CodeGenModule.cpp revision 3030eb82593097502469a8b3fc26112c79c75605
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CodeGenTBAA.h"
18#include "CGCall.h"
19#include "CGCXXABI.h"
20#include "CGObjCRuntime.h"
21#include "Mangle.h"
22#include "TargetInfo.h"
23#include "clang/Frontend/CodeGenOptions.h"
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/CharUnits.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclCXX.h"
28#include "clang/AST/DeclTemplate.h"
29#include "clang/AST/RecordLayout.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/Diagnostic.h"
32#include "clang/Basic/SourceManager.h"
33#include "clang/Basic/TargetInfo.h"
34#include "clang/Basic/ConvertUTF.h"
35#include "llvm/CallingConv.h"
36#include "llvm/Module.h"
37#include "llvm/Intrinsics.h"
38#include "llvm/LLVMContext.h"
39#include "llvm/ADT/Triple.h"
40#include "llvm/Target/TargetData.h"
41#include "llvm/Support/CallSite.h"
42#include "llvm/Support/ErrorHandling.h"
43using namespace clang;
44using namespace CodeGen;
45
46static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
47  switch (CGM.getContext().Target.getCXXABI()) {
48  case CXXABI_ARM: return *CreateARMCXXABI(CGM);
49  case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
50  case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
51  }
52
53  llvm_unreachable("invalid C++ ABI kind");
54  return *CreateItaniumCXXABI(CGM);
55}
56
57
58CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
59                             llvm::Module &M, const llvm::TargetData &TD,
60                             Diagnostic &diags)
61  : BlockModule(C, M, TD, Types, *this), Context(C),
62    Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63    TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64    ABI(createCXXABI(*this)),
65    Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66    TBAA(0),
67    VTables(*this), Runtime(0),
68    CFConstantStringClassRef(0), ConstantStringClassRef(0),
69    VMContext(M.getContext()),
70    NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72    BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73    BlockObjectAssign(0), BlockObjectDispose(0){
74
75  if (!Features.ObjC1)
76    Runtime = 0;
77  else if (!Features.NeXTRuntime)
78    Runtime = CreateGNUObjCRuntime(*this);
79  else if (Features.ObjCNonFragileABI)
80    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
81  else
82    Runtime = CreateMacObjCRuntime(*this);
83
84  // Enable TBAA unless it's suppressed.
85  if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
86    TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
87                           ABI.getMangleContext());
88
89  // If debug info generation is enabled, create the CGDebugInfo object.
90  DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
91}
92
93CodeGenModule::~CodeGenModule() {
94  delete Runtime;
95  delete &ABI;
96  delete TBAA;
97  delete DebugInfo;
98}
99
100void CodeGenModule::createObjCRuntime() {
101  if (!Features.NeXTRuntime)
102    Runtime = CreateGNUObjCRuntime(*this);
103  else if (Features.ObjCNonFragileABI)
104    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
105  else
106    Runtime = CreateMacObjCRuntime(*this);
107}
108
109void CodeGenModule::Release() {
110  EmitDeferred();
111  EmitCXXGlobalInitFunc();
112  EmitCXXGlobalDtorFunc();
113  if (Runtime)
114    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
115      AddGlobalCtor(ObjCInitFunction);
116  EmitCtorList(GlobalCtors, "llvm.global_ctors");
117  EmitCtorList(GlobalDtors, "llvm.global_dtors");
118  EmitAnnotations();
119  EmitLLVMUsed();
120
121  SimplifyPersonality();
122
123  if (getCodeGenOpts().EmitDeclMetadata)
124    EmitDeclMetadata();
125}
126
127llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
128  if (!TBAA)
129    return 0;
130  return TBAA->getTBAAInfo(QTy);
131}
132
133void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
134                                        llvm::MDNode *TBAAInfo) {
135  Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
136}
137
138bool CodeGenModule::isTargetDarwin() const {
139  return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
140}
141
142/// ErrorUnsupported - Print out an error that codegen doesn't support the
143/// specified stmt yet.
144void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
145                                     bool OmitOnError) {
146  if (OmitOnError && getDiags().hasErrorOccurred())
147    return;
148  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
149                                               "cannot compile this %0 yet");
150  std::string Msg = Type;
151  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
152    << Msg << S->getSourceRange();
153}
154
155/// ErrorUnsupported - Print out an error that codegen doesn't support the
156/// specified decl yet.
157void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
158                                     bool OmitOnError) {
159  if (OmitOnError && getDiags().hasErrorOccurred())
160    return;
161  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
162                                               "cannot compile this %0 yet");
163  std::string Msg = Type;
164  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
165}
166
167static llvm::GlobalValue::VisibilityTypes GetLLVMVisibility(Visibility V) {
168  switch (V) {
169  case DefaultVisibility:   return llvm::GlobalValue::DefaultVisibility;
170  case HiddenVisibility:    return llvm::GlobalValue::HiddenVisibility;
171  case ProtectedVisibility: return llvm::GlobalValue::ProtectedVisibility;
172  }
173  llvm_unreachable("unknown visibility!");
174  return llvm::GlobalValue::DefaultVisibility;
175}
176
177
178void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
179                                        const NamedDecl *D,
180                                        bool IsForDefinition) const {
181  // Internal definitions always have default visibility.
182  if (GV->hasLocalLinkage()) {
183    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
184    return;
185  }
186
187  // Set visibility for definitions.
188  NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
189  if (LV.visibilityExplicit() ||
190      (IsForDefinition && !GV->hasAvailableExternallyLinkage()))
191    GV->setVisibility(GetLLVMVisibility(LV.visibility()));
192}
193
194/// Set the symbol visibility of type information (vtable and RTTI)
195/// associated with the given type.
196void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
197                                      const CXXRecordDecl *RD,
198                                      bool IsForRTTI,
199                                      bool IsForDefinition) const {
200  setGlobalVisibility(GV, RD, IsForDefinition);
201
202  if (!CodeGenOpts.HiddenWeakVTables)
203    return;
204
205  // We want to drop the visibility to hidden for weak type symbols.
206  // This isn't possible if there might be unresolved references
207  // elsewhere that rely on this symbol being visible.
208
209  // This should be kept roughly in sync with setThunkVisibility
210  // in CGVTables.cpp.
211
212  // Preconditions.
213  if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage ||
214      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
215    return;
216
217  // Don't override an explicit visibility attribute.
218  if (RD->hasAttr<VisibilityAttr>())
219    return;
220
221  switch (RD->getTemplateSpecializationKind()) {
222  // We have to disable the optimization if this is an EI definition
223  // because there might be EI declarations in other shared objects.
224  case TSK_ExplicitInstantiationDefinition:
225  case TSK_ExplicitInstantiationDeclaration:
226    return;
227
228  // Every use of a non-template class's type information has to emit it.
229  case TSK_Undeclared:
230    break;
231
232  // In theory, implicit instantiations can ignore the possibility of
233  // an explicit instantiation declaration because there necessarily
234  // must be an EI definition somewhere with default visibility.  In
235  // practice, it's possible to have an explicit instantiation for
236  // an arbitrary template class, and linkers aren't necessarily able
237  // to deal with mixed-visibility symbols.
238  case TSK_ExplicitSpecialization:
239  case TSK_ImplicitInstantiation:
240    if (!CodeGenOpts.HiddenWeakTemplateVTables)
241      return;
242    break;
243  }
244
245  // If there's a key function, there may be translation units
246  // that don't have the key function's definition.  But ignore
247  // this if we're emitting RTTI under -fno-rtti.
248  if (!IsForRTTI || Features.RTTI)
249    if (Context.getKeyFunction(RD))
250      return;
251
252  // Otherwise, drop the visibility to hidden.
253  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
254}
255
256llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
257  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
258
259  llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
260  if (!Str.empty())
261    return Str;
262
263  if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
264    IdentifierInfo *II = ND->getIdentifier();
265    assert(II && "Attempt to mangle unnamed decl.");
266
267    Str = II->getName();
268    return Str;
269  }
270
271  llvm::SmallString<256> Buffer;
272  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
273    getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
274  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
275    getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
276  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
277    getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer);
278  else
279    getCXXABI().getMangleContext().mangleName(ND, Buffer);
280
281  // Allocate space for the mangled name.
282  size_t Length = Buffer.size();
283  char *Name = MangledNamesAllocator.Allocate<char>(Length);
284  std::copy(Buffer.begin(), Buffer.end(), Name);
285
286  Str = llvm::StringRef(Name, Length);
287
288  return Str;
289}
290
291void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer,
292                                   const BlockDecl *BD) {
293  getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer());
294}
295
296llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
297  return getModule().getNamedValue(Name);
298}
299
300/// AddGlobalCtor - Add a function to the list that will be called before
301/// main() runs.
