CodeGenModule.cpp revision 2357aeec0da2740838963880edd97e43f14cb6fd
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CodeGenTBAA.h"
18#include "CGCall.h"
19#include "CGCXXABI.h"
20#include "CGObjCRuntime.h"
21#include "TargetInfo.h"
22#include "clang/Frontend/CodeGenOptions.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CharUnits.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclCXX.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/Mangle.h"
29#include "clang/AST/RecordLayout.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/Diagnostic.h"
32#include "clang/Basic/SourceManager.h"
33#include "clang/Basic/TargetInfo.h"
34#include "clang/Basic/ConvertUTF.h"
35#include "llvm/CallingConv.h"
36#include "llvm/Module.h"
37#include "llvm/Intrinsics.h"
38#include "llvm/LLVMContext.h"
39#include "llvm/ADT/Triple.h"
40#include "llvm/Target/Mangler.h"
41#include "llvm/Target/TargetData.h"
42#include "llvm/Support/CallSite.h"
43#include "llvm/Support/ErrorHandling.h"
44using namespace clang;
45using namespace CodeGen;
46
47static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
48  switch (CGM.getContext().Target.getCXXABI()) {
49  case CXXABI_ARM: return *CreateARMCXXABI(CGM);
50  case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
51  case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
52  }
53
54  llvm_unreachable("invalid C++ ABI kind");
55  return *CreateItaniumCXXABI(CGM);
56}
57
58
59CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
60                             llvm::Module &M, const llvm::TargetData &TD,
61                             Diagnostic &diags)
62  : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63    TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64    ABI(createCXXABI(*this)),
65    Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO),
66    TBAA(0),
67    VTables(*this), Runtime(0), DebugInfo(0), ARCData(0), RRData(0),
68    CFConstantStringClassRef(0), ConstantStringClassRef(0),
69    VMContext(M.getContext()),
70    NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72    BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73    BlockObjectAssign(0), BlockObjectDispose(0),
74    BlockDescriptorType(0), GenericBlockLiteralType(0) {
75  if (Features.ObjC1)
76     createObjCRuntime();
77
78  // Enable TBAA unless it's suppressed.
79  if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
80    TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
81                           ABI.getMangleContext());
82
83  // If debug info or coverage generation is enabled, create the CGDebugInfo
84  // object.
85  if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
86      CodeGenOpts.EmitGcovNotes)
87    DebugInfo = new CGDebugInfo(*this);
88
89  Block.GlobalUniqueCount = 0;
90
91  if (C.getLangOptions().ObjCAutoRefCount)
92    ARCData = new ARCEntrypoints();
93  RRData = new RREntrypoints();
94
95  // Initialize the type cache.
96  llvm::LLVMContext &LLVMContext = M.getContext();
97  VoidTy = llvm::Type::getVoidTy(LLVMContext);
98  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
99  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
100  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
101  PointerWidthInBits = C.Target.getPointerWidth(0);
102  PointerAlignInBytes =
103    C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity();
104  IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth());
105  IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
106  Int8PtrTy = Int8Ty->getPointerTo(0);
107  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
108}
109
110CodeGenModule::~CodeGenModule() {
111  delete Runtime;
112  delete &ABI;
113  delete TBAA;
114  delete DebugInfo;
115  delete ARCData;
116  delete RRData;
117}
118
119void CodeGenModule::createObjCRuntime() {
120  if (!Features.NeXTRuntime)
121    Runtime = CreateGNUObjCRuntime(*this);
122  else
123    Runtime = CreateMacObjCRuntime(*this);
124}
125
126void CodeGenModule::Release() {
127  EmitDeferred();
128  EmitCXXGlobalInitFunc();
129  EmitCXXGlobalDtorFunc();
130  if (Runtime)
131    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
132      AddGlobalCtor(ObjCInitFunction);
133  EmitCtorList(GlobalCtors, "llvm.global_ctors");
134  EmitCtorList(GlobalDtors, "llvm.global_dtors");
135  EmitAnnotations();
136  EmitLLVMUsed();
137
138  SimplifyPersonality();
139
140  if (getCodeGenOpts().EmitDeclMetadata)
141    EmitDeclMetadata();
142
143  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
144    EmitCoverageFile();
145}
146
147void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
148  // Make sure that this type is translated.
149  Types.UpdateCompletedType(TD);
150  if (DebugInfo)
151    DebugInfo->UpdateCompletedType(TD);
152}
153
154llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
155  if (!TBAA)
156    return 0;
157  return TBAA->getTBAAInfo(QTy);
158}
159
160void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
161                                        llvm::MDNode *TBAAInfo) {
162  Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
163}
164
165bool CodeGenModule::isTargetDarwin() const {
166  return getContext().Target.getTriple().isOSDarwin();
167}
168
169void CodeGenModule::Error(SourceLocation loc, llvm::StringRef error) {
170  unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error);
171  getDiags().Report(Context.getFullLoc(loc), diagID);
172}
173
174/// ErrorUnsupported - Print out an error that codegen doesn't support the
175/// specified stmt yet.
176void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
177                                     bool OmitOnError) {
178  if (OmitOnError && getDiags().hasErrorOccurred())
179    return;
180  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
181                                               "cannot compile this %0 yet");
182  std::string Msg = Type;
183  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
184    << Msg << S->getSourceRange();
185}
186
187/// ErrorUnsupported - Print out an error that codegen doesn't support the
188/// specified decl yet.
189void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
190                                     bool OmitOnError) {
191  if (OmitOnError && getDiags().hasErrorOccurred())
192    return;
193  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
194                                               "cannot compile this %0 yet");
195  std::string Msg = Type;
196  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
197}
198
199llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
200  return llvm::ConstantInt::get(SizeTy, size.getQuantity());
201}
202
203void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
204                                        const NamedDecl *D) const {
205  // Internal definitions always have default visibility.
206  if (GV->hasLocalLinkage()) {
207    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
208    return;
209  }
210
211  // Set visibility for definitions.
212  NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
213  if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
214    GV->setVisibility(GetLLVMVisibility(LV.visibility()));
215}
216
217/// Set the symbol visibility of type information (vtable and RTTI)
218/// associated with the given type.
219void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
220                                      const CXXRecordDecl *RD,
221                                      TypeVisibilityKind TVK) const {
222  setGlobalVisibility(GV, RD);
223
224  if (!CodeGenOpts.HiddenWeakVTables)
225    return;
226
227  // We never want to drop the visibility for RTTI names.
228  if (TVK == TVK_ForRTTIName)
229    return;
230
231  // We want to drop the visibility to hidden for weak type symbols.
232  // This isn't possible if there might be unresolved references
233  // elsewhere that rely on this symbol being visible.
234
235  // This should be kept roughly in sync with setThunkVisibility
236  // in CGVTables.cpp.
237
238  // Preconditions.
239  if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
240      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
241    return;
242
243  // Don't override an explicit visibility attribute.
244  if (RD->getExplicitVisibility())
245    return;
246
247  switch (RD->getTemplateSpecializationKind()) {
248  // We have to disable the optimization if this is an EI definition
249  // because there might be EI declarations in other shared objects.
250  case TSK_ExplicitInstantiationDefinition:
251  case TSK_ExplicitInstantiationDeclaration:
252    return;
253
254  // Every use of a non-template class's type information has to emit it.
255  case TSK_Undeclared:
256    break;
257
258  // In theory, implicit instantiations can ignore the possibility of
259  // an explicit instantiation declaration because there necessarily
260  // must be an EI definition somewhere with default visibility.  In
261  // practice, it's possible to have an explicit instantiation for
262  // an arbitrary template class, and linkers aren't necessarily able
263  // to deal with mixed-visibility symbols.
264  case TSK_ExplicitSpecialization:
265  case TSK_ImplicitInstantiation:
266    if (!CodeGenOpts.HiddenWeakTemplateVTables)
267      return;
268    break;
269  }
270
271  // If there's a key function, there may be translation units
272  // that don't have the key function's definition.  But ignore
273  // this if we're emitting RTTI under -fno-rtti.
274  if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
275    if (Context.getKeyFunction(RD))
276      return;
277  }
278
279  // Otherwise, drop the visibility to hidden.
280  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
281  GV->setUnnamedAddr(true);
282}
283
284llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
285  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
286
287  llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
288  if (!Str.empty())
289    return Str;
290
291  if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
292    IdentifierInfo *II = ND->getIdentifier();
293    assert(II && "Attempt to mangle unnamed decl.");
294
295    Str = II->getName();
296    return Str;
297  }
298
299  llvm::SmallString<256> Buffer;
300  llvm::raw_svector_ostream Out(Buffer);
301  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
302    getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
303  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
304    getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
305  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
306    getCXXABI().getMangleContext().mangleBlock(BD, Out);
307  else
308    getCXXABI().getMangleContext().mangleName(ND, Out);
309
310  // Allocate space for the mangled name.
311  Out.flush();
312  size_t Length = Buffer.size();
313  char *Name = MangledNamesAllocator.Allocate<char>(Length);
314  std::copy(Buffer.begin(), Buffer.end(), Name);
315
316  Str = llvm::StringRef(Name, Length);
317
318  return Str;
319}
320
321void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
322                                        const BlockDecl *BD) {
323  MangleContext &MangleCtx = getCXXABI().getMangleContext();
324  const Decl *D = GD.getDecl();
325  llvm::raw_svector_ostream Out(Buffer.getBuffer());
326  if (D == 0)
327    MangleCtx.mangleGlobalBlock(BD, Out);
328  else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
329    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
330  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
331    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
332  else
333    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
334}
335
336llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
337  return getModule().getNamedValue(Name);
338}
339
340/// AddGlobalCtor - Add a function to the list that will be called before
341/// main() runs.
