CodeGenModule.cpp revision 00d40eae546219786a74564fc0d95eab1978b82b
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CodeGenTBAA.h"
18#include "CGCall.h"
19#include "CGCXXABI.h"
20#include "CGObjCRuntime.h"
21#include "TargetInfo.h"
22#include "clang/Frontend/CodeGenOptions.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CharUnits.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclCXX.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/Mangle.h"
29#include "clang/AST/RecordLayout.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/Diagnostic.h"
32#include "clang/Basic/SourceManager.h"
33#include "clang/Basic/TargetInfo.h"
34#include "clang/Basic/ConvertUTF.h"
35#include "llvm/CallingConv.h"
36#include "llvm/Module.h"
37#include "llvm/Intrinsics.h"
38#include "llvm/LLVMContext.h"
39#include "llvm/ADT/Triple.h"
40#include "llvm/Target/Mangler.h"
41#include "llvm/Target/TargetData.h"
42#include "llvm/Support/CallSite.h"
43#include "llvm/Support/ErrorHandling.h"
44using namespace clang;
45using namespace CodeGen;
46
47static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
48  switch (CGM.getContext().Target.getCXXABI()) {
49  case CXXABI_ARM: return *CreateARMCXXABI(CGM);
50  case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
51  case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
52  }
53
54  llvm_unreachable("invalid C++ ABI kind");
55  return *CreateItaniumCXXABI(CGM);
56}
57
58
59CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
60                             llvm::Module &M, const llvm::TargetData &TD,
61                             Diagnostic &diags)
62  : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63    TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64    ABI(createCXXABI(*this)),
65    Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO),
66    TBAA(0),
67    VTables(*this), Runtime(0), DebugInfo(0), ARCData(0), RRData(0),
68    CFConstantStringClassRef(0), ConstantStringClassRef(0),
69    VMContext(M.getContext()),
70    NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72    BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73    BlockObjectAssign(0), BlockObjectDispose(0),
74    BlockDescriptorType(0), GenericBlockLiteralType(0) {
75  if (Features.ObjC1)
76     createObjCRuntime();
77
78  // Enable TBAA unless it's suppressed.
79  if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
80    TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
81                           ABI.getMangleContext());
82
83  // If debug info or coverage generation is enabled, create the CGDebugInfo
84  // object.
85  if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
86      CodeGenOpts.EmitGcovNotes)
87    DebugInfo = new CGDebugInfo(*this);
88
89  Block.GlobalUniqueCount = 0;
90
91  if (C.getLangOptions().ObjCAutoRefCount)
92    ARCData = new ARCEntrypoints();
93  RRData = new RREntrypoints();
94
95  // Initialize the type cache.
96  llvm::LLVMContext &LLVMContext = M.getContext();
97  VoidTy = llvm::Type::getVoidTy(LLVMContext);
98  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
99  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
100  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
101  PointerWidthInBits = C.Target.getPointerWidth(0);
102  PointerAlignInBytes =
103    C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity();
104  IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth());
105  IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
106  Int8PtrTy = Int8Ty->getPointerTo(0);
107  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
108}
109
110CodeGenModule::~CodeGenModule() {
111  delete Runtime;
112  delete &ABI;
113  delete TBAA;
114  delete DebugInfo;
115  delete ARCData;
116  delete RRData;
117}
118
119void CodeGenModule::createObjCRuntime() {
120  if (!Features.NeXTRuntime)
121    Runtime = CreateGNUObjCRuntime(*this);
122  else
123    Runtime = CreateMacObjCRuntime(*this);
124}
125
126void CodeGenModule::Release() {
127  EmitDeferred();
128  EmitCXXGlobalInitFunc();
129  EmitCXXGlobalDtorFunc();
130  if (Runtime)
131    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
132      AddGlobalCtor(ObjCInitFunction);
133  EmitCtorList(GlobalCtors, "llvm.global_ctors");
134  EmitCtorList(GlobalDtors, "llvm.global_dtors");
135  EmitAnnotations();
136  EmitLLVMUsed();
137
138  SimplifyPersonality();
139
140  if (getCodeGenOpts().EmitDeclMetadata)
141    EmitDeclMetadata();
142
143  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
144    EmitCoverageFile();
145}
146
147void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
148  // Make sure that this type is translated.
149  Types.UpdateCompletedType(TD);
150  if (DebugInfo)
151    DebugInfo->UpdateCompletedType(TD);
152}
153
154llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
155  if (!TBAA)
156    return 0;
157  return TBAA->getTBAAInfo(QTy);
158}
159
160void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
161                                        llvm::MDNode *TBAAInfo) {
162  Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
163}
164
165bool CodeGenModule::isTargetDarwin() const {
166  return getContext().Target.getTriple().isOSDarwin();
167}
168
169void CodeGenModule::Error(SourceLocation loc, llvm::StringRef error) {
170  unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error);
171  getDiags().Report(Context.getFullLoc(loc), diagID);
172}
173
174/// ErrorUnsupported - Print out an error that codegen doesn't support the
175/// specified stmt yet.
176void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
177                                     bool OmitOnError) {
178  if (OmitOnError && getDiags().hasErrorOccurred())
179    return;
180  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
181                                               "cannot compile this %0 yet");
182  std::string Msg = Type;
183  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
184    << Msg << S->getSourceRange();
185}
186
187/// ErrorUnsupported - Print out an error that codegen doesn't support the
188/// specified decl yet.
189void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
190                                     bool OmitOnError) {
191  if (OmitOnError && getDiags().hasErrorOccurred())
192    return;
193  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
194                                               "cannot compile this %0 yet");
195  std::string Msg = Type;
196  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
197}
198
199llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
200  return llvm::ConstantInt::get(SizeTy, size.getQuantity());
201}
202
203void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
204                                        const NamedDecl *D) const {
205  // Internal definitions always have default visibility.
206  if (GV->hasLocalLinkage()) {
207    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
208    return;
209  }
210
211  // Set visibility for definitions.
212  NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
213  if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
214    GV->setVisibility(GetLLVMVisibility(LV.visibility()));
215}
216
217/// Set the symbol visibility of type information (vtable and RTTI)
218/// associated with the given type.
219void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
220                                      const CXXRecordDecl *RD,
221                                      TypeVisibilityKind TVK) const {
222  setGlobalVisibility(GV, RD);
223
224  if (!CodeGenOpts.HiddenWeakVTables)
225    return;
226
227  // We never want to drop the visibility for RTTI names.
228  if (TVK == TVK_ForRTTIName)
229    return;
230
231  // We want to drop the visibility to hidden for weak type symbols.
232  // This isn't possible if there might be unresolved references
233  // elsewhere that rely on this symbol being visible.
234
235  // This should be kept roughly in sync with setThunkVisibility
236  // in CGVTables.cpp.
237
238  // Preconditions.
239  if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
240      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
241    return;
242
243  // Don't override an explicit visibility attribute.
244  if (RD->getExplicitVisibility())
245    return;
246
247  switch (RD->getTemplateSpecializationKind()) {
248  // We have to disable the optimization if this is an EI definition
249  // because there might be EI declarations in other shared objects.
250  case TSK_ExplicitInstantiationDefinition:
251  case TSK_ExplicitInstantiationDeclaration:
252    return;
253
254  // Every use of a non-template class's type information has to emit it.
255  case TSK_Undeclared:
256    break;
257
258  // In theory, implicit instantiations can ignore the possibility of
259  // an explicit instantiation declaration because there necessarily
260  // must be an EI definition somewhere with default visibility.  In
261  // practice, it's possible to have an explicit instantiation for
262  // an arbitrary template class, and linkers aren't necessarily able
263  // to deal with mixed-visibility symbols.
264  case TSK_ExplicitSpecialization:
265  case TSK_ImplicitInstantiation:
266    if (!CodeGenOpts.HiddenWeakTemplateVTables)
267      return;
268    break;
269  }
270
271  // If there's a key function, there may be translation units
272  // that don't have the key function's definition.  But ignore
273  // this if we're emitting RTTI under -fno-rtti.
274  if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
275    if (Context.getKeyFunction(RD))
276      return;
277  }
278
279  // Otherwise, drop the visibility to hidden.
280  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
281  GV->setUnnamedAddr(true);
282}
283
284llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
285  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
286
287  llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
288  if (!Str.empty())
289    return Str;
290
291  if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
292    IdentifierInfo *II = ND->getIdentifier();
293    assert(II && "Attempt to mangle unnamed decl.");
294
295    Str = II->getName();
296    return Str;
297  }
298
299  llvm::SmallString<256> Buffer;
300  llvm::raw_svector_ostream Out(Buffer);
301  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
302    getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
303  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
304    getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
305  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
306    getCXXABI().getMangleContext().mangleBlock(BD, Out);
307  else
308    getCXXABI().getMangleContext().mangleName(ND, Out);
309
310  // Allocate space for the mangled name.
311  Out.flush();
312  size_t Length = Buffer.size();
313  char *Name = MangledNamesAllocator.Allocate<char>(Length);
314  std::copy(Buffer.begin(), Buffer.end(), Name);
315
316  Str = llvm::StringRef(Name, Length);
317
318  return Str;
319}
320
321void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
322                                        const BlockDecl *BD) {
323  MangleContext &MangleCtx = getCXXABI().getMangleContext();
324  const Decl *D = GD.getDecl();
325  llvm::raw_svector_ostream Out(Buffer.getBuffer());
326  if (D == 0)
327    MangleCtx.mangleGlobalBlock(BD, Out);
328  else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
329    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
330  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
331    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
332  else
333    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
334}
335
336llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
337  return getModule().getNamedValue(Name);
338}
339
340/// AddGlobalCtor - Add a function to the list that will be called before
341/// main() runs.
