CodeGenModule.cpp revision 3dc05418538c719fea48b906bfa4febe5296e126
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CodeGenTBAA.h"
18#include "CGCall.h"
19#include "CGCXXABI.h"
20#include "CGObjCRuntime.h"
21#include "TargetInfo.h"
22#include "clang/Frontend/CodeGenOptions.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CharUnits.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclCXX.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/Mangle.h"
29#include "clang/AST/RecordLayout.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/Diagnostic.h"
32#include "clang/Basic/SourceManager.h"
33#include "clang/Basic/TargetInfo.h"
34#include "clang/Basic/ConvertUTF.h"
35#include "llvm/CallingConv.h"
36#include "llvm/Module.h"
37#include "llvm/Intrinsics.h"
38#include "llvm/LLVMContext.h"
39#include "llvm/ADT/Triple.h"
40#include "llvm/Target/Mangler.h"
41#include "llvm/Target/TargetData.h"
42#include "llvm/Support/CallSite.h"
43#include "llvm/Support/ErrorHandling.h"
44using namespace clang;
45using namespace CodeGen;
46
47static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
48  switch (CGM.getContext().Target.getCXXABI()) {
49  case CXXABI_ARM: return *CreateARMCXXABI(CGM);
50  case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
51  case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
52  }
53
54  llvm_unreachable("invalid C++ ABI kind");
55  return *CreateItaniumCXXABI(CGM);
56}
57
58
59CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
60                             llvm::Module &M, const llvm::TargetData &TD,
61                             Diagnostic &diags)
62  : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63    TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64    ABI(createCXXABI(*this)),
65    Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66    TBAA(0),
67    VTables(*this), Runtime(0), DebugInfo(0),
68    CFConstantStringClassRef(0), ConstantStringClassRef(0),
69    VMContext(M.getContext()),
70    NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72    BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73    BlockObjectAssign(0), BlockObjectDispose(0),
74    BlockDescriptorType(0), GenericBlockLiteralType(0) {
75  if (Features.ObjC1)
76     createObjCRuntime();
77
78  // Enable TBAA unless it's suppressed.
79  if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
80    TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
81                           ABI.getMangleContext());
82
83  // If debug info or coverage generation is enabled, create the CGDebugInfo
84  // object.
85  if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
86      CodeGenOpts.EmitGcovNotes)
87    DebugInfo = new CGDebugInfo(*this);
88
89  Block.GlobalUniqueCount = 0;
90
91  // Initialize the type cache.
92  llvm::LLVMContext &LLVMContext = M.getContext();
93  Int8Ty  = llvm::Type::getInt8Ty(LLVMContext);
94  Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
95  Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
96  PointerWidthInBits = C.Target.getPointerWidth(0);
97  PointerAlignInBytes =
98    C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity();
99  IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth());
100  IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
101  Int8PtrTy = Int8Ty->getPointerTo(0);
102  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
103}
104
105CodeGenModule::~CodeGenModule() {
106  delete Runtime;
107  delete &ABI;
108  delete TBAA;
109  delete DebugInfo;
110}
111
112void CodeGenModule::createObjCRuntime() {
113  if (!Features.NeXTRuntime)
114    Runtime = CreateGNUObjCRuntime(*this);
115  else
116    Runtime = CreateMacObjCRuntime(*this);
117}
118
119void CodeGenModule::Release() {
120  EmitDeferred();
121  EmitCXXGlobalInitFunc();
122  EmitCXXGlobalDtorFunc();
123  if (Runtime)
124    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
125      AddGlobalCtor(ObjCInitFunction);
126  EmitCtorList(GlobalCtors, "llvm.global_ctors");
127  EmitCtorList(GlobalDtors, "llvm.global_dtors");
128  EmitAnnotations();
129  EmitLLVMUsed();
130
131  SimplifyPersonality();
132
133  if (getCodeGenOpts().EmitDeclMetadata)
134    EmitDeclMetadata();
135
136  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
137    EmitCoverageFile();
138}
139
140void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
141  // Make sure that this type is translated.
142  Types.UpdateCompletedType(TD);
143  if (DebugInfo)
144    DebugInfo->UpdateCompletedType(TD);
145}
146
147llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
148  if (!TBAA)
149    return 0;
150  return TBAA->getTBAAInfo(QTy);
151}
152
153void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
154                                        llvm::MDNode *TBAAInfo) {
155  Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
156}
157
158bool CodeGenModule::isTargetDarwin() const {
159  return getContext().Target.getTriple().isOSDarwin();
160}
161
162void CodeGenModule::Error(SourceLocation loc, llvm::StringRef error) {
163  unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error);
164  getDiags().Report(Context.getFullLoc(loc), diagID);
165}
166
167/// ErrorUnsupported - Print out an error that codegen doesn't support the
168/// specified stmt yet.
169void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
170                                     bool OmitOnError) {
171  if (OmitOnError && getDiags().hasErrorOccurred())
172    return;
173  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
174                                               "cannot compile this %0 yet");
175  std::string Msg = Type;
176  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
177    << Msg << S->getSourceRange();
178}
179
180/// ErrorUnsupported - Print out an error that codegen doesn't support the
181/// specified decl yet.
182void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
183                                     bool OmitOnError) {
184  if (OmitOnError && getDiags().hasErrorOccurred())
185    return;
186  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
187                                               "cannot compile this %0 yet");
188  std::string Msg = Type;
189  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
190}
191
192void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
193                                        const NamedDecl *D) const {
194  // Internal definitions always have default visibility.
195  if (GV->hasLocalLinkage()) {
196    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
197    return;
198  }
199
200  // Set visibility for definitions.
201  NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
202  if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
203    GV->setVisibility(GetLLVMVisibility(LV.visibility()));
204}
205
206/// Set the symbol visibility of type information (vtable and RTTI)
207/// associated with the given type.
208void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
209                                      const CXXRecordDecl *RD,
210                                      TypeVisibilityKind TVK) const {
211  setGlobalVisibility(GV, RD);
212
213  if (!CodeGenOpts.HiddenWeakVTables)
214    return;
215
216  // We never want to drop the visibility for RTTI names.
217  if (TVK == TVK_ForRTTIName)
218    return;
219
220  // We want to drop the visibility to hidden for weak type symbols.
221  // This isn't possible if there might be unresolved references
222  // elsewhere that rely on this symbol being visible.
223
224  // This should be kept roughly in sync with setThunkVisibility
225  // in CGVTables.cpp.
226
227  // Preconditions.
228  if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
229      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
230    return;
231
232  // Don't override an explicit visibility attribute.
233  if (RD->getExplicitVisibility())
234    return;
235
236  switch (RD->getTemplateSpecializationKind()) {
237  // We have to disable the optimization if this is an EI definition
238  // because there might be EI declarations in other shared objects.
239  case TSK_ExplicitInstantiationDefinition:
240  case TSK_ExplicitInstantiationDeclaration:
241    return;
242
243  // Every use of a non-template class's type information has to emit it.
244  case TSK_Undeclared:
245    break;
246
247  // In theory, implicit instantiations can ignore the possibility of
248  // an explicit instantiation declaration because there necessarily
249  // must be an EI definition somewhere with default visibility.  In
250  // practice, it's possible to have an explicit instantiation for
251  // an arbitrary template class, and linkers aren't necessarily able
252  // to deal with mixed-visibility symbols.
253  case TSK_ExplicitSpecialization:
254  case TSK_ImplicitInstantiation:
255    if (!CodeGenOpts.HiddenWeakTemplateVTables)
256      return;
257    break;
258  }
259
260  // If there's a key function, there may be translation units
261  // that don't have the key function's definition.  But ignore
262  // this if we're emitting RTTI under -fno-rtti.
263  if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
264    if (Context.getKeyFunction(RD))
265      return;
266  }
267
268  // Otherwise, drop the visibility to hidden.
269  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
270  GV->setUnnamedAddr(true);
271}
272
273llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
274  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
275
276  llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
277  if (!Str.empty())
278    return Str;
279
280  if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
281    IdentifierInfo *II = ND->getIdentifier();
282    assert(II && "Attempt to mangle unnamed decl.");
283
284    Str = II->getName();
285    return Str;
286  }
287
288  llvm::SmallString<256> Buffer;
289  llvm::raw_svector_ostream Out(Buffer);
290  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
291    getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
292  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
293    getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
294  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
295    getCXXABI().getMangleContext().mangleBlock(BD, Out);
296  else
297    getCXXABI().getMangleContext().mangleName(ND, Out);
298
299  // Allocate space for the mangled name.
300  Out.flush();
301  size_t Length = Buffer.size();
302  char *Name = MangledNamesAllocator.Allocate<char>(Length);
303  std::copy(Buffer.begin(), Buffer.end(), Name);
304
305  Str = llvm::StringRef(Name, Length);
306
307  return Str;
308}
309
310void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
311                                        const BlockDecl *BD) {
312  MangleContext &MangleCtx = getCXXABI().getMangleContext();
313  const Decl *D = GD.getDecl();
314  llvm::raw_svector_ostream Out(Buffer.getBuffer());
315  if (D == 0)
316    MangleCtx.mangleGlobalBlock(BD, Out);
317  else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
318    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
319  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
320    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
321  else
322    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
323}
324
325llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
326  return getModule().getNamedValue(Name);
327}
328
329/// AddGlobalCtor - Add a function to the list that will be called before
330/// main() runs.