342void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
343  // FIXME: Type coercion of void()* types.
344  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
345}
346
347/// AddGlobalDtor - Add a function to the list that will be called
348/// when the module is unloaded.
349void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
350  // FIXME: Type coercion of void()* types.
351  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
352}
353
354void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
355  // Ctor function type is void()*.
356  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
357  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
358
359  // Get the type of a ctor entry, { i32, void ()* }.
360  llvm::StructType *CtorStructTy =
361    llvm::StructType::get(llvm::Type::getInt32Ty(VMContext),
362                          llvm::PointerType::getUnqual(CtorFTy), NULL);
363
364  // Construct the constructor and destructor arrays.
365  std::vector<llvm::Constant*> Ctors;
366  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
367    std::vector<llvm::Constant*> S;
368    S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
369                I->second, false));
370    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
371    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
372  }
373
374  if (!Ctors.empty()) {
375    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
376    new llvm::GlobalVariable(TheModule, AT, false,
377                             llvm::GlobalValue::AppendingLinkage,
378                             llvm::ConstantArray::get(AT, Ctors),
379                             GlobalName);
380  }
381}
382
383void CodeGenModule::EmitAnnotations() {
384  if (Annotations.empty())
385    return;
386
387  // Create a new global variable for the ConstantStruct in the Module.
388  llvm::Constant *Array =
389  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
390                                                Annotations.size()),
391                           Annotations);
392  llvm::GlobalValue *gv =
393  new llvm::GlobalVariable(TheModule, Array->getType(), false,
394                           llvm::GlobalValue::AppendingLinkage, Array,
395                           "llvm.global.annotations");
396  gv->setSection("llvm.metadata");
397}
398
399llvm::GlobalValue::LinkageTypes
400CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
401  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
402
403  if (Linkage == GVA_Internal)
404    return llvm::Function::InternalLinkage;
405
406  if (D->hasAttr<DLLExportAttr>())
407    return llvm::Function::DLLExportLinkage;
408
409  if (D->hasAttr<WeakAttr>())
410    return llvm::Function::WeakAnyLinkage;
411
412  // In C99 mode, 'inline' functions are guaranteed to have a strong
413  // definition somewhere else, so we can use available_externally linkage.
414  if (Linkage == GVA_C99Inline)
415    return llvm::Function::AvailableExternallyLinkage;
416
417  // In C++, the compiler has to emit a definition in every translation unit
418  // that references the function.  We should use linkonce_odr because
419  // a) if all references in this translation unit are optimized away, we
420  // don't need to codegen it.  b) if the function persists, it needs to be
421  // merged with other definitions. c) C++ has the ODR, so we know the
422  // definition is dependable.
423  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
424    return !Context.getLangOptions().AppleKext
425             ? llvm::Function::LinkOnceODRLinkage
426             : llvm::Function::InternalLinkage;
427
428  // An explicit instantiation of a template has weak linkage, since
429  // explicit instantiations can occur in multiple translation units
430  // and must all be equivalent. However, we are not allowed to
431  // throw away these explicit instantiations.
432  if (Linkage == GVA_ExplicitTemplateInstantiation)
433    return !Context.getLangOptions().AppleKext
434             ? llvm::Function::WeakODRLinkage
435             : llvm::Function::InternalLinkage;
436
437  // Otherwise, we have strong external linkage.
438  assert(Linkage == GVA_StrongExternal);
439  return llvm::Function::ExternalLinkage;
440}
441
442
443/// SetFunctionDefinitionAttributes - Set attributes for a global.
444///
445/// FIXME: This is currently only done for aliases and functions, but not for
446/// variables (these details are set in EmitGlobalVarDefinition for variables).
447void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
448                                                    llvm::GlobalValue *GV) {
449  SetCommonAttributes(D, GV);
450}
451
452void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
453                                              const CGFunctionInfo &Info,
454                                              llvm::Function *F) {
455  unsigned CallingConv;
456  AttributeListType AttributeList;
457  ConstructAttributeList(Info, D, AttributeList, CallingConv);
458  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
459                                          AttributeList.size()));
460  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
461}
462
463void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
464                                                           llvm::Function *F) {
465  if (CodeGenOpts.UnwindTables)
466    F->setHasUWTable();
467
468  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
469    F->addFnAttr(llvm::Attribute::NoUnwind);
470
471  if (D->hasAttr<AlwaysInlineAttr>())
472    F->addFnAttr(llvm::Attribute::AlwaysInline);
473
474  if (D->hasAttr<NakedAttr>())
475    F->addFnAttr(llvm::Attribute::Naked);
476
477  if (D->hasAttr<NoInlineAttr>())
478    F->addFnAttr(llvm::Attribute::NoInline);
479
480  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
481    F->setUnnamedAddr(true);
482
483  if (Features.getStackProtectorMode() == LangOptions::SSPOn)
484    F->addFnAttr(llvm::Attribute::StackProtect);
485  else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
486    F->addFnAttr(llvm::Attribute::StackProtectReq);
487
488  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
489  if (alignment)
490    F->setAlignment(alignment);
491
492  // C++ ABI requires 2-byte alignment for member functions.
493  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
494    F->setAlignment(2);
495}
496
497void CodeGenModule::SetCommonAttributes(const Decl *D,
498                                        llvm::GlobalValue *GV) {
499  if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
500    setGlobalVisibility(GV, ND);
501  else
502    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
503
504  if (D->hasAttr<UsedAttr>())
505    AddUsedGlobal(GV);
506
507  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
508    GV->setSection(SA->getName());
509
510  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
511}
512
513void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
514                                                  llvm::Function *F,
515                                                  const CGFunctionInfo &FI) {
516  SetLLVMFunctionAttributes(D, FI, F);
517  SetLLVMFunctionAttributesForDefinition(D, F);
518
519  F->setLinkage(llvm::Function::InternalLinkage);
520
521  SetCommonAttributes(D, F);
522}
523
524void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
525                                          llvm::Function *F,
526                                          bool IsIncompleteFunction) {
527  if (unsigned IID = F->getIntrinsicID()) {
528    // If this is an intrinsic function, set the function's attributes
529    // to the intrinsic's attributes.
530    F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
531    return;
532  }
533
534  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
535
536  if (!IsIncompleteFunction)
537    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
538
539  // Only a few attributes are set on declarations; these may later be
540  // overridden by a definition.
541
542  if (FD->hasAttr<DLLImportAttr>()) {
543    F->setLinkage(llvm::Function::DLLImportLinkage);
544  } else if (FD->hasAttr<WeakAttr>() ||
545             FD->isWeakImported()) {
546    // "extern_weak" is overloaded in LLVM; we probably should have
547    // separate linkage types for this.
548    F->setLinkage(llvm::Function::ExternalWeakLinkage);
549  } else {
550    F->setLinkage(llvm::Function::ExternalLinkage);
551
552    NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
553    if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
554      F->setVisibility(GetLLVMVisibility(LV.visibility()));
555    }
556  }
557
558  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
559    F->setSection(SA->getName());
560}
561
562void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
563  assert(!GV->isDeclaration() &&
564         "Only globals with definition can force usage.");
565  LLVMUsed.push_back(GV);
566}
567
568void CodeGenModule::EmitLLVMUsed() {
569  // Don't create llvm.used if there is no need.
570  if (LLVMUsed.empty())
571    return;
572
573  const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
574
575  // Convert LLVMUsed to what ConstantArray needs.
576  std::vector<llvm::Constant*> UsedArray;
577  UsedArray.resize(LLVMUsed.size());
578  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
579    UsedArray[i] =
580     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
581                                      i8PTy);
582  }
583
584  if (UsedArray.empty())
585    return;
586  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
587
588  llvm::GlobalVariable *GV =
589    new llvm::GlobalVariable(getModule(), ATy, false,
590                             llvm::GlobalValue::AppendingLinkage,
591                             llvm::ConstantArray::get(ATy, UsedArray),
592                             "llvm.used");
593
594  GV->setSection("llvm.metadata");
595}
596
597void CodeGenModule::EmitDeferred() {
598  // Emit code for any potentially referenced deferred decls.  Since a
599  // previously unused static decl may become used during the generation of code
600  // for a static function, iterate until no changes are made.
601
602  while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
603    if (!DeferredVTables.empty()) {
604      const CXXRecordDecl *RD = DeferredVTables.back();
605      DeferredVTables.pop_back();
606      getVTables().GenerateClassData(getVTableLinkage(RD), RD);
607      continue;
608    }
609
610    GlobalDecl D = DeferredDeclsToEmit.back();
611    DeferredDeclsToEmit.pop_back();
612
613    // Check to see if we've already emitted this.  This is necessary
614    // for a couple of reasons: first, decls can end up in the
615    // deferred-decls queue multiple times, and second, decls can end
616    // up with definitions in unusual ways (e.g. by an extern inline
617    // function acquiring a strong function redefinition).  Just
618    // ignore these cases.
619    //
620    // TODO: That said, looking this up multiple times is very wasteful.
621    llvm::StringRef Name = getMangledName(D);
622    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
623    assert(CGRef && "Deferred decl wasn't referenced?");
624
625    if (!CGRef->isDeclaration())
626      continue;
627
628    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
629    // purposes an alias counts as a definition.
630    if (isa<llvm::GlobalAlias>(CGRef))
631      continue;
632
633    // Otherwise, emit the definition and move on to the next one.