342void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
343  // FIXME: Type coercion of void()* types.
344  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
345}
346
347/// AddGlobalDtor - Add a function to the list that will be called
348/// when the module is unloaded.
349void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
350  // FIXME: Type coercion of void()* types.
351  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
352}
353
354void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
355  // Ctor function type is void()*.
356  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
357  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
358
359  // Get the type of a ctor entry, { i32, void ()* }.
360  llvm::StructType *CtorStructTy =
361    llvm::StructType::get(llvm::Type::getInt32Ty(VMContext),
362                          llvm::PointerType::getUnqual(CtorFTy), NULL);
363
364  // Construct the constructor and destructor arrays.
365  std::vector<llvm::Constant*> Ctors;
366  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
367    std::vector<llvm::Constant*> S;
368    S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
369                I->second, false));
370    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
371    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
372  }
373
374  if (!Ctors.empty()) {
375    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
376    new llvm::GlobalVariable(TheModule, AT, false,
377                             llvm::GlobalValue::AppendingLinkage,
378                             llvm::ConstantArray::get(AT, Ctors),
379                             GlobalName);
380  }
381}
382
383void CodeGenModule::EmitAnnotations() {
384  if (Annotations.empty())
385    return;
386
387  // Create a new global variable for the ConstantStruct in the Module.
388  llvm::Constant *Array =
389  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
390                                                Annotations.size()),
391                           Annotations);
392  llvm::GlobalValue *gv =
393  new llvm::GlobalVariable(TheModule, Array->getType(), false,
394                           llvm::GlobalValue::AppendingLinkage, Array,
395                           "llvm.global.annotations");
396  gv->setSection("llvm.metadata");
397}
398
399llvm::GlobalValue::LinkageTypes
400CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
401  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
402
403  if (Linkage == GVA_Internal)
404    return llvm::Function::InternalLinkage;
405
406  if (D->hasAttr<DLLExportAttr>())
407    return llvm::Function::DLLExportLinkage;
408
409  if (D->hasAttr<WeakAttr>())
410    return llvm::Function::WeakAnyLinkage;
411
412  // In C99 mode, 'inline' functions are guaranteed to have a strong
413  // definition somewhere else, so we can use available_externally linkage.
414  if (Linkage == GVA_C99Inline)
415    return llvm::Function::AvailableExternallyLinkage;
416
417  // In C++, the compiler has to emit a definition in every translation unit
418  // that references the function.  We should use linkonce_odr because
419  // a) if all references in this translation unit are optimized away, we
420  // don't need to codegen it.  b) if the function persists, it needs to be
421  // merged with other definitions. c) C++ has the ODR, so we know the
422  // definition is dependable.
423  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
424    return !Context.getLangOptions().AppleKext
425             ? llvm::Function::LinkOnceODRLinkage
426             : llvm::Function::InternalLinkage;
427
428  // An explicit instantiation of a template has weak linkage, since
429  // explicit instantiations can occur in multiple translation units
430  // and must all be equivalent. However, we are not allowed to
431  // throw away these explicit instantiations.
432  if (Linkage == GVA_ExplicitTemplateInstantiation)
433    return !Context.getLangOptions().AppleKext
434             ? llvm::Function::WeakODRLinkage
435             : llvm::Function::InternalLinkage;
436
437  // Otherwise, we have strong external linkage.
438  assert(Linkage == GVA_StrongExternal);
439  return llvm::Function::ExternalLinkage;
440}
441
442
443/// SetFunctionDefinitionAttributes - Set attributes for a global.
444///
445/// FIXME: This is currently only done for aliases and functions, but not for
446/// variables (these details are set in EmitGlobalVarDefinition for variables).
447void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
448                                                    llvm::GlobalValue *GV) {
449  SetCommonAttributes(D, GV);
450}
451
452void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
453                                              const CGFunctionInfo &Info,
454                                              llvm::Function *F) {
455  unsigned CallingConv;
456  AttributeListType AttributeList;
457  ConstructAttributeList(Info, D, AttributeList, CallingConv);
458  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
459                                          AttributeList.size()));
460  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
461}
462
463void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
464                                                           llvm::Function *F) {
465  if (CodeGenOpts.UnwindTables)
466    F->setHasUWTable();
467
468  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
469    F->addFnAttr(llvm::Attribute::NoUnwind);
470
471  if (D->hasAttr<AlwaysInlineAttr>())
472    F->addFnAttr(llvm::Attribute::AlwaysInline);
473
474  if (D->hasAttr<NakedAttr>())
475    F->addFnAttr(llvm::Attribute::Naked);
476
477  if (D->hasAttr<NoInlineAttr>())
478    F->addFnAttr(llvm::Attribute::NoInline);
479
480  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
481    F->setUnnamedAddr(true);
482
483  if (Features.getStackProtectorMode() == LangOptions::SSPOn)
484    F->addFnAttr(llvm::Attribute::StackProtect);
485  else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
486    F->addFnAttr(llvm::Attribute::StackProtectReq);
487
488  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
489  if (alignment)
490    F->setAlignment(alignment);
491
492  // C++ ABI requires 2-byte alignment for member functions.
493  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
494    F->setAlignment(2);
495}
496
497void CodeGenModule::SetCommonAttributes(const Decl *D,
498                                        llvm::GlobalValue *GV) {
499  if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
500    setGlobalVisibility(GV, ND);
501  else
502    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
503
504  if (D->hasAttr<UsedAttr>())
505    AddUsedGlobal(GV);
506
507  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
508    GV->setSection(SA->getName());
509
510  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
511}
512
513void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
514                                                  llvm::Function *F,
515                                                  const CGFunctionInfo &FI) {
516  SetLLVMFunctionAttributes(D, FI, F);
517  SetLLVMFunctionAttributesForDefinition(D, F);
518
519  F->setLinkage(llvm::Function::InternalLinkage);
520
521  SetCommonAttributes(D, F);
522}
523
524void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
525                                          llvm::Function *F,
526                                          bool IsIncompleteFunction) {
527  if (unsigned IID = F->getIntrinsicID()) {
528    // If this is an intrinsic function, set the function's attributes
529    // to the intrinsic's attributes.
530    F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
531    return;
532  }
533
534  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
535
536  if (!IsIncompleteFunction)
537    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
538
539  // Only a few attributes are set on declarations; these may later be
540  // overridden by a definition.
541
542  if (FD->hasAttr<DLLImportAttr>()) {
543    F->setLinkage(llvm::Function::DLLImportLinkage);
544  } else if (FD->hasAttr<WeakAttr>() ||
545             FD->isWeakImported()) {
546    // "extern_weak" is overloaded in LLVM; we probably should have
547    // separate linkage types for this.
548    F->setLinkage(llvm::Function::ExternalWeakLinkage);
549  } else {
550    F->setLinkage(llvm::Function::ExternalLinkage);
551
552    NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
553    if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
554      F->setVisibility(GetLLVMVisibility(LV.visibility()));
555    }
556  }
557
558  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
559    F->setSection(SA->getName());
560}
561
562void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
563  assert(!GV->isDeclaration() &&
564         "Only globals with definition can force usage.");
565  LLVMUsed.push_back(GV);
566}
567
568void CodeGenModule::EmitLLVMUsed() {
569  // Don't create llvm.used if there is no need.
570  if (LLVMUsed.empty())
571    return;
572
573  const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
574
575  // Convert LLVMUsed to what ConstantArray needs.
576  std::vector<llvm::Constant*> UsedArray;
577  UsedArray.resize(LLVMUsed.size());
578  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
579    UsedArray[i] =
580     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
581                                      i8PTy);
582  }
583
584  if (UsedArray.empty())
585    return;
586  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
587
588  llvm::GlobalVariable *GV =
589    new llvm::GlobalVariable(getModule(), ATy, false,
590                             llvm::GlobalValue::AppendingLinkage,
591                             llvm::ConstantArray::get(ATy, UsedArray),
592                             "llvm.used");
593
594  GV->setSection("llvm.metadata");
595}
596
597void CodeGenModule::EmitDeferred() {
598  // Emit code for any potentially referenced deferred decls.  Since a
599  // previously unused static decl may become used during the generation of code
600  // for a static function, iterate until no  changes are made.
601
602  while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
603    if (!DeferredVTables.empty()) {
604      const CXXRecordDecl *RD = DeferredVTables.back();
605      DeferredVTables.pop_back();
606      getVTables().GenerateClassData(getVTableLinkage(RD), RD);
607      continue;
608    }
609
610    GlobalDecl D = DeferredDeclsToEmit.back();
611    DeferredDeclsToEmit.pop_back();
612
613    // Check to see if we've already emitted this.  This is necessary
614    // for a couple of reasons: first, decls can end up in the
615    // deferred-decls queue multiple times, and second, decls can end
616    // up with definitions in unusual ways (e.g. by an extern inline
617    // function acquiring a strong function redefinition).  Just
618    // ignore these cases.
619    //
620    // TODO: That said, looking this up multiple times is very wasteful.
621    llvm::StringRef Name = getMangledName(D);
622    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
623    assert(CGRef && "Deferred decl wasn't referenced?");
624
625    if (!CGRef->isDeclaration())
626      continue;
627
628    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
629    // purposes an alias counts as a definition.