302void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
303  // FIXME: Type coercion of void()* types.
304  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
305}
306
307/// AddGlobalDtor - Add a function to the list that will be called
308/// when the module is unloaded.
309void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
310  // FIXME: Type coercion of void()* types.
311  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
312}
313
314void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
315  // Ctor function type is void()*.
316  llvm::FunctionType* CtorFTy =
317    llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
318                            std::vector<const llvm::Type*>(),
319                            false);
320  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
321
322  // Get the type of a ctor entry, { i32, void ()* }.
323  llvm::StructType* CtorStructTy =
324    llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
325                          llvm::PointerType::getUnqual(CtorFTy), NULL);
326
327  // Construct the constructor and destructor arrays.
328  std::vector<llvm::Constant*> Ctors;
329  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
330    std::vector<llvm::Constant*> S;
331    S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
332                I->second, false));
333    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
334    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
335  }
336
337  if (!Ctors.empty()) {
338    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
339    new llvm::GlobalVariable(TheModule, AT, false,
340                             llvm::GlobalValue::AppendingLinkage,
341                             llvm::ConstantArray::get(AT, Ctors),
342                             GlobalName);
343  }
344}
345
346void CodeGenModule::EmitAnnotations() {
347  if (Annotations.empty())
348    return;
349
350  // Create a new global variable for the ConstantStruct in the Module.
351  llvm::Constant *Array =
352  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
353                                                Annotations.size()),
354                           Annotations);
355  llvm::GlobalValue *gv =
356  new llvm::GlobalVariable(TheModule, Array->getType(), false,
357                           llvm::GlobalValue::AppendingLinkage, Array,
358                           "llvm.global.annotations");
359  gv->setSection("llvm.metadata");
360}
361
362llvm::GlobalValue::LinkageTypes
363CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
364  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
365
366  if (Linkage == GVA_Internal)
367    return llvm::Function::InternalLinkage;
368
369  if (D->hasAttr<DLLExportAttr>())
370    return llvm::Function::DLLExportLinkage;
371
372  if (D->hasAttr<WeakAttr>())
373    return llvm::Function::WeakAnyLinkage;
374
375  // In C99 mode, 'inline' functions are guaranteed to have a strong
376  // definition somewhere else, so we can use available_externally linkage.
377  if (Linkage == GVA_C99Inline)
378    return llvm::Function::AvailableExternallyLinkage;
379
380  // In C++, the compiler has to emit a definition in every translation unit
381  // that references the function.  We should use linkonce_odr because
382  // a) if all references in this translation unit are optimized away, we
383  // don't need to codegen it.  b) if the function persists, it needs to be
384  // merged with other definitions. c) C++ has the ODR, so we know the
385  // definition is dependable.
386  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
387    return llvm::Function::LinkOnceODRLinkage;
388
389  // An explicit instantiation of a template has weak linkage, since
390  // explicit instantiations can occur in multiple translation units
391  // and must all be equivalent. However, we are not allowed to
392  // throw away these explicit instantiations.
393  if (Linkage == GVA_ExplicitTemplateInstantiation)
394    return llvm::Function::WeakODRLinkage;
395
396  // Otherwise, we have strong external linkage.
397  assert(Linkage == GVA_StrongExternal);
398  return llvm::Function::ExternalLinkage;
399}
400
401
402/// SetFunctionDefinitionAttributes - Set attributes for a global.
403///
404/// FIXME: This is currently only done for aliases and functions, but not for
405/// variables (these details are set in EmitGlobalVarDefinition for variables).
406void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
407                                                    llvm::GlobalValue *GV) {
408  SetCommonAttributes(D, GV);
409}
410
411void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
412                                              const CGFunctionInfo &Info,
413                                              llvm::Function *F) {
414  unsigned CallingConv;
415  AttributeListType AttributeList;
416  ConstructAttributeList(Info, D, AttributeList, CallingConv);
417  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
418                                          AttributeList.size()));
419  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
420}
421
422void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
423                                                           llvm::Function *F) {
424  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
425    F->addFnAttr(llvm::Attribute::NoUnwind);
426
427  if (D->hasAttr<AlwaysInlineAttr>())
428    F->addFnAttr(llvm::Attribute::AlwaysInline);
429
430  if (D->hasAttr<NakedAttr>())
431    F->addFnAttr(llvm::Attribute::Naked);
432
433  if (D->hasAttr<NoInlineAttr>())
434    F->addFnAttr(llvm::Attribute::NoInline);
435
436  if (Features.getStackProtectorMode() == LangOptions::SSPOn)
437    F->addFnAttr(llvm::Attribute::StackProtect);
438  else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
439    F->addFnAttr(llvm::Attribute::StackProtectReq);
440
441  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
442  if (alignment)
443    F->setAlignment(alignment);
444
445  // C++ ABI requires 2-byte alignment for member functions.
446  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
447    F->setAlignment(2);
448}
449
450void CodeGenModule::SetCommonAttributes(const Decl *D,
451                                        llvm::GlobalValue *GV) {
452  if (isa<NamedDecl>(D))
453    setGlobalVisibility(GV, cast<NamedDecl>(D), /*ForDef*/ true);
454  else
455    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
456
457  if (D->hasAttr<UsedAttr>())
458    AddUsedGlobal(GV);
459
460  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
461    GV->setSection(SA->getName());
462
463  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
464}
465
466void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
467                                                  llvm::Function *F,
468                                                  const CGFunctionInfo &FI) {
469  SetLLVMFunctionAttributes(D, FI, F);
470  SetLLVMFunctionAttributesForDefinition(D, F);
471
472  F->setLinkage(llvm::Function::InternalLinkage);
473
474  SetCommonAttributes(D, F);
475}
476
477void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
478                                          llvm::Function *F,
479                                          bool IsIncompleteFunction) {
480  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
481
482  if (!IsIncompleteFunction)
483    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
484
485  // Only a few attributes are set on declarations; these may later be
486  // overridden by a definition.
487
488  if (FD->hasAttr<DLLImportAttr>()) {
489    F->setLinkage(llvm::Function::DLLImportLinkage);
490  } else if (FD->hasAttr<WeakAttr>() ||
491             FD->hasAttr<WeakImportAttr>()) {
492    // "extern_weak" is overloaded in LLVM; we probably should have
493    // separate linkage types for this.
494    F->setLinkage(llvm::Function::ExternalWeakLinkage);
495  } else {
496    F->setLinkage(llvm::Function::ExternalLinkage);
497
498    NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
499    if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
500      F->setVisibility(GetLLVMVisibility(LV.visibility()));
501    }
502  }
503
504  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
505    F->setSection(SA->getName());
506}
507
508void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
509  assert(!GV->isDeclaration() &&
510         "Only globals with definition can force usage.");
511  LLVMUsed.push_back(GV);
512}
513
514void CodeGenModule::EmitLLVMUsed() {
515  // Don't create llvm.used if there is no need.
516  if (LLVMUsed.empty())
517    return;
518
519  const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
520
521  // Convert LLVMUsed to what ConstantArray needs.
522  std::vector<llvm::Constant*> UsedArray;
523  UsedArray.resize(LLVMUsed.size());
524  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
525    UsedArray[i] =
526     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
527                                      i8PTy);
528  }
529
530  if (UsedArray.empty())
531    return;
532  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
533
534  llvm::GlobalVariable *GV =
535    new llvm::GlobalVariable(getModule(), ATy, false,
536                             llvm::GlobalValue::AppendingLinkage,
537                             llvm::ConstantArray::get(ATy, UsedArray),
538                             "llvm.used");
539
540  GV->setSection("llvm.metadata");
541}
542
543void CodeGenModule::EmitDeferred() {
544  // Emit code for any potentially referenced deferred decls.  Since a
545  // previously unused static decl may become used during the generation of code
546  // for a static function, iterate until no  changes are made.
547
548  while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
549    if (!DeferredVTables.empty()) {
550      const CXXRecordDecl *RD = DeferredVTables.back();
551      DeferredVTables.pop_back();
552      getVTables().GenerateClassData(getVTableLinkage(RD), RD);
553      continue;
554    }
555
556    GlobalDecl D = DeferredDeclsToEmit.back();
557    DeferredDeclsToEmit.pop_back();
558
559    // Check to see if we've already emitted this.  This is necessary
560    // for a couple of reasons: first, decls can end up in the
561    // deferred-decls queue multiple times, and second, decls can end
562    // up with definitions in unusual ways (e.g. by an extern inline
563    // function acquiring a strong function redefinition).  Just
564    // ignore these cases.