634    EmitGlobalDefinition(D);
635  }
636}
637
638/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
639/// annotation information for a given GlobalValue.  The annotation struct is
640/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
641/// GlobalValue being annotated.  The second field is the constant string
642/// created from the AnnotateAttr's annotation.  The third field is a constant
643/// string containing the name of the translation unit.  The fourth field is
644/// the line number in the file of the annotated value declaration.
645///
646/// FIXME: this does not unique the annotation string constants, as llvm-gcc
647///        appears to.
648///
649llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
650                                                const AnnotateAttr *AA,
651                                                unsigned LineNo) {
652  llvm::Module *M = &getModule();
653
654  // get [N x i8] constants for the annotation string, and the filename string
655  // which are the 2nd and 3rd elements of the global annotation structure.
656  const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
657  llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
658                                                  AA->getAnnotation(), true);
659  llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
660                                                  M->getModuleIdentifier(),
661                                                  true);
662
663  // Get the two global values corresponding to the ConstantArrays we just
664  // created to hold the bytes of the strings.
665  llvm::GlobalValue *annoGV =
666    new llvm::GlobalVariable(*M, anno->getType(), false,
667                             llvm::GlobalValue::PrivateLinkage, anno,
668                             GV->getName());
669  // translation unit name string, emitted into the llvm.metadata section.
670  llvm::GlobalValue *unitGV =
671    new llvm::GlobalVariable(*M, unit->getType(), false,
672                             llvm::GlobalValue::PrivateLinkage, unit,
673                             ".str");
674  unitGV->setUnnamedAddr(true);
675
676  // Create the ConstantStruct for the global annotation.
677  llvm::Constant *Fields[4] = {
678    llvm::ConstantExpr::getBitCast(GV, SBP),
679    llvm::ConstantExpr::getBitCast(annoGV, SBP),
680    llvm::ConstantExpr::getBitCast(unitGV, SBP),
681    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
682  };
683  return llvm::ConstantStruct::getAnon(Fields);
684}
685
686bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
687  // Never defer when EmitAllDecls is specified.
688  if (Features.EmitAllDecls)
689    return false;
690
691  return !getContext().DeclMustBeEmitted(Global);
692}
693
694llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
695  const AliasAttr *AA = VD->getAttr<AliasAttr>();
696  assert(AA && "No alias?");
697
698  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
699
700  // See if there is already something with the target's name in the module.
701  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
702
703  llvm::Constant *Aliasee;
704  if (isa<llvm::FunctionType>(DeclTy))
705    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
706                                      /*ForVTable=*/false);
707  else
708    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
709                                    llvm::PointerType::getUnqual(DeclTy), 0);
710  if (!Entry) {
711    llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
712    F->setLinkage(llvm::Function::ExternalWeakLinkage);
713    WeakRefReferences.insert(F);
714  }
715
716  return Aliasee;
717}
718
719void CodeGenModule::EmitGlobal(GlobalDecl GD) {
720  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
721
722  // Weak references don't produce any output by themselves.
723  if (Global->hasAttr<WeakRefAttr>())
724    return;
725
726  // If this is an alias definition (which otherwise looks like a declaration)
727  // emit it now.
728  if (Global->hasAttr<AliasAttr>())
729    return EmitAliasDefinition(GD);
730
731  // Ignore declarations, they will be emitted on their first use.
732  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
733    if (FD->getIdentifier()) {
734      llvm::StringRef Name = FD->getName();
735      if (Name == "_Block_object_assign") {
736        BlockObjectAssignDecl = FD;
737      } else if (Name == "_Block_object_dispose") {
738        BlockObjectDisposeDecl = FD;
739      }
740    }
741
742    // Forward declarations are emitted lazily on first use.
743    if (!FD->doesThisDeclarationHaveABody()) {
744      if (!FD->doesDeclarationForceExternallyVisibleDefinition())
745        return;
746
747      const FunctionDecl *InlineDefinition = 0;
748      FD->getBody(InlineDefinition);
749
750      llvm::StringRef MangledName = getMangledName(GD);
751      llvm::StringMap<GlobalDecl>::iterator DDI =
752          DeferredDecls.find(MangledName);
753      if (DDI != DeferredDecls.end())
754        DeferredDecls.erase(DDI);
755      EmitGlobalDefinition(InlineDefinition);
756      return;
757    }
758  } else {
759    const VarDecl *VD = cast<VarDecl>(Global);
760    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
761
762    if (VD->getIdentifier()) {
763      llvm::StringRef Name = VD->getName();
764      if (Name == "_NSConcreteGlobalBlock") {
765        NSConcreteGlobalBlockDecl = VD;
766      } else if (Name == "_NSConcreteStackBlock") {
767        NSConcreteStackBlockDecl = VD;
768      }
769    }
770
771
772    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
773      return;
774  }
775
776  // Defer code generation when possible if this is a static definition, inline
777  // function etc.  These we only want to emit if they are used.
778  if (!MayDeferGeneration(Global)) {
779    // Emit the definition if it can't be deferred.
780    EmitGlobalDefinition(GD);
781    return;
782  }
783
784  // If we're deferring emission of a C++ variable with an
785  // initializer, remember the order in which it appeared in the file.
786  if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
787      cast<VarDecl>(Global)->hasInit()) {
788    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
789    CXXGlobalInits.push_back(0);
790  }
791
792  // If the value has already been used, add it directly to the
793  // DeferredDeclsToEmit list.
794  llvm::StringRef MangledName = getMangledName(GD);
795  if (GetGlobalValue(MangledName))
796    DeferredDeclsToEmit.push_back(GD);
797  else {
798    // Otherwise, remember that we saw a deferred decl with this name.  The
799    // first use of the mangled name will cause it to move into
800    // DeferredDeclsToEmit.
801    DeferredDecls[MangledName] = GD;
802  }
803}
804
805void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
806  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
807
808  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
809                                 Context.getSourceManager(),
810                                 "Generating code for declaration");
811
812  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
813    // At -O0, don't generate IR for functions with available_externally
814    // linkage.
815    if (CodeGenOpts.OptimizationLevel == 0 &&
816        !Function->hasAttr<AlwaysInlineAttr>() &&
817        getFunctionLinkage(Function)
818                                  == llvm::Function::AvailableExternallyLinkage)
819      return;
820
821    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
822      // Make sure to emit the definition(s) before we emit the thunks.
823      // This is necessary for the generation of certain thunks.
824      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
825        EmitCXXConstructor(CD, GD.getCtorType());
826      else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
827        EmitCXXDestructor(DD, GD.getDtorType());
828      else
829        EmitGlobalFunctionDefinition(GD);
830
831      if (Method->isVirtual())
832        getVTables().EmitThunks(GD);
833
834      return;
835    }
836
837    return EmitGlobalFunctionDefinition(GD);
838  }
839
840  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
841    return EmitGlobalVarDefinition(VD);
842
843  assert(0 && "Invalid argument to EmitGlobalDefinition()");
844}
845
846/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
847/// module, create and return an llvm Function with the specified type. If there
848/// is something in the module with the specified name, return it potentially
849/// bitcasted to the right type.
850///
851/// If D is non-null, it specifies a decl that correspond to this.  This is used
852/// to set the attributes on the function when it is first created.
853llvm::Constant *
854CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
855                                       const llvm::Type *Ty,
856                                       GlobalDecl D, bool ForVTable,
857                                       llvm::Attributes ExtraAttrs) {
858  // Lookup the entry, lazily creating it if necessary.
859  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
860  if (Entry) {
861    if (WeakRefReferences.count(Entry)) {
862      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
863      if (FD && !FD->hasAttr<WeakAttr>())
864        Entry->setLinkage(llvm::Function::ExternalLinkage);
865
866      WeakRefReferences.erase(Entry);
867    }
868
869    if (Entry->getType()->getElementType() == Ty)
870      return Entry;
871
872    // Make sure the result is of the correct type.
873    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
874    return llvm::ConstantExpr::getBitCast(Entry, PTy);
875  }
876
877  // This function doesn't have a complete type (for example, the return
878  // type is an incomplete struct). Use a fake type instead, and make
879  // sure not to try to set attributes.
880  bool IsIncompleteFunction = false;
881
882  const llvm::FunctionType *FTy;
883  if (isa<llvm::FunctionType>(Ty)) {
884    FTy = cast<llvm::FunctionType>(Ty);
885  } else {
886    FTy = llvm::FunctionType::get(VoidTy, false);
887    IsIncompleteFunction = true;
888  }
889
890  llvm::Function *F = llvm::Function::Create(FTy,
891                                             llvm::Function::ExternalLinkage,
892                                             MangledName, &getModule());
893  assert(F->getName() == MangledName && "name was uniqued!");
894  if (D.getDecl())
895    SetFunctionAttributes(D, F, IsIncompleteFunction);
896  if (ExtraAttrs != llvm::Attribute::None)
897    F->addFnAttr(ExtraAttrs);
898
899  // This is the first use or definition of a mangled name.  If there is a
900  // deferred decl with this name, remember that we need to emit it at the end
901  // of the file.
902  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
903  if (DDI != DeferredDecls.end()) {
904    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
905    // list, and remove it from DeferredDecls (since we don't need it anymore).
906    DeferredDeclsToEmit.push_back(DDI->second);
907    DeferredDecls.erase(DDI);
908
909  // Otherwise, there are cases we have to worry about where we're
910  // using a declaration for which we must emit a definition but where
911  // we might not find a top-level definition:
912  //   - member functions defined inline in their classes
913  //   - friend functions defined inline in some class
914  //   - special member functions with implicit definitions
915  // If we ever change our AST traversal to walk into class methods,
916  // this will be unnecessary.