630    if (isa<llvm::GlobalAlias>(CGRef))
631      continue;
632
633    // Otherwise, emit the definition and move on to the next one.
634    EmitGlobalDefinition(D);
635  }
636}
637
638/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
639/// annotation information for a given GlobalValue.  The annotation struct is
640/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
641/// GlobalValue being annotated.  The second field is the constant string
642/// created from the AnnotateAttr's annotation.  The third field is a constant
643/// string containing the name of the translation unit.  The fourth field is
644/// the line number in the file of the annotated value declaration.
645///
646/// FIXME: this does not unique the annotation string constants, as llvm-gcc
647///        appears to.
648///
649llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
650                                                const AnnotateAttr *AA,
651                                                unsigned LineNo) {
652  llvm::Module *M = &getModule();
653
654  // get [N x i8] constants for the annotation string, and the filename string
655  // which are the 2nd and 3rd elements of the global annotation structure.
656  const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
657  llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
658                                                  AA->getAnnotation(), true);
659  llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
660                                                  M->getModuleIdentifier(),
661                                                  true);
662
663  // Get the two global values corresponding to the ConstantArrays we just
664  // created to hold the bytes of the strings.
665  llvm::GlobalValue *annoGV =
666    new llvm::GlobalVariable(*M, anno->getType(), false,
667                             llvm::GlobalValue::PrivateLinkage, anno,
668                             GV->getName());
669  // translation unit name string, emitted into the llvm.metadata section.
670  llvm::GlobalValue *unitGV =
671    new llvm::GlobalVariable(*M, unit->getType(), false,
672                             llvm::GlobalValue::PrivateLinkage, unit,
673                             ".str");
674  unitGV->setUnnamedAddr(true);
675
676  // Create the ConstantStruct for the global annotation.
677  llvm::Constant *Fields[4] = {
678    llvm::ConstantExpr::getBitCast(GV, SBP),
679    llvm::ConstantExpr::getBitCast(annoGV, SBP),
680    llvm::ConstantExpr::getBitCast(unitGV, SBP),
681    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
682  };
683  return llvm::ConstantStruct::getAnon(Fields);
684}
685
686bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
687  // Never defer when EmitAllDecls is specified.
688  if (Features.EmitAllDecls)
689    return false;
690
691  return !getContext().DeclMustBeEmitted(Global);
692}
693
694llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
695  const AliasAttr *AA = VD->getAttr<AliasAttr>();
696  assert(AA && "No alias?");
697
698  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
699
700  // See if there is already something with the target's name in the module.
701  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
702
703  llvm::Constant *Aliasee;
704  if (isa<llvm::FunctionType>(DeclTy))
705    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
706                                      /*ForVTable=*/false);
707  else
708    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
709                                    llvm::PointerType::getUnqual(DeclTy), 0);
710  if (!Entry) {
711    llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
712    F->setLinkage(llvm::Function::ExternalWeakLinkage);
713    WeakRefReferences.insert(F);
714  }
715
716  return Aliasee;
717}
718
719void CodeGenModule::EmitGlobal(GlobalDecl GD) {
720  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
721
722  // Weak references don't produce any output by themselves.
723  if (Global->hasAttr<WeakRefAttr>())
724    return;
725
726  // If this is an alias definition (which otherwise looks like a declaration)
727  // emit it now.
728  if (Global->hasAttr<AliasAttr>())
729    return EmitAliasDefinition(GD);
730
731  // Ignore declarations, they will be emitted on their first use.
732  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
733    if (FD->getIdentifier()) {
734      llvm::StringRef Name = FD->getName();
735      if (Name == "_Block_object_assign") {
736        BlockObjectAssignDecl = FD;
737      } else if (Name == "_Block_object_dispose") {
738        BlockObjectDisposeDecl = FD;
739      }
740    }
741
742    // Forward declarations are emitted lazily on first use.
743    if (!FD->doesThisDeclarationHaveABody())
744      return;
745  } else {
746    const VarDecl *VD = cast<VarDecl>(Global);
747    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
748
749    if (VD->getIdentifier()) {
750      llvm::StringRef Name = VD->getName();
751      if (Name == "_NSConcreteGlobalBlock") {
752        NSConcreteGlobalBlockDecl = VD;
753      } else if (Name == "_NSConcreteStackBlock") {
754        NSConcreteStackBlockDecl = VD;
755      }
756    }
757
758
759    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
760      return;
761  }
762
763  // Defer code generation when possible if this is a static definition, inline
764  // function etc.  These we only want to emit if they are used.
765  if (!MayDeferGeneration(Global)) {
766    // Emit the definition if it can't be deferred.
767    EmitGlobalDefinition(GD);
768    return;
769  }
770
771  // If we're deferring emission of a C++ variable with an
772  // initializer, remember the order in which it appeared in the file.
773  if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
774      cast<VarDecl>(Global)->hasInit()) {
775    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
776    CXXGlobalInits.push_back(0);
777  }
778
779  // If the value has already been used, add it directly to the
780  // DeferredDeclsToEmit list.
781  llvm::StringRef MangledName = getMangledName(GD);
782  if (GetGlobalValue(MangledName))
783    DeferredDeclsToEmit.push_back(GD);
784  else {
785    // Otherwise, remember that we saw a deferred decl with this name.  The
786    // first use of the mangled name will cause it to move into
787    // DeferredDeclsToEmit.
788    DeferredDecls[MangledName] = GD;
789  }
790}
791
792void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
793  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
794
795  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
796                                 Context.getSourceManager(),
797                                 "Generating code for declaration");
798
799  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
800    // At -O0, don't generate IR for functions with available_externally
801    // linkage.
802    if (CodeGenOpts.OptimizationLevel == 0 &&
803        !Function->hasAttr<AlwaysInlineAttr>() &&
804        getFunctionLinkage(Function)
805                                  == llvm::Function::AvailableExternallyLinkage)
806      return;
807
808    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
809      // Make sure to emit the definition(s) before we emit the thunks.
810      // This is necessary for the generation of certain thunks.
811      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
812        EmitCXXConstructor(CD, GD.getCtorType());
813      else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
814        EmitCXXDestructor(DD, GD.getDtorType());
815      else
816        EmitGlobalFunctionDefinition(GD);
817
818      if (Method->isVirtual())
819        getVTables().EmitThunks(GD);
820
821      return;
822    }
823
824    return EmitGlobalFunctionDefinition(GD);
825  }
826
827  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
828    return EmitGlobalVarDefinition(VD);
829
830  assert(0 && "Invalid argument to EmitGlobalDefinition()");
831}
832
833/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
834/// module, create and return an llvm Function with the specified type. If there
835/// is something in the module with the specified name, return it potentially
836/// bitcasted to the right type.
837///
838/// If D is non-null, it specifies a decl that correspond to this.  This is used
839/// to set the attributes on the function when it is first created.
840llvm::Constant *
841CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
842                                       const llvm::Type *Ty,
843                                       GlobalDecl D, bool ForVTable,
844                                       llvm::Attributes ExtraAttrs) {
845  // Lookup the entry, lazily creating it if necessary.
846  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
847  if (Entry) {
848    if (WeakRefReferences.count(Entry)) {
849      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
850      if (FD && !FD->hasAttr<WeakAttr>())
851        Entry->setLinkage(llvm::Function::ExternalLinkage);
852
853      WeakRefReferences.erase(Entry);
854    }
855
856    if (Entry->getType()->getElementType() == Ty)
857      return Entry;
858
859    // Make sure the result is of the correct type.
860    return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
861  }
862
863  // This function doesn't have a complete type (for example, the return
864  // type is an incomplete struct). Use a fake type instead, and make
865  // sure not to try to set attributes.
866  bool IsIncompleteFunction = false;
867
868  const llvm::FunctionType *FTy;
869  if (isa<llvm::FunctionType>(Ty)) {
870    FTy = cast<llvm::FunctionType>(Ty);
871  } else {
872    FTy = llvm::FunctionType::get(VoidTy, false);
873    IsIncompleteFunction = true;
874  }
875
876  llvm::Function *F = llvm::Function::Create(FTy,
877                                             llvm::Function::ExternalLinkage,
878                                             MangledName, &getModule());
879  assert(F->getName() == MangledName && "name was uniqued!");
880  if (D.getDecl())
881    SetFunctionAttributes(D, F, IsIncompleteFunction);
882  if (ExtraAttrs != llvm::Attribute::None)
883    F->addFnAttr(ExtraAttrs);
884
885  // This is the first use or definition of a mangled name.  If there is a
886  // deferred decl with this name, remember that we need to emit it at the end
887  // of the file.
888  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
889  if (DDI != DeferredDecls.end()) {
890    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
891    // list, and remove it from DeferredDecls (since we don't need it anymore).
892    DeferredDeclsToEmit.push_back(DDI->second);
893    DeferredDecls.erase(DDI);
894
895  // Otherwise, there are cases we have to worry about where we're
896  // using a declaration for which we must emit a definition but where
897  // we might not find a top-level definition:
898  //   - member functions defined inline in their classes
899  //   - friend functions defined inline in some class
900  //   - special member functions with implicit definitions
901  // If we ever change our AST traversal to walk into class methods,
902  // this will be unnecessary.
903  //
904  // We also don't emit a definition for a function if it's going to be an entry
905  // in a vtable, unless it's already marked as used.
906  } else if (getLangOptions().CPlusPlus && D.getDecl()) {
907    // Look for a declaration that's lexically in a record.
