CodeGenModule.cpp revision 4d68ed5f03ad1235946377eb32b5c4d0412f2e48
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CodeGenTBAA.h"
18#include "CGCall.h"
19#include "CGCUDARuntime.h"
20#include "CGCXXABI.h"
21#include "CGObjCRuntime.h"
22#include "CGOpenCLRuntime.h"
23#include "TargetInfo.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "clang/AST/ASTContext.h"
26#include "clang/AST/CharUnits.h"
27#include "clang/AST/DeclObjC.h"
28#include "clang/AST/DeclCXX.h"
29#include "clang/AST/DeclTemplate.h"
30#include "clang/AST/Mangle.h"
31#include "clang/AST/RecordLayout.h"
32#include "clang/AST/RecursiveASTVisitor.h"
33#include "clang/Basic/Builtins.h"
34#include "clang/Basic/Diagnostic.h"
35#include "clang/Basic/SourceManager.h"
36#include "clang/Basic/TargetInfo.h"
37#include "clang/Basic/ConvertUTF.h"
38#include "llvm/CallingConv.h"
39#include "llvm/Module.h"
40#include "llvm/Intrinsics.h"
41#include "llvm/LLVMContext.h"
42#include "llvm/ADT/APSInt.h"
43#include "llvm/ADT/Triple.h"
44#include "llvm/Target/Mangler.h"
45#include "llvm/DataLayout.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/ErrorHandling.h"
48using namespace clang;
49using namespace CodeGen;
50
51static const char AnnotationSection[] = "llvm.metadata";
52
53static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
54  switch (CGM.getContext().getTargetInfo().getCXXABI()) {
55  case CXXABI_ARM: return *CreateARMCXXABI(CGM);
56  case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
57  case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
58  }
59
60  llvm_unreachable("invalid C++ ABI kind");
61}
62
63
64CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
65                             llvm::Module &M, const llvm::DataLayout &TD,
66                             DiagnosticsEngine &diags)
67  : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
68    TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags),
69    ABI(createCXXABI(*this)),
70    Types(*this),
71    TBAA(0),
72    VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
73    DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
74    RRData(0), CFConstantStringClassRef(0),
75    ConstantStringClassRef(0), NSConstantStringType(0),
76    VMContext(M.getContext()),
77    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
78    BlockObjectAssign(0), BlockObjectDispose(0),
79    BlockDescriptorType(0), GenericBlockLiteralType(0) {
80
81  // Initialize the type cache.
82  llvm::LLVMContext &LLVMContext = M.getContext();
83  VoidTy = llvm::Type::getVoidTy(LLVMContext);
84  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
85  Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
86  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
87  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
88  FloatTy = llvm::Type::getFloatTy(LLVMContext);
89  DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
90  PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
91  PointerAlignInBytes =
92  C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
93  IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
94  IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
95  Int8PtrTy = Int8Ty->getPointerTo(0);
96  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
97
98  if (LangOpts.ObjC1)
99    createObjCRuntime();
100  if (LangOpts.OpenCL)
101    createOpenCLRuntime();
102  if (LangOpts.CUDA)
103    createCUDARuntime();
104
105  // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
106  if (LangOpts.ThreadSanitizer ||
107      (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
108    TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
109                           ABI.getMangleContext());
110
111  // If debug info or coverage generation is enabled, create the CGDebugInfo
112  // object.
113  if (CodeGenOpts.DebugInfo != CodeGenOptions::NoDebugInfo ||
114      CodeGenOpts.EmitGcovArcs ||
115      CodeGenOpts.EmitGcovNotes)
116    DebugInfo = new CGDebugInfo(*this);
117
118  Block.GlobalUniqueCount = 0;
119
120  if (C.getLangOpts().ObjCAutoRefCount)
121    ARCData = new ARCEntrypoints();
122  RRData = new RREntrypoints();
123}
124
125CodeGenModule::~CodeGenModule() {
126  delete ObjCRuntime;
127  delete OpenCLRuntime;
128  delete CUDARuntime;
129  delete TheTargetCodeGenInfo;
130  delete &ABI;
131  delete TBAA;
132  delete DebugInfo;
133  delete ARCData;
134  delete RRData;
135}
136
137void CodeGenModule::createObjCRuntime() {
138  // This is just isGNUFamily(), but we want to force implementors of
139  // new ABIs to decide how best to do this.
140  switch (LangOpts.ObjCRuntime.getKind()) {
141  case ObjCRuntime::GNUstep:
142  case ObjCRuntime::GCC:
143  case ObjCRuntime::ObjFW:
144    ObjCRuntime = CreateGNUObjCRuntime(*this);
145    return;
146
147  case ObjCRuntime::FragileMacOSX:
148  case ObjCRuntime::MacOSX:
149  case ObjCRuntime::iOS:
150    ObjCRuntime = CreateMacObjCRuntime(*this);
151    return;
152  }
153  llvm_unreachable("bad runtime kind");
154}
155
156void CodeGenModule::createOpenCLRuntime() {
157  OpenCLRuntime = new CGOpenCLRuntime(*this);
158}
159
160void CodeGenModule::createCUDARuntime() {
161  CUDARuntime = CreateNVCUDARuntime(*this);
162}
163
164void CodeGenModule::Release() {
165  EmitDeferred();
166  EmitCXXGlobalInitFunc();
167  EmitCXXGlobalDtorFunc();
168  if (ObjCRuntime)
169    if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
170      AddGlobalCtor(ObjCInitFunction);
171  EmitCtorList(GlobalCtors, "llvm.global_ctors");
172  EmitCtorList(GlobalDtors, "llvm.global_dtors");
173  EmitGlobalAnnotations();
174  EmitLLVMUsed();
175
176  SimplifyPersonality();
177
178  if (getCodeGenOpts().EmitDeclMetadata)
179    EmitDeclMetadata();
180
181  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
182    EmitCoverageFile();
183
184  if (DebugInfo)
185    DebugInfo->finalize();
186}
187
188void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
189  // Make sure that this type is translated.