917  //
918  // We also don't emit a definition for a function if it's going to be an entry
919  // in a vtable, unless it's already marked as used.
920  } else if (getLangOptions().CPlusPlus && D.getDecl()) {
921    // Look for a declaration that's lexically in a record.
922    const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
923    do {
924      if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
925        if (FD->isImplicit() && !ForVTable) {
926          assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
927          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
928          break;
929        } else if (FD->doesThisDeclarationHaveABody()) {
930          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
931          break;
932        }
933      }
934      FD = FD->getPreviousDeclaration();
935    } while (FD);
936  }
937
938  // Make sure the result is of the requested type.
939  if (!IsIncompleteFunction) {
940    assert(F->getType()->getElementType() == Ty);
941    return F;
942  }
943
944  const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
945  return llvm::ConstantExpr::getBitCast(F, PTy);
946}
947
948/// GetAddrOfFunction - Return the address of the given function.  If Ty is
949/// non-null, then this function will use the specified type if it has to
950/// create it (this occurs when we see a definition of the function).
951llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
952                                                 const llvm::Type *Ty,
953                                                 bool ForVTable) {
954  // If there was no specific requested type, just convert it now.
955  if (!Ty)
956    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
957
958  llvm::StringRef MangledName = getMangledName(GD);
959  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
960}
961
962/// CreateRuntimeFunction - Create a new runtime function with the specified
963/// type and name.
964llvm::Constant *
965CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
966                                     llvm::StringRef Name,
967                                     llvm::Attributes ExtraAttrs) {
968  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
969                                 ExtraAttrs);
970}
971
972static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D,
973                                 bool ConstantInit) {
974  if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
975    return false;
976
977  if (Context.getLangOptions().CPlusPlus) {
978    if (const RecordType *Record
979          = Context.getBaseElementType(D->getType())->getAs<RecordType>())
980      return ConstantInit &&
981             cast<CXXRecordDecl>(Record->getDecl())->isPOD() &&
982             !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields();
983  }
984
985  return true;
986}
987
988/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
989/// create and return an llvm GlobalVariable with the specified type.  If there
990/// is something in the module with the specified name, return it potentially
991/// bitcasted to the right type.
992///
993/// If D is non-null, it specifies a decl that correspond to this.  This is used
994/// to set the attributes on the global when it is first created.
995llvm::Constant *
996CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
997                                     const llvm::PointerType *Ty,
998                                     const VarDecl *D,
999                                     bool UnnamedAddr) {
1000  // Lookup the entry, lazily creating it if necessary.
1001  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1002  if (Entry) {
1003    if (WeakRefReferences.count(Entry)) {
1004      if (D && !D->hasAttr<WeakAttr>())
1005        Entry->setLinkage(llvm::Function::ExternalLinkage);
1006
1007      WeakRefReferences.erase(Entry);
1008    }
1009
1010    if (UnnamedAddr)
1011      Entry->setUnnamedAddr(true);
1012
1013    if (Entry->getType() == Ty)
1014      return Entry;
1015
1016    // Make sure the result is of the correct type.
1017    return llvm::ConstantExpr::getBitCast(Entry, Ty);
1018  }
1019
1020  // This is the first use or definition of a mangled name.  If there is a
1021  // deferred decl with this name, remember that we need to emit it at the end
1022  // of the file.
1023  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1024  if (DDI != DeferredDecls.end()) {
1025    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1026    // list, and remove it from DeferredDecls (since we don't need it anymore).
1027    DeferredDeclsToEmit.push_back(DDI->second);
1028    DeferredDecls.erase(DDI);
1029  }
1030
1031  llvm::GlobalVariable *GV =
1032    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1033                             llvm::GlobalValue::ExternalLinkage,
1034                             0, MangledName, 0,
1035                             false, Ty->getAddressSpace());
1036
1037  // Handle things which are present even on external declarations.
1038  if (D) {
1039    // FIXME: This code is overly simple and should be merged with other global
1040    // handling.
1041    GV->setConstant(DeclIsConstantGlobal(Context, D, false));
1042
1043    // Set linkage and visibility in case we never see a definition.
1044    NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1045    if (LV.linkage() != ExternalLinkage) {
1046      // Don't set internal linkage on declarations.
1047    } else {
1048      if (D->hasAttr<DLLImportAttr>())
1049        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1050      else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1051        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1052
1053      // Set visibility on a declaration only if it's explicit.
1054      if (LV.visibilityExplicit())
1055        GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1056    }
1057
1058    GV->setThreadLocal(D->isThreadSpecified());
1059  }
1060
1061  return GV;
1062}
1063
1064
1065llvm::GlobalVariable *
1066CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
1067                                      const llvm::Type *Ty,
1068                                      llvm::GlobalValue::LinkageTypes Linkage) {
1069  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1070  llvm::GlobalVariable *OldGV = 0;
1071
1072
1073  if (GV) {
1074    // Check if the variable has the right type.
1075    if (GV->getType()->getElementType() == Ty)
1076      return GV;
1077
1078    // Because C++ name mangling, the only way we can end up with an already
1079    // existing global with the same name is if it has been declared extern "C".
1080      assert(GV->isDeclaration() && "Declaration has wrong type!");
1081    OldGV = GV;
1082  }
1083
1084  // Create a new variable.
1085  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1086                                Linkage, 0, Name);
1087
1088  if (OldGV) {
1089    // Replace occurrences of the old variable if needed.
1090    GV->takeName(OldGV);
1091
1092    if (!OldGV->use_empty()) {
1093      llvm::Constant *NewPtrForOldDecl =
1094      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1095      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1096    }
1097
1098    OldGV->eraseFromParent();
1099  }
1100
1101  return GV;
1102}
1103
1104/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1105/// given global variable.  If Ty is non-null and if the global doesn't exist,
1106/// then it will be greated with the specified type instead of whatever the
1107/// normal requested type would be.
1108llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1109                                                  const llvm::Type *Ty) {
1110  assert(D->hasGlobalStorage() && "Not a global variable");
1111  QualType ASTTy = D->getType();
1112  if (Ty == 0)
1113    Ty = getTypes().ConvertTypeForMem(ASTTy);
1114
1115  const llvm::PointerType *PTy =
1116    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1117
1118  llvm::StringRef MangledName = getMangledName(D);
1119  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1120}
1121
1122/// CreateRuntimeVariable - Create a new runtime global variable with the
1123/// specified type and name.
1124llvm::Constant *
1125CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1126                                     llvm::StringRef Name) {
1127  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1128                               true);
1129}
1130
1131void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1132  assert(!D->getInit() && "Cannot emit definite definitions here!");
1133
1134  if (MayDeferGeneration(D)) {
1135    // If we have not seen a reference to this variable yet, place it
1136    // into the deferred declarations table to be emitted if needed
1137    // later.
1138    llvm::StringRef MangledName = getMangledName(D);
1139    if (!GetGlobalValue(MangledName)) {
1140      DeferredDecls[MangledName] = D;
1141      return;
1142    }
1143  }
1144
1145  // The tentative definition is the only definition.
1146  EmitGlobalVarDefinition(D);
1147}
1148
1149void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1150  if (DefinitionRequired)
1151    getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1152}
1153
1154llvm::GlobalVariable::LinkageTypes
1155CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1156  if (RD->getLinkage() != ExternalLinkage)
1157    return llvm::GlobalVariable::InternalLinkage;
1158
1159  if (const CXXMethodDecl *KeyFunction
1160                                    = RD->getASTContext().getKeyFunction(RD)) {
1161    // If this class has a key function, use that to determine the linkage of
1162    // the vtable.
1163    const FunctionDecl *Def = 0;
1164    if (KeyFunction->hasBody(Def))
1165      KeyFunction = cast<CXXMethodDecl>(Def);
1166
1167    switch (KeyFunction->getTemplateSpecializationKind()) {
1168      case TSK_Undeclared:
1169      case TSK_ExplicitSpecialization:
1170        // When compiling with optimizations turned on, we emit all vtables,
1171        // even if the key function is not defined in the current translation
1172        // unit. If this is the case, use available_externally linkage.
1173        if (!Def && CodeGenOpts.OptimizationLevel)
1174          return llvm::GlobalVariable::AvailableExternallyLinkage;
1175
1176        if (KeyFunction->isInlined())
1177          return !Context.getLangOptions().AppleKext ?
1178                   llvm::GlobalVariable::LinkOnceODRLinkage :
1179                   llvm::Function::InternalLinkage;
1180
1181        return llvm::GlobalVariable::ExternalLinkage;
1182
1183      case TSK_ImplicitInstantiation:
1184        return !Context.getLangOptions().AppleKext ?
1185                 llvm::GlobalVariable::LinkOnceODRLinkage :
1186                 llvm::Function::InternalLinkage;
1187
1188      case TSK_ExplicitInstantiationDefinition:
1189        return !Context.getLangOptions().AppleKext ?
1190                 llvm::GlobalVariable::WeakODRLinkage :
1191                 llvm::Function::InternalLinkage;
1192
1193      case TSK_ExplicitInstantiationDeclaration:
1194        // FIXME: Use available_externally linkage. However, this currently
1195        // breaks LLVM's build due to undefined symbols.
1196        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1197        return !Context.getLangOptions().AppleKext ?
