CD, GD.getCtorType());
569  else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
570    EmitGlobalFunctionDefinition(FD);
571  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
572    EmitGlobalVarDefinition(VD);
573  else {
574    assert(0 && "Invalid argument to EmitGlobalDefinition()");
575  }
576}
577
578/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
579/// module, create and return an llvm Function with the specified type. If there
580/// is something in the module with the specified name, return it potentially
581/// bitcasted to the right type.
582///
583/// If D is non-null, it specifies a decl that correspond to this.  This is used
584/// to set the attributes on the function when it is first created.
585llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
586                                                       const llvm::Type *Ty,
587                                                       const FunctionDecl *D) {
588  // Lookup the entry, lazily creating it if necessary.
589  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
590  if (Entry) {
591    if (Entry->getType()->getElementType() == Ty)
592      return Entry;
593
594    // Make sure the result is of the correct type.
595    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
596    return llvm::ConstantExpr::getBitCast(Entry, PTy);
597  }
598
599  // This is the first use or definition of a mangled name.  If there is a
600  // deferred decl with this name, remember that we need to emit it at the end
601  // of the file.
602  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
603  DeferredDecls.find(MangledName);
604  if (DDI != DeferredDecls.end()) {
605    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
606    // list, and remove it from DeferredDecls (since we don't need it anymore).
607    DeferredDeclsToEmit.push_back(DDI->second);
608    DeferredDecls.erase(DDI);
609  }
610
611  // This function doesn't have a complete type (for example, the return
612  // type is an incomplete struct). Use a fake type instead, and make
613  // sure not to try to set attributes.
614  bool ShouldSetAttributes = true;
615  if (!isa<llvm::FunctionType>(Ty)) {
616    Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
617                                 std::vector<const llvm::Type*>(), false);
618    ShouldSetAttributes = false;
619  }
620  llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
621                                             llvm::Function::ExternalLinkage,
622                                             "", &getModule());
623  F->setName(MangledName);
624  if (D && ShouldSetAttributes)
625    SetFunctionAttributes(D, F);
626  Entry = F;
627  return F;
628}
629
630/// GetAddrOfFunction - Return the address of the given function.  If Ty is
631/// non-null, then this function will use the specified type if it has to
632/// create it (this occurs when we see a definition of the function).
633llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D,
634                                                 const llvm::Type *Ty) {
635  // If there was no specific requested type, just convert it now.
636  if (!Ty)
637    Ty = getTypes().ConvertType(D->getType());
638  return GetOrCreateLLVMFunction(getMangledName(D), Ty, D);
639}
640
641/// CreateRuntimeFunction - Create a new runtime function with the specified
642/// type and name.
643llvm::Constant *
644CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
645                                     const char *Name) {
646  // Convert Name to be a uniqued string from the IdentifierInfo table.
647  Name = getContext().Idents.get(Name).getName();
648  return GetOrCreateLLVMFunction(Name, FTy, 0);
649}
650
651/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
652/// create and return an llvm GlobalVariable with the specified type.  If there
653/// is something in the module with the specified name, return it potentially
654/// bitcasted to the right type.
655///
656/// If D is non-null, it specifies a decl that correspond to this.  This is used
657/// to set the attributes on the global when it is first created.
658llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
659                                                     const llvm::PointerType*Ty,
660                                                     const VarDecl *D) {
661  // Lookup the entry, lazily creating it if necessary.
662  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
663  if (Entry) {
664    if (Entry->getType() == Ty)
665      return Entry;
666
667    // Make sure the result is of the correct type.
668    return llvm::ConstantExpr::getBitCast(Entry, Ty);
669  }
670
671  // This is the first use or definition of a mangled name.  If there is a
672  // deferred decl with this name, remember that we need to emit it at the end
673  // of the file.
674  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
675    DeferredDecls.find(MangledName);
676  if (DDI != DeferredDecls.end()) {
677    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
678    // list, and remove it from DeferredDecls (since we don't need it anymore).