908    const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
909    do {
910      if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
911        if (FD->isImplicit() && !ForVTable) {
912          assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
913          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
914          break;
915        } else if (FD->doesThisDeclarationHaveABody()) {
916          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
917          break;
918        }
919      }
920      FD = FD->getPreviousDeclaration();
921    } while (FD);
922  }
923
924  // Make sure the result is of the requested type.
925  if (!IsIncompleteFunction) {
926    assert(F->getType()->getElementType() == Ty);
927    return F;
928  }
929
930  llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
931  return llvm::ConstantExpr::getBitCast(F, PTy);
932}
933
934/// GetAddrOfFunction - Return the address of the given function.  If Ty is
935/// non-null, then this function will use the specified type if it has to
936/// create it (this occurs when we see a definition of the function).
937llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
938                                                 const llvm::Type *Ty,
939                                                 bool ForVTable) {
940  // If there was no specific requested type, just convert it now.
941  if (!Ty)
942    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
943
944  llvm::StringRef MangledName = getMangledName(GD);
945  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
946}
947
948/// CreateRuntimeFunction - Create a new runtime function with the specified
949/// type and name.
950llvm::Constant *
951CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
952                                     llvm::StringRef Name,
953                                     llvm::Attributes ExtraAttrs) {
954  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
955                                 ExtraAttrs);
956}
957
958static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D,
959                                 bool ConstantInit) {
960  if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
961    return false;
962
963  if (Context.getLangOptions().CPlusPlus) {
964    if (const RecordType *Record
965          = Context.getBaseElementType(D->getType())->getAs<RecordType>())
966      return ConstantInit &&
967             cast<CXXRecordDecl>(Record->getDecl())->isPOD() &&
968             !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields();
969  }
970
971  return true;
972}
973
974/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
975/// create and return an llvm GlobalVariable with the specified type.  If there
976/// is something in the module with the specified name, return it potentially
977/// bitcasted to the right type.
978///
979/// If D is non-null, it specifies a decl that correspond to this.  This is used
980/// to set the attributes on the global when it is first created.
981llvm::Constant *
982CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
983                                     const llvm::PointerType *Ty,
984                                     const VarDecl *D,
985                                     bool UnnamedAddr) {
986  // Lookup the entry, lazily creating it if necessary.
987  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
988  if (Entry) {
989    if (WeakRefReferences.count(Entry)) {
990      if (D && !D->hasAttr<WeakAttr>())
991        Entry->setLinkage(llvm::Function::ExternalLinkage);
992
993      WeakRefReferences.erase(Entry);
994    }
995
996    if (UnnamedAddr)
997      Entry->setUnnamedAddr(true);
998
999    if (Entry->getType() == Ty)
1000      return Entry;
1001
1002    // Make sure the result is of the correct type.
1003    return llvm::ConstantExpr::getBitCast(Entry, Ty);
1004  }
1005
1006  // This is the first use or definition of a mangled name.  If there is a
1007  // deferred decl with this name, remember that we need to emit it at the end
1008  // of the file.
1009  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1010  if (DDI != DeferredDecls.end()) {
1011    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1012    // list, and remove it from DeferredDecls (since we don't need it anymore).
1013    DeferredDeclsToEmit.push_back(DDI->second);
1014    DeferredDecls.erase(DDI);
1015  }
1016
1017  llvm::GlobalVariable *GV =
1018    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1019                             llvm::GlobalValue::ExternalLinkage,
1020                             0, MangledName, 0,
1021                             false, Ty->getAddressSpace());
1022
1023  // Handle things which are present even on external declarations.
1024  if (D) {
1025    // FIXME: This code is overly simple and should be merged with other global
1026    // handling.
1027    GV->setConstant(DeclIsConstantGlobal(Context, D, false));
1028
1029    // Set linkage and visibility in case we never see a definition.
1030    NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1031    if (LV.linkage() != ExternalLinkage) {
1032      // Don't set internal linkage on declarations.
1033    } else {
1034      if (D->hasAttr<DLLImportAttr>())
1035        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1036      else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1037        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1038
1039      // Set visibility on a declaration only if it's explicit.
1040      if (LV.visibilityExplicit())
1041        GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1042    }
1043
1044    GV->setThreadLocal(D->isThreadSpecified());
1045  }
1046
1047  return GV;
1048}
1049
1050
1051llvm::GlobalVariable *
1052CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
1053                                      const llvm::Type *Ty,
1054                                      llvm::GlobalValue::LinkageTypes Linkage) {
1055  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1056  llvm::GlobalVariable *OldGV = 0;
1057
1058
1059  if (GV) {
1060    // Check if the variable has the right type.
1061    if (GV->getType()->getElementType() == Ty)
1062      return GV;
1063
1064    // Because C++ name mangling, the only way we can end up with an already
1065    // existing global with the same name is if it has been declared extern "C".
1066      assert(GV->isDeclaration() && "Declaration has wrong type!");
1067    OldGV = GV;
1068  }
1069
1070  // Create a new variable.
1071  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1072                                Linkage, 0, Name);
1073
1074  if (OldGV) {
1075    // Replace occurrences of the old variable if needed.
1076    GV->takeName(OldGV);
1077
1078    if (!OldGV->use_empty()) {
1079      llvm::Constant *NewPtrForOldDecl =
1080      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1081      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1082    }
1083
1084    OldGV->eraseFromParent();
1085  }
1086
1087  return GV;
1088}
1089
1090/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1091/// given global variable.  If Ty is non-null and if the global doesn't exist,
1092/// then it will be greated with the specified type instead of whatever the
1093/// normal requested type would be.
1094llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1095                                                  const llvm::Type *Ty) {
1096  assert(D->hasGlobalStorage() && "Not a global variable");
1097  QualType ASTTy = D->getType();
1098  if (Ty == 0)
1099    Ty = getTypes().ConvertTypeForMem(ASTTy);
1100
1101  const llvm::PointerType *PTy =
1102    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1103
1104  llvm::StringRef MangledName = getMangledName(D);
1105  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1106}
1107
1108/// CreateRuntimeVariable - Create a new runtime global variable with the
1109/// specified type and name.
1110llvm::Constant *
1111CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1112                                     llvm::StringRef Name) {
1113  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1114                               true);
1115}
1116
1117void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1118  assert(!D->getInit() && "Cannot emit definite definitions here!");
1119
1120  if (MayDeferGeneration(D)) {
1121    // If we have not seen a reference to this variable yet, place it
1122    // into the deferred declarations table to be emitted if needed
1123    // later.
1124    llvm::StringRef MangledName = getMangledName(D);
1125    if (!GetGlobalValue(MangledName)) {
1126      DeferredDecls[MangledName] = D;
1127      return;
1128    }
1129  }
1130
1131  // The tentative definition is the only definition.
1132  EmitGlobalVarDefinition(D);
1133}
1134
1135void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1136  if (DefinitionRequired)
1137    getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1138}
1139
1140llvm::GlobalVariable::LinkageTypes
1141CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1142  if (RD->getLinkage() != ExternalLinkage)
1143    return llvm::GlobalVariable::InternalLinkage;
1144
1145  if (const CXXMethodDecl *KeyFunction
1146                                    = RD->getASTContext().getKeyFunction(RD)) {
1147    // If this class has a key function, use that to determine the linkage of
1148    // the vtable.
1149    const FunctionDecl *Def = 0;
1150    if (KeyFunction->hasBody(Def))
1151      KeyFunction = cast<CXXMethodDecl>(Def);
1152
1153    switch (KeyFunction->getTemplateSpecializationKind()) {
1154      case TSK_Undeclared:
1155      case TSK_ExplicitSpecialization:
1156        // When compiling with optimizations turned on, we emit all vtables,
1157        // even if the key function is not defined in the current translation
1158        // unit. If this is the case, use available_externally linkage.
1159        if (!Def && CodeGenOpts.OptimizationLevel)
1160          return llvm::GlobalVariable::AvailableExternallyLinkage;
1161
1162        if (KeyFunction->isInlined())
1163          return !Context.getLangOptions().AppleKext ?
1164                   llvm::GlobalVariable::LinkOnceODRLinkage :
1165                   llvm::Function::InternalLinkage;
1166
1167        return llvm::GlobalVariable::ExternalLinkage;
1168
1169      case TSK_ImplicitInstantiation:
1170        return !Context.getLangOptions().AppleKext ?
1171                 llvm::GlobalVariable::LinkOnceODRLinkage :
1172                 llvm::Function::InternalLinkage;
1173
1174      case TSK_ExplicitInstantiationDefinition:
1175        return !Context.getLangOptions().AppleKext ?
1176                 llvm::GlobalVariable::WeakODRLinkage :
1177                 llvm::Function::InternalLinkage;
1178
1179      case TSK_ExplicitInstantiationDeclaration:
1180        // FIXME: Use available_externally linkage. However, this currently
1181        // breaks LLVM's build due to undefined symbols.
1182        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1183        return !Context.getLangOptions().AppleKext ?
1184                 llvm::GlobalVariable::LinkOnceODRLinkage :
1185                 llvm::Function::InternalLinkage;
1186    }
1187  }
1188
1189  if (Context.getLangOptions().AppleKext)
1190    return llvm::Function::InternalLinkage;
1191
1192  switch (RD->getTemplateSpecializationKind()) {
1193  case TSK_Undeclared:
1194  case TSK_ExplicitSpecialization:
1195  case TSK_ImplicitInstantiation:
1196    // FIXME: Use available_externally linkage. However, this currently
1197    // breaks LLVM's build due to undefined symbols.