1198                 llvm::GlobalVariable::LinkOnceODRLinkage :
1199                 llvm::Function::InternalLinkage;
1200    }
1201  }
1202
1203  if (Context.getLangOptions().AppleKext)
1204    return llvm::Function::InternalLinkage;
1205
1206  switch (RD->getTemplateSpecializationKind()) {
1207  case TSK_Undeclared:
1208  case TSK_ExplicitSpecialization:
1209  case TSK_ImplicitInstantiation:
1210    // FIXME: Use available_externally linkage. However, this currently
1211    // breaks LLVM's build due to undefined symbols.
1212    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1213  case TSK_ExplicitInstantiationDeclaration:
1214    return llvm::GlobalVariable::LinkOnceODRLinkage;
1215
1216  case TSK_ExplicitInstantiationDefinition:
1217      return llvm::GlobalVariable::WeakODRLinkage;
1218  }
1219
1220  // Silence GCC warning.
1221  return llvm::GlobalVariable::LinkOnceODRLinkage;
1222}
1223
1224CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1225    return Context.toCharUnitsFromBits(
1226      TheTargetData.getTypeStoreSizeInBits(Ty));
1227}
1228
1229void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1230  llvm::Constant *Init = 0;
1231  QualType ASTTy = D->getType();
1232  bool NonConstInit = false;
1233
1234  const Expr *InitExpr = D->getAnyInitializer();
1235
1236  if (!InitExpr) {
1237    // This is a tentative definition; tentative definitions are
1238    // implicitly initialized with { 0 }.
1239    //
1240    // Note that tentative definitions are only emitted at the end of
1241    // a translation unit, so they should never have incomplete
1242    // type. In addition, EmitTentativeDefinition makes sure that we
1243    // never attempt to emit a tentative definition if a real one
1244    // exists. A use may still exists, however, so we still may need
1245    // to do a RAUW.
1246    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1247    Init = EmitNullConstant(D->getType());
1248  } else {
1249    Init = EmitConstantExpr(InitExpr, D->getType());
1250    if (!Init) {
1251      QualType T = InitExpr->getType();
1252      if (D->getType()->isReferenceType())
1253        T = D->getType();
1254
1255      if (getLangOptions().CPlusPlus) {
1256        Init = EmitNullConstant(T);
1257        NonConstInit = true;
1258      } else {
1259        ErrorUnsupported(D, "static initializer");
1260        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1261      }
1262    } else {
1263      // We don't need an initializer, so remove the entry for the delayed
1264      // initializer position (just in case this entry was delayed).
1265      if (getLangOptions().CPlusPlus)
1266        DelayedCXXInitPosition.erase(D);
1267    }
1268  }
1269
1270  const llvm::Type* InitType = Init->getType();
1271  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1272
1273  // Strip off a bitcast if we got one back.
1274  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1275    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1276           // all zero index gep.
1277           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1278    Entry = CE->getOperand(0);
1279  }
1280
1281  // Entry is now either a Function or GlobalVariable.
1282  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1283
1284  // We have a definition after a declaration with the wrong type.
1285  // We must make a new GlobalVariable* and update everything that used OldGV
1286  // (a declaration or tentative definition) with the new GlobalVariable*
1287  // (which will be a definition).
1288  //
1289  // This happens if there is a prototype for a global (e.g.
1290  // "extern int x[];") and then a definition of a different type (e.g.
1291  // "int x[10];"). This also happens when an initializer has a different type
1292  // from the type of the global (this happens with unions).
1293  if (GV == 0 ||
1294      GV->getType()->getElementType() != InitType ||
1295      GV->getType()->getAddressSpace() !=
1296        getContext().getTargetAddressSpace(ASTTy)) {
1297
1298    // Move the old entry aside so that we'll create a new one.
1299    Entry->setName(llvm::StringRef());
1300
1301    // Make a new global with the correct type, this is now guaranteed to work.
1302    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1303
1304    // Replace all uses of the old global with the new global
1305    llvm::Constant *NewPtrForOldDecl =
1306        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1307    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1308
1309    // Erase the old global, since it is no longer used.
1310    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1311  }
1312
1313  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1314    SourceManager &SM = Context.getSourceManager();
1315    AddAnnotation(EmitAnnotateAttr(GV, AA,
1316                              SM.getInstantiationLineNumber(D->getLocation())));
1317  }
1318
1319  GV->setInitializer(Init);
1320
1321  // If it is safe to mark the global 'constant', do so now.
1322  GV->setConstant(false);
1323  if (!NonConstInit && DeclIsConstantGlobal(Context, D, true))
1324    GV->setConstant(true);
1325
1326  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1327
1328  // Set the llvm linkage type as appropriate.
1329  llvm::GlobalValue::LinkageTypes Linkage =
1330    GetLLVMLinkageVarDefinition(D, GV);
1331  GV->setLinkage(Linkage);
1332  if (Linkage == llvm::GlobalVariable::CommonLinkage)
1333    // common vars aren't constant even if declared const.
1334    GV->setConstant(false);
1335
1336  SetCommonAttributes(D, GV);
1337
1338  // Emit the initializer function if necessary.
1339  if (NonConstInit)
1340    EmitCXXGlobalVarDeclInitFunc(D, GV);
1341
1342  // Emit global variable debug information.
1343  if (CGDebugInfo *DI = getModuleDebugInfo()) {
1344    DI->setLocation(D->getLocation());
1345    DI->EmitGlobalVariable(GV, D);
1346  }
1347}
1348
1349llvm::GlobalValue::LinkageTypes
1350CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1351                                           llvm::GlobalVariable *GV) {
1352  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1353  if (Linkage == GVA_Internal)
1354    return llvm::Function::InternalLinkage;
1355  else if (D->hasAttr<DLLImportAttr>())
1356    return llvm::Function::DLLImportLinkage;
1357  else if (D->hasAttr<DLLExportAttr>())
1358    return llvm::Function::DLLExportLinkage;
1359  else if (D->hasAttr<WeakAttr>()) {
1360    if (GV->isConstant())
1361      return llvm::GlobalVariable::WeakODRLinkage;
1362    else
1363      return llvm::GlobalVariable::WeakAnyLinkage;
1364  } else if (Linkage == GVA_TemplateInstantiation ||
1365             Linkage == GVA_ExplicitTemplateInstantiation)
1366    return llvm::GlobalVariable::WeakODRLinkage;
1367  else if (!getLangOptions().CPlusPlus &&
1368           ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1369             D->getAttr<CommonAttr>()) &&
1370           !D->hasExternalStorage() && !D->getInit() &&
1371           !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1372           !D->getAttr<WeakImportAttr>()) {
1373    // Thread local vars aren't considered common linkage.
1374    return llvm::GlobalVariable::CommonLinkage;
1375  }
1376  return llvm::GlobalVariable::ExternalLinkage;
1377}
1378
1379/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1380/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1381/// existing call uses of the old function in the module, this adjusts them to
1382/// call the new function directly.
1383///
1384/// This is not just a cleanup: the always_inline pass requires direct calls to
1385/// functions to be able to inline them.  If there is a bitcast in the way, it
1386/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1387/// run at -O0.
1388static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1389                                                      llvm::Function *NewFn) {
1390  // If we're redefining a global as a function, don't transform it.
1391  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1392  if (OldFn == 0) return;
1393
1394  const llvm::Type *NewRetTy = NewFn->getReturnType();
1395  llvm::SmallVector<llvm::Value*, 4> ArgList;
1396
1397  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1398       UI != E; ) {
1399    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1400    llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1401    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1402    if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1403    llvm::CallSite CS(CI);
1404    if (!CI || !CS.isCallee(I)) continue;
1405
1406    // If the return types don't match exactly, and if the call isn't dead, then
1407    // we can't transform this call.
1408    if (CI->getType() != NewRetTy && !CI->use_empty())
1409      continue;
1410
1411    // If the function was passed too few arguments, don't transform.  If extra
1412    // arguments were passed, we silently drop them.  If any of the types
1413    // mismatch, we don't transform.
1414    unsigned ArgNo = 0;
1415    bool DontTransform = false;
1416    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1417         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1418      if (CS.arg_size() == ArgNo ||
1419          CS.getArgument(ArgNo)->getType() != AI->getType()) {
1420        DontTransform = true;
1421        break;
1422      }
1423    }
1424    if (DontTransform)
1425      continue;
1426
1427    // Okay, we can transform this.  Create the new call instruction and copy
1428    // over the required information.
1429    ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1430    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1431                                                     ArgList.end(), "", CI);
1432    ArgList.clear();
1433    if (!NewCall->getType()->isVoidTy())
1434      NewCall->takeName(CI);
1435    NewCall->setAttributes(CI->getAttributes());
1436    NewCall->setCallingConv(CI->getCallingConv());
1437
1438    // Finally, remove the old call, replacing any uses with the new one.
1439    if (!CI->use_empty())
1440      CI->replaceAllUsesWith(NewCall);
1441
1442    // Copy debug location attached to CI.
1443    if (!CI->getDebugLoc().isUnknown())
1444      NewCall->setDebugLoc(CI->getDebugLoc());
1445    CI->eraseFromParent();
1446  }
1447}
1448
1449
1450void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1451  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1452
1453  // Compute the function info and LLVM type.
1454  const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1455  bool variadic = false;
1456  if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1457    variadic = fpt->isVariadic();
1458  const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic, false);
1459
1460  // Get or create the prototype for the function.
1461  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1462
1463  // Strip off a bitcast if we got one back.
1464  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1465    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1466    Entry = CE->getOperand(0);
1467  }
1468
1469
1470  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1471    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1472
1473    // If the types mismatch then we have to rewrite the definition.