190  Types.UpdateCompletedType(TD);
191}
192
193llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
194  if (!TBAA)
195    return 0;
196  return TBAA->getTBAAInfo(QTy);
197}
198
199llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
200  if (!TBAA)
201    return 0;
202  return TBAA->getTBAAInfoForVTablePtr();
203}
204
205llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
206  if (!TBAA)
207    return 0;
208  return TBAA->getTBAAStructInfo(QTy);
209}
210
211void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
212                                        llvm::MDNode *TBAAInfo) {
213  Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
214}
215
216bool CodeGenModule::isTargetDarwin() const {
217  return getContext().getTargetInfo().getTriple().isOSDarwin();
218}
219
220void CodeGenModule::Error(SourceLocation loc, StringRef error) {
221  unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
222  getDiags().Report(Context.getFullLoc(loc), diagID);
223}
224
225/// ErrorUnsupported - Print out an error that codegen doesn't support the
226/// specified stmt yet.
227void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
228                                     bool OmitOnError) {
229  if (OmitOnError && getDiags().hasErrorOccurred())
230    return;
231  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
232                                               "cannot compile this %0 yet");
233  std::string Msg = Type;
234  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
235    << Msg << S->getSourceRange();
236}
237
238/// ErrorUnsupported - Print out an error that codegen doesn't support the
239/// specified decl yet.
240void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
241                                     bool OmitOnError) {
242  if (OmitOnError && getDiags().hasErrorOccurred())
243    return;
244  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
245                                               "cannot compile this %0 yet");
246  std::string Msg = Type;
247  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
248}
249
250llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
251  return llvm::ConstantInt::get(SizeTy, size.getQuantity());
252}
253
254void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
255                                        const NamedDecl *D) const {
256  // Internal definitions always have default visibility.
257  if (GV->hasLocalLinkage()) {
258    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
259    return;
260  }
261
262  // Set visibility for definitions.
263  NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
264  if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
265    GV->setVisibility(GetLLVMVisibility(LV.visibility()));
266}
267
268static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
269  return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
270      .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
271      .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
272      .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
273      .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
274}
275
276static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
277    CodeGenOptions::TLSModel M) {
278  switch (M) {
279  case CodeGenOptions::GeneralDynamicTLSModel:
280    return llvm::GlobalVariable::GeneralDynamicTLSModel;
281  case CodeGenOptions::LocalDynamicTLSModel:
282    return llvm::GlobalVariable::LocalDynamicTLSModel;
283  case CodeGenOptions::InitialExecTLSModel:
284    return llvm::GlobalVariable::InitialExecTLSModel;
285  case CodeGenOptions::LocalExecTLSModel:
286    return llvm::GlobalVariable::LocalExecTLSModel;
287  }
288  llvm_unreachable("Invalid TLS model!");
289}
290
291void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
292                               const VarDecl &D) const {
293  assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
294
295  llvm::GlobalVariable::ThreadLocalMode TLM;
296  TLM = GetLLVMTLSModel(CodeGenOpts.DefaultTLSModel);
297
298  // Override the TLS model if it is explicitly specified.
299  if (D.hasAttr<TLSModelAttr>()) {
300    const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
301    TLM = GetLLVMTLSModel(Attr->getModel());
302  }
303
304  GV->setThreadLocalMode(TLM);
305}
306
307/// Set the symbol visibility of type information (vtable and RTTI)
308/// associated with the given type.
309void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
310                                      const CXXRecordDecl *RD,
311                                      TypeVisibilityKind TVK) const {
312  setGlobalVisibility(GV, RD);
313
314  if (!CodeGenOpts.HiddenWeakVTables)
315    return;
316
317  // We never want to drop the visibility for RTTI names.
318  if (TVK == TVK_ForRTTIName)
319    return;
320
321  // We want to drop the visibility to hidden for weak type symbols.
322  // This isn't possible if there might be unresolved references
323  // elsewhere that rely on this symbol being visible.
324
325  // This should be kept roughly in sync with setThunkVisibility
326  // in CGVTables.cpp.
327
328  // Preconditions.
329  if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
330      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
331    return;
332
333  // Don't override an explicit visibility attribute.
334  if (RD->getExplicitVisibility())
335    return;
336
337  switch (RD->getTemplateSpecializationKind()) {
338  // We have to disable the optimization if this is an EI definition
339  // because there might be EI declarations in other shared objects.
340  case TSK_ExplicitInstantiationDefinition:
341  case TSK_ExplicitInstantiationDeclaration:
342    return;
343
344  // Every use of a non-template class's type information has to emit it.
345  case TSK_Undeclared:
346    break;
347
348  // In theory, implicit instantiations can ignore the possibility of
349  // an explicit instantiation declaration because there necessarily
350  // must be an EI definition somewhere with default visibility.  In
351  // practice, it's possible to have an explicit instantiation for
352  // an arbitrary template class, and linkers aren't necessarily able
353  // to deal with mixed-visibility symbols.
354  case TSK_ExplicitSpecialization:
355  case TSK_ImplicitInstantiation:
356    if (!CodeGenOpts.HiddenWeakTemplateVTables)
357      return;
358    break;
359  }
360
361  // If there's a key function, there may be translation units
362  // that don't have the key function's definition.  But ignore
363  // this if we're emitting RTTI under -fno-rtti.
364  if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
365    if (Context.getKeyFunction(RD))
366      return;
367  }
368
369  // Otherwise, drop the visibility to hidden.