679    DeferredDeclsToEmit.push_back(DDI->second);
680    DeferredDecls.erase(DDI);
681  }
682
683  llvm::GlobalVariable *GV =
684    new llvm::GlobalVariable(Ty->getElementType(), false,
685                             llvm::GlobalValue::ExternalLinkage,
686                             0, "", &getModule(),
687                             false, Ty->getAddressSpace());
688  GV->setName(MangledName);
689
690  // Handle things which are present even on external declarations.
691  if (D) {
692    // FIXME: This code is overly simple and should be merged with
693    // other global handling.
694    GV->setConstant(D->getType().isConstant(Context));
695
696    // FIXME: Merge with other attribute handling code.
697    if (D->getStorageClass() == VarDecl::PrivateExtern)
698      GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
699
700    if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
701      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
702
703    GV->setThreadLocal(D->isThreadSpecified());
704  }
705
706  return Entry = GV;
707}
708
709
710/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
711/// given global variable.  If Ty is non-null and if the global doesn't exist,
712/// then it will be greated with the specified type instead of whatever the
713/// normal requested type would be.
714llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
715                                                  const llvm::Type *Ty) {
716  assert(D->hasGlobalStorage() && "Not a global variable");
717  QualType ASTTy = D->getType();
718  if (Ty == 0)
719    Ty = getTypes().ConvertTypeForMem(ASTTy);
720
721  const llvm::PointerType *PTy =
722    llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
723  return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
724}
725
726/// CreateRuntimeVariable - Create a new runtime global variable with the
727/// specified type and name.
728llvm::Constant *
729CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
730                                     const char *Name) {
731  // Convert Name to be a uniqued string from the IdentifierInfo table.
732  Name = getContext().Idents.get(Name).getName();
733  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
734}
735
736void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
737  assert(!D->getInit() && "Cannot emit definite definitions here!");
738
739  if (MayDeferGeneration(D)) {
740    // If we have not seen a reference to this variable yet, place it
741    // into the deferred declarations table to be emitted if needed
742    // later.
743    const char *MangledName = getMangledName(D);
744    if (GlobalDeclMap.count(MangledName) == 0) {
745      DeferredDecls[MangledName] = GlobalDecl(D);
746      return;
747    }
748  }
749
750  // The tentative definition is the only definition.
751  EmitGlobalVarDefinition(D);
752}
753
754void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
755  llvm::Constant *Init = 0;
756  QualType ASTTy = D->getType();
757
758  if (D->getInit() == 0) {
759    // This is a tentative definition; tentative definitions are
760    // implicitly initialized with { 0 }.
761    //
762    // Note that tentative definitions are only emitted at the end of
763    // a translation unit, so they should never have incomplete
764    // type. In addition, EmitTentativeDefinition makes sure that we
765    // never attempt to emit a tentative definition if a real one
766    // exists. A use may still exists, however, so we still may need
767    // to do a RAUW.
768    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
769    Init = llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(ASTTy));
770  } else {
771    Init = EmitConstantExpr(D->getInit(), D->getType());
772    if (!Init) {
773      ErrorUnsupported(D, "static initializer");
774      QualType T = D->getInit()->getType();
775      Init = llvm::UndefValue::get(getTypes().ConvertType(T));
776    }
777  }
778
779  const llvm::Type* InitType = Init->getType();
780  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
781
782  // Strip off a bitcast if we got one back.
783  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
784    assert(CE->getOpcode() == llvm::Instruction::BitCast);
785    Entry = CE->getOperand(0);
786  }
787
788  // Entry is now either a Function or GlobalVariable.
789  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
790
791  // We have a definition after a declaration with the wrong type.
792  // We must make a new GlobalVariable* and update everything that used OldGV
793  // (a declaration or tentative definition) with the new GlobalVariable*
794  // (which will be a definition).
795  //
796  // This happens if there is a prototype for a global (e.g.
797  // "extern int x[];") and then a definition of a different type (e.g.
798  // "int x[10];"). This also happens when an initializer has a different type
799  // from the type of the global (this happens with unions).
800  if (GV == 0 ||
801      GV->getType()->getElementType() != InitType ||
802      GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
803
804    // Remove the old entry from GlobalDeclMap so that we'll create a new one.