565    //
566    // TODO: That said, looking this up multiple times is very wasteful.
567    llvm::StringRef Name = getMangledName(D);
568    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
569    assert(CGRef && "Deferred decl wasn't referenced?");
570
571    if (!CGRef->isDeclaration())
572      continue;
573
574    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
575    // purposes an alias counts as a definition.
576    if (isa<llvm::GlobalAlias>(CGRef))
577      continue;
578
579    // Otherwise, emit the definition and move on to the next one.
580    EmitGlobalDefinition(D);
581  }
582}
583
584/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
585/// annotation information for a given GlobalValue.  The annotation struct is
586/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
587/// GlobalValue being annotated.  The second field is the constant string
588/// created from the AnnotateAttr's annotation.  The third field is a constant
589/// string containing the name of the translation unit.  The fourth field is
590/// the line number in the file of the annotated value declaration.
591///
592/// FIXME: this does not unique the annotation string constants, as llvm-gcc
593///        appears to.
594///
595llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
596                                                const AnnotateAttr *AA,
597                                                unsigned LineNo) {
598  llvm::Module *M = &getModule();
599
600  // get [N x i8] constants for the annotation string, and the filename string
601  // which are the 2nd and 3rd elements of the global annotation structure.
602  const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
603  llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
604                                                  AA->getAnnotation(), true);
605  llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
606                                                  M->getModuleIdentifier(),
607                                                  true);
608
609  // Get the two global values corresponding to the ConstantArrays we just
610  // created to hold the bytes of the strings.
611  llvm::GlobalValue *annoGV =
612    new llvm::GlobalVariable(*M, anno->getType(), false,
613                             llvm::GlobalValue::PrivateLinkage, anno,
614                             GV->getName());
615  // translation unit name string, emitted into the llvm.metadata section.
616  llvm::GlobalValue *unitGV =
617    new llvm::GlobalVariable(*M, unit->getType(), false,
618                             llvm::GlobalValue::PrivateLinkage, unit,
619                             ".str");
620
621  // Create the ConstantStruct for the global annotation.
622  llvm::Constant *Fields[4] = {
623    llvm::ConstantExpr::getBitCast(GV, SBP),
624    llvm::ConstantExpr::getBitCast(annoGV, SBP),
625    llvm::ConstantExpr::getBitCast(unitGV, SBP),
626    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
627  };
628  return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
629}
630
631bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
632  // Never defer when EmitAllDecls is specified.
633  if (Features.EmitAllDecls)
634    return false;
635
636  return !getContext().DeclMustBeEmitted(Global);
637}
638
639llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
640  const AliasAttr *AA = VD->getAttr<AliasAttr>();
641  assert(AA && "No alias?");
642
643  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
644
645  // See if there is already something with the target's name in the module.
646  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
647
648  llvm::Constant *Aliasee;
649  if (isa<llvm::FunctionType>(DeclTy))
650    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
651  else
652    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
653                                    llvm::PointerType::getUnqual(DeclTy), 0);
654  if (!Entry) {
655    llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
656    F->setLinkage(llvm::Function::ExternalWeakLinkage);
657    WeakRefReferences.insert(F);
658  }
659
660  return Aliasee;
661}
662
663void CodeGenModule::EmitGlobal(GlobalDecl GD) {
664  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
665
666  // Weak references don't produce any output by themselves.
667  if (Global->hasAttr<WeakRefAttr>())
668    return;
669
670  // If this is an alias definition (which otherwise looks like a declaration)
671  // emit it now.
672  if (Global->hasAttr<AliasAttr>())
673    return EmitAliasDefinition(GD);
674
675  // Ignore declarations, they will be emitted on their first use.
676  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
677    if (FD->getIdentifier()) {
678      llvm::StringRef Name = FD->getName();
679      if (Name == "_Block_object_assign") {
680        BlockObjectAssignDecl = FD;
681      } else if (Name == "_Block_object_dispose") {
682        BlockObjectDisposeDecl = FD;
683      }
684    }
685
686    // Forward declarations are emitted lazily on first use.
687    if (!FD->isThisDeclarationADefinition())
688      return;
689  } else {
690    const VarDecl *VD = cast<VarDecl>(Global);
691    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
692
693    if (VD->getIdentifier()) {
694      llvm::StringRef Name = VD->getName();
695      if (Name == "_NSConcreteGlobalBlock") {
696        NSConcreteGlobalBlockDecl = VD;
697      } else if (Name == "_NSConcreteStackBlock") {
698        NSConcreteStackBlockDecl = VD;
699      }
700    }
701
702
703    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
704      return;
705  }
706
707  // Defer code generation when possible if this is a static definition, inline
708  // function etc.  These we only want to emit if they are used.
709  if (!MayDeferGeneration(Global)) {
710    // Emit the definition if it can't be deferred.
711    EmitGlobalDefinition(GD);
712    return;
713  }
714
715  // If we're deferring emission of a C++ variable with an
716  // initializer, remember the order in which it appeared in the file.
717  if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
718      cast<VarDecl>(Global)->hasInit()) {
719    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
720    CXXGlobalInits.push_back(0);
721  }
722
723  // If the value has already been used, add it directly to the
724  // DeferredDeclsToEmit list.
725  llvm::StringRef MangledName = getMangledName(GD);
726  if (GetGlobalValue(MangledName))
727    DeferredDeclsToEmit.push_back(GD);
728  else {
729    // Otherwise, remember that we saw a deferred decl with this name.  The
730    // first use of the mangled name will cause it to move into
731    // DeferredDeclsToEmit.
732    DeferredDecls[MangledName] = GD;
733  }
734}
735
736void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
737  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
738
739  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
740                                 Context.getSourceManager(),
741                                 "Generating code for declaration");
742
743  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
744    // At -O0, don't generate IR for functions with available_externally
745    // linkage.
746    if (CodeGenOpts.OptimizationLevel == 0 &&
747        !Function->hasAttr<AlwaysInlineAttr>() &&
748        getFunctionLinkage(Function)
749                                  == llvm::Function::AvailableExternallyLinkage)
750      return;
751
752    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
753      if (Method->isVirtual())
754        getVTables().EmitThunks(GD);
755
756      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
757        return EmitCXXConstructor(CD, GD.getCtorType());
758
759      if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
760        return EmitCXXDestructor(DD, GD.getDtorType());
761    }
762
763    return EmitGlobalFunctionDefinition(GD);
764  }
765
766  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
767    return EmitGlobalVarDefinition(VD);
768
769  assert(0 && "Invalid argument to EmitGlobalDefinition()");
770}
771
772/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
773/// module, create and return an llvm Function with the specified type. If there
774/// is something in the module with the specified name, return it potentially
775/// bitcasted to the right type.
776///
777/// If D is non-null, it specifies a decl that correspond to this.  This is used
778/// to set the attributes on the function when it is first created.
779llvm::Constant *
780CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
781                                       const llvm::Type *Ty,
782                                       GlobalDecl D) {
783  // Lookup the entry, lazily creating it if necessary.
784  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
785  if (Entry) {
786    if (WeakRefReferences.count(Entry)) {
787      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
788      if (FD && !FD->hasAttr<WeakAttr>())
789        Entry->setLinkage(llvm::Function::ExternalLinkage);
790
791      WeakRefReferences.erase(Entry);
792    }
793
794    if (Entry->getType()->getElementType() == Ty)
795      return Entry;
796
797    // Make sure the result is of the correct type.
798    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
799    return llvm::ConstantExpr::getBitCast(Entry, PTy);
800  }
801
802  // This function doesn't have a complete type (for example, the return
803  // type is an incomplete struct). Use a fake type instead, and make
804  // sure not to try to set attributes.
805  bool IsIncompleteFunction = false;
806
807  const llvm::FunctionType *FTy;
808  if (isa<llvm::FunctionType>(Ty)) {
809    FTy = cast<llvm::FunctionType>(Ty);
810  } else {
811    FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
812                                  std::vector<const llvm::Type*>(), false);
813    IsIncompleteFunction = true;
814  }
815
816  llvm::Function *F = llvm::Function::Create(FTy,
817                                             llvm::Function::ExternalLinkage,
818                                             MangledName, &getModule());
819  assert(F->getName() == MangledName && "name was uniqued!");
820  if (D.getDecl())
821    SetFunctionAttributes(D, F, IsIncompleteFunction);
822
823  // This is the first use or definition of a mangled name.  If there is a
824  // deferred decl with this name, remember that we need to emit it at the end
825  // of the file.
826  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
827  if (DDI != DeferredDecls.end()) {
828    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
829    // list, and remove it from DeferredDecls (since we don't need it anymore).