1198    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1199  case TSK_ExplicitInstantiationDeclaration:
1200    return llvm::GlobalVariable::LinkOnceODRLinkage;
1201
1202  case TSK_ExplicitInstantiationDefinition:
1203      return llvm::GlobalVariable::WeakODRLinkage;
1204  }
1205
1206  // Silence GCC warning.
1207  return llvm::GlobalVariable::LinkOnceODRLinkage;
1208}
1209
1210CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1211    return Context.toCharUnitsFromBits(
1212      TheTargetData.getTypeStoreSizeInBits(Ty));
1213}
1214
1215void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1216  llvm::Constant *Init = 0;
1217  QualType ASTTy = D->getType();
1218  bool NonConstInit = false;
1219
1220  const Expr *InitExpr = D->getAnyInitializer();
1221
1222  if (!InitExpr) {
1223    // This is a tentative definition; tentative definitions are
1224    // implicitly initialized with { 0 }.
1225    //
1226    // Note that tentative definitions are only emitted at the end of
1227    // a translation unit, so they should never have incomplete
1228    // type. In addition, EmitTentativeDefinition makes sure that we
1229    // never attempt to emit a tentative definition if a real one
1230    // exists. A use may still exists, however, so we still may need
1231    // to do a RAUW.
1232    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1233    Init = EmitNullConstant(D->getType());
1234  } else {
1235    Init = EmitConstantExpr(InitExpr, D->getType());
1236    if (!Init) {
1237      QualType T = InitExpr->getType();
1238      if (D->getType()->isReferenceType())
1239        T = D->getType();
1240
1241      if (getLangOptions().CPlusPlus) {
1242        Init = EmitNullConstant(T);
1243        NonConstInit = true;
1244      } else {
1245        ErrorUnsupported(D, "static initializer");
1246        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1247      }
1248    } else {
1249      // We don't need an initializer, so remove the entry for the delayed
1250      // initializer position (just in case this entry was delayed).
1251      if (getLangOptions().CPlusPlus)
1252        DelayedCXXInitPosition.erase(D);
1253    }
1254  }
1255
1256  const llvm::Type* InitType = Init->getType();
1257  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1258
1259  // Strip off a bitcast if we got one back.
1260  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1261    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1262           // all zero index gep.
1263           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1264    Entry = CE->getOperand(0);
1265  }
1266
1267  // Entry is now either a Function or GlobalVariable.
1268  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1269
1270  // We have a definition after a declaration with the wrong type.
1271  // We must make a new GlobalVariable* and update everything that used OldGV
1272  // (a declaration or tentative definition) with the new GlobalVariable*
1273  // (which will be a definition).
1274  //
1275  // This happens if there is a prototype for a global (e.g.
1276  // "extern int x[];") and then a definition of a different type (e.g.
1277  // "int x[10];"). This also happens when an initializer has a different type
1278  // from the type of the global (this happens with unions).
1279  if (GV == 0 ||
1280      GV->getType()->getElementType() != InitType ||
1281      GV->getType()->getAddressSpace() !=
1282        getContext().getTargetAddressSpace(ASTTy)) {
1283
1284    // Move the old entry aside so that we'll create a new one.
1285    Entry->setName(llvm::StringRef());
1286
1287    // Make a new global with the correct type, this is now guaranteed to work.
1288    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1289
1290    // Replace all uses of the old global with the new global
1291    llvm::Constant *NewPtrForOldDecl =
1292        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1293    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1294
1295    // Erase the old global, since it is no longer used.
1296    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1297  }
1298
1299  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1300    SourceManager &SM = Context.getSourceManager();
1301    AddAnnotation(EmitAnnotateAttr(GV, AA,
1302                              SM.getInstantiationLineNumber(D->getLocation())));
1303  }
1304
1305  GV->setInitializer(Init);
1306
1307  // If it is safe to mark the global 'constant', do so now.
1308  GV->setConstant(false);
1309  if (!NonConstInit && DeclIsConstantGlobal(Context, D, true))
1310    GV->setConstant(true);
1311
1312  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1313
1314  // Set the llvm linkage type as appropriate.
1315  llvm::GlobalValue::LinkageTypes Linkage =
1316    GetLLVMLinkageVarDefinition(D, GV);
1317  GV->setLinkage(Linkage);
1318  if (Linkage == llvm::GlobalVariable::CommonLinkage)
1319    // common vars aren't constant even if declared const.
1320    GV->setConstant(false);
1321
1322  SetCommonAttributes(D, GV);
1323
1324  // Emit the initializer function if necessary.
1325  if (NonConstInit)
1326    EmitCXXGlobalVarDeclInitFunc(D, GV);
1327
1328  // Emit global variable debug information.
1329  if (CGDebugInfo *DI = getModuleDebugInfo()) {
1330    DI->setLocation(D->getLocation());
1331    DI->EmitGlobalVariable(GV, D);
1332  }
1333}
1334
1335llvm::GlobalValue::LinkageTypes
1336CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1337                                           llvm::GlobalVariable *GV) {
1338  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1339  if (Linkage == GVA_Internal)
1340    return llvm::Function::InternalLinkage;
1341  else if (D->hasAttr<DLLImportAttr>())
1342    return llvm::Function::DLLImportLinkage;
1343  else if (D->hasAttr<DLLExportAttr>())
1344    return llvm::Function::DLLExportLinkage;
1345  else if (D->hasAttr<WeakAttr>()) {
1346    if (GV->isConstant())
1347      return llvm::GlobalVariable::WeakODRLinkage;
1348    else
1349      return llvm::GlobalVariable::WeakAnyLinkage;
1350  } else if (Linkage == GVA_TemplateInstantiation ||
1351             Linkage == GVA_ExplicitTemplateInstantiation)
1352    return llvm::GlobalVariable::WeakODRLinkage;
1353  else if (!getLangOptions().CPlusPlus &&
1354           ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1355             D->getAttr<CommonAttr>()) &&
1356           !D->hasExternalStorage() && !D->getInit() &&
1357           !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1358           !D->getAttr<WeakImportAttr>()) {
1359    // Thread local vars aren't considered common linkage.
1360    return llvm::GlobalVariable::CommonLinkage;
1361  }
1362  return llvm::GlobalVariable::ExternalLinkage;
1363}
1364
1365/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1366/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1367/// existing call uses of the old function in the module, this adjusts them to
1368/// call the new function directly.
1369///
1370/// This is not just a cleanup: the always_inline pass requires direct calls to
1371/// functions to be able to inline them.  If there is a bitcast in the way, it
1372/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1373/// run at -O0.
1374static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1375                                                      llvm::Function *NewFn) {
1376  // If we're redefining a global as a function, don't transform it.
1377  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1378  if (OldFn == 0) return;
1379
1380  const llvm::Type *NewRetTy = NewFn->getReturnType();
1381  llvm::SmallVector<llvm::Value*, 4> ArgList;
1382
1383  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1384       UI != E; ) {
1385    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1386    llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1387    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1388    if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1389    llvm::CallSite CS(CI);
1390    if (!CI || !CS.isCallee(I)) continue;
1391
1392    // If the return types don't match exactly, and if the call isn't dead, then
1393    // we can't transform this call.
1394    if (CI->getType() != NewRetTy && !CI->use_empty())
1395      continue;
1396
1397    // If the function was passed too few arguments, don't transform.  If extra
1398    // arguments were passed, we silently drop them.  If any of the types
1399    // mismatch, we don't transform.
1400    unsigned ArgNo = 0;
1401    bool DontTransform = false;
1402    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1403         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1404      if (CS.arg_size() == ArgNo ||
1405          CS.getArgument(ArgNo)->getType() != AI->getType()) {
1406        DontTransform = true;
1407        break;
1408      }
1409    }
1410    if (DontTransform)
1411      continue;
1412
1413    // Okay, we can transform this.  Create the new call instruction and copy
1414    // over the required information.
1415    ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1416    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1417                                                     ArgList.end(), "", CI);
1418    ArgList.clear();
1419    if (!NewCall->getType()->isVoidTy())
1420      NewCall->takeName(CI);
1421    NewCall->setAttributes(CI->getAttributes());
1422    NewCall->setCallingConv(CI->getCallingConv());
1423
1424    // Finally, remove the old call, replacing any uses with the new one.
1425    if (!CI->use_empty())
1426      CI->replaceAllUsesWith(NewCall);
1427
1428    // Copy debug location attached to CI.
1429    if (!CI->getDebugLoc().isUnknown())
1430      NewCall->setDebugLoc(CI->getDebugLoc());
1431    CI->eraseFromParent();
1432  }
1433}
1434
1435
1436void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1437  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1438
1439  // Compute the function info and LLVM type.
1440  const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1441  bool variadic = false;
1442  if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1443    variadic = fpt->isVariadic();
1444  const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic);
1445
1446  // Get or create the prototype for the function.
1447  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1448
1449  // Strip off a bitcast if we got one back.
1450  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1451    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1452    Entry = CE->getOperand(0);
1453  }
1454
1455
1456  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1457    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1458
1459    // If the types mismatch then we have to rewrite the definition.
1460    assert(OldFn->isDeclaration() &&
1461           "Shouldn't replace non-declaration");
1462
1463    // F is the Function* for the one with the wrong type, we must make a new
1464    // Function* and update everything that used F (a declaration) with the new
1465    // Function* (which will be a definition).