805    GlobalDeclMap.erase(getMangledName(D));
806
807    // Make a new global with the correct type, this is now guaranteed to work.
808    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
809    GV->takeName(cast<llvm::GlobalValue>(Entry));
810
811    // Replace all uses of the old global with the new global
812    llvm::Constant *NewPtrForOldDecl =
813        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
814    Entry->replaceAllUsesWith(NewPtrForOldDecl);
815
816    // Erase the old global, since it is no longer used.
817    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
818  }
819
820  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
821    SourceManager &SM = Context.getSourceManager();
822    AddAnnotation(EmitAnnotateAttr(GV, AA,
823                              SM.getInstantiationLineNumber(D->getLocation())));
824  }
825
826  GV->setInitializer(Init);
827  GV->setConstant(D->getType().isConstant(Context));
828  GV->setAlignment(getContext().getDeclAlignInBytes(D));
829
830  // Set the llvm linkage type as appropriate.
831  if (D->getStorageClass() == VarDecl::Static)
832    GV->setLinkage(llvm::Function::InternalLinkage);
833  else if (D->hasAttr<DLLImportAttr>())
834    GV->setLinkage(llvm::Function::DLLImportLinkage);
835  else if (D->hasAttr<DLLExportAttr>())
836    GV->setLinkage(llvm::Function::DLLExportLinkage);
837  else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
838    GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
839  else if (!CompileOpts.NoCommon &&
840           (!D->hasExternalStorage() && !D->getInit()))
841    GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
842  else
843    GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
844
845  SetCommonAttributes(D, GV);
846
847  // Emit global variable debug information.
848  if (CGDebugInfo *DI = getDebugInfo()) {
849    DI->setLocation(D->getLocation());
850    DI->EmitGlobalVariable(GV, D);
851  }
852}
853
854/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
855/// implement a function with no prototype, e.g. "int foo() {}".  If there are
856/// existing call uses of the old function in the module, this adjusts them to
857/// call the new function directly.
858///
859/// This is not just a cleanup: the always_inline pass requires direct calls to
860/// functions to be able to inline them.  If there is a bitcast in the way, it
861/// won't inline them.  Instcombine normally deletes these calls, but it isn't
862/// run at -O0.
863static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
864                                                      llvm::Function *NewFn) {
865  // If we're redefining a global as a function, don't transform it.
866  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
867  if (OldFn == 0) return;
868
869  const llvm::Type *NewRetTy = NewFn->getReturnType();
870  llvm::SmallVector<llvm::Value*, 4> ArgList;
871
872  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
873       UI != E; ) {
874    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
875    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
876    if (!CI) continue;
877
878    // If the return types don't match exactly, and if the call isn't dead, then
879    // we can't transform this call.
880    if (CI->getType() != NewRetTy && !CI->use_empty())
881      continue;
882
883    // If the function was passed too few arguments, don't transform.  If extra
884    // arguments were passed, we silently drop them.  If any of the types
885    // mismatch, we don't transform.
886    unsigned ArgNo = 0;
887    bool DontTransform = false;
888    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
889         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
890      if (CI->getNumOperands()-1 == ArgNo ||
891          CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
892        DontTransform = true;
893        break;
894      }
895    }
896    if (DontTransform)
897      continue;
898
899    // Okay, we can transform this.  Create the new call instruction and copy
900    // over the required information.
901    ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
902    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
903                                                     ArgList.end(), "", CI);
904    ArgList.clear();
905    if (NewCall->getType() != llvm::Type::VoidTy)
906      NewCall->takeName(CI);
907    NewCall->setCallingConv(CI->getCallingConv());
908    NewCall->setAttributes(CI->getAttributes());
909
910    // Finally, remove the old call, replacing any uses with the new one.
911    if (!CI->use_empty())
912      CI->replaceAllUsesWith(NewCall);
913    CI->eraseFromParent();
914  }
915}
916
917
918void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) {
919  const llvm::FunctionType *Ty;
920
921  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
922    bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
923
924    Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
925  } else {
926    Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
927
928    // As a special case, make sure that definitions of K&R function
929    // "type foo()" aren't declared as varargs (which forces the backend
930    // to do unnecessary work).