331void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
332  // FIXME: Type coercion of void()* types.
333  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
334}
335
336/// AddGlobalDtor - Add a function to the list that will be called
337/// when the module is unloaded.
338void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
339  // FIXME: Type coercion of void()* types.
340  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
341}
342
343void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
344  // Ctor function type is void()*.
345  llvm::FunctionType* CtorFTy =
346    llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
347  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
348
349  // Get the type of a ctor entry, { i32, void ()* }.
350  llvm::StructType* CtorStructTy =
351    llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
352                          llvm::PointerType::getUnqual(CtorFTy), NULL);
353
354  // Construct the constructor and destructor arrays.
355  std::vector<llvm::Constant*> Ctors;
356  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
357    std::vector<llvm::Constant*> S;
358    S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
359                I->second, false));
360    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
361    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
362  }
363
364  if (!Ctors.empty()) {
365    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
366    new llvm::GlobalVariable(TheModule, AT, false,
367                             llvm::GlobalValue::AppendingLinkage,
368                             llvm::ConstantArray::get(AT, Ctors),
369                             GlobalName);
370  }
371}
372
373void CodeGenModule::EmitAnnotations() {
374  if (Annotations.empty())
375    return;
376
377  // Create a new global variable for the ConstantStruct in the Module.
378  llvm::Constant *Array =
379  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
380                                                Annotations.size()),
381                           Annotations);
382  llvm::GlobalValue *gv =
383  new llvm::GlobalVariable(TheModule, Array->getType(), false,
384                           llvm::GlobalValue::AppendingLinkage, Array,
385                           "llvm.global.annotations");
386  gv->setSection("llvm.metadata");
387}
388
389llvm::GlobalValue::LinkageTypes
390CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
391  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
392
393  if (Linkage == GVA_Internal)
394    return llvm::Function::InternalLinkage;
395
396  if (D->hasAttr<DLLExportAttr>())
397    return llvm::Function::DLLExportLinkage;
398
399  if (D->hasAttr<WeakAttr>())
400    return llvm::Function::WeakAnyLinkage;
401
402  // In C99 mode, 'inline' functions are guaranteed to have a strong
403  // definition somewhere else, so we can use available_externally linkage.
404  if (Linkage == GVA_C99Inline)
405    return llvm::Function::AvailableExternallyLinkage;
406
407  // In C++, the compiler has to emit a definition in every translation unit
408  // that references the function.  We should use linkonce_odr because
409  // a) if all references in this translation unit are optimized away, we
410  // don't need to codegen it.  b) if the function persists, it needs to be
411  // merged with other definitions. c) C++ has the ODR, so we know the
412  // definition is dependable.
413  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
414    return !Context.getLangOptions().AppleKext
415             ? llvm::Function::LinkOnceODRLinkage
416             : llvm::Function::InternalLinkage;
417
418  // An explicit instantiation of a template has weak linkage, since
419  // explicit instantiations can occur in multiple translation units
420  // and must all be equivalent. However, we are not allowed to
421  // throw away these explicit instantiations.
422  if (Linkage == GVA_ExplicitTemplateInstantiation)
423    return !Context.getLangOptions().AppleKext
424             ? llvm::Function::WeakODRLinkage
425             : llvm::Function::InternalLinkage;
426
427  // Otherwise, we have strong external linkage.
428  assert(Linkage == GVA_StrongExternal);
429  return llvm::Function::ExternalLinkage;
430}
431
432
433/// SetFunctionDefinitionAttributes - Set attributes for a global.
434///
435/// FIXME: This is currently only done for aliases and functions, but not for
436/// variables (these details are set in EmitGlobalVarDefinition for variables).
437void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
438                                                    llvm::GlobalValue *GV) {
439  SetCommonAttributes(D, GV);
440}
441
442void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
443                                              const CGFunctionInfo &Info,
444                                              llvm::Function *F) {
445  unsigned CallingConv;
446  AttributeListType AttributeList;
447  ConstructAttributeList(Info, D, AttributeList, CallingConv);
448  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
449                                          AttributeList.size()));
450  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
451}
452
453void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
454                                                           llvm::Function *F) {
455  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
456    F->addFnAttr(llvm::Attribute::NoUnwind);
457
458  if (D->hasAttr<AlwaysInlineAttr>())
459    F->addFnAttr(llvm::Attribute::AlwaysInline);
460
461  if (D->hasAttr<NakedAttr>())
462    F->addFnAttr(llvm::Attribute::Naked);
463
464  if (D->hasAttr<NoInlineAttr>())
465    F->addFnAttr(llvm::Attribute::NoInline);
466
467  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
468    F->setUnnamedAddr(true);
469
470  if (Features.getStackProtectorMode() == LangOptions::SSPOn)
471    F->addFnAttr(llvm::Attribute::StackProtect);
472  else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
473    F->addFnAttr(llvm::Attribute::StackProtectReq);
474
475  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
476  if (alignment)
477    F->setAlignment(alignment);
478
479  // C++ ABI requires 2-byte alignment for member functions.
480  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
481    F->setAlignment(2);
482}
483
484void CodeGenModule::SetCommonAttributes(const Decl *D,
485                                        llvm::GlobalValue *GV) {
486  if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
487    setGlobalVisibility(GV, ND);
488  else
489    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
490
491  if (D->hasAttr<UsedAttr>())
492    AddUsedGlobal(GV);
493
494  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
495    GV->setSection(SA->getName());
496
497  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
498}
499
500void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
501                                                  llvm::Function *F,
502                                                  const CGFunctionInfo &FI) {
503  SetLLVMFunctionAttributes(D, FI, F);
504  SetLLVMFunctionAttributesForDefinition(D, F);
505
506  F->setLinkage(llvm::Function::InternalLinkage);
507
508  SetCommonAttributes(D, F);
509}
510
511void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
512                                          llvm::Function *F,
513                                          bool IsIncompleteFunction) {
514  if (unsigned IID = F->getIntrinsicID()) {
515    // If this is an intrinsic function, set the function's attributes
516    // to the intrinsic's attributes.
517    F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
518    return;
519  }
520
521  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
522
523  if (!IsIncompleteFunction)
524    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
525
526  // Only a few attributes are set on declarations; these may later be
527  // overridden by a definition.
528
529  if (FD->hasAttr<DLLImportAttr>()) {
530    F->setLinkage(llvm::Function::DLLImportLinkage);
531  } else if (FD->hasAttr<WeakAttr>() ||
532             FD->isWeakImported()) {
533    // "extern_weak" is overloaded in LLVM; we probably should have
534    // separate linkage types for this.
535    F->setLinkage(llvm::Function::ExternalWeakLinkage);
536  } else {
537    F->setLinkage(llvm::Function::ExternalLinkage);
538
539    NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
540    if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
541      F->setVisibility(GetLLVMVisibility(LV.visibility()));
542    }
543  }
544
545  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
546    F->setSection(SA->getName());
547}
548
549void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
550  assert(!GV->isDeclaration() &&
551         "Only globals with definition can force usage.");
552  LLVMUsed.push_back(GV);
553}
554
555void CodeGenModule::EmitLLVMUsed() {
556  // Don't create llvm.used if there is no need.
557  if (LLVMUsed.empty())
558    return;
559
560  const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
561
562  // Convert LLVMUsed to what ConstantArray needs.
563  std::vector<llvm::Constant*> UsedArray;
564  UsedArray.resize(LLVMUsed.size());
565  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
566    UsedArray[i] =
567     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
568                                      i8PTy);
569  }
570
571  if (UsedArray.empty())
572    return;
573  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
574
575  llvm::GlobalVariable *GV =
576    new llvm::GlobalVariable(getModule(), ATy, false,
577                             llvm::GlobalValue::AppendingLinkage,
578                             llvm::ConstantArray::get(ATy, UsedArray),
579                             "llvm.used");
580
581  GV->setSection("llvm.metadata");
582}
583
584void CodeGenModule::EmitDeferred() {
585  // Emit code for any potentially referenced deferred decls.  Since a
586  // previously unused static decl may become used during the generation of code
587  // for a static function, iterate until no  changes are made.
588
589  while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
590    if (!DeferredVTables.empty()) {
591      const CXXRecordDecl *RD = DeferredVTables.back();
592      DeferredVTables.pop_back();
593      getVTables().GenerateClassData(getVTableLinkage(RD), RD);
594      continue;
595    }
596
597    GlobalDecl D = DeferredDeclsToEmit.back();
598    DeferredDeclsToEmit.pop_back();
599
600    // Check to see if we've already emitted this.  This is necessary
601    // for a couple of reasons: first, decls can end up in the
602    // deferred-decls queue multiple times, and second, decls can end
603    // up with definitions in unusual ways (e.g. by an extern inline
604    // function acquiring a strong function redefinition).  Just
605    // ignore these cases.
606    //
607    // TODO: That said, looking this up multiple times is very wasteful.
608    llvm::StringRef Name = getMangledName(D);
609    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
610    assert(CGRef && "Deferred decl wasn't referenced?");
611
612    if (!CGRef->isDeclaration())
613      continue;
614
615    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
616    // purposes an alias counts as a definition.