1466    //
1467    // This happens if there is a prototype for a function
1468    // (e.g. "int f()") and then a definition of a different type
1469    // (e.g. "int f(int x)").  Move the old function aside so that it
1470    // doesn't interfere with GetAddrOfFunction.
1471    OldFn->setName(llvm::StringRef());
1472    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1473
1474    // If this is an implementation of a function without a prototype, try to
1475    // replace any existing uses of the function (which may be calls) with uses
1476    // of the new function
1477    if (D->getType()->isFunctionNoProtoType()) {
1478      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1479      OldFn->removeDeadConstantUsers();
1480    }
1481
1482    // Replace uses of F with the Function we will endow with a body.
1483    if (!Entry->use_empty()) {
1484      llvm::Constant *NewPtrForOldDecl =
1485        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1486      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1487    }
1488
1489    // Ok, delete the old function now, which is dead.
1490    OldFn->eraseFromParent();
1491
1492    Entry = NewFn;
1493  }
1494
1495  // We need to set linkage and visibility on the function before
1496  // generating code for it because various parts of IR generation
1497  // want to propagate this information down (e.g. to local static
1498  // declarations).
1499  llvm::Function *Fn = cast<llvm::Function>(Entry);
1500  setFunctionLinkage(D, Fn);
1501
1502  // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1503  setGlobalVisibility(Fn, D);
1504
1505  CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1506
1507  SetFunctionDefinitionAttributes(D, Fn);
1508  SetLLVMFunctionAttributesForDefinition(D, Fn);
1509
1510  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1511    AddGlobalCtor(Fn, CA->getPriority());
1512  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1513    AddGlobalDtor(Fn, DA->getPriority());
1514}
1515
1516void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1517  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1518  const AliasAttr *AA = D->getAttr<AliasAttr>();
1519  assert(AA && "Not an alias?");
1520
1521  llvm::StringRef MangledName = getMangledName(GD);
1522
1523  // If there is a definition in the module, then it wins over the alias.
1524  // This is dubious, but allow it to be safe.  Just ignore the alias.
1525  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1526  if (Entry && !Entry->isDeclaration())
1527    return;
1528
1529  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1530
1531  // Create a reference to the named value.  This ensures that it is emitted
1532  // if a deferred decl.
1533  llvm::Constant *Aliasee;
1534  if (isa<llvm::FunctionType>(DeclTy))
1535    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1536                                      /*ForVTable=*/false);
1537  else
1538    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1539                                    llvm::PointerType::getUnqual(DeclTy), 0);
1540
1541  // Create the new alias itself, but don't set a name yet.
1542  llvm::GlobalValue *GA =
1543    new llvm::GlobalAlias(Aliasee->getType(),
1544                          llvm::Function::ExternalLinkage,
1545                          "", Aliasee, &getModule());
1546
1547  if (Entry) {
1548    assert(Entry->isDeclaration());
1549
1550    // If there is a declaration in the module, then we had an extern followed
1551    // by the alias, as in:
1552    //   extern int test6();
1553    //   ...
1554    //   int test6() __attribute__((alias("test7")));
1555    //
1556    // Remove it and replace uses of it with the alias.
1557    GA->takeName(Entry);
1558
1559    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1560                                                          Entry->getType()));
1561    Entry->eraseFromParent();
1562  } else {
1563    GA->setName(MangledName);
1564  }
1565
1566  // Set attributes which are particular to an alias; this is a
1567  // specialization of the attributes which may be set on a global
1568  // variable/function.
1569  if (D->hasAttr<DLLExportAttr>()) {
1570    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1571      // The dllexport attribute is ignored for undefined symbols.
1572      if (FD->hasBody())
1573        GA->setLinkage(llvm::Function::DLLExportLinkage);
1574    } else {
1575      GA->setLinkage(llvm::Function::DLLExportLinkage);
1576    }
1577  } else if (D->hasAttr<WeakAttr>() ||
1578             D->hasAttr<WeakRefAttr>() ||
1579             D->isWeakImported()) {
1580    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1581  }
1582
1583  SetCommonAttributes(D, GA);
1584}
1585
1586/// getBuiltinLibFunction - Given a builtin id for a function like
1587/// "__builtin_fabsf", return a Function* for "fabsf".
1588llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1589                                                  unsigned BuiltinID) {
1590  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1591          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1592         "isn't a lib fn");
1593
1594  // Get the name, skip over the __builtin_ prefix (if necessary).
1595  llvm::StringRef Name;
1596  GlobalDecl D(FD);
1597
1598  // If the builtin has been declared explicitly with an assembler label,
1599  // use the mangled name. This differs from the plain label on platforms
1600  // that prefix labels.
1601  if (FD->hasAttr<AsmLabelAttr>())
1602    Name = getMangledName(D);
1603  else if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1604    Name = Context.BuiltinInfo.GetName(BuiltinID) + 10;
1605  else
1606    Name = Context.BuiltinInfo.GetName(BuiltinID);
1607
1608
1609  const llvm::FunctionType *Ty =
1610    cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1611
1612  return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
1613}
1614
1615llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, llvm::Type **Tys,
1616                                            unsigned NumTys) {
1617  return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1618                                         Tys, NumTys);
1619}
1620
1621static llvm::StringMapEntry<llvm::Constant*> &
1622GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1623                         const StringLiteral *Literal,
1624                         bool TargetIsLSB,
1625                         bool &IsUTF16,
1626                         unsigned &StringLength) {
1627  llvm::StringRef String = Literal->getString();
1628  unsigned NumBytes = String.size();
1629
1630  // Check for simple case.
1631  if (!Literal->containsNonAsciiOrNull()) {
1632    StringLength = NumBytes;
1633    return Map.GetOrCreateValue(String);
1634  }
1635
1636  // Otherwise, convert the UTF8 literals into a byte string.
1637  llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1638  const UTF8 *FromPtr = (UTF8 *)String.data();
1639  UTF16 *ToPtr = &ToBuf[0];
1640
1641  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1642                           &ToPtr, ToPtr + NumBytes,
1643                           strictConversion);
1644
1645  // ConvertUTF8toUTF16 returns the length in ToPtr.
1646  StringLength = ToPtr - &ToBuf[0];
1647
1648  // Render the UTF-16 string into a byte array and convert to the target byte
1649  // order.
1650  //
1651  // FIXME: This isn't something we should need to do here.
1652  llvm::SmallString<128> AsBytes;
1653  AsBytes.reserve(StringLength * 2);
1654  for (unsigned i = 0; i != StringLength; ++i) {
1655    unsigned short Val = ToBuf[i];
1656    if (TargetIsLSB) {
1657      AsBytes.push_back(Val & 0xFF);
1658      AsBytes.push_back(Val >> 8);
1659    } else {
1660      AsBytes.push_back(Val >> 8);
1661      AsBytes.push_back(Val & 0xFF);
1662    }
1663  }
1664  // Append one extra null character, the second is automatically added by our
1665  // caller.
1666  AsBytes.push_back(0);
1667
1668  IsUTF16 = true;
1669  return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1670}
1671
1672static llvm::StringMapEntry<llvm::Constant*> &
1673GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1674		       const StringLiteral *Literal,
1675		       unsigned &StringLength)
1676{
1677	llvm::StringRef String = Literal->getString();
1678	StringLength = String.size();
1679	return Map.GetOrCreateValue(String);
1680}
1681
1682llvm::Constant *
1683CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1684  unsigned StringLength = 0;
1685  bool isUTF16 = false;
1686  llvm::StringMapEntry<llvm::Constant*> &Entry =
1687    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1688                             getTargetData().isLittleEndian(),
1689                             isUTF16, StringLength);
1690
1691  if (llvm::Constant *C = Entry.getValue())
1692    return C;
1693
1694  llvm::Constant *Zero =
1695      llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1696  llvm::Constant *Zeros[] = { Zero, Zero };
1697
1698  // If we don't already have it, get __CFConstantStringClassReference.
1699  if (!CFConstantStringClassRef) {
1700    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1701    Ty = llvm::ArrayType::get(Ty, 0);
1702    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1703                                           "__CFConstantStringClassReference");
1704    // Decay array -> ptr
1705    CFConstantStringClassRef =
1706      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1707  }
1708
1709  QualType CFTy = getContext().getCFConstantStringType();
1710
1711  const llvm::StructType *STy =
1712    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1713
1714  std::vector<llvm::Constant*> Fields(4);
1715
1716  // Class pointer.
1717  Fields[0] = CFConstantStringClassRef;
1718
1719  // Flags.
1720  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1721  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1722    llvm::ConstantInt::get(Ty, 0x07C8);
1723
1724  // String pointer.
1725  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1726
1727  llvm::GlobalValue::LinkageTypes Linkage;
1728  bool isConstant;
1729  if (isUTF16) {
1730    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1731    Linkage = llvm::GlobalValue::InternalLinkage;
1732    // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1733    // does make plain ascii ones writable.
1734    isConstant = true;
1735  } else {
1736    // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1737    // when using private linkage. It is not clear if this is a bug in ld
1738    // or a reasonable new restriction.
1739    Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1740    isConstant = !Features.WritableStrings;
1741  }
1742
1743  llvm::GlobalVariable *GV =
1744    new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1745                             ".str");
1746  GV->setUnnamedAddr(true);
1747  if (isUTF16) {
1748    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1749    GV->setAlignment(Align.getQuantity());
1750  } else {
1751    CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1752    GV->setAlignment(Align.getQuantity());
1753  }
1754  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1755
1756  // String length.