931    if (D->getType()->isFunctionNoProtoType()) {
932      assert(Ty->isVarArg() && "Didn't lower type as expected");
933      // Due to stret, the lowered function could have arguments.
934      // Just create the same type as was lowered by ConvertType
935      // but strip off the varargs bit.
936      std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
937      Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
938    }
939  }
940
941  // Get or create the prototype for teh function.
942  llvm::Constant *Entry = GetAddrOfFunction(D, Ty);
943
944  // Strip off a bitcast if we got one back.
945  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
946    assert(CE->getOpcode() == llvm::Instruction::BitCast);
947    Entry = CE->getOperand(0);
948  }
949
950
951  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
952    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
953
954    // If the types mismatch then we have to rewrite the definition.
955    assert(OldFn->isDeclaration() &&
956           "Shouldn't replace non-declaration");
957
958    // F is the Function* for the one with the wrong type, we must make a new
959    // Function* and update everything that used F (a declaration) with the new
960    // Function* (which will be a definition).
961    //
962    // This happens if there is a prototype for a function
963    // (e.g. "int f()") and then a definition of a different type
964    // (e.g. "int f(int x)").  Start by making a new function of the
965    // correct type, RAUW, then steal the name.
966    GlobalDeclMap.erase(getMangledName(D));
967    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty));
968    NewFn->takeName(OldFn);
969
970    // If this is an implementation of a function without a prototype, try to
971    // replace any existing uses of the function (which may be calls) with uses
972    // of the new function
973    if (D->getType()->isFunctionNoProtoType())
974      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
975
976    // Replace uses of F with the Function we will endow with a body.
977    if (!Entry->use_empty()) {
978      llvm::Constant *NewPtrForOldDecl =
979        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
980      Entry->replaceAllUsesWith(NewPtrForOldDecl);
981    }
982
983    // Ok, delete the old function now, which is dead.
984    OldFn->eraseFromParent();
985
986    Entry = NewFn;
987  }
988
989  llvm::Function *Fn = cast<llvm::Function>(Entry);
990
991  CodeGenFunction(*this).GenerateCode(D, Fn);
992
993  SetFunctionDefinitionAttributes(D, Fn);
994  SetLLVMFunctionAttributesForDefinition(D, Fn);
995
996  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
997    AddGlobalCtor(Fn, CA->getPriority());
998  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
999    AddGlobalDtor(Fn, DA->getPriority());
1000}
1001
1002void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1003  const AliasAttr *AA = D->getAttr<AliasAttr>();
1004  assert(AA && "Not an alias?");
1005
1006  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1007
1008  // Unique the name through the identifier table.
1009  const char *AliaseeName = AA->getAliasee().c_str();
1010  AliaseeName = getContext().Idents.get(AliaseeName).getName();
1011
1012  // Create a reference to the named value.  This ensures that it is emitted
1013  // if a deferred decl.
1014  llvm::Constant *Aliasee;
1015  if (isa<llvm::FunctionType>(DeclTy))
1016    Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0);
1017  else
1018    Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1019                                    llvm::PointerType::getUnqual(DeclTy), 0);
1020
1021  // Create the new alias itself, but don't set a name yet.
1022  llvm::GlobalValue *GA =
1023    new llvm::GlobalAlias(Aliasee->getType(),
1024                          llvm::Function::ExternalLinkage,
1025                          "", Aliasee, &getModule());
1026
1027  // See if there is already something with the alias' name in the module.
1028  const char *MangledName = getMangledName(D);
1029  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1030
1031  if (Entry && !Entry->isDeclaration()) {
1032    // If there is a definition in the module, then it wins over the alias.
1033    // This is dubious, but allow it to be safe.  Just ignore the alias.
1034    GA->eraseFromParent();
1035    return;
1036  }
1037
1038  if (Entry) {
1039    // If there is a declaration in the module, then we had an extern followed
1040    // by the alias, as in:
1041    //   extern int test6();
1042    //   ...