370  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
371  GV->setUnnamedAddr(true);
372}
373
374StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
375  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
376
377  StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
378  if (!Str.empty())
379    return Str;
380
381  if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
382    IdentifierInfo *II = ND->getIdentifier();
383    assert(II && "Attempt to mangle unnamed decl.");
384
385    Str = II->getName();
386    return Str;
387  }
388
389  SmallString<256> Buffer;
390  llvm::raw_svector_ostream Out(Buffer);
391  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
392    getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
393  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
394    getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
395  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
396    getCXXABI().getMangleContext().mangleBlock(BD, Out,
397      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
398  else
399    getCXXABI().getMangleContext().mangleName(ND, Out);
400
401  // Allocate space for the mangled name.
402  Out.flush();
403  size_t Length = Buffer.size();
404  char *Name = MangledNamesAllocator.Allocate<char>(Length);
405  std::copy(Buffer.begin(), Buffer.end(), Name);
406
407  Str = StringRef(Name, Length);
408
409  return Str;
410}
411
412void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
413                                        const BlockDecl *BD) {
414  MangleContext &MangleCtx = getCXXABI().getMangleContext();
415  const Decl *D = GD.getDecl();
416  llvm::raw_svector_ostream Out(Buffer.getBuffer());
417  if (D == 0)
418    MangleCtx.mangleGlobalBlock(BD,
419      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
420  else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
421    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
422  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
423    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
424  else
425    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
426}
427
428llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
429  return getModule().getNamedValue(Name);
430}
431
432/// AddGlobalCtor - Add a function to the list that will be called before
433/// main() runs.
434void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
435  // FIXME: Type coercion of void()* types.
436  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
437}
438
439/// AddGlobalDtor - Add a function to the list that will be called
440/// when the module is unloaded.
441void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
442  // FIXME: Type coercion of void()* types.
443  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
444}
445
446void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
447  // Ctor function type is void()*.
448  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
449  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
450
451  // Get the type of a ctor entry, { i32, void ()* }.
452  llvm::StructType *CtorStructTy =
453    llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
454
455  // Construct the constructor and destructor arrays.
456  SmallVector<llvm::Constant*, 8> Ctors;
457  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
458    llvm::Constant *S[] = {
459      llvm::ConstantInt::get(Int32Ty, I->second, false),
460      llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
461    };
462    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
463  }
464
465  if (!Ctors.empty()) {
466    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
467    new llvm::GlobalVariable(TheModule, AT, false,
468                             llvm::GlobalValue::AppendingLinkage,
469                             llvm::ConstantArray::get(AT, Ctors),
470                             GlobalName);
471  }
472}
473
474llvm::GlobalValue::LinkageTypes
475CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
476  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
477
478  if (Linkage == GVA_Internal)
479    return llvm::Function::InternalLinkage;
480
481  if (D->hasAttr<DLLExportAttr>())
482    return llvm::Function::DLLExportLinkage;
483
484  if (D->hasAttr<WeakAttr>())
485    return llvm::Function::WeakAnyLinkage;
486
487  // In C99 mode, 'inline' functions are guaranteed to have a strong
488  // definition somewhere else, so we can use available_externally linkage.
489  if (Linkage == GVA_C99Inline)
490    return llvm::Function::AvailableExternallyLinkage;
491
492  // Note that Apple's kernel linker doesn't support symbol
493  // coalescing, so we need to avoid linkonce and weak linkages there.
494  // Normally, this means we just map to internal, but for explicit
495  // instantiations we'll map to external.
496
497  // In C++, the compiler has to emit a definition in every translation unit
498  // that references the function.  We should use linkonce_odr because
499  // a) if all references in this translation unit are optimized away, we
500  // don't need to codegen it.  b) if the function persists, it needs to be
501  // merged with other definitions. c) C++ has the ODR, so we know the
502  // definition is dependable.
503  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
504    return !Context.getLangOpts().AppleKext
505             ? llvm::Function::LinkOnceODRLinkage
506             : llvm::Function::InternalLinkage;
507
508  // An explicit instantiation of a template has weak linkage, since
509  // explicit instantiations can occur in multiple translation units
510  // and must all be equivalent. However, we are not allowed to
511  // throw away these explicit instantiations.
512  if (Linkage == GVA_ExplicitTemplateInstantiation)
513    return !Context.getLangOpts().AppleKext
514             ? llvm::Function::WeakODRLinkage
515             : llvm::Function::ExternalLinkage;
516
517  // Otherwise, we have strong external linkage.
518  assert(Linkage == GVA_StrongExternal);
519  return llvm::Function::ExternalLinkage;
520}
521
522
523/// SetFunctionDefinitionAttributes - Set attributes for a global.
524///
525/// FIXME: This is currently only done for aliases and functions, but not for
526/// variables (these details are set in EmitGlobalVarDefinition for variables).
527void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
528                                                    llvm::GlobalValue *GV) {
529  SetCommonAttributes(D, GV);
530}
531
532void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
533                                              const CGFunctionInfo &Info,
534                                              llvm::Function *F) {
535  unsigned CallingConv;
536  AttributeListType AttributeList;
537  ConstructAttributeList(Info, D, AttributeList, CallingConv);
538  F->setAttributes(llvm::AttrListPtr::get(AttributeList));
539  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
540}
541
542/// Determines whether the language options require us to model
543/// unwind exceptions.  We treat -fexceptions as mandating this
544/// except under the fragile ObjC ABI with only ObjC exceptions
545/// enabled.  This means, for example, that C with -fexceptions
546/// enables this.
547static bool hasUnwindExceptions(const LangOptions &LangOpts) {
548  // If exceptions are completely disabled, obviously this is false.
549  if (!LangOpts.Exceptions) return false;
550
551  // If C++ exceptions are enabled, this is true.
552  if (LangOpts.CXXExceptions) return true;
553
554  // If ObjC exceptions are enabled, this depends on the ABI.