617    if (isa<llvm::GlobalAlias>(CGRef))
618      continue;
619
620    // Otherwise, emit the definition and move on to the next one.
621    EmitGlobalDefinition(D);
622  }
623}
624
625/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
626/// annotation information for a given GlobalValue.  The annotation struct is
627/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
628/// GlobalValue being annotated.  The second field is the constant string
629/// created from the AnnotateAttr's annotation.  The third field is a constant
630/// string containing the name of the translation unit.  The fourth field is
631/// the line number in the file of the annotated value declaration.
632///
633/// FIXME: this does not unique the annotation string constants, as llvm-gcc
634///        appears to.
635///
636llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
637                                                const AnnotateAttr *AA,
638                                                unsigned LineNo) {
639  llvm::Module *M = &getModule();
640
641  // get [N x i8] constants for the annotation string, and the filename string
642  // which are the 2nd and 3rd elements of the global annotation structure.
643  const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
644  llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
645                                                  AA->getAnnotation(), true);
646  llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
647                                                  M->getModuleIdentifier(),
648                                                  true);
649
650  // Get the two global values corresponding to the ConstantArrays we just
651  // created to hold the bytes of the strings.
652  llvm::GlobalValue *annoGV =
653    new llvm::GlobalVariable(*M, anno->getType(), false,
654                             llvm::GlobalValue::PrivateLinkage, anno,
655                             GV->getName());
656  // translation unit name string, emitted into the llvm.metadata section.
657  llvm::GlobalValue *unitGV =
658    new llvm::GlobalVariable(*M, unit->getType(), false,
659                             llvm::GlobalValue::PrivateLinkage, unit,
660                             ".str");
661  unitGV->setUnnamedAddr(true);
662
663  // Create the ConstantStruct for the global annotation.
664  llvm::Constant *Fields[4] = {
665    llvm::ConstantExpr::getBitCast(GV, SBP),
666    llvm::ConstantExpr::getBitCast(annoGV, SBP),
667    llvm::ConstantExpr::getBitCast(unitGV, SBP),
668    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
669  };
670  return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
671}
672
673bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
674  // Never defer when EmitAllDecls is specified.
675  if (Features.EmitAllDecls)
676    return false;
677
678  return !getContext().DeclMustBeEmitted(Global);
679}
680
681llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
682  const AliasAttr *AA = VD->getAttr<AliasAttr>();
683  assert(AA && "No alias?");
684
685  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
686
687  // See if there is already something with the target's name in the module.
688  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
689
690  llvm::Constant *Aliasee;
691  if (isa<llvm::FunctionType>(DeclTy))
692    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
693                                      /*ForVTable=*/false);
694  else
695    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
696                                    llvm::PointerType::getUnqual(DeclTy), 0);
697  if (!Entry) {
698    llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
699    F->setLinkage(llvm::Function::ExternalWeakLinkage);
700    WeakRefReferences.insert(F);
701  }
702
703  return Aliasee;
704}
705
706void CodeGenModule::EmitGlobal(GlobalDecl GD) {
707  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
708
709  // Weak references don't produce any output by themselves.
710  if (Global->hasAttr<WeakRefAttr>())
711    return;
712
713  // If this is an alias definition (which otherwise looks like a declaration)
714  // emit it now.
715  if (Global->hasAttr<AliasAttr>())
716    return EmitAliasDefinition(GD);
717
718  // Ignore declarations, they will be emitted on their first use.
719  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
720    if (FD->getIdentifier()) {
721      llvm::StringRef Name = FD->getName();
722      if (Name == "_Block_object_assign") {
723        BlockObjectAssignDecl = FD;
724      } else if (Name == "_Block_object_dispose") {
725        BlockObjectDisposeDecl = FD;
726      }
727    }
728
729    // Forward declarations are emitted lazily on first use.
730    if (!FD->isThisDeclarationADefinition())
731      return;
732  } else {
733    const VarDecl *VD = cast<VarDecl>(Global);
734    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
735
736    if (VD->getIdentifier()) {
737      llvm::StringRef Name = VD->getName();
738      if (Name == "_NSConcreteGlobalBlock") {
739        NSConcreteGlobalBlockDecl = VD;
740      } else if (Name == "_NSConcreteStackBlock") {
741        NSConcreteStackBlockDecl = VD;
742      }
743    }
744
745
746    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
747      return;
748  }
749
750  // Defer code generation when possible if this is a static definition, inline
751  // function etc.  These we only want to emit if they are used.
752  if (!MayDeferGeneration(Global)) {
753    // Emit the definition if it can't be deferred.
754    EmitGlobalDefinition(GD);
755    return;
756  }
757
758  // If we're deferring emission of a C++ variable with an
759  // initializer, remember the order in which it appeared in the file.
760  if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
761      cast<VarDecl>(Global)->hasInit()) {
762    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
763    CXXGlobalInits.push_back(0);
764  }
765
766  // If the value has already been used, add it directly to the
767  // DeferredDeclsToEmit list.
768  llvm::StringRef MangledName = getMangledName(GD);
769  if (GetGlobalValue(MangledName))
770    DeferredDeclsToEmit.push_back(GD);
771  else {
772    // Otherwise, remember that we saw a deferred decl with this name.  The
773    // first use of the mangled name will cause it to move into
774    // DeferredDeclsToEmit.
775    DeferredDecls[MangledName] = GD;
776  }
777}
778
779void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
780  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
781
782  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
783                                 Context.getSourceManager(),
784                                 "Generating code for declaration");
785
786  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
787    // At -O0, don't generate IR for functions with available_externally
788    // linkage.
789    if (CodeGenOpts.OptimizationLevel == 0 &&
790        !Function->hasAttr<AlwaysInlineAttr>() &&
791        getFunctionLinkage(Function)
792                                  == llvm::Function::AvailableExternallyLinkage)
793      return;
794
795    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
796      if (Method->isVirtual())
797        getVTables().EmitThunks(GD);
798
799      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
800        return EmitCXXConstructor(CD, GD.getCtorType());
801
802      if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
803        return EmitCXXDestructor(DD, GD.getDtorType());
804    }
805
806    return EmitGlobalFunctionDefinition(GD);
807  }
808
809  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
810    return EmitGlobalVarDefinition(VD);
811
812  assert(0 && "Invalid argument to EmitGlobalDefinition()");
813}
814
815/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
816/// module, create and return an llvm Function with the specified type. If there
817/// is something in the module with the specified name, return it potentially
818/// bitcasted to the right type.
819///
820/// If D is non-null, it specifies a decl that correspond to this.  This is used
821/// to set the attributes on the function when it is first created.
822llvm::Constant *
823CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
824                                       const llvm::Type *Ty,
825                                       GlobalDecl D, bool ForVTable) {
826  // Lookup the entry, lazily creating it if necessary.
827  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
828  if (Entry) {
829    if (WeakRefReferences.count(Entry)) {
830      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
831      if (FD && !FD->hasAttr<WeakAttr>())
832        Entry->setLinkage(llvm::Function::ExternalLinkage);
833
834      WeakRefReferences.erase(Entry);
835    }
836
837    if (Entry->getType()->getElementType() == Ty)
838      return Entry;
839
840    // Make sure the result is of the correct type.
841    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
842    return llvm::ConstantExpr::getBitCast(Entry, PTy);
843  }
844
845  // This function doesn't have a complete type (for example, the return
846  // type is an incomplete struct). Use a fake type instead, and make
847  // sure not to try to set attributes.
848  bool IsIncompleteFunction = false;
849
850  const llvm::FunctionType *FTy;
851  if (isa<llvm::FunctionType>(Ty)) {
852    FTy = cast<llvm::FunctionType>(Ty);
853  } else {
854    FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext), false);
855    IsIncompleteFunction = true;
856  }
857
858  llvm::Function *F = llvm::Function::Create(FTy,
859                                             llvm::Function::ExternalLinkage,
860                                             MangledName, &getModule());
861  assert(F->getName() == MangledName && "name was uniqued!");
862  if (D.getDecl())
863    SetFunctionAttributes(D, F, IsIncompleteFunction);
864
865  // This is the first use or definition of a mangled name.  If there is a
866  // deferred decl with this name, remember that we need to emit it at the end
867  // of the file.
868  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
869  if (DDI != DeferredDecls.end()) {
870    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
871    // list, and remove it from DeferredDecls (since we don't need it anymore).
872    DeferredDeclsToEmit.push_back(DDI->second);
873    DeferredDecls.erase(DDI);
874
875  // Otherwise, there are cases we have to worry about where we're
876  // using a declaration for which we must emit a definition but where
877  // we might not find a top-level definition:
878  //   - member functions defined inline in their classes
879  //   - friend functions defined inline in some class
880  //   - special member functions with implicit definitions
881  // If we ever change our AST traversal to walk into class methods,
882  // this will be unnecessary.
883  //
884  // We also don't emit a definition for a function if it's going to be an entry
885  // in a vtable, unless it's already marked as used.
886  } else if (getLangOptions().CPlusPlus && D.getDecl()) {
887    // Look for a declaration that's lexically in a record.