1043    //   int test6() __attribute__((alias("test7")));
1044    //
1045    // Remove it and replace uses of it with the alias.
1046
1047    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1048                                                          Entry->getType()));
1049    Entry->eraseFromParent();
1050  }
1051
1052  // Now we know that there is no conflict, set the name.
1053  Entry = GA;
1054  GA->setName(MangledName);
1055
1056  // Set attributes which are particular to an alias; this is a
1057  // specialization of the attributes which may be set on a global
1058  // variable/function.
1059  if (D->hasAttr<DLLExportAttr>()) {
1060    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1061      // The dllexport attribute is ignored for undefined symbols.
1062      if (FD->getBody(getContext()))
1063        GA->setLinkage(llvm::Function::DLLExportLinkage);
1064    } else {
1065      GA->setLinkage(llvm::Function::DLLExportLinkage);
1066    }
1067  } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
1068    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1069  }
1070
1071  SetCommonAttributes(D, GA);
1072}
1073
1074/// getBuiltinLibFunction - Given a builtin id for a function like
1075/// "__builtin_fabsf", return a Function* for "fabsf".
1076llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1077  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1078          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1079         "isn't a lib fn");
1080
1081  // Get the name, skip over the __builtin_ prefix (if necessary).
1082  const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1083  if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1084    Name += 10;
1085
1086  // Get the type for the builtin.
1087  Builtin::Context::GetBuiltinTypeError Error;
1088  QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error);
1089  assert(Error == Builtin::Context::GE_None && "Can't get builtin type");
1090
1091  const llvm::FunctionType *Ty =
1092    cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1093
1094  // Unique the name through the identifier table.
1095  Name = getContext().Idents.get(Name).getName();
1096  // FIXME: param attributes for sext/zext etc.
1097  return GetOrCreateLLVMFunction(Name, Ty, 0);
1098}
1099
1100llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1101                                            unsigned NumTys) {
1102  return llvm::Intrinsic::getDeclaration(&getModule(),
1103                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1104}
1105
1106llvm::Function *CodeGenModule::getMemCpyFn() {
1107  if (MemCpyFn) return MemCpyFn;
1108  const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1109  return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1110}
1111
1112llvm::Function *CodeGenModule::getMemMoveFn() {
1113  if (MemMoveFn) return MemMoveFn;
1114  const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1115  return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1116}
1117
1118llvm::Function *CodeGenModule::getMemSetFn() {
1119  if (MemSetFn) return MemSetFn;
1120  const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1121  return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1122}
1123
1124static void appendFieldAndPadding(CodeGenModule &CGM,
1125                                  std::vector<llvm::Constant*>& Fields,
1126                                  FieldDecl *FieldD, FieldDecl *NextFieldD,
1127                                  llvm::Constant* Field,
1128                                  RecordDecl* RD, const llvm::StructType *STy) {
1129  // Append the field.
1130  Fields.push_back(Field);
1131
1132  int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1133
1134  int NextStructFieldNo;
1135  if (!NextFieldD) {
1136    NextStructFieldNo = STy->getNumElements();
1137  } else {
1138    NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1139  }
1140
1141  // Append padding
1142  for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1143    llvm::Constant *C =
1144      llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1145
1146    Fields.push_back(C);
1147  }
1148}
1149
1150llvm::Constant *CodeGenModule::
1151GetAddrOfConstantCFString(const StringLiteral *Literal) {
1152  std::string str;
1153  unsigned StringLength = 0;
1154
1155  bool isUTF16 = false;
1156  if (Literal->containsNonAsciiOrNull()) {
1157    // Convert from UTF-8 to UTF-16.
1158    llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1159    const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1160    UTF16 *ToPtr = &ToBuf[0];
1161
1162    ConversionResult Result;
1163    Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1164                                &ToPtr, ToPtr+Literal->getByteLength(),
1165                                strictConversion);
1166    if (Result == conversionOK) {
1167      // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1168      // without doing more surgery to this routine. Since we aren't explicitly
1169      // checking for endianness here, it's also a bug (when generating code for
1170      // a target that doesn't match the host endianness). Modeling this as an
1171      // i16 array is likely the cleanest solution.