555  if (LangOpts.ObjCExceptions) {
556    return LangOpts.ObjCRuntime.hasUnwindExceptions();
557  }
558
559  return true;
560}
561
562void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
563                                                           llvm::Function *F) {
564  if (CodeGenOpts.UnwindTables)
565    F->setHasUWTable();
566
567  if (!hasUnwindExceptions(LangOpts))
568    F->addFnAttr(llvm::Attributes::NoUnwind);
569
570  if (D->hasAttr<NakedAttr>()) {
571    // Naked implies noinline: we should not be inlining such functions.
572    F->addFnAttr(llvm::Attributes::Naked);
573    F->addFnAttr(llvm::Attributes::NoInline);
574  }
575
576  if (D->hasAttr<NoInlineAttr>())
577    F->addFnAttr(llvm::Attributes::NoInline);
578
579  // (noinline wins over always_inline, and we can't specify both in IR)
580  if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
581      !F->getFnAttributes().hasAttribute(llvm::Attributes::NoInline))
582    F->addFnAttr(llvm::Attributes::AlwaysInline);
583
584  // FIXME: Communicate hot and cold attributes to LLVM more directly.
585  if (D->hasAttr<ColdAttr>())
586    F->addFnAttr(llvm::Attributes::OptimizeForSize);
587
588  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
589    F->setUnnamedAddr(true);
590
591  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
592    if (MD->isVirtual())
593      F->setUnnamedAddr(true);
594
595  if (LangOpts.getStackProtector() == LangOptions::SSPOn)
596    F->addFnAttr(llvm::Attributes::StackProtect);
597  else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
598    F->addFnAttr(llvm::Attributes::StackProtectReq);
599
600  if (LangOpts.AddressSanitizer) {
601    // When AddressSanitizer is enabled, set AddressSafety attribute
602    // unless __attribute__((no_address_safety_analysis)) is used.
603    if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
604      F->addFnAttr(llvm::Attributes::AddressSafety);
605  }
606
607  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
608  if (alignment)
609    F->setAlignment(alignment);
610
611  // C++ ABI requires 2-byte alignment for member functions.
612  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
613    F->setAlignment(2);
614}
615
616void CodeGenModule::SetCommonAttributes(const Decl *D,
617                                        llvm::GlobalValue *GV) {
618  if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
619    setGlobalVisibility(GV, ND);
620  else
621    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
622
623  if (D->hasAttr<UsedAttr>())
624    AddUsedGlobal(GV);
625
626  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
627    GV->setSection(SA->getName());
628
629  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
630}
631
632void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
633                                                  llvm::Function *F,
634                                                  const CGFunctionInfo &FI) {
635  SetLLVMFunctionAttributes(D, FI, F);
636  SetLLVMFunctionAttributesForDefinition(D, F);
637
638  F->setLinkage(llvm::Function::InternalLinkage);
639
640  SetCommonAttributes(D, F);
641}
642
643void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
644                                          llvm::Function *F,
645                                          bool IsIncompleteFunction) {
646  if (unsigned IID = F->getIntrinsicID()) {
647    // If this is an intrinsic function, set the function's attributes
648    // to the intrinsic's attributes.
649    F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
650    return;
651  }
652
653  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
654
655  if (!IsIncompleteFunction)
656    SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
657
658  // Only a few attributes are set on declarations; these may later be
659  // overridden by a definition.
660
661  if (FD->hasAttr<DLLImportAttr>()) {
662    F->setLinkage(llvm::Function::DLLImportLinkage);
663  } else if (FD->hasAttr<WeakAttr>() ||
664             FD->isWeakImported()) {
665    // "extern_weak" is overloaded in LLVM; we probably should have
666    // separate linkage types for this.
667    F->setLinkage(llvm::Function::ExternalWeakLinkage);
668  } else {
669    F->setLinkage(llvm::Function::ExternalLinkage);
670
671    NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
672    if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
673      F->setVisibility(GetLLVMVisibility(LV.visibility()));
674    }
675  }
676
677  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
678    F->setSection(SA->getName());
679}
680
681void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
682  assert(!GV->isDeclaration() &&
683         "Only globals with definition can force usage.");
684  LLVMUsed.push_back(GV);
685}
686
687void CodeGenModule::EmitLLVMUsed() {
688  // Don't create llvm.used if there is no need.
689  if (LLVMUsed.empty())
690    return;
691
692  // Convert LLVMUsed to what ConstantArray needs.
693  SmallVector<llvm::Constant*, 8> UsedArray;
694  UsedArray.resize(LLVMUsed.size());
695  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
696    UsedArray[i] =
697     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
698                                    Int8PtrTy);
699  }
700
701  if (UsedArray.empty())
702    return;
703  llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
704
705  llvm::GlobalVariable *GV =
706    new llvm::GlobalVariable(getModule(), ATy, false,
707                             llvm::GlobalValue::AppendingLinkage,
708                             llvm::ConstantArray::get(ATy, UsedArray),
709                             "llvm.used");
710
711  GV->setSection("llvm.metadata");
712}
713
714void CodeGenModule::EmitDeferred() {
715  // Emit code for any potentially referenced deferred decls.  Since a
716  // previously unused static decl may become used during the generation of code
717  // for a static function, iterate until no changes are made.
718
719  while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
720    if (!DeferredVTables.empty()) {
721      const CXXRecordDecl *RD = DeferredVTables.back();
722      DeferredVTables.pop_back();
723      getCXXABI().EmitVTables(RD);
724      continue;
725    }
726
727    GlobalDecl D = DeferredDeclsToEmit.back();
728    DeferredDeclsToEmit.pop_back();
729
730    // Check to see if we've already emitted this.  This is necessary
731    // for a couple of reasons: first, decls can end up in the
732    // deferred-decls queue multiple times, and second, decls can end
733    // up with definitions in unusual ways (e.g. by an extern inline
734    // function acquiring a strong function redefinition).  Just
735    // ignore these cases.