888    const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
889    do {
890      if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
891        if (FD->isImplicit() && !ForVTable) {
892          assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
893          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
894          break;
895        } else if (FD->isThisDeclarationADefinition()) {
896          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
897          break;
898        }
899      }
900      FD = FD->getPreviousDeclaration();
901    } while (FD);
902  }
903
904  // Make sure the result is of the requested type.
905  if (!IsIncompleteFunction) {
906    assert(F->getType()->getElementType() == Ty);
907    return F;
908  }
909
910  const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
911  return llvm::ConstantExpr::getBitCast(F, PTy);
912}
913
914/// GetAddrOfFunction - Return the address of the given function.  If Ty is
915/// non-null, then this function will use the specified type if it has to
916/// create it (this occurs when we see a definition of the function).
917llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
918                                                 const llvm::Type *Ty,
919                                                 bool ForVTable) {
920  // If there was no specific requested type, just convert it now.
921  if (!Ty)
922    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
923
924  llvm::StringRef MangledName = getMangledName(GD);
925  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
926}
927
928/// CreateRuntimeFunction - Create a new runtime function with the specified
929/// type and name.
930llvm::Constant *
931CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
932                                     llvm::StringRef Name) {
933  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false);
934}
935
936static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
937  if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
938    return false;
939  if (Context.getLangOptions().CPlusPlus &&
940      Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
941    // FIXME: We should do something fancier here!
942    return false;
943  }
944  return true;
945}
946
947/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
948/// create and return an llvm GlobalVariable with the specified type.  If there
949/// is something in the module with the specified name, return it potentially
950/// bitcasted to the right type.
951///
952/// If D is non-null, it specifies a decl that correspond to this.  This is used
953/// to set the attributes on the global when it is first created.
954llvm::Constant *
955CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
956                                     const llvm::PointerType *Ty,
957                                     const VarDecl *D,
958                                     bool UnnamedAddr) {
959  // Lookup the entry, lazily creating it if necessary.
960  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
961  if (Entry) {
962    if (WeakRefReferences.count(Entry)) {
963      if (D && !D->hasAttr<WeakAttr>())
964        Entry->setLinkage(llvm::Function::ExternalLinkage);
965
966      WeakRefReferences.erase(Entry);
967    }
968
969    if (UnnamedAddr)
970      Entry->setUnnamedAddr(true);
971
972    if (Entry->getType() == Ty)
973      return Entry;
974
975    // Make sure the result is of the correct type.
976    return llvm::ConstantExpr::getBitCast(Entry, Ty);
977  }
978
979  // This is the first use or definition of a mangled name.  If there is a
980  // deferred decl with this name, remember that we need to emit it at the end
981  // of the file.
982  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
983  if (DDI != DeferredDecls.end()) {
984    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
985    // list, and remove it from DeferredDecls (since we don't need it anymore).
986    DeferredDeclsToEmit.push_back(DDI->second);
987    DeferredDecls.erase(DDI);
988  }
989
990  llvm::GlobalVariable *GV =
991    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
992                             llvm::GlobalValue::ExternalLinkage,
993                             0, MangledName, 0,
994                             false, Ty->getAddressSpace());
995
996  // Handle things which are present even on external declarations.
997  if (D) {
998    // FIXME: This code is overly simple and should be merged with other global
999    // handling.
1000    GV->setConstant(DeclIsConstantGlobal(Context, D));
1001
1002    // Set linkage and visibility in case we never see a definition.
1003    NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1004    if (LV.linkage() != ExternalLinkage) {
1005      // Don't set internal linkage on declarations.
1006    } else {
1007      if (D->hasAttr<DLLImportAttr>())
1008        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1009      else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1010        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1011
1012      // Set visibility on a declaration only if it's explicit.
1013      if (LV.visibilityExplicit())
1014        GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1015    }
1016
1017    GV->setThreadLocal(D->isThreadSpecified());
1018  }
1019
1020  return GV;
1021}
1022
1023
1024llvm::GlobalVariable *
1025CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
1026                                      const llvm::Type *Ty,
1027                                      llvm::GlobalValue::LinkageTypes Linkage) {
1028  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1029  llvm::GlobalVariable *OldGV = 0;
1030
1031
1032  if (GV) {
1033    // Check if the variable has the right type.
1034    if (GV->getType()->getElementType() == Ty)
1035      return GV;
1036
1037    // Because C++ name mangling, the only way we can end up with an already
1038    // existing global with the same name is if it has been declared extern "C".
1039      assert(GV->isDeclaration() && "Declaration has wrong type!");
1040    OldGV = GV;
1041  }
1042
1043  // Create a new variable.
1044  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1045                                Linkage, 0, Name);
1046
1047  if (OldGV) {
1048    // Replace occurrences of the old variable if needed.
1049    GV->takeName(OldGV);
1050
1051    if (!OldGV->use_empty()) {
1052      llvm::Constant *NewPtrForOldDecl =
1053      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1054      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1055    }
1056
1057    OldGV->eraseFromParent();
1058  }
1059
1060  return GV;
1061}
1062
1063/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1064/// given global variable.  If Ty is non-null and if the global doesn't exist,
1065/// then it will be greated with the specified type instead of whatever the
1066/// normal requested type would be.
1067llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1068                                                  const llvm::Type *Ty) {
1069  assert(D->hasGlobalStorage() && "Not a global variable");
1070  QualType ASTTy = D->getType();
1071  if (Ty == 0)
1072    Ty = getTypes().ConvertTypeForMem(ASTTy);
1073
1074  const llvm::PointerType *PTy =
1075    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1076
1077  llvm::StringRef MangledName = getMangledName(D);
1078  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1079}
1080
1081/// CreateRuntimeVariable - Create a new runtime global variable with the
1082/// specified type and name.
1083llvm::Constant *
1084CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1085                                     llvm::StringRef Name) {
1086  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1087                               true);
1088}
1089
1090void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1091  assert(!D->getInit() && "Cannot emit definite definitions here!");
1092
1093  if (MayDeferGeneration(D)) {
1094    // If we have not seen a reference to this variable yet, place it
1095    // into the deferred declarations table to be emitted if needed
1096    // later.
1097    llvm::StringRef MangledName = getMangledName(D);
1098    if (!GetGlobalValue(MangledName)) {
1099      DeferredDecls[MangledName] = D;
1100      return;
1101    }
1102  }
1103
1104  // The tentative definition is the only definition.
1105  EmitGlobalVarDefinition(D);
1106}
1107
1108void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1109  if (DefinitionRequired)
1110    getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1111}
1112
1113llvm::GlobalVariable::LinkageTypes
1114CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1115  if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1116    return llvm::GlobalVariable::InternalLinkage;
1117
1118  if (const CXXMethodDecl *KeyFunction
1119                                    = RD->getASTContext().getKeyFunction(RD)) {
1120    // If this class has a key function, use that to determine the linkage of
1121    // the vtable.
1122    const FunctionDecl *Def = 0;
1123    if (KeyFunction->hasBody(Def))
1124      KeyFunction = cast<CXXMethodDecl>(Def);
1125
1126    switch (KeyFunction->getTemplateSpecializationKind()) {
1127      case TSK_Undeclared:
1128      case TSK_ExplicitSpecialization:
1129        // When compiling with optimizations turned on, we emit all vtables,
1130        // even if the key function is not defined in the current translation
1131        // unit. If this is the case, use available_externally linkage.
1132        if (!Def && CodeGenOpts.OptimizationLevel)
1133          return llvm::GlobalVariable::AvailableExternallyLinkage;
1134
1135        if (KeyFunction->isInlined())
1136          return !Context.getLangOptions().AppleKext ?
1137                   llvm::GlobalVariable::LinkOnceODRLinkage :
1138                   llvm::Function::InternalLinkage;
1139
1140        return llvm::GlobalVariable::ExternalLinkage;
1141
1142      case TSK_ImplicitInstantiation:
1143        return !Context.getLangOptions().AppleKext ?
1144                 llvm::GlobalVariable::LinkOnceODRLinkage :
1145                 llvm::Function::InternalLinkage;
1146
1147      case TSK_ExplicitInstantiationDefinition:
1148        return !Context.getLangOptions().AppleKext ?
1149                 llvm::GlobalVariable::WeakODRLinkage :
1150                 llvm::Function::InternalLinkage;
1151
1152      case TSK_ExplicitInstantiationDeclaration:
1153        // FIXME: Use available_externally linkage. However, this currently
1154        // breaks LLVM's build due to undefined symbols.
1155        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1156        return !Context.getLangOptions().AppleKext ?
1157                 llvm::GlobalVariable::LinkOnceODRLinkage :
1158                 llvm::Function::InternalLinkage;
1159    }
1160  }
1161
1162  if (Context.getLangOptions().AppleKext)
1163    return llvm::Function::InternalLinkage;
1164
1165  switch (RD->getTemplateSpecializationKind()) {
1166  case TSK_Undeclared:
1167  case TSK_ExplicitSpecialization:
1168  case TSK_ImplicitInstantiation:
1169    // FIXME: Use available_externally linkage. However, this currently
1170    // breaks LLVM's build due to undefined symbols.
1171    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1172  case TSK_ExplicitInstantiationDeclaration:
1173    return llvm::GlobalVariable::LinkOnceODRLinkage;
1174
1175  case TSK_ExplicitInstantiationDefinition:
1176      return llvm::GlobalVariable::WeakODRLinkage;
1177  }
1178
1179  // Silence GCC warning.