1172      StringLength = ToPtr-&ToBuf[0];
1173      str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1174      isUTF16 = true;
1175    } else if (Result == sourceIllegal) {
1176      // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1177      str.assign(Literal->getStrData(), Literal->getByteLength());
1178      StringLength = str.length();
1179    } else
1180      assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1181
1182  } else {
1183    str.assign(Literal->getStrData(), Literal->getByteLength());
1184    StringLength = str.length();
1185  }
1186  llvm::StringMapEntry<llvm::Constant *> &Entry =
1187    CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1188
1189  if (llvm::Constant *C = Entry.getValue())
1190    return C;
1191
1192  llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1193  llvm::Constant *Zeros[] = { Zero, Zero };
1194
1195  if (!CFConstantStringClassRef) {
1196    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1197    Ty = llvm::ArrayType::get(Ty, 0);
1198
1199    // FIXME: This is fairly broken if
1200    // __CFConstantStringClassReference is already defined, in that it
1201    // will get renamed and the user will most likely see an opaque
1202    // error message. This is a general issue with relying on
1203    // particular names.
1204    llvm::GlobalVariable *GV =
1205      new llvm::GlobalVariable(Ty, false,
1206                               llvm::GlobalVariable::ExternalLinkage, 0,
1207                               "__CFConstantStringClassReference",
1208                               &getModule());
1209
1210    // Decay array -> ptr
1211    CFConstantStringClassRef =
1212      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1213  }
1214
1215  QualType CFTy = getContext().getCFConstantStringType();
1216  RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1217
1218  const llvm::StructType *STy =
1219    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1220
1221  std::vector<llvm::Constant*> Fields;
1222  RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
1223
1224  // Class pointer.
1225  FieldDecl *CurField = *Field++;
1226  FieldDecl *NextField = *Field++;
1227  appendFieldAndPadding(*this, Fields, CurField, NextField,
1228                        CFConstantStringClassRef, CFRD, STy);
1229
1230  // Flags.
1231  CurField = NextField;
1232  NextField = *Field++;
1233  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1234  appendFieldAndPadding(*this, Fields, CurField, NextField,
1235                        isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1236                                : llvm::ConstantInt::get(Ty, 0x07C8),
1237                        CFRD, STy);
1238
1239  // String pointer.
1240  CurField = NextField;
1241  NextField = *Field++;
1242  llvm::Constant *C = llvm::ConstantArray::get(str);
1243
1244  const char *Sect, *Prefix;
1245  bool isConstant;
1246  if (isUTF16) {
1247    Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1248    Sect = getContext().Target.getUnicodeStringSection();
1249    // FIXME: Why does GCC not set constant here?
1250    isConstant = false;
1251  } else {
1252    Prefix = getContext().Target.getStringSymbolPrefix(true);
1253    Sect = getContext().Target.getCFStringDataSection();
1254    // FIXME: -fwritable-strings should probably affect this, but we
1255    // are following gcc here.
1256    isConstant = true;
1257  }
1258  llvm::GlobalVariable *GV =
1259    new llvm::GlobalVariable(C->getType(), isConstant,
1260                             llvm::GlobalValue::InternalLinkage,
1261                             C, Prefix, &getModule());
1262  if (Sect)
1263    GV->setSection(Sect);
1264  if (isUTF16) {
1265    unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1266    GV->setAlignment(Align);
1267  }
1268  appendFieldAndPadding(*this, Fields, CurField, NextField,
1269                        llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1270                        CFRD, STy);
1271
1272  // String length.
1273  CurField = NextField;
1274  NextField = 0;
1275  Ty = getTypes().ConvertType(getContext().LongTy);
1276  appendFieldAndPadding(*this, Fields, CurField, NextField,
1277                        llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1278
1279  // The struct.