736    //
737    // TODO: That said, looking this up multiple times is very wasteful.
738    StringRef Name = getMangledName(D);
739    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
740    assert(CGRef && "Deferred decl wasn't referenced?");
741
742    if (!CGRef->isDeclaration())
743      continue;
744
745    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
746    // purposes an alias counts as a definition.
747    if (isa<llvm::GlobalAlias>(CGRef))
748      continue;
749
750    // Otherwise, emit the definition and move on to the next one.
751    EmitGlobalDefinition(D);
752  }
753}
754
755void CodeGenModule::EmitGlobalAnnotations() {
756  if (Annotations.empty())
757    return;
758
759  // Create a new global variable for the ConstantStruct in the Module.
760  llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
761    Annotations[0]->getType(), Annotations.size()), Annotations);
762  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
763    Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
764    "llvm.global.annotations");
765  gv->setSection(AnnotationSection);
766}
767
768llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
769  llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
770  if (i != AnnotationStrings.end())
771    return i->second;
772
773  // Not found yet, create a new global.
774  llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
775  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
776    true, llvm::GlobalValue::PrivateLinkage, s, ".str");
777  gv->setSection(AnnotationSection);
778  gv->setUnnamedAddr(true);
779  AnnotationStrings[Str] = gv;
780  return gv;
781}
782
783llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
784  SourceManager &SM = getContext().getSourceManager();
785  PresumedLoc PLoc = SM.getPresumedLoc(Loc);
786  if (PLoc.isValid())
787    return EmitAnnotationString(PLoc.getFilename());
788  return EmitAnnotationString(SM.getBufferName(Loc));
789}
790
791llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
792  SourceManager &SM = getContext().getSourceManager();
793  PresumedLoc PLoc = SM.getPresumedLoc(L);
794  unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
795    SM.getExpansionLineNumber(L);
796  return llvm::ConstantInt::get(Int32Ty, LineNo);
797}
798
799llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
800                                                const AnnotateAttr *AA,
801                                                SourceLocation L) {
802  // Get the globals for file name, annotation, and the line number.
803  llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
804                 *UnitGV = EmitAnnotationUnit(L),
805                 *LineNoCst = EmitAnnotationLineNo(L);
806
807  // Create the ConstantStruct for the global annotation.
808  llvm::Constant *Fields[4] = {
809    llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
810    llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
811    llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
812    LineNoCst
813  };
814  return llvm::ConstantStruct::getAnon(Fields);
815}
816
817void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
818                                         llvm::GlobalValue *GV) {
819  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
820  // Get the struct elements for these annotations.
821  for (specific_attr_iterator<AnnotateAttr>
822       ai = D->specific_attr_begin<AnnotateAttr>(),
823       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
824    Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
825}
826
827bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
828  // Never defer when EmitAllDecls is specified.
829  if (LangOpts.EmitAllDecls)
830    return false;
831
832  return !getContext().DeclMustBeEmitted(Global);
833}
834
835llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
836    const CXXUuidofExpr* E) {
837  // Sema has verified that IIDSource has a __declspec(uuid()), and that its
838  // well-formed.
839  StringRef Uuid;
840  if (E->isTypeOperand())
841    Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
842  else {
843    // Special case: __uuidof(0) means an all-zero GUID.
844    Expr *Op = E->getExprOperand();
845    if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
846      Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
847    else
848      Uuid = "00000000-0000-0000-0000-000000000000";
849  }
850  std::string Name = "__uuid_" + Uuid.str();
851
852  // Look for an existing global.
853  if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
854    return GV;
855
856  llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
857  assert(Init && "failed to initialize as constant");
858
859  // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
860  // first field is declared as "long", which for many targets is 8 bytes.
861  // Those architectures are not supported. (With the MS abi, long is always 4
862  // bytes.)
863  llvm::Type *GuidType = getTypes().ConvertType(E->getType());
864  if (Init->getType() != GuidType) {
865    DiagnosticsEngine &Diags = getDiags();
866    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
867        "__uuidof codegen is not supported on this architecture");
868    Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
869    Init = llvm::UndefValue::get(GuidType);
870  }
871
872  llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
873      /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
874  GV->setUnnamedAddr(true);
875  return GV;
876}
877
878llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
879  const AliasAttr *AA = VD->getAttr<AliasAttr>();
880  assert(AA && "No alias?");
881
882  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
883
884  // See if there is already something with the target's name in the module.
885  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
886
887  llvm::Constant *Aliasee;
888  if (isa<llvm::FunctionType>(DeclTy))
889    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
890                                      GlobalDecl(cast<FunctionDecl>(VD)),
891                                      /*ForVTable=*/false);
892  else
893    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
894                                    llvm::PointerType::getUnqual(DeclTy), 0);
895  if (!Entry) {
896    llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
897    F->setLinkage(llvm::Function::ExternalWeakLinkage);
898    WeakRefReferences.insert(F);
899  }
900
901  return Aliasee;
902}
903
904void CodeGenModule::EmitGlobal(GlobalDecl GD) {
905  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
906
907  // Weak references don't produce any output by themselves.
908  if (Global->hasAttr<WeakRefAttr>())
909    return;
910
911  // If this is an alias definition (which otherwise looks like a declaration)
912  // emit it now.
913  if (Global->hasAttr<AliasAttr>())
914    return EmitAliasDefinition(GD);
915
916  // If this is CUDA, be selective about which declarations we emit.