1180  return llvm::GlobalVariable::LinkOnceODRLinkage;
1181}
1182
1183CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1184    return Context.toCharUnitsFromBits(
1185      TheTargetData.getTypeStoreSizeInBits(Ty));
1186}
1187
1188void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1189  llvm::Constant *Init = 0;
1190  QualType ASTTy = D->getType();
1191  bool NonConstInit = false;
1192
1193  const Expr *InitExpr = D->getAnyInitializer();
1194
1195  if (!InitExpr) {
1196    // This is a tentative definition; tentative definitions are
1197    // implicitly initialized with { 0 }.
1198    //
1199    // Note that tentative definitions are only emitted at the end of
1200    // a translation unit, so they should never have incomplete
1201    // type. In addition, EmitTentativeDefinition makes sure that we
1202    // never attempt to emit a tentative definition if a real one
1203    // exists. A use may still exists, however, so we still may need
1204    // to do a RAUW.
1205    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1206    Init = EmitNullConstant(D->getType());
1207  } else {
1208    Init = EmitConstantExpr(InitExpr, D->getType());
1209    if (!Init) {
1210      QualType T = InitExpr->getType();
1211      if (D->getType()->isReferenceType())
1212        T = D->getType();
1213
1214      if (getLangOptions().CPlusPlus) {
1215        Init = EmitNullConstant(T);
1216        NonConstInit = true;
1217      } else {
1218        ErrorUnsupported(D, "static initializer");
1219        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1220      }
1221    } else {
1222      // We don't need an initializer, so remove the entry for the delayed
1223      // initializer position (just in case this entry was delayed).
1224      if (getLangOptions().CPlusPlus)
1225        DelayedCXXInitPosition.erase(D);
1226    }
1227  }
1228
1229  const llvm::Type* InitType = Init->getType();
1230  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1231
1232  // Strip off a bitcast if we got one back.
1233  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1234    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1235           // all zero index gep.
1236           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1237    Entry = CE->getOperand(0);
1238  }
1239
1240  // Entry is now either a Function or GlobalVariable.
1241  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1242
1243  // We have a definition after a declaration with the wrong type.
1244  // We must make a new GlobalVariable* and update everything that used OldGV
1245  // (a declaration or tentative definition) with the new GlobalVariable*
1246  // (which will be a definition).
1247  //
1248  // This happens if there is a prototype for a global (e.g.
1249  // "extern int x[];") and then a definition of a different type (e.g.
1250  // "int x[10];"). This also happens when an initializer has a different type
1251  // from the type of the global (this happens with unions).
1252  if (GV == 0 ||
1253      GV->getType()->getElementType() != InitType ||
1254      GV->getType()->getAddressSpace() !=
1255        getContext().getTargetAddressSpace(ASTTy)) {
1256
1257    // Move the old entry aside so that we'll create a new one.
1258    Entry->setName(llvm::StringRef());
1259
1260    // Make a new global with the correct type, this is now guaranteed to work.
1261    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1262
1263    // Replace all uses of the old global with the new global
1264    llvm::Constant *NewPtrForOldDecl =
1265        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1266    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1267
1268    // Erase the old global, since it is no longer used.
1269    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1270  }
1271
1272  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1273    SourceManager &SM = Context.getSourceManager();
1274    AddAnnotation(EmitAnnotateAttr(GV, AA,
1275                              SM.getInstantiationLineNumber(D->getLocation())));
1276  }
1277
1278  GV->setInitializer(Init);
1279
1280  // If it is safe to mark the global 'constant', do so now.
1281  GV->setConstant(false);
1282  if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1283    GV->setConstant(true);
1284
1285  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1286
1287  // Set the llvm linkage type as appropriate.
1288  llvm::GlobalValue::LinkageTypes Linkage =
1289    GetLLVMLinkageVarDefinition(D, GV);
1290  GV->setLinkage(Linkage);
1291  if (Linkage == llvm::GlobalVariable::CommonLinkage)
1292    // common vars aren't constant even if declared const.
1293    GV->setConstant(false);
1294
1295  SetCommonAttributes(D, GV);
1296
1297  // Emit the initializer function if necessary.
1298  if (NonConstInit)
1299    EmitCXXGlobalVarDeclInitFunc(D, GV);
1300
1301  // Emit global variable debug information.
1302  if (CGDebugInfo *DI = getModuleDebugInfo()) {
1303    DI->setLocation(D->getLocation());
1304    DI->EmitGlobalVariable(GV, D);
1305  }
1306}
1307
1308llvm::GlobalValue::LinkageTypes
1309CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1310                                           llvm::GlobalVariable *GV) {
1311  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1312  if (Linkage == GVA_Internal)
1313    return llvm::Function::InternalLinkage;
1314  else if (D->hasAttr<DLLImportAttr>())
1315    return llvm::Function::DLLImportLinkage;
1316  else if (D->hasAttr<DLLExportAttr>())
1317    return llvm::Function::DLLExportLinkage;
1318  else if (D->hasAttr<WeakAttr>()) {
1319    if (GV->isConstant())
1320      return llvm::GlobalVariable::WeakODRLinkage;
1321    else
1322      return llvm::GlobalVariable::WeakAnyLinkage;
1323  } else if (Linkage == GVA_TemplateInstantiation ||
1324             Linkage == GVA_ExplicitTemplateInstantiation)
1325    return llvm::GlobalVariable::WeakODRLinkage;
1326  else if (!getLangOptions().CPlusPlus &&
1327           ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1328             D->getAttr<CommonAttr>()) &&
1329           !D->hasExternalStorage() && !D->getInit() &&
1330           !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1331    // Thread local vars aren't considered common linkage.
1332    return llvm::GlobalVariable::CommonLinkage;
1333  }
1334  return llvm::GlobalVariable::ExternalLinkage;
1335}
1336
1337/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1338/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1339/// existing call uses of the old function in the module, this adjusts them to
1340/// call the new function directly.
1341///
1342/// This is not just a cleanup: the always_inline pass requires direct calls to
1343/// functions to be able to inline them.  If there is a bitcast in the way, it
1344/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1345/// run at -O0.
1346static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1347                                                      llvm::Function *NewFn) {
1348  // If we're redefining a global as a function, don't transform it.
1349  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1350  if (OldFn == 0) return;
1351
1352  const llvm::Type *NewRetTy = NewFn->getReturnType();
1353  llvm::SmallVector<llvm::Value*, 4> ArgList;
1354
1355  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1356       UI != E; ) {
1357    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1358    llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1359    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1360    if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1361    llvm::CallSite CS(CI);
1362    if (!CI || !CS.isCallee(I)) continue;
1363
1364    // If the return types don't match exactly, and if the call isn't dead, then
1365    // we can't transform this call.
1366    if (CI->getType() != NewRetTy && !CI->use_empty())
1367      continue;
1368
1369    // If the function was passed too few arguments, don't transform.  If extra
1370    // arguments were passed, we silently drop them.  If any of the types
1371    // mismatch, we don't transform.
1372    unsigned ArgNo = 0;
1373    bool DontTransform = false;
1374    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1375         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1376      if (CS.arg_size() == ArgNo ||
1377          CS.getArgument(ArgNo)->getType() != AI->getType()) {
1378        DontTransform = true;
1379        break;
1380      }
1381    }
1382    if (DontTransform)
1383      continue;
1384
1385    // Okay, we can transform this.  Create the new call instruction and copy
1386    // over the required information.
1387    ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1388    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1389                                                     ArgList.end(), "", CI);
1390    ArgList.clear();
1391    if (!NewCall->getType()->isVoidTy())
1392      NewCall->takeName(CI);
1393    NewCall->setAttributes(CI->getAttributes());
1394    NewCall->setCallingConv(CI->getCallingConv());
1395
1396    // Finally, remove the old call, replacing any uses with the new one.
1397    if (!CI->use_empty())
1398      CI->replaceAllUsesWith(NewCall);
1399
1400    // Copy debug location attached to CI.
1401    if (!CI->getDebugLoc().isUnknown())
1402      NewCall->setDebugLoc(CI->getDebugLoc());
1403    CI->eraseFromParent();
1404  }
1405}
1406
1407
1408void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1409  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1410
1411  // Compute the function info and LLVM type.
1412  const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1413  bool variadic = false;
1414  if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1415    variadic = fpt->isVariadic();
1416  const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic, false);
1417
1418  // Get or create the prototype for the function.
1419  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1420
1421  // Strip off a bitcast if we got one back.
1422  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1423    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1424    Entry = CE->getOperand(0);
1425  }
1426
1427
1428  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1429    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1430
1431    // If the types mismatch then we have to rewrite the definition.
1432    assert(OldFn->isDeclaration() &&
1433           "Shouldn't replace non-declaration");
1434
1435    // F is the Function* for the one with the wrong type, we must make a new
1436    // Function* and update everything that used F (a declaration) with the new
1437    // Function* (which will be a definition).
1438    //
1439    // This happens if there is a prototype for a function
1440    // (e.g. "int f()") and then a definition of a different type
1441    // (e.g. "int f(int x)").  Move the old function aside so that it
1442    // doesn't interfere with GetAddrOfFunction.