830    DeferredDeclsToEmit.push_back(DDI->second);
831    DeferredDecls.erase(DDI);
832  } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
833    // If this the first reference to a C++ inline function in a class, queue up
834    // the deferred function body for emission.  These are not seen as
835    // top-level declarations.
836    if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD)) {
837      DeferredDeclsToEmit.push_back(D);
838    // A called constructor which has no definition or declaration need be
839    // synthesized.
840    } else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
841      if (CD->isImplicit()) {
842        assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
843        DeferredDeclsToEmit.push_back(D);
844      }
845    } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
846      if (DD->isImplicit()) {
847        assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
848        DeferredDeclsToEmit.push_back(D);
849      }
850    } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
851      if (MD->isImplicit() && MD->isCopyAssignmentOperator()) {
852        assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
853        DeferredDeclsToEmit.push_back(D);
854      }
855    }
856  }
857
858  // Make sure the result is of the requested type.
859  if (!IsIncompleteFunction) {
860    assert(F->getType()->getElementType() == Ty);
861    return F;
862  }
863
864  const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
865  return llvm::ConstantExpr::getBitCast(F, PTy);
866}
867
868/// GetAddrOfFunction - Return the address of the given function.  If Ty is
869/// non-null, then this function will use the specified type if it has to
870/// create it (this occurs when we see a definition of the function).
871llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
872                                                 const llvm::Type *Ty) {
873  // If there was no specific requested type, just convert it now.
874  if (!Ty)
875    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
876
877  llvm::StringRef MangledName = getMangledName(GD);
878  return GetOrCreateLLVMFunction(MangledName, Ty, GD);
879}
880
881/// CreateRuntimeFunction - Create a new runtime function with the specified
882/// type and name.
883llvm::Constant *
884CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
885                                     llvm::StringRef Name) {
886  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
887}
888
889static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
890  if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
891    return false;
892  if (Context.getLangOptions().CPlusPlus &&
893      Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
894    // FIXME: We should do something fancier here!
895    return false;
896  }
897  return true;
898}
899
900/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
901/// create and return an llvm GlobalVariable with the specified type.  If there
902/// is something in the module with the specified name, return it potentially
903/// bitcasted to the right type.
904///
905/// If D is non-null, it specifies a decl that correspond to this.  This is used
906/// to set the attributes on the global when it is first created.
907llvm::Constant *
908CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
909                                     const llvm::PointerType *Ty,
910                                     const VarDecl *D) {
911  // Lookup the entry, lazily creating it if necessary.
912  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
913  if (Entry) {
914    if (WeakRefReferences.count(Entry)) {
915      if (D && !D->hasAttr<WeakAttr>())
916        Entry->setLinkage(llvm::Function::ExternalLinkage);
917
918      WeakRefReferences.erase(Entry);
919    }
920
921    if (Entry->getType() == Ty)
922      return Entry;
923
924    // Make sure the result is of the correct type.
925    return llvm::ConstantExpr::getBitCast(Entry, Ty);
926  }
927
928  // This is the first use or definition of a mangled name.  If there is a
929  // deferred decl with this name, remember that we need to emit it at the end
930  // of the file.
931  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
932  if (DDI != DeferredDecls.end()) {
933    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
934    // list, and remove it from DeferredDecls (since we don't need it anymore).
935    DeferredDeclsToEmit.push_back(DDI->second);
936    DeferredDecls.erase(DDI);
937  }
938
939  llvm::GlobalVariable *GV =
940    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
941                             llvm::GlobalValue::ExternalLinkage,
942                             0, MangledName, 0,
943                             false, Ty->getAddressSpace());
944
945  // Handle things which are present even on external declarations.
946  if (D) {
947    // FIXME: This code is overly simple and should be merged with other global
948    // handling.
949    GV->setConstant(DeclIsConstantGlobal(Context, D));
950
951    // Set linkage and visibility in case we never see a definition.
952    NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
953    if (LV.linkage() != ExternalLinkage) {
954      GV->setLinkage(llvm::GlobalValue::InternalLinkage);
955    } else {
956      if (D->hasAttr<DLLImportAttr>())
957        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
958      else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
959        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
960
961      // Set visibility on a declaration only if it's explicit.
962      if (LV.visibilityExplicit())
963        GV->setVisibility(GetLLVMVisibility(LV.visibility()));
964    }
965
966    GV->setThreadLocal(D->isThreadSpecified());
967  }
968
969  return GV;
970}
971
972
973/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
974/// given global variable.  If Ty is non-null and if the global doesn't exist,
975/// then it will be greated with the specified type instead of whatever the
976/// normal requested type would be.
977llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
978                                                  const llvm::Type *Ty) {
979  assert(D->hasGlobalStorage() && "Not a global variable");
980  QualType ASTTy = D->getType();
981  if (Ty == 0)
982    Ty = getTypes().ConvertTypeForMem(ASTTy);
983
984  const llvm::PointerType *PTy =
985    llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
986
987  llvm::StringRef MangledName = getMangledName(D);
988  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
989}
990
991/// CreateRuntimeVariable - Create a new runtime global variable with the
992/// specified type and name.
993llvm::Constant *
994CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
995                                     llvm::StringRef Name) {
996  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
997}
998
999void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1000  assert(!D->getInit() && "Cannot emit definite definitions here!");
1001
1002  if (MayDeferGeneration(D)) {
1003    // If we have not seen a reference to this variable yet, place it
1004    // into the deferred declarations table to be emitted if needed
1005    // later.
1006    llvm::StringRef MangledName = getMangledName(D);
1007    if (!GetGlobalValue(MangledName)) {
1008      DeferredDecls[MangledName] = D;
1009      return;
1010    }
1011  }
1012
1013  // The tentative definition is the only definition.
1014  EmitGlobalVarDefinition(D);
1015}
1016
1017void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1018  if (DefinitionRequired)
1019    getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1020}
1021
1022llvm::GlobalVariable::LinkageTypes
1023CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1024  if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1025    return llvm::GlobalVariable::InternalLinkage;
1026
1027  if (const CXXMethodDecl *KeyFunction
1028                                    = RD->getASTContext().getKeyFunction(RD)) {
1029    // If this class has a key function, use that to determine the linkage of
1030    // the vtable.
1031    const FunctionDecl *Def = 0;
1032    if (KeyFunction->hasBody(Def))
1033      KeyFunction = cast<CXXMethodDecl>(Def);
1034
1035    switch (KeyFunction->getTemplateSpecializationKind()) {
1036      case TSK_Undeclared:
1037      case TSK_ExplicitSpecialization:
1038        if (KeyFunction->isInlined())
1039          return llvm::GlobalVariable::WeakODRLinkage;
1040
1041        return llvm::GlobalVariable::ExternalLinkage;
1042
1043      case TSK_ImplicitInstantiation:
1044      case TSK_ExplicitInstantiationDefinition:
1045        return llvm::GlobalVariable::WeakODRLinkage;
1046
1047      case TSK_ExplicitInstantiationDeclaration:
1048        // FIXME: Use available_externally linkage. However, this currently
1049        // breaks LLVM's build due to undefined symbols.
1050        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1051        return llvm::GlobalVariable::WeakODRLinkage;
1052    }
1053  }
1054
1055  switch (RD->getTemplateSpecializationKind()) {
1056  case TSK_Undeclared:
1057  case TSK_ExplicitSpecialization:
1058  case TSK_ImplicitInstantiation:
1059  case TSK_ExplicitInstantiationDefinition:
1060    return llvm::GlobalVariable::WeakODRLinkage;
1061
1062  case TSK_ExplicitInstantiationDeclaration:
1063    // FIXME: Use available_externally linkage. However, this currently
1064    // breaks LLVM's build due to undefined symbols.
1065    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1066    return llvm::GlobalVariable::WeakODRLinkage;
1067  }
1068
1069  // Silence GCC warning.
1070  return llvm::GlobalVariable::WeakODRLinkage;
1071}
1072
1073CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1074    return CharUnits::fromQuantity(
1075      TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1076}
1077
1078void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1079  llvm::Constant *Init = 0;
1080  QualType ASTTy = D->getType();
1081  bool NonConstInit = false;
1082
1083  const Expr *InitExpr = D->getAnyInitializer();
1084
1085  if (!InitExpr) {
1086    // This is a tentative definition; tentative definitions are
1087    // implicitly initialized with { 0 }.
1088    //
1089    // Note that tentative definitions are only emitted at the end of
1090    // a translation unit, so they should never have incomplete
1091    // type. In addition, EmitTentativeDefinition makes sure that we
1092    // never attempt to emit a tentative definition if a real one
1093    // exists. A use may still exists, however, so we still may need
1094    // to do a RAUW.