1757  Ty = getTypes().ConvertType(getContext().LongTy);
1758  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1759
1760  // The struct.
1761  C = llvm::ConstantStruct::get(STy, Fields);
1762  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1763                                llvm::GlobalVariable::PrivateLinkage, C,
1764                                "_unnamed_cfstring_");
1765  if (const char *Sect = getContext().Target.getCFStringSection())
1766    GV->setSection(Sect);
1767  Entry.setValue(GV);
1768
1769  return GV;
1770}
1771
1772llvm::Constant *
1773CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1774  unsigned StringLength = 0;
1775  llvm::StringMapEntry<llvm::Constant*> &Entry =
1776    GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
1777
1778  if (llvm::Constant *C = Entry.getValue())
1779    return C;
1780
1781  llvm::Constant *Zero =
1782  llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1783  llvm::Constant *Zeros[] = { Zero, Zero };
1784
1785  // If we don't already have it, get _NSConstantStringClassReference.
1786  if (!ConstantStringClassRef) {
1787    std::string StringClass(getLangOptions().ObjCConstantStringClass);
1788    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1789    llvm::Constant *GV;
1790    if (Features.ObjCNonFragileABI) {
1791      std::string str =
1792        StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1793                            : "OBJC_CLASS_$_" + StringClass;
1794      GV = getObjCRuntime().GetClassGlobal(str);
1795      // Make sure the result is of the correct type.
1796      const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1797      ConstantStringClassRef =
1798        llvm::ConstantExpr::getBitCast(GV, PTy);
1799    } else {
1800      std::string str =
1801        StringClass.empty() ? "_NSConstantStringClassReference"
1802                            : "_" + StringClass + "ClassReference";
1803      const llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
1804      GV = CreateRuntimeVariable(PTy, str);
1805      // Decay array -> ptr
1806      ConstantStringClassRef =
1807        llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1808    }
1809  }
1810
1811  QualType NSTy = getContext().getNSConstantStringType();
1812
1813  const llvm::StructType *STy =
1814  cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1815
1816  std::vector<llvm::Constant*> Fields(3);
1817
1818  // Class pointer.
1819  Fields[0] = ConstantStringClassRef;
1820
1821  // String pointer.
1822  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1823
1824  llvm::GlobalValue::LinkageTypes Linkage;
1825  bool isConstant;
1826  Linkage = llvm::GlobalValue::PrivateLinkage;
1827  isConstant = !Features.WritableStrings;
1828
1829  llvm::GlobalVariable *GV =
1830  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1831                           ".str");
1832  GV->setUnnamedAddr(true);
1833  CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1834  GV->setAlignment(Align.getQuantity());
1835  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1836
1837  // String length.
1838  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1839  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1840
1841  // The struct.
1842  C = llvm::ConstantStruct::get(STy, Fields);
1843  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1844                                llvm::GlobalVariable::PrivateLinkage, C,
1845                                "_unnamed_nsstring_");
1846  // FIXME. Fix section.
1847  if (const char *Sect =
1848        Features.ObjCNonFragileABI
1849          ? getContext().Target.getNSStringNonFragileABISection()
1850          : getContext().Target.getNSStringSection())
1851    GV->setSection(Sect);
1852  Entry.setValue(GV);
1853
1854  return GV;
1855}
1856
1857/// GetStringForStringLiteral - Return the appropriate bytes for a
1858/// string literal, properly padded to match the literal type.
1859std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1860  const ASTContext &Context = getContext();
1861  const ConstantArrayType *CAT =
1862    Context.getAsConstantArrayType(E->getType());
1863  assert(CAT && "String isn't pointer or array!");
1864
1865  // Resize the string to the right size.
1866  uint64_t RealLen = CAT->getSize().getZExtValue();
1867
1868  if (E->isWide())
1869    RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1870
1871  std::string Str = E->getString().str();
1872  Str.resize(RealLen, '\0');
1873
1874  return Str;
1875}
1876
1877/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1878/// constant array for the given string literal.
1879llvm::Constant *
1880CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1881  // FIXME: This can be more efficient.
1882  // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1883  llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1884  if (S->isWide()) {
1885    llvm::Type *DestTy =
1886        llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1887    C = llvm::ConstantExpr::getBitCast(C, DestTy);
1888  }
1889  return C;
1890}
1891
1892/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1893/// array for the given ObjCEncodeExpr node.
1894llvm::Constant *
1895CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1896  std::string Str;
1897  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1898
1899  return GetAddrOfConstantCString(Str);
1900}
1901
1902
1903/// GenerateWritableString -- Creates storage for a string literal.
1904static llvm::Constant *GenerateStringLiteral(llvm::StringRef str,
1905                                             bool constant,
1906                                             CodeGenModule &CGM,
1907                                             const char *GlobalName) {
1908  // Create Constant for this string literal. Don't add a '\0'.
1909  llvm::Constant *C =
1910      llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1911
1912  // Create a global variable for this string
1913  llvm::GlobalVariable *GV =
1914    new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1915                             llvm::GlobalValue::PrivateLinkage,
1916                             C, GlobalName);
1917  GV->setAlignment(1);
1918  GV->setUnnamedAddr(true);
1919  return GV;
1920}
1921
1922/// GetAddrOfConstantString - Returns a pointer to a character array
1923/// containing the literal. This contents are exactly that of the
1924/// given string, i.e. it will not be null terminated automatically;
1925/// see GetAddrOfConstantCString. Note that whether the result is
1926/// actually a pointer to an LLVM constant depends on
1927/// Feature.WriteableStrings.
1928///
1929/// The result has pointer to array type.
1930llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str,
1931                                                       const char *GlobalName) {
1932  bool IsConstant = !Features.WritableStrings;
1933
1934  // Get the default prefix if a name wasn't specified.
1935  if (!GlobalName)
1936    GlobalName = ".str";
1937
1938  // Don't share any string literals if strings aren't constant.
1939  if (!IsConstant)
1940    return GenerateStringLiteral(Str, false, *this, GlobalName);
1941
1942  llvm::StringMapEntry<llvm::Constant *> &Entry =
1943    ConstantStringMap.GetOrCreateValue(Str);
1944
1945  if (Entry.getValue())
1946    return Entry.getValue();
1947
1948  // Create a global variable for this.
1949  llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName);
1950  Entry.setValue(C);
1951  return C;
1952}
1953
1954/// GetAddrOfConstantCString - Returns a pointer to a character
1955/// array containing the literal and a terminating '\0'
1956/// character. The result has pointer to array type.
1957llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
1958                                                        const char *GlobalName){
1959  llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1);
1960  return GetAddrOfConstantString(StrWithNull, GlobalName);
1961}
1962
1963/// EmitObjCPropertyImplementations - Emit information for synthesized
1964/// properties for an implementation.
1965void CodeGenModule::EmitObjCPropertyImplementations(const
1966                                                    ObjCImplementationDecl *D) {
1967  for (ObjCImplementationDecl::propimpl_iterator
1968         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1969    ObjCPropertyImplDecl *PID = *i;
1970
1971    // Dynamic is just for type-checking.
1972    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1973      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1974
1975      // Determine which methods need to be implemented, some may have
1976      // been overridden. Note that ::isSynthesized is not the method
1977      // we want, that just indicates if the decl came from a
1978      // property. What we want to know is if the method is defined in
1979      // this implementation.
1980      if (!D->getInstanceMethod(PD->getGetterName()))
1981        CodeGenFunction(*this).GenerateObjCGetter(
1982                                 const_cast<ObjCImplementationDecl *>(D), PID);
1983      if (!PD->isReadOnly() &&
1984          !D->getInstanceMethod(PD->getSetterName()))
1985        CodeGenFunction(*this).GenerateObjCSetter(
1986                                 const_cast<ObjCImplementationDecl *>(D), PID);
1987    }
1988  }
1989}
1990
1991static bool needsDestructMethod(ObjCImplementationDecl *impl) {
1992  ObjCInterfaceDecl *iface
1993    = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface());
1994  for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1995       ivar; ivar = ivar->getNextIvar())
1996    if (ivar->getType().isDestructedType())
1997      return true;
1998
1999  return false;
2000}
2001
2002/// EmitObjCIvarInitializations - Emit information for ivar initialization
2003/// for an implementation.
2004void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2005  // We might need a .cxx_destruct even if we don't have any ivar initializers.
2006  if (needsDestructMethod(D)) {
2007    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2008    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2009    ObjCMethodDecl *DTORMethod =
2010      ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2011                             cxxSelector, getContext().VoidTy, 0, D, true,
2012                             false, true, false, ObjCMethodDecl::Required);
2013    D->addInstanceMethod(DTORMethod);
2014    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2015    D->setHasCXXStructors(true);
2016  }
2017
2018  // If the implementation doesn't have any ivar initializers, we don't need
2019  // a .cxx_construct.
2020  if (D->getNumIvarInitializers() == 0)
2021    return;
2022
2023  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2024  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2025  // The constructor returns 'self'.
2026  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2027                                                D->getLocation(),
2028                                                D->getLocation(), cxxSelector,
2029                                                getContext().getObjCIdType(), 0,
2030                                                D, true, false, true, false,
2031                                                ObjCMethodDecl::Required);
2032  D->addInstanceMethod(CTORMethod);
2033  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2034  D->setHasCXXStructors(true);
2035}
2036
2037/// EmitNamespace - Emit all declarations in a namespace.