1443    OldFn->setName(llvm::StringRef());
1444    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1445
1446    // If this is an implementation of a function without a prototype, try to
1447    // replace any existing uses of the function (which may be calls) with uses
1448    // of the new function
1449    if (D->getType()->isFunctionNoProtoType()) {
1450      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1451      OldFn->removeDeadConstantUsers();
1452    }
1453
1454    // Replace uses of F with the Function we will endow with a body.
1455    if (!Entry->use_empty()) {
1456      llvm::Constant *NewPtrForOldDecl =
1457        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1458      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1459    }
1460
1461    // Ok, delete the old function now, which is dead.
1462    OldFn->eraseFromParent();
1463
1464    Entry = NewFn;
1465  }
1466
1467  // We need to set linkage and visibility on the function before
1468  // generating code for it because various parts of IR generation
1469  // want to propagate this information down (e.g. to local static
1470  // declarations).
1471  llvm::Function *Fn = cast<llvm::Function>(Entry);
1472  setFunctionLinkage(D, Fn);
1473
1474  // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1475  setGlobalVisibility(Fn, D);
1476
1477  CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1478
1479  SetFunctionDefinitionAttributes(D, Fn);
1480  SetLLVMFunctionAttributesForDefinition(D, Fn);
1481
1482  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1483    AddGlobalCtor(Fn, CA->getPriority());
1484  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1485    AddGlobalDtor(Fn, DA->getPriority());
1486}
1487
1488void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1489  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1490  const AliasAttr *AA = D->getAttr<AliasAttr>();
1491  assert(AA && "Not an alias?");
1492
1493  llvm::StringRef MangledName = getMangledName(GD);
1494
1495  // If there is a definition in the module, then it wins over the alias.
1496  // This is dubious, but allow it to be safe.  Just ignore the alias.
1497  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1498  if (Entry && !Entry->isDeclaration())
1499    return;
1500
1501  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1502
1503  // Create a reference to the named value.  This ensures that it is emitted
1504  // if a deferred decl.
1505  llvm::Constant *Aliasee;
1506  if (isa<llvm::FunctionType>(DeclTy))
1507    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1508                                      /*ForVTable=*/false);
1509  else
1510    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1511                                    llvm::PointerType::getUnqual(DeclTy), 0);
1512
1513  // Create the new alias itself, but don't set a name yet.
1514  llvm::GlobalValue *GA =
1515    new llvm::GlobalAlias(Aliasee->getType(),
1516                          llvm::Function::ExternalLinkage,
1517                          "", Aliasee, &getModule());
1518
1519  if (Entry) {
1520    assert(Entry->isDeclaration());
1521
1522    // If there is a declaration in the module, then we had an extern followed
1523    // by the alias, as in:
1524    //   extern int test6();
1525    //   ...
1526    //   int test6() __attribute__((alias("test7")));
1527    //
1528    // Remove it and replace uses of it with the alias.
1529    GA->takeName(Entry);
1530
1531    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1532                                                          Entry->getType()));
1533    Entry->eraseFromParent();
1534  } else {
1535    GA->setName(MangledName);
1536  }
1537
1538  // Set attributes which are particular to an alias; this is a
1539  // specialization of the attributes which may be set on a global
1540  // variable/function.
1541  if (D->hasAttr<DLLExportAttr>()) {
1542    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1543      // The dllexport attribute is ignored for undefined symbols.
1544      if (FD->hasBody())
1545        GA->setLinkage(llvm::Function::DLLExportLinkage);
1546    } else {
1547      GA->setLinkage(llvm::Function::DLLExportLinkage);
1548    }
1549  } else if (D->hasAttr<WeakAttr>() ||
1550             D->hasAttr<WeakRefAttr>() ||
1551             D->isWeakImported()) {
1552    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1553  }
1554
1555  SetCommonAttributes(D, GA);
1556}
1557
1558/// getBuiltinLibFunction - Given a builtin id for a function like
1559/// "__builtin_fabsf", return a Function* for "fabsf".
1560llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1561                                                  unsigned BuiltinID) {
1562  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1563          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1564         "isn't a lib fn");
1565
1566  // Get the name, skip over the __builtin_ prefix (if necessary).
1567  const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1568  if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1569    Name += 10;
1570
1571  const llvm::FunctionType *Ty =
1572    cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1573
1574  return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD), /*ForVTable=*/false);
1575}
1576
1577llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1578                                            unsigned NumTys) {
1579  return llvm::Intrinsic::getDeclaration(&getModule(),
1580                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1581}
1582
1583static llvm::StringMapEntry<llvm::Constant*> &
1584GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1585                         const StringLiteral *Literal,
1586                         bool TargetIsLSB,
1587                         bool &IsUTF16,
1588                         unsigned &StringLength) {
1589  llvm::StringRef String = Literal->getString();
1590  unsigned NumBytes = String.size();
1591
1592  // Check for simple case.
1593  if (!Literal->containsNonAsciiOrNull()) {
1594    StringLength = NumBytes;
1595    return Map.GetOrCreateValue(String);
1596  }
1597
1598  // Otherwise, convert the UTF8 literals into a byte string.
1599  llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1600  const UTF8 *FromPtr = (UTF8 *)String.data();
1601  UTF16 *ToPtr = &ToBuf[0];
1602
1603  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1604                           &ToPtr, ToPtr + NumBytes,
1605                           strictConversion);
1606
1607  // ConvertUTF8toUTF16 returns the length in ToPtr.
1608  StringLength = ToPtr - &ToBuf[0];
1609
1610  // Render the UTF-16 string into a byte array and convert to the target byte
1611  // order.
1612  //
1613  // FIXME: This isn't something we should need to do here.
1614  llvm::SmallString<128> AsBytes;
1615  AsBytes.reserve(StringLength * 2);
1616  for (unsigned i = 0; i != StringLength; ++i) {
1617    unsigned short Val = ToBuf[i];
1618    if (TargetIsLSB) {
1619      AsBytes.push_back(Val & 0xFF);
1620      AsBytes.push_back(Val >> 8);
1621    } else {
1622      AsBytes.push_back(Val >> 8);
1623      AsBytes.push_back(Val & 0xFF);
1624    }
1625  }
1626  // Append one extra null character, the second is automatically added by our
1627  // caller.
1628  AsBytes.push_back(0);
1629
1630  IsUTF16 = true;
1631  return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1632}
1633
1634llvm::Constant *
1635CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1636  unsigned StringLength = 0;
1637  bool isUTF16 = false;
1638  llvm::StringMapEntry<llvm::Constant*> &Entry =
1639    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1640                             getTargetData().isLittleEndian(),
1641                             isUTF16, StringLength);
1642
1643  if (llvm::Constant *C = Entry.getValue())
1644    return C;
1645
1646  llvm::Constant *Zero =
1647      llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1648  llvm::Constant *Zeros[] = { Zero, Zero };
1649
1650  // If we don't already have it, get __CFConstantStringClassReference.
1651  if (!CFConstantStringClassRef) {
1652    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1653    Ty = llvm::ArrayType::get(Ty, 0);
1654    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1655                                           "__CFConstantStringClassReference");
1656    // Decay array -> ptr
1657    CFConstantStringClassRef =
1658      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1659  }
1660
1661  QualType CFTy = getContext().getCFConstantStringType();
1662
1663  const llvm::StructType *STy =
1664    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1665
1666  std::vector<llvm::Constant*> Fields(4);
1667
1668  // Class pointer.
1669  Fields[0] = CFConstantStringClassRef;
1670
1671  // Flags.
1672  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1673  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1674    llvm::ConstantInt::get(Ty, 0x07C8);
1675
1676  // String pointer.
1677  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1678
1679  llvm::GlobalValue::LinkageTypes Linkage;
1680  bool isConstant;
1681  if (isUTF16) {
1682    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1683    Linkage = llvm::GlobalValue::InternalLinkage;
1684    // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1685    // does make plain ascii ones writable.
1686    isConstant = true;
1687  } else {
1688    // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1689    // when using private linkage. It is not clear if this is a bug in ld
1690    // or a reasonable new restriction.
1691    Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1692    isConstant = !Features.WritableStrings;
1693  }
1694
1695  llvm::GlobalVariable *GV =
1696    new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1697                             ".str");
1698  GV->setUnnamedAddr(true);
1699  if (isUTF16) {
1700    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1701    GV->setAlignment(Align.getQuantity());
1702  } else {
1703    CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1704    GV->setAlignment(Align.getQuantity());
1705  }
1706  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1707
1708  // String length.
1709  Ty = getTypes().ConvertType(getContext().LongTy);
1710  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1711
1712  // The struct.
1713  C = llvm::ConstantStruct::get(STy, Fields);
1714  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1715                                llvm::GlobalVariable::PrivateLinkage, C,
1716                                "_unnamed_cfstring_");
1717  if (const char *Sect = getContext().Target.getCFStringSection())
1718    GV->setSection(Sect);
1719  Entry.setValue(GV);
1720
1721  return GV;
1722}
1723
1724llvm::Constant *
1725CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1726  unsigned StringLength = 0;
1727  bool isUTF16 = false;
1728  llvm::StringMapEntry<llvm::Constant*> &Entry =
1729    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1730                             getTargetData().isLittleEndian(),
1731                             isUTF16, StringLength);
1732
1733  if (llvm::Constant *C = Entry.getValue())
1734    return C;
1735
1736  llvm::Constant *Zero =
1737  llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1738  llvm::Constant *Zeros[] = { Zero, Zero };
1739
1740  // If we don't already have it, get _NSConstantStringClassReference.