1095    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1096    Init = EmitNullConstant(D->getType());
1097  } else {
1098    Init = EmitConstantExpr(InitExpr, D->getType());
1099    if (!Init) {
1100      QualType T = InitExpr->getType();
1101      if (D->getType()->isReferenceType())
1102        T = D->getType();
1103
1104      if (getLangOptions().CPlusPlus) {
1105        Init = EmitNullConstant(T);
1106        NonConstInit = true;
1107      } else {
1108        ErrorUnsupported(D, "static initializer");
1109        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1110      }
1111    } else {
1112      // We don't need an initializer, so remove the entry for the delayed
1113      // initializer position (just in case this entry was delayed).
1114      if (getLangOptions().CPlusPlus)
1115        DelayedCXXInitPosition.erase(D);
1116    }
1117  }
1118
1119  const llvm::Type* InitType = Init->getType();
1120  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1121
1122  // Strip off a bitcast if we got one back.
1123  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1124    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1125           // all zero index gep.
1126           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1127    Entry = CE->getOperand(0);
1128  }
1129
1130  // Entry is now either a Function or GlobalVariable.
1131  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1132
1133  // We have a definition after a declaration with the wrong type.
1134  // We must make a new GlobalVariable* and update everything that used OldGV
1135  // (a declaration or tentative definition) with the new GlobalVariable*
1136  // (which will be a definition).
1137  //
1138  // This happens if there is a prototype for a global (e.g.
1139  // "extern int x[];") and then a definition of a different type (e.g.
1140  // "int x[10];"). This also happens when an initializer has a different type
1141  // from the type of the global (this happens with unions).
1142  if (GV == 0 ||
1143      GV->getType()->getElementType() != InitType ||
1144      GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1145
1146    // Move the old entry aside so that we'll create a new one.
1147    Entry->setName(llvm::StringRef());
1148
1149    // Make a new global with the correct type, this is now guaranteed to work.
1150    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1151
1152    // Replace all uses of the old global with the new global
1153    llvm::Constant *NewPtrForOldDecl =
1154        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1155    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1156
1157    // Erase the old global, since it is no longer used.
1158    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1159  }
1160
1161  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1162    SourceManager &SM = Context.getSourceManager();
1163    AddAnnotation(EmitAnnotateAttr(GV, AA,
1164                              SM.getInstantiationLineNumber(D->getLocation())));
1165  }
1166
1167  GV->setInitializer(Init);
1168
1169  // If it is safe to mark the global 'constant', do so now.
1170  GV->setConstant(false);
1171  if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1172    GV->setConstant(true);
1173
1174  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1175
1176  // Set the llvm linkage type as appropriate.
1177  llvm::GlobalValue::LinkageTypes Linkage =
1178    GetLLVMLinkageVarDefinition(D, GV);
1179  GV->setLinkage(Linkage);
1180  if (Linkage == llvm::GlobalVariable::CommonLinkage)
1181    // common vars aren't constant even if declared const.
1182    GV->setConstant(false);
1183
1184  SetCommonAttributes(D, GV);
1185
1186  // Emit the initializer function if necessary.
1187  if (NonConstInit)
1188    EmitCXXGlobalVarDeclInitFunc(D, GV);
1189
1190  // Emit global variable debug information.
1191  if (CGDebugInfo *DI = getDebugInfo()) {
1192    DI->setLocation(D->getLocation());
1193    DI->EmitGlobalVariable(GV, D);
1194  }
1195}
1196
1197llvm::GlobalValue::LinkageTypes
1198CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1199                                           llvm::GlobalVariable *GV) {
1200  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1201  if (Linkage == GVA_Internal)
1202    return llvm::Function::InternalLinkage;
1203  else if (D->hasAttr<DLLImportAttr>())
1204    return llvm::Function::DLLImportLinkage;
1205  else if (D->hasAttr<DLLExportAttr>())
1206    return llvm::Function::DLLExportLinkage;
1207  else if (D->hasAttr<WeakAttr>()) {
1208    if (GV->isConstant())
1209      return llvm::GlobalVariable::WeakODRLinkage;
1210    else
1211      return llvm::GlobalVariable::WeakAnyLinkage;
1212  } else if (Linkage == GVA_TemplateInstantiation ||
1213             Linkage == GVA_ExplicitTemplateInstantiation)
1214    // FIXME: It seems like we can provide more specific linkage here
1215    // (LinkOnceODR, WeakODR).
1216    return llvm::GlobalVariable::WeakAnyLinkage;
1217  else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1218           !D->hasExternalStorage() && !D->getInit() &&
1219           !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1220    // Thread local vars aren't considered common linkage.
1221    return llvm::GlobalVariable::CommonLinkage;
1222  }
1223  return llvm::GlobalVariable::ExternalLinkage;
1224}
1225
1226/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1227/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1228/// existing call uses of the old function in the module, this adjusts them to
1229/// call the new function directly.
1230///
1231/// This is not just a cleanup: the always_inline pass requires direct calls to
1232/// functions to be able to inline them.  If there is a bitcast in the way, it
1233/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1234/// run at -O0.
1235static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1236                                                      llvm::Function *NewFn) {
1237  // If we're redefining a global as a function, don't transform it.
1238  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1239  if (OldFn == 0) return;
1240
1241  const llvm::Type *NewRetTy = NewFn->getReturnType();
1242  llvm::SmallVector<llvm::Value*, 4> ArgList;
1243
1244  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1245       UI != E; ) {
1246    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1247    llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1248    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1249    if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1250    llvm::CallSite CS(CI);
1251    if (!CI || !CS.isCallee(I)) continue;
1252
1253    // If the return types don't match exactly, and if the call isn't dead, then
1254    // we can't transform this call.
1255    if (CI->getType() != NewRetTy && !CI->use_empty())
1256      continue;
1257
1258    // If the function was passed too few arguments, don't transform.  If extra
1259    // arguments were passed, we silently drop them.  If any of the types
1260    // mismatch, we don't transform.
1261    unsigned ArgNo = 0;
1262    bool DontTransform = false;
1263    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1264         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1265      if (CS.arg_size() == ArgNo ||
1266          CS.getArgument(ArgNo)->getType() != AI->getType()) {
1267        DontTransform = true;
1268        break;
1269      }
1270    }
1271    if (DontTransform)
1272      continue;
1273
1274    // Okay, we can transform this.  Create the new call instruction and copy
1275    // over the required information.
1276    ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1277    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1278                                                     ArgList.end(), "", CI);
1279    ArgList.clear();
1280    if (!NewCall->getType()->isVoidTy())
1281      NewCall->takeName(CI);
1282    NewCall->setAttributes(CI->getAttributes());
1283    NewCall->setCallingConv(CI->getCallingConv());
1284
1285    // Finally, remove the old call, replacing any uses with the new one.
1286    if (!CI->use_empty())
1287      CI->replaceAllUsesWith(NewCall);
1288
1289    // Copy debug location attached to CI.
1290    if (!CI->getDebugLoc().isUnknown())
1291      NewCall->setDebugLoc(CI->getDebugLoc());
1292    CI->eraseFromParent();
1293  }
1294}
1295
1296
1297void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1298  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1299  const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1300  getCXXABI().getMangleContext().mangleInitDiscriminator();
1301  // Get or create the prototype for the function.
1302  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1303
1304  // Strip off a bitcast if we got one back.
1305  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1306    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1307    Entry = CE->getOperand(0);
1308  }
1309
1310
1311  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1312    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1313
1314    // If the types mismatch then we have to rewrite the definition.
1315    assert(OldFn->isDeclaration() &&
1316           "Shouldn't replace non-declaration");
1317
1318    // F is the Function* for the one with the wrong type, we must make a new
1319    // Function* and update everything that used F (a declaration) with the new
1320    // Function* (which will be a definition).
1321    //
1322    // This happens if there is a prototype for a function
1323    // (e.g. "int f()") and then a definition of a different type
1324    // (e.g. "int f(int x)").  Move the old function aside so that it
1325    // doesn't interfere with GetAddrOfFunction.
1326    OldFn->setName(llvm::StringRef());
1327    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1328
1329    // If this is an implementation of a function without a prototype, try to
1330    // replace any existing uses of the function (which may be calls) with uses
1331    // of the new function
1332    if (D->getType()->isFunctionNoProtoType()) {
1333      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1334      OldFn->removeDeadConstantUsers();
1335    }
1336
1337    // Replace uses of F with the Function we will endow with a body.
1338    if (!Entry->use_empty()) {
1339      llvm::Constant *NewPtrForOldDecl =
1340        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1341      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1342    }
1343
1344    // Ok, delete the old function now, which is dead.