1474    assert(OldFn->isDeclaration() &&
1475           "Shouldn't replace non-declaration");
1476
1477    // F is the Function* for the one with the wrong type, we must make a new
1478    // Function* and update everything that used F (a declaration) with the new
1479    // Function* (which will be a definition).
1480    //
1481    // This happens if there is a prototype for a function
1482    // (e.g. "int f()") and then a definition of a different type
1483    // (e.g. "int f(int x)").  Move the old function aside so that it
1484    // doesn't interfere with GetAddrOfFunction.
1485    OldFn->setName(llvm::StringRef());
1486    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1487
1488    // If this is an implementation of a function without a prototype, try to
1489    // replace any existing uses of the function (which may be calls) with uses
1490    // of the new function
1491    if (D->getType()->isFunctionNoProtoType()) {
1492      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1493      OldFn->removeDeadConstantUsers();
1494    }
1495
1496    // Replace uses of F with the Function we will endow with a body.
1497    if (!Entry->use_empty()) {
1498      llvm::Constant *NewPtrForOldDecl =
1499        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1500      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1501    }
1502
1503    // Ok, delete the old function now, which is dead.
1504    OldFn->eraseFromParent();
1505
1506    Entry = NewFn;
1507  }
1508
1509  // We need to set linkage and visibility on the function before
1510  // generating code for it because various parts of IR generation
1511  // want to propagate this information down (e.g. to local static
1512  // declarations).
1513  llvm::Function *Fn = cast<llvm::Function>(Entry);
1514  setFunctionLinkage(D, Fn);
1515
1516  // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1517  setGlobalVisibility(Fn, D);
1518
1519  CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1520
1521  SetFunctionDefinitionAttributes(D, Fn);
1522  SetLLVMFunctionAttributesForDefinition(D, Fn);
1523
1524  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1525    AddGlobalCtor(Fn, CA->getPriority());
1526  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1527    AddGlobalDtor(Fn, DA->getPriority());
1528}
1529
1530void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1531  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1532  const AliasAttr *AA = D->getAttr<AliasAttr>();
1533  assert(AA && "Not an alias?");
1534
1535  llvm::StringRef MangledName = getMangledName(GD);
1536
1537  // If there is a definition in the module, then it wins over the alias.
1538  // This is dubious, but allow it to be safe.  Just ignore the alias.
1539  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1540  if (Entry && !Entry->isDeclaration())
1541    return;
1542
1543  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1544
1545  // Create a reference to the named value.  This ensures that it is emitted
1546  // if a deferred decl.
1547  llvm::Constant *Aliasee;
1548  if (isa<llvm::FunctionType>(DeclTy))
1549    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1550                                      /*ForVTable=*/false);
1551  else
1552    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1553                                    llvm::PointerType::getUnqual(DeclTy), 0);
1554
1555  // Create the new alias itself, but don't set a name yet.
1556  llvm::GlobalValue *GA =
1557    new llvm::GlobalAlias(Aliasee->getType(),
1558                          llvm::Function::ExternalLinkage,
1559                          "", Aliasee, &getModule());
1560
1561  if (Entry) {
1562    assert(Entry->isDeclaration());
1563
1564    // If there is a declaration in the module, then we had an extern followed
1565    // by the alias, as in:
1566    //   extern int test6();
1567    //   ...
1568    //   int test6() __attribute__((alias("test7")));
1569    //
1570    // Remove it and replace uses of it with the alias.
1571    GA->takeName(Entry);
1572
1573    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1574                                                          Entry->getType()));
1575    Entry->eraseFromParent();
1576  } else {
1577    GA->setName(MangledName);
1578  }
1579
1580  // Set attributes which are particular to an alias; this is a
1581  // specialization of the attributes which may be set on a global
1582  // variable/function.
1583  if (D->hasAttr<DLLExportAttr>()) {
1584    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1585      // The dllexport attribute is ignored for undefined symbols.
1586      if (FD->hasBody())
1587        GA->setLinkage(llvm::Function::DLLExportLinkage);
1588    } else {
1589      GA->setLinkage(llvm::Function::DLLExportLinkage);
1590    }
1591  } else if (D->hasAttr<WeakAttr>() ||
1592             D->hasAttr<WeakRefAttr>() ||
1593             D->isWeakImported()) {
1594    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1595  }
1596
1597  SetCommonAttributes(D, GA);
1598}
1599
1600/// getBuiltinLibFunction - Given a builtin id for a function like
1601/// "__builtin_fabsf", return a Function* for "fabsf".
1602llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1603                                                  unsigned BuiltinID) {
1604  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1605          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1606         "isn't a lib fn");
1607
1608  // Get the name, skip over the __builtin_ prefix (if necessary).
1609  llvm::StringRef Name;
1610  GlobalDecl D(FD);
1611
1612  // If the builtin has been declared explicitly with an assembler label,
1613  // use the mangled name. This differs from the plain label on platforms
1614  // that prefix labels.
1615  if (FD->hasAttr<AsmLabelAttr>())
1616    Name = getMangledName(D);
1617  else if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1618    Name = Context.BuiltinInfo.GetName(BuiltinID) + 10;
1619  else
1620    Name = Context.BuiltinInfo.GetName(BuiltinID);
1621
1622
1623  const llvm::FunctionType *Ty =
1624    cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1625
1626  return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
1627}
1628
1629llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1630                                            unsigned NumTys) {
1631  return llvm::Intrinsic::getDeclaration(&getModule(),
1632                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1633}
1634
1635static llvm::StringMapEntry<llvm::Constant*> &
1636GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1637                         const StringLiteral *Literal,
1638                         bool TargetIsLSB,
1639                         bool &IsUTF16,
1640                         unsigned &StringLength) {
1641  llvm::StringRef String = Literal->getString();
1642  unsigned NumBytes = String.size();
1643
1644  // Check for simple case.
1645  if (!Literal->containsNonAsciiOrNull()) {
1646    StringLength = NumBytes;
1647    return Map.GetOrCreateValue(String);
1648  }
1649
1650  // Otherwise, convert the UTF8 literals into a byte string.
1651  llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1652  const UTF8 *FromPtr = (UTF8 *)String.data();
1653  UTF16 *ToPtr = &ToBuf[0];
1654
1655  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1656                           &ToPtr, ToPtr + NumBytes,
1657                           strictConversion);
1658
1659  // ConvertUTF8toUTF16 returns the length in ToPtr.
1660  StringLength = ToPtr - &ToBuf[0];
1661
1662  // Render the UTF-16 string into a byte array and convert to the target byte
1663  // order.
1664  //
1665  // FIXME: This isn't something we should need to do here.
1666  llvm::SmallString<128> AsBytes;
1667  AsBytes.reserve(StringLength * 2);
1668  for (unsigned i = 0; i != StringLength; ++i) {
1669    unsigned short Val = ToBuf[i];
1670    if (TargetIsLSB) {
1671      AsBytes.push_back(Val & 0xFF);
1672      AsBytes.push_back(Val >> 8);
1673    } else {
1674      AsBytes.push_back(Val >> 8);
1675      AsBytes.push_back(Val & 0xFF);
1676    }
1677  }
1678  // Append one extra null character, the second is automatically added by our
1679  // caller.
1680  AsBytes.push_back(0);
1681
1682  IsUTF16 = true;
1683  return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1684}
1685
1686static llvm::StringMapEntry<llvm::Constant*> &
1687GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1688		       const StringLiteral *Literal,
1689		       unsigned &StringLength)
1690{
1691	llvm::StringRef String = Literal->getString();
1692	StringLength = String.size();
1693	return Map.GetOrCreateValue(String);
1694}
1695
1696llvm::Constant *
1697CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1698  unsigned StringLength = 0;
1699  bool isUTF16 = false;
1700  llvm::StringMapEntry<llvm::Constant*> &Entry =
1701    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1702                             getTargetData().isLittleEndian(),
1703                             isUTF16, StringLength);
1704
1705  if (llvm::Constant *C = Entry.getValue())
1706    return C;
1707
1708  llvm::Constant *Zero =
1709      llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1710  llvm::Constant *Zeros[] = { Zero, Zero };
1711
1712  // If we don't already have it, get __CFConstantStringClassReference.
1713  if (!CFConstantStringClassRef) {
1714    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1715    Ty = llvm::ArrayType::get(Ty, 0);
1716    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1717                                           "__CFConstantStringClassReference");
1718    // Decay array -> ptr
1719    CFConstantStringClassRef =
1720      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1721  }
1722
1723  QualType CFTy = getContext().getCFConstantStringType();
1724
1725  const llvm::StructType *STy =
1726    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1727
1728  std::vector<llvm::Constant*> Fields(4);
1729
1730  // Class pointer.
1731  Fields[0] = CFConstantStringClassRef;
1732
1733  // Flags.
1734  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1735  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1736    llvm::ConstantInt::get(Ty, 0x07C8);
1737
1738  // String pointer.
1739  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1740
1741  llvm::GlobalValue::LinkageTypes Linkage;
1742  bool isConstant;
1743  if (isUTF16) {
1744    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1745    Linkage = llvm::GlobalValue::InternalLinkage;
1746    // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1747    // does make plain ascii ones writable.
1748    isConstant = true;
1749  } else {
1750    // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1751    // when using private linkage. It is not clear if this is a bug in ld
1752    // or a reasonable new restriction.