1741  if (!ConstantStringClassRef) {
1742    std::string StringClass(getLangOptions().ObjCConstantStringClass);
1743    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1744    Ty = llvm::ArrayType::get(Ty, 0);
1745    llvm::Constant *GV;
1746    if (StringClass.empty())
1747      GV = CreateRuntimeVariable(Ty,
1748                                 Features.ObjCNonFragileABI ?
1749                                 "OBJC_CLASS_$_NSConstantString" :
1750                                 "_NSConstantStringClassReference");
1751    else {
1752      std::string str;
1753      if (Features.ObjCNonFragileABI)
1754        str = "OBJC_CLASS_$_" + StringClass;
1755      else
1756        str = "_" + StringClass + "ClassReference";
1757      GV = CreateRuntimeVariable(Ty, str);
1758    }
1759    // Decay array -> ptr
1760    ConstantStringClassRef =
1761    llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1762  }
1763
1764  QualType NSTy = getContext().getNSConstantStringType();
1765
1766  const llvm::StructType *STy =
1767  cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1768
1769  std::vector<llvm::Constant*> Fields(3);
1770
1771  // Class pointer.
1772  Fields[0] = ConstantStringClassRef;
1773
1774  // String pointer.
1775  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1776
1777  llvm::GlobalValue::LinkageTypes Linkage;
1778  bool isConstant;
1779  if (isUTF16) {
1780    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1781    Linkage = llvm::GlobalValue::InternalLinkage;
1782    // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1783    // does make plain ascii ones writable.
1784    isConstant = true;
1785  } else {
1786    Linkage = llvm::GlobalValue::PrivateLinkage;
1787    isConstant = !Features.WritableStrings;
1788  }
1789
1790  llvm::GlobalVariable *GV =
1791  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1792                           ".str");
1793  GV->setUnnamedAddr(true);
1794  if (isUTF16) {
1795    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1796    GV->setAlignment(Align.getQuantity());
1797  } else {
1798    CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1799    GV->setAlignment(Align.getQuantity());
1800  }
1801  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1802
1803  // String length.
1804  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1805  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1806
1807  // The struct.
1808  C = llvm::ConstantStruct::get(STy, Fields);
1809  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1810                                llvm::GlobalVariable::PrivateLinkage, C,
1811                                "_unnamed_nsstring_");
1812  // FIXME. Fix section.
1813  if (const char *Sect =
1814        Features.ObjCNonFragileABI
1815          ? getContext().Target.getNSStringNonFragileABISection()
1816          : getContext().Target.getNSStringSection())
1817    GV->setSection(Sect);
1818  Entry.setValue(GV);
1819
1820  return GV;
1821}
1822
1823/// GetStringForStringLiteral - Return the appropriate bytes for a
1824/// string literal, properly padded to match the literal type.
1825std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1826  const ASTContext &Context = getContext();
1827  const ConstantArrayType *CAT =
1828    Context.getAsConstantArrayType(E->getType());
1829  assert(CAT && "String isn't pointer or array!");
1830
1831  // Resize the string to the right size.
1832  uint64_t RealLen = CAT->getSize().getZExtValue();
1833
1834  if (E->isWide())
1835    RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1836
1837  std::string Str = E->getString().str();
1838  Str.resize(RealLen, '\0');
1839
1840  return Str;
1841}
1842
1843/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1844/// constant array for the given string literal.
1845llvm::Constant *
1846CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1847  // FIXME: This can be more efficient.
1848  // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1849  llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1850  if (S->isWide()) {
1851    llvm::Type *DestTy =
1852        llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1853    C = llvm::ConstantExpr::getBitCast(C, DestTy);
1854  }
1855  return C;
1856}
1857
1858/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1859/// array for the given ObjCEncodeExpr node.
1860llvm::Constant *
1861CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1862  std::string Str;
1863  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1864
1865  return GetAddrOfConstantCString(Str);
1866}
1867
1868
1869/// GenerateWritableString -- Creates storage for a string literal.
1870static llvm::Constant *GenerateStringLiteral(llvm::StringRef str,
1871                                             bool constant,
1872                                             CodeGenModule &CGM,
1873                                             const char *GlobalName) {
1874  // Create Constant for this string literal. Don't add a '\0'.
1875  llvm::Constant *C =
1876      llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1877
1878  // Create a global variable for this string
1879  llvm::GlobalVariable *GV =
1880    new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1881                             llvm::GlobalValue::PrivateLinkage,
1882                             C, GlobalName);
1883  GV->setUnnamedAddr(true);
1884  return GV;
1885}
1886
1887/// GetAddrOfConstantString - Returns a pointer to a character array
1888/// containing the literal. This contents are exactly that of the
1889/// given string, i.e. it will not be null terminated automatically;
1890/// see GetAddrOfConstantCString. Note that whether the result is
1891/// actually a pointer to an LLVM constant depends on
1892/// Feature.WriteableStrings.
1893///
1894/// The result has pointer to array type.
1895llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str,
1896                                                       const char *GlobalName) {
1897  bool IsConstant = !Features.WritableStrings;
1898
1899  // Get the default prefix if a name wasn't specified.
1900  if (!GlobalName)
1901    GlobalName = ".str";
1902
1903  // Don't share any string literals if strings aren't constant.
1904  if (!IsConstant)
1905    return GenerateStringLiteral(Str, false, *this, GlobalName);
1906
1907  llvm::StringMapEntry<llvm::Constant *> &Entry =
1908    ConstantStringMap.GetOrCreateValue(Str);
1909
1910  if (Entry.getValue())
1911    return Entry.getValue();
1912
1913  // Create a global variable for this.
1914  llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName);
1915  Entry.setValue(C);
1916  return C;
1917}
1918
1919/// GetAddrOfConstantCString - Returns a pointer to a character
1920/// array containing the literal and a terminating '\0'
1921/// character. The result has pointer to array type.
1922llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
1923                                                        const char *GlobalName){
1924  llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1);
1925  return GetAddrOfConstantString(StrWithNull, GlobalName);
1926}
1927
1928/// EmitObjCPropertyImplementations - Emit information for synthesized
1929/// properties for an implementation.
1930void CodeGenModule::EmitObjCPropertyImplementations(const
1931                                                    ObjCImplementationDecl *D) {
1932  for (ObjCImplementationDecl::propimpl_iterator
1933         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1934    ObjCPropertyImplDecl *PID = *i;
1935
1936    // Dynamic is just for type-checking.
1937    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1938      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1939
1940      // Determine which methods need to be implemented, some may have
1941      // been overridden. Note that ::isSynthesized is not the method
1942      // we want, that just indicates if the decl came from a
1943      // property. What we want to know is if the method is defined in
1944      // this implementation.
1945      if (!D->getInstanceMethod(PD->getGetterName()))
1946        CodeGenFunction(*this).GenerateObjCGetter(
1947                                 const_cast<ObjCImplementationDecl *>(D), PID);
1948      if (!PD->isReadOnly() &&
1949          !D->getInstanceMethod(PD->getSetterName()))
1950        CodeGenFunction(*this).GenerateObjCSetter(
1951                                 const_cast<ObjCImplementationDecl *>(D), PID);
1952    }
1953  }
1954}
1955
1956static bool needsDestructMethod(ObjCImplementationDecl *impl) {
1957  ObjCInterfaceDecl *iface
1958    = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface());
1959  for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1960       ivar; ivar = ivar->getNextIvar())
1961    if (ivar->getType().isDestructedType())
1962      return true;
1963
1964  return false;
1965}
1966
1967/// EmitObjCIvarInitializations - Emit information for ivar initialization
1968/// for an implementation.
1969void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1970  // We might need a .cxx_destruct even if we don't have any ivar initializers.
1971  if (needsDestructMethod(D)) {
1972    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1973    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1974    ObjCMethodDecl *DTORMethod =
1975      ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
1976                             cxxSelector, getContext().VoidTy, 0, D, true,
1977                             false, true, false, ObjCMethodDecl::Required);
1978    D->addInstanceMethod(DTORMethod);
1979    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1980  }
1981
1982  // If the implementation doesn't have any ivar initializers, we don't need
1983  // a .cxx_construct.
1984  if (D->getNumIvarInitializers() == 0)
1985    return;
1986
1987  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
1988  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1989  // The constructor returns 'self'.
1990  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1991                                                D->getLocation(),
1992                                                D->getLocation(), cxxSelector,
1993                                                getContext().getObjCIdType(), 0,
1994                                                D, true, false, true, false,
1995                                                ObjCMethodDecl::Required);
1996  D->addInstanceMethod(CTORMethod);
1997  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1998}
1999
2000/// EmitNamespace - Emit all declarations in a namespace.
2001void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2002  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2003       I != E; ++I)
2004    EmitTopLevelDecl(*I);
2005}
2006
2007// EmitLinkageSpec - Emit all declarations in a linkage spec.