917  if (LangOpts.CUDA) {
918    if (CodeGenOpts.CUDAIsDevice) {
919      if (!Global->hasAttr<CUDADeviceAttr>() &&
920          !Global->hasAttr<CUDAGlobalAttr>() &&
921          !Global->hasAttr<CUDAConstantAttr>() &&
922          !Global->hasAttr<CUDASharedAttr>())
923        return;
924    } else {
925      if (!Global->hasAttr<CUDAHostAttr>() && (
926            Global->hasAttr<CUDADeviceAttr>() ||
927            Global->hasAttr<CUDAConstantAttr>() ||
928            Global->hasAttr<CUDASharedAttr>()))
929        return;
930    }
931  }
932
933  // Ignore declarations, they will be emitted on their first use.
934  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
935    // Forward declarations are emitted lazily on first use.
936    if (!FD->doesThisDeclarationHaveABody()) {
937      if (!FD->doesDeclarationForceExternallyVisibleDefinition())
938        return;
939
940      const FunctionDecl *InlineDefinition = 0;
941      FD->getBody(InlineDefinition);
942
943      StringRef MangledName = getMangledName(GD);
944      DeferredDecls.erase(MangledName);
945      EmitGlobalDefinition(InlineDefinition);
946      return;
947    }
948  } else {
949    const VarDecl *VD = cast<VarDecl>(Global);
950    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
951
952    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
953      return;
954  }
955
956  // Defer code generation when possible if this is a static definition, inline
957  // function etc.  These we only want to emit if they are used.
958  if (!MayDeferGeneration(Global)) {
959    // Emit the definition if it can't be deferred.
960    EmitGlobalDefinition(GD);
961    return;
962  }
963
964  // If we're deferring emission of a C++ variable with an
965  // initializer, remember the order in which it appeared in the file.
966  if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
967      cast<VarDecl>(Global)->hasInit()) {
968    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
969    CXXGlobalInits.push_back(0);
970  }
971
972  // If the value has already been used, add it directly to the
973  // DeferredDeclsToEmit list.
974  StringRef MangledName = getMangledName(GD);
975  if (GetGlobalValue(MangledName))
976    DeferredDeclsToEmit.push_back(GD);
977  else {
978    // Otherwise, remember that we saw a deferred decl with this name.  The
979    // first use of the mangled name will cause it to move into
980    // DeferredDeclsToEmit.
981    DeferredDecls[MangledName] = GD;
982  }
983}
984
985namespace {
986  struct FunctionIsDirectlyRecursive :
987    public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
988    const StringRef Name;
989    const Builtin::Context &BI;
990    bool Result;
991    FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
992      Name(N), BI(C), Result(false) {
993    }
994    typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
995
996    bool TraverseCallExpr(CallExpr *E) {
997      const FunctionDecl *FD = E->getDirectCallee();
998      if (!FD)
999        return true;
1000      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1001      if (Attr && Name == Attr->getLabel()) {
1002        Result = true;
1003        return false;
1004      }
1005      unsigned BuiltinID = FD->getBuiltinID();
1006      if (!BuiltinID)
1007        return true;
1008      StringRef BuiltinName = BI.GetName(BuiltinID);
1009      if (BuiltinName.startswith("__builtin_") &&
1010          Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1011        Result = true;
1012        return false;
1013      }
1014      return true;
1015    }
1016  };
1017}
1018
1019// isTriviallyRecursive - Check if this function calls another
1020// decl that, because of the asm attribute or the other decl being a builtin,
1021// ends up pointing to itself.
1022bool
1023CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1024  StringRef Name;
1025  if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1026    // asm labels are a special kind of mangling we have to support.
1027    AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1028    if (!Attr)
1029      return false;
1030    Name = Attr->getLabel();
1031  } else {
1032    Name = FD->getName();
1033  }
1034
1035  FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1036  Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1037  return Walker.Result;
1038}
1039
1040bool
1041CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1042  if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1043    return true;
1044  if (CodeGenOpts.OptimizationLevel == 0 &&
1045      !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1046    return false;
1047  // PR9614. Avoid cases where the source code is lying to us. An available
1048  // externally function should have an equivalent function somewhere else,
1049  // but a function that calls itself is clearly not equivalent to the real
1050  // implementation.
1051  // This happens in glibc's btowc and in some configure checks.
1052  return !isTriviallyRecursive(F);
1053}
1054
1055void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1056  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1057
1058  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1059                                 Context.getSourceManager(),
1060                                 "Generating code for declaration");
1061
1062  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1063    // At -O0, don't generate IR for functions with available_externally
1064    // linkage.
1065    if (!shouldEmitFunction(Function))
1066      return;
1067
1068    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1069      // Make sure to emit the definition(s) before we emit the thunks.
1070      // This is necessary for the generation of certain thunks.
1071      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1072        EmitCXXConstructor(CD, GD.getCtorType());
1073      else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1074        EmitCXXDestructor(DD, GD.getDtorType());
1075      else
1076        EmitGlobalFunctionDefinition(GD);
1077
1078      if (Method->isVirtual())
1079        getVTables().EmitThunks(GD);
1080
1081      return;
1082    }
1083
1084    return EmitGlobalFunctionDefinition(GD);
1085  }
1086
1087  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1088    return EmitGlobalVarDefinition(VD);
1089
1090  llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1091}
1092
1093/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1094/// module, create and return an llvm Function with the specified type. If there
1095/// is something in the module with the specified name, return it potentially
1096/// bitcasted to the right type.
1097///
1098/// If D is non-null, it specifies a decl that correspond to this.  This is used
1099/// to set the attributes on the function when it is first created.
1100llvm::Constant *
1101CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1102                                       llvm::Type *Ty,
1103                                       GlobalDecl D, bool ForVTable,
1104                                       llvm::Attributes ExtraAttrs) {
1105  // Lookup the entry, lazily creating it if necessary.
1106  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1107  if (Entry) {
1108    if (WeakRefReferences.erase(Entry)) {
1109      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1110      if (FD && !FD->hasAttr<WeakAttr>())
1111        Entry->setLinkage(llvm::Function::ExternalLinkage);
1112    }
1113
1114    if (Entry->getType()->getElementType() == Ty)
1115      return Entry;
1116
1117    // Make sure the result is of the correct type.