1753    Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1754    isConstant = !Features.WritableStrings;
1755  }
1756
1757  llvm::GlobalVariable *GV =
1758    new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1759                             ".str");
1760  GV->setUnnamedAddr(true);
1761  if (isUTF16) {
1762    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1763    GV->setAlignment(Align.getQuantity());
1764  } else {
1765    CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1766    GV->setAlignment(Align.getQuantity());
1767  }
1768  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1769
1770  // String length.
1771  Ty = getTypes().ConvertType(getContext().LongTy);
1772  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1773
1774  // The struct.
1775  C = llvm::ConstantStruct::get(STy, Fields);
1776  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1777                                llvm::GlobalVariable::PrivateLinkage, C,
1778                                "_unnamed_cfstring_");
1779  if (const char *Sect = getContext().Target.getCFStringSection())
1780    GV->setSection(Sect);
1781  Entry.setValue(GV);
1782
1783  return GV;
1784}
1785
1786llvm::Constant *
1787CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1788  unsigned StringLength = 0;
1789  llvm::StringMapEntry<llvm::Constant*> &Entry =
1790    GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
1791
1792  if (llvm::Constant *C = Entry.getValue())
1793    return C;
1794
1795  llvm::Constant *Zero =
1796  llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1797  llvm::Constant *Zeros[] = { Zero, Zero };
1798
1799  // If we don't already have it, get _NSConstantStringClassReference.
1800  if (!ConstantStringClassRef) {
1801    std::string StringClass(getLangOptions().ObjCConstantStringClass);
1802    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1803    llvm::Constant *GV;
1804    if (Features.ObjCNonFragileABI) {
1805      std::string str =
1806        StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1807                            : "OBJC_CLASS_$_" + StringClass;
1808      GV = getObjCRuntime().GetClassGlobal(str);
1809      // Make sure the result is of the correct type.
1810      const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1811      ConstantStringClassRef =
1812        llvm::ConstantExpr::getBitCast(GV, PTy);
1813    } else {
1814      std::string str =
1815        StringClass.empty() ? "_NSConstantStringClassReference"
1816                            : "_" + StringClass + "ClassReference";
1817      const llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
1818      GV = CreateRuntimeVariable(PTy, str);
1819      // Decay array -> ptr
1820      ConstantStringClassRef =
1821        llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1822    }
1823  }
1824
1825  QualType NSTy = getContext().getNSConstantStringType();
1826
1827  const llvm::StructType *STy =
1828  cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1829
1830  std::vector<llvm::Constant*> Fields(3);
1831
1832  // Class pointer.
1833  Fields[0] = ConstantStringClassRef;
1834
1835  // String pointer.
1836  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1837
1838  llvm::GlobalValue::LinkageTypes Linkage;
1839  bool isConstant;
1840  Linkage = llvm::GlobalValue::PrivateLinkage;
1841  isConstant = !Features.WritableStrings;
1842
1843  llvm::GlobalVariable *GV =
1844  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1845                           ".str");
1846  GV->setUnnamedAddr(true);
1847  CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1848  GV->setAlignment(Align.getQuantity());
1849  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1850
1851  // String length.
1852  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1853  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1854
1855  // The struct.
1856  C = llvm::ConstantStruct::get(STy, Fields);
1857  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1858                                llvm::GlobalVariable::PrivateLinkage, C,
1859                                "_unnamed_nsstring_");
1860  // FIXME. Fix section.
1861  if (const char *Sect =
1862        Features.ObjCNonFragileABI
1863          ? getContext().Target.getNSStringNonFragileABISection()
1864          : getContext().Target.getNSStringSection())
1865    GV->setSection(Sect);
1866  Entry.setValue(GV);
1867
1868  return GV;
1869}
1870
1871/// GetStringForStringLiteral - Return the appropriate bytes for a
1872/// string literal, properly padded to match the literal type.
1873std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1874  const ASTContext &Context = getContext();
1875  const ConstantArrayType *CAT =
1876    Context.getAsConstantArrayType(E->getType());
1877  assert(CAT && "String isn't pointer or array!");
1878
1879  // Resize the string to the right size.
1880  uint64_t RealLen = CAT->getSize().getZExtValue();
1881
1882  if (E->isWide())
1883    RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1884
1885  std::string Str = E->getString().str();
1886  Str.resize(RealLen, '\0');
1887
1888  return Str;
1889}
1890
1891/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1892/// constant array for the given string literal.
1893llvm::Constant *
1894CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1895  // FIXME: This can be more efficient.
1896  // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1897  llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1898  if (S->isWide()) {
1899    llvm::Type *DestTy =
1900        llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1901    C = llvm::ConstantExpr::getBitCast(C, DestTy);
1902  }
1903  return C;
1904}
1905
1906/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1907/// array for the given ObjCEncodeExpr node.
1908llvm::Constant *
1909CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1910  std::string Str;
1911  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1912
1913  return GetAddrOfConstantCString(Str);
1914}
1915
1916
1917/// GenerateWritableString -- Creates storage for a string literal.
1918static llvm::Constant *GenerateStringLiteral(llvm::StringRef str,
1919                                             bool constant,
1920                                             CodeGenModule &CGM,
1921                                             const char *GlobalName) {
1922  // Create Constant for this string literal. Don't add a '\0'.
1923  llvm::Constant *C =
1924      llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1925
1926  // Create a global variable for this string
1927  llvm::GlobalVariable *GV =
1928    new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1929                             llvm::GlobalValue::PrivateLinkage,
1930                             C, GlobalName);
1931  GV->setAlignment(1);
1932  GV->setUnnamedAddr(true);
1933  return GV;
1934}
1935
1936/// GetAddrOfConstantString - Returns a pointer to a character array
1937/// containing the literal. This contents are exactly that of the
1938/// given string, i.e. it will not be null terminated automatically;
1939/// see GetAddrOfConstantCString. Note that whether the result is
1940/// actually a pointer to an LLVM constant depends on
1941/// Feature.WriteableStrings.
1942///
1943/// The result has pointer to array type.
1944llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str,
1945                                                       const char *GlobalName) {
1946  bool IsConstant = !Features.WritableStrings;
1947
1948  // Get the default prefix if a name wasn't specified.
1949  if (!GlobalName)
1950    GlobalName = ".str";
1951
1952  // Don't share any string literals if strings aren't constant.
1953  if (!IsConstant)
1954    return GenerateStringLiteral(Str, false, *this, GlobalName);
1955
1956  llvm::StringMapEntry<llvm::Constant *> &Entry =
1957    ConstantStringMap.GetOrCreateValue(Str);
1958
1959  if (Entry.getValue())
1960    return Entry.getValue();
1961
1962  // Create a global variable for this.
1963  llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName);
1964  Entry.setValue(C);
1965  return C;
1966}
1967
1968/// GetAddrOfConstantCString - Returns a pointer to a character
1969/// array containing the literal and a terminating '\0'
1970/// character. The result has pointer to array type.
1971llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
1972                                                        const char *GlobalName){
1973  llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1);
1974  return GetAddrOfConstantString(StrWithNull, GlobalName);
1975}
1976
1977/// EmitObjCPropertyImplementations - Emit information for synthesized
1978/// properties for an implementation.
1979void CodeGenModule::EmitObjCPropertyImplementations(const
1980                                                    ObjCImplementationDecl *D) {
1981  for (ObjCImplementationDecl::propimpl_iterator
1982         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1983    ObjCPropertyImplDecl *PID = *i;
1984
1985    // Dynamic is just for type-checking.
1986    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1987      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1988
1989      // Determine which methods need to be implemented, some may have
1990      // been overridden. Note that ::isSynthesized is not the method
1991      // we want, that just indicates if the decl came from a
1992      // property. What we want to know is if the method is defined in
1993      // this implementation.
1994      if (!D->getInstanceMethod(PD->getGetterName()))
1995        CodeGenFunction(*this).GenerateObjCGetter(
1996                                 const_cast<ObjCImplementationDecl *>(D), PID);
1997      if (!PD->isReadOnly() &&
1998          !D->getInstanceMethod(PD->getSetterName()))
1999        CodeGenFunction(*this).GenerateObjCSetter(
2000                                 const_cast<ObjCImplementationDecl *>(D), PID);
2001    }
2002  }
2003}
2004
2005static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2006  ObjCInterfaceDecl *iface
2007    = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface());
2008  for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2009       ivar; ivar = ivar->getNextIvar())
2010    if (ivar->getType().isDestructedType())
2011      return true;
2012
2013  return false;
2014}
2015
2016/// EmitObjCIvarInitializations - Emit information for ivar initialization
2017/// for an implementation.
2018void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2019  // We might need a .cxx_destruct even if we don't have any ivar initializers.
2020  if (needsDestructMethod(D)) {
2021    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2022    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2023    ObjCMethodDecl *DTORMethod =
2024      ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2025                             cxxSelector, getContext().VoidTy, 0, D, true,
2026                             false, true, false, ObjCMethodDecl::Required);
2027    D->addInstanceMethod(DTORMethod);
2028    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2029    D->setHasCXXStructors(true);
2030  }
2031
2032  // If the implementation doesn't have any ivar initializers, we don't need
2033  // a .cxx_construct.
2034  if (D->getNumIvarInitializers() == 0)
2035    return;
2036
2037  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2038  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2039  // The constructor returns 'self'.
2040  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2041                                                D->getLocation(),
2042                                                D->getLocation(), cxxSelector,
2043                                                getContext().getObjCIdType(), 0,
2044                                                D, true, false, true, false,
2045                                                ObjCMethodDecl::Required);
2046  D->addInstanceMethod(CTORMethod);
2047  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2048  D->setHasCXXStructors(true);
2049}
2050
2051/// EmitNamespace - Emit all declarations in a namespace.