2008void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2009  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2010      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2011    ErrorUnsupported(LSD, "linkage spec");
2012    return;
2013  }
2014
2015  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2016       I != E; ++I)
2017    EmitTopLevelDecl(*I);
2018}
2019
2020/// EmitTopLevelDecl - Emit code for a single top level declaration.
2021void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2022  // If an error has occurred, stop code generation, but continue
2023  // parsing and semantic analysis (to ensure all warnings and errors
2024  // are emitted).
2025  if (Diags.hasErrorOccurred())
2026    return;
2027
2028  // Ignore dependent declarations.
2029  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2030    return;
2031
2032  switch (D->getKind()) {
2033  case Decl::CXXConversion:
2034  case Decl::CXXMethod:
2035  case Decl::Function:
2036    // Skip function templates
2037    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2038        cast<FunctionDecl>(D)->isLateTemplateParsed())
2039      return;
2040
2041    EmitGlobal(cast<FunctionDecl>(D));
2042    break;
2043
2044  case Decl::Var:
2045    EmitGlobal(cast<VarDecl>(D));
2046    break;
2047
2048  // Indirect fields from global anonymous structs and unions can be
2049  // ignored; only the actual variable requires IR gen support.
2050  case Decl::IndirectField:
2051    break;
2052
2053  // C++ Decls
2054  case Decl::Namespace:
2055    EmitNamespace(cast<NamespaceDecl>(D));
2056    break;
2057    // No code generation needed.
2058  case Decl::UsingShadow:
2059  case Decl::Using:
2060  case Decl::UsingDirective:
2061  case Decl::ClassTemplate:
2062  case Decl::FunctionTemplate:
2063  case Decl::NamespaceAlias:
2064    break;
2065  case Decl::CXXConstructor:
2066    // Skip function templates
2067    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2068        cast<FunctionDecl>(D)->isLateTemplateParsed())
2069      return;
2070
2071    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2072    break;
2073  case Decl::CXXDestructor:
2074    if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2075      return;
2076    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2077    break;
2078
2079  case Decl::StaticAssert:
2080    // Nothing to do.
2081    break;
2082
2083  // Objective-C Decls
2084
2085  // Forward declarations, no (immediate) code generation.
2086  case Decl::ObjCClass:
2087  case Decl::ObjCForwardProtocol:
2088  case Decl::ObjCInterface:
2089    break;
2090
2091  case Decl::ObjCCategory: {
2092    ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2093    if (CD->IsClassExtension() && CD->hasSynthBitfield())
2094      Context.ResetObjCLayout(CD->getClassInterface());
2095    break;
2096  }
2097
2098  case Decl::ObjCProtocol:
2099    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2100    break;
2101
2102  case Decl::ObjCCategoryImpl:
2103    // Categories have properties but don't support synthesize so we
2104    // can ignore them here.
2105    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2106    break;
2107
2108  case Decl::ObjCImplementation: {
2109    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2110    if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2111      Context.ResetObjCLayout(OMD->getClassInterface());
2112    EmitObjCPropertyImplementations(OMD);
2113    EmitObjCIvarInitializations(OMD);
2114    Runtime->GenerateClass(OMD);
2115    break;
2116  }
2117  case Decl::ObjCMethod: {
2118    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2119    // If this is not a prototype, emit the body.
2120    if (OMD->getBody())
2121      CodeGenFunction(*this).GenerateObjCMethod(OMD);
2122    break;
2123  }
2124  case Decl::ObjCCompatibleAlias:
2125    // compatibility-alias is a directive and has no code gen.
2126    break;
2127
2128  case Decl::LinkageSpec:
2129    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2130    break;
2131
2132  case Decl::FileScopeAsm: {
2133    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2134    llvm::StringRef AsmString = AD->getAsmString()->getString();
2135
2136    const std::string &S = getModule().getModuleInlineAsm();
2137    if (S.empty())
2138      getModule().setModuleInlineAsm(AsmString);
2139    else
2140      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2141    break;
2142  }
2143
2144  default:
2145    // Make sure we handled everything we should, every other kind is a
2146    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2147    // function. Need to recode Decl::Kind to do that easily.
2148    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2149  }
2150}
2151
2152/// Turns the given pointer into a constant.
2153static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2154                                          const void *Ptr) {
2155  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2156  const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2157  return llvm::ConstantInt::get(i64, PtrInt);
2158}
2159
2160static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2161                                   llvm::NamedMDNode *&GlobalMetadata,
2162                                   GlobalDecl D,
2163                                   llvm::GlobalValue *Addr) {
2164  if (!GlobalMetadata)
2165    GlobalMetadata =
2166      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2167
2168  // TODO: should we report variant information for ctors/dtors?
2169  llvm::Value *Ops[] = {
2170    Addr,
2171    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2172  };
2173  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2174}
2175
2176/// Emits metadata nodes associating all the global values in the
2177/// current module with the Decls they came from.  This is useful for
2178/// projects using IR gen as a subroutine.
2179///
2180/// Since there's currently no way to associate an MDNode directly
2181/// with an llvm::GlobalValue, we create a global named metadata
2182/// with the name 'clang.global.decl.ptrs'.
2183void CodeGenModule::EmitDeclMetadata() {
2184  llvm::NamedMDNode *GlobalMetadata = 0;
2185
2186  // StaticLocalDeclMap
2187  for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2188         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2189       I != E; ++I) {
2190    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2191    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2192  }
2193}
2194
2195/// Emits metadata nodes for all the local variables in the current
2196/// function.
2197void CodeGenFunction::EmitDeclMetadata() {
2198  if (LocalDeclMap.empty()) return;
2199
2200  llvm::LLVMContext &Context = getLLVMContext();
2201
2202  // Find the unique metadata ID for this name.
2203  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2204
2205  llvm::NamedMDNode *GlobalMetadata = 0;
2206
2207  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2208         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2209    const Decl *D = I->first;
2210    llvm::Value *Addr = I->second;
2211
2212    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2213      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2214      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2215    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2216      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2217      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2218    }
2219  }
2220}
2221
2222void CodeGenModule::EmitCoverageFile() {
2223  if (!getCodeGenOpts().CoverageFile.empty()) {
2224    if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2225      llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2226      llvm::LLVMContext &Ctx = TheModule.getContext();
2227      llvm::MDString *CoverageFile =
2228          llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2229      for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2230        llvm::MDNode *CU = CUNode->getOperand(i);
2231        llvm::Value *node[] = { CoverageFile, CU };
2232        llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2233        GCov->addOperand(N);
2234      }
2235    }
2236  }
2237}
2238
2239///@name Custom Runtime Function Interfaces
2240///@{
2241//
2242// FIXME: These can be eliminated once we can have clients just get the required
2243// AST nodes from the builtin tables.
2244
2245llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2246  if (BlockObjectDispose)
2247    return BlockObjectDispose;
2248
2249  // If we saw an explicit decl, use that.
2250  if (BlockObjectDisposeDecl) {
2251    return BlockObjectDispose = GetAddrOfFunction(
2252      BlockObjectDisposeDecl,
2253      getTypes().GetFunctionType(BlockObjectDisposeDecl));
2254  }
2255
2256  // Otherwise construct the function by hand.
2257  const llvm::FunctionType *FTy;
2258  std::vector<const llvm::Type*> ArgTys;
2259  const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2260  ArgTys.push_back(Int8PtrTy);
2261  ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2262  FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2263  return BlockObjectDispose =
2264    CreateRuntimeFunction(FTy, "_Block_object_dispose");
2265}
2266
2267llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2268  if (BlockObjectAssign)
2269    return BlockObjectAssign;
2270
2271  // If we saw an explicit decl, use that.
2272  if (BlockObjectAssignDecl) {
2273    return BlockObjectAssign = GetAddrOfFunction(
2274      BlockObjectAssignDecl,
2275      getTypes().GetFunctionType(BlockObjectAssignDecl));
2276  }
2277
2278  // Otherwise construct the function by hand.
2279  const llvm::FunctionType *FTy;
2280  std::vector<const llvm::Type*> ArgTys;
2281  const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2282  ArgTys.push_back(Int8PtrTy);
2283  ArgTys.push_back(Int8PtrTy);
2284  ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2285  FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2286  return BlockObjectAssign =
2287    CreateRuntimeFunction(FTy, "_Block_object_assign");
2288}
2289
2290llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2291  if (NSConcreteGlobalBlock)
2292    return NSConcreteGlobalBlock;
2293
2294  // If we saw an explicit decl, use that.
2295  if (NSConcreteGlobalBlockDecl) {
2296    return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2297      NSConcreteGlobalBlockDecl,
2298      getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2299  }
2300
2301  // Otherwise construct the variable by hand.
2302  return NSConcreteGlobalBlock =
2303    CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock");
2304}
2305
2306llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2307  if (NSConcreteStackBlock)
2308    return NSConcreteStackBlock;
2309
2310  // If we saw an explicit decl, use that.
2311  if (NSConcreteStackBlockDecl) {
2312    return NSConcreteStackBlock = GetAddrOfGlobalVar(
2313      NSConcreteStackBlockDecl,
2314      getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2315  }
2316
2317  // Otherwise construct the variable by hand.
2318  return NSConcreteStackBlock =
2319    CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock");
2320}
2321
2322///@}
2323