1345    OldFn->eraseFromParent();
1346
1347    Entry = NewFn;
1348  }
1349
1350  // We need to set linkage and visibility on the function before
1351  // generating code for it because various parts of IR generation
1352  // want to propagate this information down (e.g. to local static
1353  // declarations).
1354  llvm::Function *Fn = cast<llvm::Function>(Entry);
1355  setFunctionLinkage(D, Fn);
1356
1357  // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1358  setGlobalVisibility(Fn, D, /*ForDef*/ true);
1359
1360  CodeGenFunction(*this).GenerateCode(D, Fn);
1361
1362  SetFunctionDefinitionAttributes(D, Fn);
1363  SetLLVMFunctionAttributesForDefinition(D, Fn);
1364
1365  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1366    AddGlobalCtor(Fn, CA->getPriority());
1367  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1368    AddGlobalDtor(Fn, DA->getPriority());
1369}
1370
1371void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1372  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1373  const AliasAttr *AA = D->getAttr<AliasAttr>();
1374  assert(AA && "Not an alias?");
1375
1376  llvm::StringRef MangledName = getMangledName(GD);
1377
1378  // If there is a definition in the module, then it wins over the alias.
1379  // This is dubious, but allow it to be safe.  Just ignore the alias.
1380  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1381  if (Entry && !Entry->isDeclaration())
1382    return;
1383
1384  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1385
1386  // Create a reference to the named value.  This ensures that it is emitted
1387  // if a deferred decl.
1388  llvm::Constant *Aliasee;
1389  if (isa<llvm::FunctionType>(DeclTy))
1390    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1391  else
1392    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1393                                    llvm::PointerType::getUnqual(DeclTy), 0);
1394
1395  // Create the new alias itself, but don't set a name yet.
1396  llvm::GlobalValue *GA =
1397    new llvm::GlobalAlias(Aliasee->getType(),
1398                          llvm::Function::ExternalLinkage,
1399                          "", Aliasee, &getModule());
1400
1401  if (Entry) {
1402    assert(Entry->isDeclaration());
1403
1404    // If there is a declaration in the module, then we had an extern followed
1405    // by the alias, as in:
1406    //   extern int test6();
1407    //   ...
1408    //   int test6() __attribute__((alias("test7")));
1409    //
1410    // Remove it and replace uses of it with the alias.
1411    GA->takeName(Entry);
1412
1413    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1414                                                          Entry->getType()));
1415    Entry->eraseFromParent();
1416  } else {
1417    GA->setName(MangledName);
1418  }
1419
1420  // Set attributes which are particular to an alias; this is a
1421  // specialization of the attributes which may be set on a global
1422  // variable/function.
1423  if (D->hasAttr<DLLExportAttr>()) {
1424    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1425      // The dllexport attribute is ignored for undefined symbols.
1426      if (FD->hasBody())
1427        GA->setLinkage(llvm::Function::DLLExportLinkage);
1428    } else {
1429      GA->setLinkage(llvm::Function::DLLExportLinkage);
1430    }
1431  } else if (D->hasAttr<WeakAttr>() ||
1432             D->hasAttr<WeakRefAttr>() ||
1433             D->hasAttr<WeakImportAttr>()) {
1434    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1435  }
1436
1437  SetCommonAttributes(D, GA);
1438}
1439
1440/// getBuiltinLibFunction - Given a builtin id for a function like
1441/// "__builtin_fabsf", return a Function* for "fabsf".
1442llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1443                                                  unsigned BuiltinID) {
1444  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1445          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1446         "isn't a lib fn");
1447
1448  // Get the name, skip over the __builtin_ prefix (if necessary).
1449  const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1450  if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1451    Name += 10;
1452
1453  const llvm::FunctionType *Ty =
1454    cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1455
1456  return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1457}
1458
1459llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1460                                            unsigned NumTys) {
1461  return llvm::Intrinsic::getDeclaration(&getModule(),
1462                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1463}
1464
1465
1466llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1467                                           const llvm::Type *SrcType,
1468                                           const llvm::Type *SizeType) {
1469  const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1470  return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1471}
1472
1473llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1474                                            const llvm::Type *SrcType,
1475                                            const llvm::Type *SizeType) {
1476  const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1477  return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1478}
1479
1480llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1481                                           const llvm::Type *SizeType) {
1482  const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1483  return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1484}
1485
1486static llvm::StringMapEntry<llvm::Constant*> &
1487GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1488                         const StringLiteral *Literal,
1489                         bool TargetIsLSB,
1490                         bool &IsUTF16,
1491                         unsigned &StringLength) {
1492  llvm::StringRef String = Literal->getString();
1493  unsigned NumBytes = String.size();
1494
1495  // Check for simple case.
1496  if (!Literal->containsNonAsciiOrNull()) {
1497    StringLength = NumBytes;
1498    return Map.GetOrCreateValue(String);
1499  }
1500
1501  // Otherwise, convert the UTF8 literals into a byte string.
1502  llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1503  const UTF8 *FromPtr = (UTF8 *)String.data();
1504  UTF16 *ToPtr = &ToBuf[0];
1505
1506  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1507                           &ToPtr, ToPtr + NumBytes,
1508                           strictConversion);
1509
1510  // ConvertUTF8toUTF16 returns the length in ToPtr.
1511  StringLength = ToPtr - &ToBuf[0];
1512
1513  // Render the UTF-16 string into a byte array and convert to the target byte
1514  // order.
1515  //
1516  // FIXME: This isn't something we should need to do here.
1517  llvm::SmallString<128> AsBytes;
1518  AsBytes.reserve(StringLength * 2);
1519  for (unsigned i = 0; i != StringLength; ++i) {
1520    unsigned short Val = ToBuf[i];
1521    if (TargetIsLSB) {
1522      AsBytes.push_back(Val & 0xFF);
1523      AsBytes.push_back(Val >> 8);
1524    } else {
1525      AsBytes.push_back(Val >> 8);
1526      AsBytes.push_back(Val & 0xFF);
1527    }
1528  }
1529  // Append one extra null character, the second is automatically added by our
1530  // caller.
1531  AsBytes.push_back(0);
1532
1533  IsUTF16 = true;
1534  return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1535}
1536
1537llvm::Constant *
1538CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1539  unsigned StringLength = 0;
1540  bool isUTF16 = false;
1541  llvm::StringMapEntry<llvm::Constant*> &Entry =
1542    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1543                             getTargetData().isLittleEndian(),
1544                             isUTF16, StringLength);
1545
1546  if (llvm::Constant *C = Entry.getValue())
1547    return C;
1548
1549  llvm::Constant *Zero =
1550      llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1551  llvm::Constant *Zeros[] = { Zero, Zero };
1552
1553  // If we don't already have it, get __CFConstantStringClassReference.
1554  if (!CFConstantStringClassRef) {
1555    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1556    Ty = llvm::ArrayType::get(Ty, 0);
1557    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1558                                           "__CFConstantStringClassReference");
1559    // Decay array -> ptr
1560    CFConstantStringClassRef =
1561      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1562  }
1563
1564  QualType CFTy = getContext().getCFConstantStringType();
1565
1566  const llvm::StructType *STy =
1567    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1568
1569  std::vector<llvm::Constant*> Fields(4);
1570
1571  // Class pointer.
1572  Fields[0] = CFConstantStringClassRef;
1573
1574  // Flags.
1575  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1576  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1577    llvm::ConstantInt::get(Ty, 0x07C8);
1578
1579  // String pointer.
1580  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1581
1582  llvm::GlobalValue::LinkageTypes Linkage;
1583  bool isConstant;
1584  if (isUTF16) {
1585    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1586    Linkage = llvm::GlobalValue::InternalLinkage;
1587    // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1588    // does make plain ascii ones writable.
1589    isConstant = true;
1590  } else {
1591    Linkage = llvm::GlobalValue::PrivateLinkage;
1592    isConstant = !Features.WritableStrings;
1593  }
1594
1595  llvm::GlobalVariable *GV =
1596    new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1597                             ".str");
1598  if (isUTF16) {
1599    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1600    GV->setAlignment(Align.getQuantity());
1601  }
1602  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1603
1604  // String length.
1605  Ty = getTypes().ConvertType(getContext().LongTy);
1606  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1607
1608  // The struct.