2052void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2053  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2054       I != E; ++I)
2055    EmitTopLevelDecl(*I);
2056}
2057
2058// EmitLinkageSpec - Emit all declarations in a linkage spec.
2059void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2060  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2061      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2062    ErrorUnsupported(LSD, "linkage spec");
2063    return;
2064  }
2065
2066  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2067       I != E; ++I)
2068    EmitTopLevelDecl(*I);
2069}
2070
2071/// EmitTopLevelDecl - Emit code for a single top level declaration.
2072void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2073  // If an error has occurred, stop code generation, but continue
2074  // parsing and semantic analysis (to ensure all warnings and errors
2075  // are emitted).
2076  if (Diags.hasErrorOccurred())
2077    return;
2078
2079  // Ignore dependent declarations.
2080  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2081    return;
2082
2083  switch (D->getKind()) {
2084  case Decl::CXXConversion:
2085  case Decl::CXXMethod:
2086  case Decl::Function:
2087    // Skip function templates
2088    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2089        cast<FunctionDecl>(D)->isLateTemplateParsed())
2090      return;
2091
2092    EmitGlobal(cast<FunctionDecl>(D));
2093    break;
2094
2095  case Decl::Var:
2096    EmitGlobal(cast<VarDecl>(D));
2097    break;
2098
2099  // Indirect fields from global anonymous structs and unions can be
2100  // ignored; only the actual variable requires IR gen support.
2101  case Decl::IndirectField:
2102    break;
2103
2104  // C++ Decls
2105  case Decl::Namespace:
2106    EmitNamespace(cast<NamespaceDecl>(D));
2107    break;
2108    // No code generation needed.
2109  case Decl::UsingShadow:
2110  case Decl::Using:
2111  case Decl::UsingDirective:
2112  case Decl::ClassTemplate:
2113  case Decl::FunctionTemplate:
2114  case Decl::TypeAliasTemplate:
2115  case Decl::NamespaceAlias:
2116  case Decl::Block:
2117    break;
2118  case Decl::CXXConstructor:
2119    // Skip function templates
2120    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2121        cast<FunctionDecl>(D)->isLateTemplateParsed())
2122      return;
2123
2124    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2125    break;
2126  case Decl::CXXDestructor:
2127    if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2128      return;
2129    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2130    break;
2131
2132  case Decl::StaticAssert:
2133    // Nothing to do.
2134    break;
2135
2136  // Objective-C Decls
2137
2138  // Forward declarations, no (immediate) code generation.
2139  case Decl::ObjCClass:
2140  case Decl::ObjCForwardProtocol:
2141  case Decl::ObjCInterface:
2142    break;
2143
2144  case Decl::ObjCCategory: {
2145    ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2146    if (CD->IsClassExtension() && CD->hasSynthBitfield())
2147      Context.ResetObjCLayout(CD->getClassInterface());
2148    break;
2149  }
2150
2151  case Decl::ObjCProtocol:
2152    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2153    break;
2154
2155  case Decl::ObjCCategoryImpl:
2156    // Categories have properties but don't support synthesize so we
2157    // can ignore them here.
2158    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2159    break;
2160
2161  case Decl::ObjCImplementation: {
2162    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2163    if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2164      Context.ResetObjCLayout(OMD->getClassInterface());
2165    EmitObjCPropertyImplementations(OMD);
2166    EmitObjCIvarInitializations(OMD);
2167    Runtime->GenerateClass(OMD);
2168    break;
2169  }
2170  case Decl::ObjCMethod: {
2171    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2172    // If this is not a prototype, emit the body.
2173    if (OMD->getBody())
2174      CodeGenFunction(*this).GenerateObjCMethod(OMD);
2175    break;
2176  }
2177  case Decl::ObjCCompatibleAlias:
2178    // compatibility-alias is a directive and has no code gen.
2179    break;
2180
2181  case Decl::LinkageSpec:
2182    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2183    break;
2184
2185  case Decl::FileScopeAsm: {
2186    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2187    llvm::StringRef AsmString = AD->getAsmString()->getString();
2188
2189    const std::string &S = getModule().getModuleInlineAsm();
2190    if (S.empty())
2191      getModule().setModuleInlineAsm(AsmString);
2192    else
2193      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2194    break;
2195  }
2196
2197  default:
2198    // Make sure we handled everything we should, every other kind is a
2199    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2200    // function. Need to recode Decl::Kind to do that easily.
2201    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2202  }
2203}
2204
2205/// Turns the given pointer into a constant.
2206static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2207                                          const void *Ptr) {
2208  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2209  const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2210  return llvm::ConstantInt::get(i64, PtrInt);
2211}
2212
2213static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2214                                   llvm::NamedMDNode *&GlobalMetadata,
2215                                   GlobalDecl D,
2216                                   llvm::GlobalValue *Addr) {
2217  if (!GlobalMetadata)
2218    GlobalMetadata =
2219      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2220
2221  // TODO: should we report variant information for ctors/dtors?
2222  llvm::Value *Ops[] = {
2223    Addr,
2224    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2225  };
2226  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2227}
2228
2229/// Emits metadata nodes associating all the global values in the
2230/// current module with the Decls they came from.  This is useful for
2231/// projects using IR gen as a subroutine.
2232///
2233/// Since there's currently no way to associate an MDNode directly
2234/// with an llvm::GlobalValue, we create a global named metadata
2235/// with the name 'clang.global.decl.ptrs'.
2236void CodeGenModule::EmitDeclMetadata() {
2237  llvm::NamedMDNode *GlobalMetadata = 0;
2238
2239  // StaticLocalDeclMap
2240  for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2241         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2242       I != E; ++I) {
2243    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2244    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2245  }
2246}
2247
2248/// Emits metadata nodes for all the local variables in the current
2249/// function.
2250void CodeGenFunction::EmitDeclMetadata() {
2251  if (LocalDeclMap.empty()) return;
2252
2253  llvm::LLVMContext &Context = getLLVMContext();
2254
2255  // Find the unique metadata ID for this name.
2256  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2257
2258  llvm::NamedMDNode *GlobalMetadata = 0;
2259
2260  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2261         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2262    const Decl *D = I->first;
2263    llvm::Value *Addr = I->second;
2264
2265    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2266      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2267      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2268    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2269      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2270      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2271    }
2272  }
2273}
2274
2275void CodeGenModule::EmitCoverageFile() {
2276  if (!getCodeGenOpts().CoverageFile.empty()) {
2277    if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2278      llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2279      llvm::LLVMContext &Ctx = TheModule.getContext();
2280      llvm::MDString *CoverageFile =
2281          llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2282      for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2283        llvm::MDNode *CU = CUNode->getOperand(i);
2284        llvm::Value *node[] = { CoverageFile, CU };
2285        llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2286        GCov->addOperand(N);
2287      }
2288    }
2289  }
2290}
2291
2292///@name Custom Runtime Function Interfaces
2293///@{
2294//
2295// FIXME: These can be eliminated once we can have clients just get the required
2296// AST nodes from the builtin tables.
2297
2298llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2299  if (BlockObjectDispose)
2300    return BlockObjectDispose;
2301
2302  // If we saw an explicit decl, use that.
2303  if (BlockObjectDisposeDecl) {
2304    return BlockObjectDispose = GetAddrOfFunction(
2305      BlockObjectDisposeDecl,
2306      getTypes().GetFunctionType(BlockObjectDisposeDecl));
2307  }
2308
2309  // Otherwise construct the function by hand.
2310  const llvm::Type *args[] = { Int8PtrTy, Int32Ty };
2311  const llvm::FunctionType *fty
2312    = llvm::FunctionType::get(VoidTy, args, false);
2313  return BlockObjectDispose =
2314    CreateRuntimeFunction(fty, "_Block_object_dispose");
2315}
2316
2317llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2318  if (BlockObjectAssign)
2319    return BlockObjectAssign;
2320
2321  // If we saw an explicit decl, use that.
2322  if (BlockObjectAssignDecl) {
2323    return BlockObjectAssign = GetAddrOfFunction(
2324      BlockObjectAssignDecl,
2325      getTypes().GetFunctionType(BlockObjectAssignDecl));
2326  }
2327
2328  // Otherwise construct the function by hand.
2329  const llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, Int32Ty };
2330  const llvm::FunctionType *fty
2331    = llvm::FunctionType::get(VoidTy, args, false);
2332  return BlockObjectAssign =
2333    CreateRuntimeFunction(fty, "_Block_object_assign");
2334}
2335
2336llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2337  if (NSConcreteGlobalBlock)
2338    return NSConcreteGlobalBlock;
2339
2340  // If we saw an explicit decl, use that.
2341  if (NSConcreteGlobalBlockDecl) {
2342    return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2343      NSConcreteGlobalBlockDecl,
2344      getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2345  }
2346
2347  // Otherwise construct the variable by hand.
2348  return NSConcreteGlobalBlock =
2349    CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock");
2350}
2351
2352llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2353  if (NSConcreteStackBlock)
2354    return NSConcreteStackBlock;
2355
2356  // If we saw an explicit decl, use that.
2357  if (NSConcreteStackBlockDecl) {
2358    return NSConcreteStackBlock = GetAddrOfGlobalVar(
2359      NSConcreteStackBlockDecl,
2360      getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2361  }
2362
2363  // Otherwise construct the variable by hand.
2364  return NSConcreteStackBlock =
2365    CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock");
2366}
2367
2368///@}
2369