1280  C = llvm::ConstantStruct::get(STy, Fields);
1281  GV = new llvm::GlobalVariable(C->getType(), true,
1282                                llvm::GlobalVariable::InternalLinkage, C,
1283                                getContext().Target.getCFStringSymbolPrefix(),
1284                                &getModule());
1285  if (const char *Sect = getContext().Target.getCFStringSection())
1286    GV->setSection(Sect);
1287  Entry.setValue(GV);
1288
1289  return GV;
1290}
1291
1292/// GetStringForStringLiteral - Return the appropriate bytes for a
1293/// string literal, properly padded to match the literal type.
1294std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1295  const char *StrData = E->getStrData();
1296  unsigned Len = E->getByteLength();
1297
1298  const ConstantArrayType *CAT =
1299    getContext().getAsConstantArrayType(E->getType());
1300  assert(CAT && "String isn't pointer or array!");
1301
1302  // Resize the string to the right size.
1303  std::string Str(StrData, StrData+Len);
1304  uint64_t RealLen = CAT->getSize().getZExtValue();
1305
1306  if (E->isWide())
1307    RealLen *= getContext().Target.getWCharWidth()/8;
1308
1309  Str.resize(RealLen, '\0');
1310
1311  return Str;
1312}
1313
1314/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1315/// constant array for the given string literal.
1316llvm::Constant *
1317CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1318  // FIXME: This can be more efficient.
1319  return GetAddrOfConstantString(GetStringForStringLiteral(S));
1320}
1321
1322/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1323/// array for the given ObjCEncodeExpr node.
1324llvm::Constant *
1325CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1326  std::string Str;
1327  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1328
1329  return GetAddrOfConstantCString(Str);
1330}
1331
1332
1333/// GenerateWritableString -- Creates storage for a string literal.
1334static llvm::Constant *GenerateStringLiteral(const std::string &str,
1335                                             bool constant,
1336                                             CodeGenModule &CGM,
1337                                             const char *GlobalName) {
1338  // Create Constant for this string literal. Don't add a '\0'.
1339  llvm::Constant *C = llvm::ConstantArray::get(str, false);
1340
1341  // Create a global variable for this string
1342  return new llvm::GlobalVariable(C->getType(), constant,
1343                                  llvm::GlobalValue::InternalLinkage,
1344                                  C, GlobalName, &CGM.getModule());
1345}
1346
1347/// GetAddrOfConstantString - Returns a pointer to a character array
1348/// containing the literal. This contents are exactly that of the
1349/// given string, i.e. it will not be null terminated automatically;
1350/// see GetAddrOfConstantCString. Note that whether the result is
1351/// actually a pointer to an LLVM constant depends on
1352/// Feature.WriteableStrings.
1353///
1354/// The result has pointer to array type.
1355llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1356                                                       const char *GlobalName) {
1357  bool IsConstant = !Features.WritableStrings;
1358
1359  // Get the default prefix if a name wasn't specified.
1360  if (!GlobalName)
1361    GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1362
1363  // Don't share any string literals if strings aren't constant.
1364  if (!IsConstant)
1365    return GenerateStringLiteral(str, false, *this, GlobalName);
1366
1367  llvm::StringMapEntry<llvm::Constant *> &Entry =
1368  ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1369
1370  if (Entry.getValue())
1371    return Entry.getValue();
1372
1373  // Create a global variable for this.
1374  llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1375  Entry.setValue(C);
1376  return C;
1377}
1378
1379/// GetAddrOfConstantCString - Returns a pointer to a character
1380/// array containing the literal and a terminating '\-'
1381/// character. The result has pointer to array type.
1382llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1383                                                        const char *GlobalName){
1384  return GetAddrOfConstantString(str + '\0', GlobalName);
1385}
1386
1387/// EmitObjCPropertyImplementations - Emit information for synthesized
1388/// properties for an implementation.
1389void CodeGenModule::EmitObjCPropertyImplementations(const
1390                                                    ObjCImplementationDecl *D) {
1391  for (ObjCImplementationDecl::propimpl_iterator
1392         i = D->propimpl_begin(getContext()),
1393         e = D->propimpl_end(getContext()); i != e; ++i) {
1394    ObjCPropertyImplDecl *PID = *i;
1395
1396    // Dynamic is just for type-checking.