1609  C = llvm::ConstantStruct::get(STy, Fields);
1610  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1611                                llvm::GlobalVariable::PrivateLinkage, C,
1612                                "_unnamed_cfstring_");
1613  if (const char *Sect = getContext().Target.getCFStringSection())
1614    GV->setSection(Sect);
1615  Entry.setValue(GV);
1616
1617  return GV;
1618}
1619
1620llvm::Constant *
1621CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1622  unsigned StringLength = 0;
1623  bool isUTF16 = false;
1624  llvm::StringMapEntry<llvm::Constant*> &Entry =
1625    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1626                             getTargetData().isLittleEndian(),
1627                             isUTF16, StringLength);
1628
1629  if (llvm::Constant *C = Entry.getValue())
1630    return C;
1631
1632  llvm::Constant *Zero =
1633  llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1634  llvm::Constant *Zeros[] = { Zero, Zero };
1635
1636  // If we don't already have it, get _NSConstantStringClassReference.
1637  if (!ConstantStringClassRef) {
1638    std::string StringClass(getLangOptions().ObjCConstantStringClass);
1639    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1640    Ty = llvm::ArrayType::get(Ty, 0);
1641    llvm::Constant *GV;
1642    if (StringClass.empty())
1643      GV = CreateRuntimeVariable(Ty,
1644                                 Features.ObjCNonFragileABI ?
1645                                 "OBJC_CLASS_$_NSConstantString" :
1646                                 "_NSConstantStringClassReference");
1647    else {
1648      std::string str;
1649      if (Features.ObjCNonFragileABI)
1650        str = "OBJC_CLASS_$_" + StringClass;
1651      else
1652        str = "_" + StringClass + "ClassReference";
1653      GV = CreateRuntimeVariable(Ty, str);
1654    }
1655    // Decay array -> ptr
1656    ConstantStringClassRef =
1657    llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1658  }
1659
1660  QualType NSTy = getContext().getNSConstantStringType();
1661
1662  const llvm::StructType *STy =
1663  cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1664
1665  std::vector<llvm::Constant*> Fields(3);
1666
1667  // Class pointer.
1668  Fields[0] = ConstantStringClassRef;
1669
1670  // String pointer.
1671  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1672
1673  llvm::GlobalValue::LinkageTypes Linkage;
1674  bool isConstant;
1675  if (isUTF16) {
1676    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1677    Linkage = llvm::GlobalValue::InternalLinkage;
1678    // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1679    // does make plain ascii ones writable.
1680    isConstant = true;
1681  } else {
1682    Linkage = llvm::GlobalValue::PrivateLinkage;
1683    isConstant = !Features.WritableStrings;
1684  }
1685
1686  llvm::GlobalVariable *GV =
1687  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1688                           ".str");
1689  if (isUTF16) {
1690    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1691    GV->setAlignment(Align.getQuantity());
1692  }
1693  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1694
1695  // String length.
1696  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1697  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1698
1699  // The struct.
1700  C = llvm::ConstantStruct::get(STy, Fields);
1701  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1702                                llvm::GlobalVariable::PrivateLinkage, C,
1703                                "_unnamed_nsstring_");
1704  // FIXME. Fix section.
1705  if (const char *Sect =
1706        Features.ObjCNonFragileABI
1707          ? getContext().Target.getNSStringNonFragileABISection()
1708          : getContext().Target.getNSStringSection())
1709    GV->setSection(Sect);
1710  Entry.setValue(GV);
1711
1712  return GV;
1713}
1714
1715/// GetStringForStringLiteral - Return the appropriate bytes for a
1716/// string literal, properly padded to match the literal type.
1717std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1718  const ConstantArrayType *CAT =
1719    getContext().getAsConstantArrayType(E->getType());
1720  assert(CAT && "String isn't pointer or array!");
1721
1722  // Resize the string to the right size.
1723  uint64_t RealLen = CAT->getSize().getZExtValue();
1724
1725  if (E->isWide())
1726    RealLen *= getContext().Target.getWCharWidth()/8;
1727
1728  std::string Str = E->getString().str();
1729  Str.resize(RealLen, '\0');
1730
1731  return Str;
1732}
1733
1734/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1735/// constant array for the given string literal.
1736llvm::Constant *
1737CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1738  // FIXME: This can be more efficient.
1739  // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1740  llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1741  if (S->isWide()) {
1742    llvm::Type *DestTy =
1743        llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1744    C = llvm::ConstantExpr::getBitCast(C, DestTy);
1745  }
1746  return C;
1747}
1748
1749/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1750/// array for the given ObjCEncodeExpr node.
1751llvm::Constant *
1752CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1753  std::string Str;
1754  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1755
1756  return GetAddrOfConstantCString(Str);
1757}
1758
1759
1760/// GenerateWritableString -- Creates storage for a string literal.
1761static llvm::Constant *GenerateStringLiteral(const std::string &str,
1762                                             bool constant,
1763                                             CodeGenModule &CGM,
1764                                             const char *GlobalName) {
1765  // Create Constant for this string literal. Don't add a '\0'.
1766  llvm::Constant *C =
1767      llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1768
1769  // Create a global variable for this string
1770  return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1771                                  llvm::GlobalValue::PrivateLinkage,
1772                                  C, GlobalName);
1773}
1774
1775/// GetAddrOfConstantString - Returns a pointer to a character array
1776/// containing the literal. This contents are exactly that of the
1777/// given string, i.e. it will not be null terminated automatically;
1778/// see GetAddrOfConstantCString. Note that whether the result is
1779/// actually a pointer to an LLVM constant depends on
1780/// Feature.WriteableStrings.
1781///
1782/// The result has pointer to array type.
1783llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1784                                                       const char *GlobalName) {
1785  bool IsConstant = !Features.WritableStrings;
1786
1787  // Get the default prefix if a name wasn't specified.
1788  if (!GlobalName)
1789    GlobalName = ".str";
1790
1791  // Don't share any string literals if strings aren't constant.
1792  if (!IsConstant)
1793    return GenerateStringLiteral(str, false, *this, GlobalName);
1794
1795  llvm::StringMapEntry<llvm::Constant *> &Entry =
1796    ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1797
1798  if (Entry.getValue())
1799    return Entry.getValue();
1800
1801  // Create a global variable for this.
1802  llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1803  Entry.setValue(C);
1804  return C;
1805}
1806
1807/// GetAddrOfConstantCString - Returns a pointer to a character
1808/// array containing the literal and a terminating '\-'
1809/// character. The result has pointer to array type.
1810llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1811                                                        const char *GlobalName){
1812  return GetAddrOfConstantString(str + '\0', GlobalName);
1813}
1814
1815/// EmitObjCPropertyImplementations - Emit information for synthesized
1816/// properties for an implementation.
1817void CodeGenModule::EmitObjCPropertyImplementations(const
1818                                                    ObjCImplementationDecl *D) {
1819  for (ObjCImplementationDecl::propimpl_iterator
1820         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1821    ObjCPropertyImplDecl *PID = *i;
1822
1823    // Dynamic is just for type-checking.
1824    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1825      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1826
1827      // Determine which methods need to be implemented, some may have
1828      // been overridden. Note that ::isSynthesized is not the method
1829      // we want, that just indicates if the decl came from a
1830      // property. What we want to know is if the method is defined in
1831      // this implementation.
1832      if (!D->getInstanceMethod(PD->getGetterName()))
1833        CodeGenFunction(*this).GenerateObjCGetter(
1834                                 const_cast<ObjCImplementationDecl *>(D), PID);
1835      if (!PD->isReadOnly() &&
1836          !D->getInstanceMethod(PD->getSetterName()))
1837        CodeGenFunction(*this).GenerateObjCSetter(
1838                                 const_cast<ObjCImplementationDecl *>(D), PID);
1839    }
1840  }
1841}
1842
1843/// EmitObjCIvarInitializations - Emit information for ivar initialization
1844/// for an implementation.
1845void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1846  if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1847    return;
1848  DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1849  assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1850  IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1851  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1852  ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1853                                                  D->getLocation(),
1854                                                  D->getLocation(), cxxSelector,
1855                                                  getContext().VoidTy, 0,
1856                                                  DC, true, false, true, false,
1857                                                  ObjCMethodDecl::Required);
1858  D->addInstanceMethod(DTORMethod);
1859  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1860
1861  II = &getContext().Idents.get(".cxx_construct");
1862  cxxSelector = getContext().Selectors.getSelector(0, &II);
1863  // The constructor returns 'self'.
1864  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1865                                                D->getLocation(),
1866                                                D->getLocation(), cxxSelector,
1867                                                getContext().getObjCIdType(), 0,
1868                                                DC, true, false, true, false,
1869                                                ObjCMethodDecl::Required);
1870  D->addInstanceMethod(CTORMethod);
1871  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1872
1873
1874}
1875
1876/// EmitNamespace - Emit all declarations in a namespace.
1877void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1878  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1879       I != E; ++I)
1880    EmitTopLevelDecl(*I);
1881}
1882
1883// EmitLinkageSpec - Emit all declarations in a linkage spec.