2038void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2039  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2040       I != E; ++I)
2041    EmitTopLevelDecl(*I);
2042}
2043
2044// EmitLinkageSpec - Emit all declarations in a linkage spec.
2045void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2046  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2047      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2048    ErrorUnsupported(LSD, "linkage spec");
2049    return;
2050  }
2051
2052  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2053       I != E; ++I)
2054    EmitTopLevelDecl(*I);
2055}
2056
2057/// EmitTopLevelDecl - Emit code for a single top level declaration.
2058void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2059  // If an error has occurred, stop code generation, but continue
2060  // parsing and semantic analysis (to ensure all warnings and errors
2061  // are emitted).
2062  if (Diags.hasErrorOccurred())
2063    return;
2064
2065  // Ignore dependent declarations.
2066  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2067    return;
2068
2069  switch (D->getKind()) {
2070  case Decl::CXXConversion:
2071  case Decl::CXXMethod:
2072  case Decl::Function:
2073    // Skip function templates
2074    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2075        cast<FunctionDecl>(D)->isLateTemplateParsed())
2076      return;
2077
2078    EmitGlobal(cast<FunctionDecl>(D));
2079    break;
2080
2081  case Decl::Var:
2082    EmitGlobal(cast<VarDecl>(D));
2083    break;
2084
2085  // Indirect fields from global anonymous structs and unions can be
2086  // ignored; only the actual variable requires IR gen support.
2087  case Decl::IndirectField:
2088    break;
2089
2090  // C++ Decls
2091  case Decl::Namespace:
2092    EmitNamespace(cast<NamespaceDecl>(D));
2093    break;
2094    // No code generation needed.
2095  case Decl::UsingShadow:
2096  case Decl::Using:
2097  case Decl::UsingDirective:
2098  case Decl::ClassTemplate:
2099  case Decl::FunctionTemplate:
2100  case Decl::TypeAliasTemplate:
2101  case Decl::NamespaceAlias:
2102  case Decl::Block:
2103    break;
2104  case Decl::CXXConstructor:
2105    // Skip function templates
2106    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2107        cast<FunctionDecl>(D)->isLateTemplateParsed())
2108      return;
2109
2110    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2111    break;
2112  case Decl::CXXDestructor:
2113    if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2114      return;
2115    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2116    break;
2117
2118  case Decl::StaticAssert:
2119    // Nothing to do.
2120    break;
2121
2122  // Objective-C Decls
2123
2124  // Forward declarations, no (immediate) code generation.
2125  case Decl::ObjCClass:
2126  case Decl::ObjCForwardProtocol:
2127  case Decl::ObjCInterface:
2128    break;
2129
2130  case Decl::ObjCCategory: {
2131    ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2132    if (CD->IsClassExtension() && CD->hasSynthBitfield())
2133      Context.ResetObjCLayout(CD->getClassInterface());
2134    break;
2135  }
2136
2137  case Decl::ObjCProtocol:
2138    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2139    break;
2140
2141  case Decl::ObjCCategoryImpl:
2142    // Categories have properties but don't support synthesize so we
2143    // can ignore them here.
2144    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2145    break;
2146
2147  case Decl::ObjCImplementation: {
2148    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2149    if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2150      Context.ResetObjCLayout(OMD->getClassInterface());
2151    EmitObjCPropertyImplementations(OMD);
2152    EmitObjCIvarInitializations(OMD);
2153    Runtime->GenerateClass(OMD);
2154    break;
2155  }
2156  case Decl::ObjCMethod: {
2157    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2158    // If this is not a prototype, emit the body.
2159    if (OMD->getBody())
2160      CodeGenFunction(*this).GenerateObjCMethod(OMD);
2161    break;
2162  }
2163  case Decl::ObjCCompatibleAlias:
2164    // compatibility-alias is a directive and has no code gen.
2165    break;
2166
2167  case Decl::LinkageSpec:
2168    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2169    break;
2170
2171  case Decl::FileScopeAsm: {
2172    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2173    llvm::StringRef AsmString = AD->getAsmString()->getString();
2174
2175    const std::string &S = getModule().getModuleInlineAsm();
2176    if (S.empty())
2177      getModule().setModuleInlineAsm(AsmString);
2178    else
2179      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2180    break;
2181  }
2182
2183  default:
2184    // Make sure we handled everything we should, every other kind is a
2185    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2186    // function. Need to recode Decl::Kind to do that easily.
2187    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2188  }
2189}
2190
2191/// Turns the given pointer into a constant.
2192static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2193                                          const void *Ptr) {
2194  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2195  const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2196  return llvm::ConstantInt::get(i64, PtrInt);
2197}
2198
2199static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2200                                   llvm::NamedMDNode *&GlobalMetadata,
2201                                   GlobalDecl D,
2202                                   llvm::GlobalValue *Addr) {
2203  if (!GlobalMetadata)
2204    GlobalMetadata =
2205      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2206
2207  // TODO: should we report variant information for ctors/dtors?
2208  llvm::Value *Ops[] = {
2209    Addr,
2210    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2211  };
2212  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2213}
2214
2215/// Emits metadata nodes associating all the global values in the
2216/// current module with the Decls they came from.  This is useful for
2217/// projects using IR gen as a subroutine.
2218///
2219/// Since there's currently no way to associate an MDNode directly
2220/// with an llvm::GlobalValue, we create a global named metadata
2221/// with the name 'clang.global.decl.ptrs'.
2222void CodeGenModule::EmitDeclMetadata() {
2223  llvm::NamedMDNode *GlobalMetadata = 0;
2224
2225  // StaticLocalDeclMap
2226  for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2227         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2228       I != E; ++I) {
2229    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2230    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2231  }
2232}
2233
2234/// Emits metadata nodes for all the local variables in the current
2235/// function.
2236void CodeGenFunction::EmitDeclMetadata() {
2237  if (LocalDeclMap.empty()) return;
2238
2239  llvm::LLVMContext &Context = getLLVMContext();
2240
2241  // Find the unique metadata ID for this name.
2242  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2243
2244  llvm::NamedMDNode *GlobalMetadata = 0;
2245
2246  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2247         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2248    const Decl *D = I->first;
2249    llvm::Value *Addr = I->second;
2250
2251    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2252      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2253      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2254    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2255      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2256      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2257    }
2258  }
2259}
2260
2261void CodeGenModule::EmitCoverageFile() {
2262  if (!getCodeGenOpts().CoverageFile.empty()) {
2263    if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2264      llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2265      llvm::LLVMContext &Ctx = TheModule.getContext();
2266      llvm::MDString *CoverageFile =
2267          llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2268      for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2269        llvm::MDNode *CU = CUNode->getOperand(i);
2270        llvm::Value *node[] = { CoverageFile, CU };
2271        llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2272        GCov->addOperand(N);
2273      }
2274    }
2275  }
2276}
2277
2278///@name Custom Runtime Function Interfaces
2279///@{
2280//
2281// FIXME: These can be eliminated once we can have clients just get the required
2282// AST nodes from the builtin tables.
2283
2284llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2285  if (BlockObjectDispose)
2286    return BlockObjectDispose;
2287
2288  // If we saw an explicit decl, use that.
2289  if (BlockObjectDisposeDecl) {
2290    return BlockObjectDispose = GetAddrOfFunction(
2291      BlockObjectDisposeDecl,
2292      getTypes().GetFunctionType(BlockObjectDisposeDecl));
2293  }
2294
2295  // Otherwise construct the function by hand.
2296  llvm::Type *args[] = { Int8PtrTy, Int32Ty };
2297  const llvm::FunctionType *fty
2298    = llvm::FunctionType::get(VoidTy, args, false);
2299  return BlockObjectDispose =
2300    CreateRuntimeFunction(fty, "_Block_object_dispose");
2301}
2302
2303llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2304  if (BlockObjectAssign)
2305    return BlockObjectAssign;
2306
2307  // If we saw an explicit decl, use that.
2308  if (BlockObjectAssignDecl) {
2309    return BlockObjectAssign = GetAddrOfFunction(
2310      BlockObjectAssignDecl,
2311      getTypes().GetFunctionType(BlockObjectAssignDecl));
2312  }
2313
2314  // Otherwise construct the function by hand.
2315  llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, Int32Ty };
2316  const llvm::FunctionType *fty
2317    = llvm::FunctionType::get(VoidTy, args, false);
2318  return BlockObjectAssign =
2319    CreateRuntimeFunction(fty, "_Block_object_assign");
2320}
2321
2322llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2323  if (NSConcreteGlobalBlock)
2324    return NSConcreteGlobalBlock;
2325
2326  // If we saw an explicit decl, use that.
2327  if (NSConcreteGlobalBlockDecl) {
2328    return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2329      NSConcreteGlobalBlockDecl,
2330      getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2331  }
2332
2333  // Otherwise construct the variable by hand.
2334  return NSConcreteGlobalBlock =
2335    CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock");
2336}
2337
2338llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2339  if (NSConcreteStackBlock)
2340    return NSConcreteStackBlock;
2341
2342  // If we saw an explicit decl, use that.
2343  if (NSConcreteStackBlockDecl) {
2344    return NSConcreteStackBlock = GetAddrOfGlobalVar(
2345      NSConcreteStackBlockDecl,
2346      getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2347  }
2348
2349  // Otherwise construct the variable by hand.
2350  return NSConcreteStackBlock =
2351    CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock");
2352}
2353
2354///@}
2355