1118    return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1119  }
1120
1121  // This function doesn't have a complete type (for example, the return
1122  // type is an incomplete struct). Use a fake type instead, and make
1123  // sure not to try to set attributes.
1124  bool IsIncompleteFunction = false;
1125
1126  llvm::FunctionType *FTy;
1127  if (isa<llvm::FunctionType>(Ty)) {
1128    FTy = cast<llvm::FunctionType>(Ty);
1129  } else {
1130    FTy = llvm::FunctionType::get(VoidTy, false);
1131    IsIncompleteFunction = true;
1132  }
1133
1134  llvm::Function *F = llvm::Function::Create(FTy,
1135                                             llvm::Function::ExternalLinkage,
1136                                             MangledName, &getModule());
1137  assert(F->getName() == MangledName && "name was uniqued!");
1138  if (D.getDecl())
1139    SetFunctionAttributes(D, F, IsIncompleteFunction);
1140  if (ExtraAttrs.hasAttributes())
1141    F->addAttribute(~0, ExtraAttrs);
1142
1143  // This is the first use or definition of a mangled name.  If there is a
1144  // deferred decl with this name, remember that we need to emit it at the end
1145  // of the file.
1146  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1147  if (DDI != DeferredDecls.end()) {
1148    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1149    // list, and remove it from DeferredDecls (since we don't need it anymore).
1150    DeferredDeclsToEmit.push_back(DDI->second);
1151    DeferredDecls.erase(DDI);
1152
1153  // Otherwise, there are cases we have to worry about where we're
1154  // using a declaration for which we must emit a definition but where
1155  // we might not find a top-level definition:
1156  //   - member functions defined inline in their classes
1157  //   - friend functions defined inline in some class
1158  //   - special member functions with implicit definitions
1159  // If we ever change our AST traversal to walk into class methods,
1160  // this will be unnecessary.
1161  //
1162  // We also don't emit a definition for a function if it's going to be an entry
1163  // in a vtable, unless it's already marked as used.
1164  } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1165    // Look for a declaration that's lexically in a record.
1166    const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1167    FD = FD->getMostRecentDecl();
1168    do {
1169      if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1170        if (FD->isImplicit() && !ForVTable) {
1171          assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1172          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1173          break;
1174        } else if (FD->doesThisDeclarationHaveABody()) {
1175          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1176          break;
1177        }
1178      }
1179      FD = FD->getPreviousDecl();
1180    } while (FD);
1181  }
1182
1183  // Make sure the result is of the requested type.
1184  if (!IsIncompleteFunction) {
1185    assert(F->getType()->getElementType() == Ty);
1186    return F;
1187  }
1188
1189  llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1190  return llvm::ConstantExpr::getBitCast(F, PTy);
1191}
1192
1193/// GetAddrOfFunction - Return the address of the given function.  If Ty is
1194/// non-null, then this function will use the specified type if it has to
1195/// create it (this occurs when we see a definition of the function).
1196llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1197                                                 llvm::Type *Ty,
1198                                                 bool ForVTable) {
1199  // If there was no specific requested type, just convert it now.
1200  if (!Ty)
1201    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1202
1203  StringRef MangledName = getMangledName(GD);
1204  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1205}
1206
1207/// CreateRuntimeFunction - Create a new runtime function with the specified
1208/// type and name.
1209llvm::Constant *
1210CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1211                                     StringRef Name,
1212                                     llvm::Attributes ExtraAttrs) {
1213  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1214                                 ExtraAttrs);
1215}
1216
1217/// isTypeConstant - Determine whether an object of this type can be emitted
1218/// as a constant.
1219///
1220/// If ExcludeCtor is true, the duration when the object's constructor runs
1221/// will not be considered. The caller will need to verify that the object is
1222/// not written to during its construction.
1223bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1224  if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1225    return false;
1226
1227  if (Context.getLangOpts().CPlusPlus) {
1228    if (const CXXRecordDecl *Record
1229          = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1230      return ExcludeCtor && !Record->hasMutableFields() &&
1231             Record->hasTrivialDestructor();
1232  }
1233
1234  return true;
1235}
1236
1237/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1238/// create and return an llvm GlobalVariable with the specified type.  If there
1239/// is something in the module with the specified name, return it potentially
1240/// bitcasted to the right type.
1241///
1242/// If D is non-null, it specifies a decl that correspond to this.  This is used
1243/// to set the attributes on the global when it is first created.
1244llvm::Constant *
1245CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1246                                     llvm::PointerType *Ty,
1247                                     const VarDecl *D,
1248                                     bool UnnamedAddr) {
1249  // Lookup the entry, lazily creating it if necessary.
1250  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1251  if (Entry) {
1252    if (WeakRefReferences.erase(Entry)) {
1253      if (D && !D->hasAttr<WeakAttr>())
1254        Entry->setLinkage(llvm::Function::ExternalLinkage);
1255    }
1256
1257    if (UnnamedAddr)
1258      Entry->setUnnamedAddr(true);
1259
1260    if (Entry->getType() == Ty)
1261      return Entry;
1262
1263    // Make sure the result is of the correct type.
1264    return llvm::ConstantExpr::getBitCast(Entry, Ty);
1265  }
1266
1267  // This is the first use or definition of a mangled name.  If there is a
1268  // deferred decl with this name, remember that we need to emit it at the end
1269  // of the file.
1270  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1271  if (DDI != DeferredDecls.end()) {
1272    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1273    // list, and remove it from DeferredDecls (since we don't need it anymore).
1274    DeferredDeclsToEmit.push_back(DDI->second);
1275    DeferredDecls.erase(DDI);
1276  }
1277
1278  unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1279  llvm::GlobalVariable *GV =
1280    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1281                             llvm::GlobalValue::ExternalLinkage,
1282                             0, MangledName, 0,
1283                             llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1284
1285  // Handle things which are present even on external declarations.