1397    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1398      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1399
1400      // Determine which methods need to be implemented, some may have
1401      // been overridden. Note that ::isSynthesized is not the method
1402      // we want, that just indicates if the decl came from a
1403      // property. What we want to know is if the method is defined in
1404      // this implementation.
1405      if (!D->getInstanceMethod(getContext(), PD->getGetterName()))
1406        CodeGenFunction(*this).GenerateObjCGetter(
1407                                 const_cast<ObjCImplementationDecl *>(D), PID);
1408      if (!PD->isReadOnly() &&
1409          !D->getInstanceMethod(getContext(), PD->getSetterName()))
1410        CodeGenFunction(*this).GenerateObjCSetter(
1411                                 const_cast<ObjCImplementationDecl *>(D), PID);
1412    }
1413  }
1414}
1415
1416/// EmitNamespace - Emit all declarations in a namespace.
1417void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1418  for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
1419         E = ND->decls_end(getContext());
1420       I != E; ++I)
1421    EmitTopLevelDecl(*I);
1422}
1423
1424// EmitLinkageSpec - Emit all declarations in a linkage spec.
1425void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1426  if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1427    ErrorUnsupported(LSD, "linkage spec");
1428    return;
1429  }
1430
1431  for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
1432         E = LSD->decls_end(getContext());
1433       I != E; ++I)
1434    EmitTopLevelDecl(*I);
1435}
1436
1437/// EmitTopLevelDecl - Emit code for a single top level declaration.
1438void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1439  // If an error has occurred, stop code generation, but continue
1440  // parsing and semantic analysis (to ensure all warnings and errors
1441  // are emitted).
1442  if (Diags.hasErrorOccurred())
1443    return;
1444
1445  switch (D->getKind()) {
1446  case Decl::CXXMethod:
1447  case Decl::Function:
1448  case Decl::Var:
1449    EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
1450    break;
1451
1452  // C++ Decls
1453  case Decl::Namespace:
1454    EmitNamespace(cast<NamespaceDecl>(D));
1455    break;
1456  case Decl::CXXConstructor:
1457    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1458    break;
1459  case Decl::CXXDestructor:
1460    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1461    break;
1462
1463  // Objective-C Decls
1464
1465  // Forward declarations, no (immediate) code generation.
1466  case Decl::ObjCClass:
1467  case Decl::ObjCForwardProtocol:
1468  case Decl::ObjCCategory:
1469  case Decl::ObjCInterface:
1470    break;
1471
1472  case Decl::ObjCProtocol:
1473    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1474    break;
1475
1476  case Decl::ObjCCategoryImpl:
1477    // Categories have properties but don't support synthesize so we
1478    // can ignore them here.
1479    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1480    break;
1481
1482  case Decl::ObjCImplementation: {
1483    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1484    EmitObjCPropertyImplementations(OMD);
1485    Runtime->GenerateClass(OMD);
1486    break;
1487  }
1488  case Decl::ObjCMethod: {
1489    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1490    // If this is not a prototype, emit the body.
1491    if (OMD->getBody(getContext()))
1492      CodeGenFunction(*this).GenerateObjCMethod(OMD);
1493    break;
1494  }
1495  case Decl::ObjCCompatibleAlias:
1496    // compatibility-alias is a directive and has no code gen.
1497    break;
1498
1499  case Decl::LinkageSpec:
1500    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1501    break;
1502
1503  case Decl::FileScopeAsm: {
1504    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1505    std::string AsmString(AD->getAsmString()->getStrData(),
1506                          AD->getAsmString()->getByteLength());
1507
1508    const std::string &S = getModule().getModuleInlineAsm();
1509    if (S.empty())
1510      getModule().setModuleInlineAsm(AsmString);
1511    else
1512      getModule().setModuleInlineAsm(S + '\n' + AsmString);
1513    break;
1514  }
1515
1516  default:
1517    // Make sure we handled everything we should, every other kind is
1518    // a non-top-level decl.  FIXME: Would be nice to have an
1519    // isTopLevelDeclKind function. Need to recode Decl::Kind to do
1520    // that easily.
1521    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1522  }
1523}
1524