1884void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1885  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1886      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1887    ErrorUnsupported(LSD, "linkage spec");
1888    return;
1889  }
1890
1891  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1892       I != E; ++I)
1893    EmitTopLevelDecl(*I);
1894}
1895
1896/// EmitTopLevelDecl - Emit code for a single top level declaration.
1897void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1898  // If an error has occurred, stop code generation, but continue
1899  // parsing and semantic analysis (to ensure all warnings and errors
1900  // are emitted).
1901  if (Diags.hasErrorOccurred())
1902    return;
1903
1904  // Ignore dependent declarations.
1905  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1906    return;
1907
1908  switch (D->getKind()) {
1909  case Decl::CXXConversion:
1910  case Decl::CXXMethod:
1911  case Decl::Function:
1912    // Skip function templates
1913    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1914      return;
1915
1916    EmitGlobal(cast<FunctionDecl>(D));
1917    break;
1918
1919  case Decl::Var:
1920    EmitGlobal(cast<VarDecl>(D));
1921    break;
1922
1923  // C++ Decls
1924  case Decl::Namespace:
1925    EmitNamespace(cast<NamespaceDecl>(D));
1926    break;
1927    // No code generation needed.
1928  case Decl::UsingShadow:
1929  case Decl::Using:
1930  case Decl::UsingDirective:
1931  case Decl::ClassTemplate:
1932  case Decl::FunctionTemplate:
1933  case Decl::NamespaceAlias:
1934    break;
1935  case Decl::CXXConstructor:
1936    // Skip function templates
1937    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1938      return;
1939
1940    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1941    break;
1942  case Decl::CXXDestructor:
1943    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1944    break;
1945
1946  case Decl::StaticAssert:
1947    // Nothing to do.
1948    break;
1949
1950  // Objective-C Decls
1951
1952  // Forward declarations, no (immediate) code generation.
1953  case Decl::ObjCClass:
1954  case Decl::ObjCForwardProtocol:
1955  case Decl::ObjCInterface:
1956    break;
1957
1958    case Decl::ObjCCategory: {
1959      ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
1960      if (CD->IsClassExtension() && CD->hasSynthBitfield())
1961        Context.ResetObjCLayout(CD->getClassInterface());
1962      break;
1963    }
1964
1965
1966  case Decl::ObjCProtocol:
1967    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1968    break;
1969
1970  case Decl::ObjCCategoryImpl:
1971    // Categories have properties but don't support synthesize so we
1972    // can ignore them here.
1973    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1974    break;
1975
1976  case Decl::ObjCImplementation: {
1977    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1978    if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
1979      Context.ResetObjCLayout(OMD->getClassInterface());
1980    EmitObjCPropertyImplementations(OMD);
1981    EmitObjCIvarInitializations(OMD);
1982    Runtime->GenerateClass(OMD);
1983    break;
1984  }
1985  case Decl::ObjCMethod: {
1986    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1987    // If this is not a prototype, emit the body.
1988    if (OMD->getBody())
1989      CodeGenFunction(*this).GenerateObjCMethod(OMD);
1990    break;
1991  }
1992  case Decl::ObjCCompatibleAlias:
1993    // compatibility-alias is a directive and has no code gen.
1994    break;
1995
1996  case Decl::LinkageSpec:
1997    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1998    break;
1999
2000  case Decl::FileScopeAsm: {
2001    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2002    llvm::StringRef AsmString = AD->getAsmString()->getString();
2003
2004    const std::string &S = getModule().getModuleInlineAsm();
2005    if (S.empty())
2006      getModule().setModuleInlineAsm(AsmString);
2007    else
2008      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2009    break;
2010  }
2011
2012  default:
2013    // Make sure we handled everything we should, every other kind is a
2014    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2015    // function. Need to recode Decl::Kind to do that easily.
2016    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2017  }
2018}
2019
2020/// Turns the given pointer into a constant.
2021static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2022                                          const void *Ptr) {
2023  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2024  const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2025  return llvm::ConstantInt::get(i64, PtrInt);
2026}
2027
2028static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2029                                   llvm::NamedMDNode *&GlobalMetadata,
2030                                   GlobalDecl D,
2031                                   llvm::GlobalValue *Addr) {
2032  if (!GlobalMetadata)
2033    GlobalMetadata =
2034      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2035
2036  // TODO: should we report variant information for ctors/dtors?
2037  llvm::Value *Ops[] = {
2038    Addr,
2039    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2040  };
2041  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2042}
2043
2044/// Emits metadata nodes associating all the global values in the
2045/// current module with the Decls they came from.  This is useful for
2046/// projects using IR gen as a subroutine.
2047///
2048/// Since there's currently no way to associate an MDNode directly
2049/// with an llvm::GlobalValue, we create a global named metadata
2050/// with the name 'clang.global.decl.ptrs'.
2051void CodeGenModule::EmitDeclMetadata() {
2052  llvm::NamedMDNode *GlobalMetadata = 0;
2053
2054  // StaticLocalDeclMap
2055  for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2056         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2057       I != E; ++I) {
2058    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2059    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2060  }
2061}
2062
2063/// Emits metadata nodes for all the local variables in the current
2064/// function.
2065void CodeGenFunction::EmitDeclMetadata() {
2066  if (LocalDeclMap.empty()) return;
2067
2068  llvm::LLVMContext &Context = getLLVMContext();
2069
2070  // Find the unique metadata ID for this name.
2071  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2072
2073  llvm::NamedMDNode *GlobalMetadata = 0;
2074
2075  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2076         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2077    const Decl *D = I->first;
2078    llvm::Value *Addr = I->second;
2079
2080    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2081      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2082      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2083    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2084      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2085      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2086    }
2087  }
2088}
2089
2090///@name Custom Runtime Function Interfaces
2091///@{
2092//
2093// FIXME: These can be eliminated once we can have clients just get the required
2094// AST nodes from the builtin tables.
2095
2096llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2097  if (BlockObjectDispose)
2098    return BlockObjectDispose;
2099
2100  // If we saw an explicit decl, use that.
2101  if (BlockObjectDisposeDecl) {
2102    return BlockObjectDispose = GetAddrOfFunction(
2103      BlockObjectDisposeDecl,
2104      getTypes().GetFunctionType(BlockObjectDisposeDecl));
2105  }
2106
2107  // Otherwise construct the function by hand.
2108  const llvm::FunctionType *FTy;
2109  std::vector<const llvm::Type*> ArgTys;
2110  const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2111  ArgTys.push_back(PtrToInt8Ty);
2112  ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2113  FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2114  return BlockObjectDispose =
2115    CreateRuntimeFunction(FTy, "_Block_object_dispose");
2116}
2117
2118llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2119  if (BlockObjectAssign)
2120    return BlockObjectAssign;
2121
2122  // If we saw an explicit decl, use that.
2123  if (BlockObjectAssignDecl) {
2124    return BlockObjectAssign = GetAddrOfFunction(
2125      BlockObjectAssignDecl,
2126      getTypes().GetFunctionType(BlockObjectAssignDecl));
2127  }
2128
2129  // Otherwise construct the function by hand.
2130  const llvm::FunctionType *FTy;
2131  std::vector<const llvm::Type*> ArgTys;
2132  const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2133  ArgTys.push_back(PtrToInt8Ty);
2134  ArgTys.push_back(PtrToInt8Ty);
2135  ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2136  FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2137  return BlockObjectAssign =
2138    CreateRuntimeFunction(FTy, "_Block_object_assign");
2139}
2140
2141llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2142  if (NSConcreteGlobalBlock)
2143    return NSConcreteGlobalBlock;
2144
2145  // If we saw an explicit decl, use that.
2146  if (NSConcreteGlobalBlockDecl) {
2147    return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2148      NSConcreteGlobalBlockDecl,
2149      getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2150  }
2151
2152  // Otherwise construct the variable by hand.
2153  return NSConcreteGlobalBlock = CreateRuntimeVariable(
2154    PtrToInt8Ty, "_NSConcreteGlobalBlock");
2155}
2156
2157llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2158  if (NSConcreteStackBlock)
2159    return NSConcreteStackBlock;
2160
2161  // If we saw an explicit decl, use that.
2162  if (NSConcreteStackBlockDecl) {
2163    return NSConcreteStackBlock = GetAddrOfGlobalVar(
2164      NSConcreteStackBlockDecl,
2165      getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2166  }
2167
2168  // Otherwise construct the variable by hand.
2169  return NSConcreteStackBlock = CreateRuntimeVariable(
2170    PtrToInt8Ty, "_NSConcreteStackBlock");
2171}
2172
2173///@}
2174