1286  if (D) {
1287    // FIXME: This code is overly simple and should be merged with other global
1288    // handling.
1289    GV->setConstant(isTypeConstant(D->getType(), false));
1290
1291    // Set linkage and visibility in case we never see a definition.
1292    NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1293    if (LV.linkage() != ExternalLinkage) {
1294      // Don't set internal linkage on declarations.
1295    } else {
1296      if (D->hasAttr<DLLImportAttr>())
1297        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1298      else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1299        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1300
1301      // Set visibility on a declaration only if it's explicit.
1302      if (LV.visibilityExplicit())
1303        GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1304    }
1305
1306    if (D->isThreadSpecified())
1307      setTLSMode(GV, *D);
1308  }
1309
1310  if (AddrSpace != Ty->getAddressSpace())
1311    return llvm::ConstantExpr::getBitCast(GV, Ty);
1312  else
1313    return GV;
1314}
1315
1316
1317llvm::GlobalVariable *
1318CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1319                                      llvm::Type *Ty,
1320                                      llvm::GlobalValue::LinkageTypes Linkage) {
1321  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1322  llvm::GlobalVariable *OldGV = 0;
1323
1324
1325  if (GV) {
1326    // Check if the variable has the right type.
1327    if (GV->getType()->getElementType() == Ty)
1328      return GV;
1329
1330    // Because C++ name mangling, the only way we can end up with an already
1331    // existing global with the same name is if it has been declared extern "C".
1332    assert(GV->isDeclaration() && "Declaration has wrong type!");
1333    OldGV = GV;
1334  }
1335
1336  // Create a new variable.
1337  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1338                                Linkage, 0, Name);
1339
1340  if (OldGV) {
1341    // Replace occurrences of the old variable if needed.
1342    GV->takeName(OldGV);
1343
1344    if (!OldGV->use_empty()) {
1345      llvm::Constant *NewPtrForOldDecl =
1346      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1347      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1348    }
1349
1350    OldGV->eraseFromParent();
1351  }
1352
1353  return GV;
1354}
1355
1356/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1357/// given global variable.  If Ty is non-null and if the global doesn't exist,
1358/// then it will be created with the specified type instead of whatever the
1359/// normal requested type would be.
1360llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1361                                                  llvm::Type *Ty) {
1362  assert(D->hasGlobalStorage() && "Not a global variable");
1363  QualType ASTTy = D->getType();
1364  if (Ty == 0)
1365    Ty = getTypes().ConvertTypeForMem(ASTTy);
1366
1367  llvm::PointerType *PTy =
1368    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1369
1370  StringRef MangledName = getMangledName(D);
1371  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1372}
1373
1374/// CreateRuntimeVariable - Create a new runtime global variable with the
1375/// specified type and name.
1376llvm::Constant *
1377CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1378                                     StringRef Name) {
1379  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1380                               true);
1381}
1382
1383void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1384  assert(!D->getInit() && "Cannot emit definite definitions here!");
1385
1386  if (MayDeferGeneration(D)) {
1387    // If we have not seen a reference to this variable yet, place it
1388    // into the deferred declarations table to be emitted if needed
1389    // later.
1390    StringRef MangledName = getMangledName(D);
1391    if (!GetGlobalValue(MangledName)) {
1392      DeferredDecls[MangledName] = D;
1393      return;
1394    }
1395  }
1396
1397  // The tentative definition is the only definition.
1398  EmitGlobalVarDefinition(D);
1399}
1400
1401void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1402  if (DefinitionRequired)
1403    getCXXABI().EmitVTables(Class);
1404}
1405
1406llvm::GlobalVariable::LinkageTypes
1407CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1408  if (RD->getLinkage() != ExternalLinkage)
1409    return llvm::GlobalVariable::InternalLinkage;
1410
1411  if (const CXXMethodDecl *KeyFunction
1412                                    = RD->getASTContext().getKeyFunction(RD)) {
1413    // If this class has a key function, use that to determine the linkage of
1414    // the vtable.
1415    const FunctionDecl *Def = 0;
1416    if (KeyFunction->hasBody(Def))
1417      KeyFunction = cast<CXXMethodDecl>(Def);
1418
1419    switch (KeyFunction->getTemplateSpecializationKind()) {
1420      case TSK_Undeclared:
1421      case TSK_ExplicitSpecialization:
1422        // When compiling with optimizations turned on, we emit all vtables,
1423        // even if the key function is not defined in the current translation
1424        // unit. If this is the case, use available_externally linkage.
1425        if (!Def && CodeGenOpts.OptimizationLevel)
1426          return llvm::GlobalVariable::AvailableExternallyLinkage;
1427
1428        if (KeyFunction->isInlined())
1429          return !Context.getLangOpts().AppleKext ?
1430                   llvm::GlobalVariable::LinkOnceODRLinkage :
1431                   llvm::Function::InternalLinkage;
1432
1433        return llvm::GlobalVariable::ExternalLinkage;
1434
1435      case TSK_ImplicitInstantiation:
1436        return !Context.getLangOpts().AppleKext ?
1437                 llvm::GlobalVariable::LinkOnceODRLinkage :
1438                 llvm::Function::InternalLinkage;
1439
1440      case TSK_ExplicitInstantiationDefinition:
1441        return !Context.getLangOpts().AppleKext ?
1442                 llvm::GlobalVariable::WeakODRLinkage :
1443                 llvm::Function::InternalLinkage;
1444
1445      case TSK_ExplicitInstantiationDeclaration:
1446        // FIXME: Use available_externally linkage. However, this currently
1447        // breaks LLVM's build due to undefined symbols.
1448        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1449        return !Context.getLangOpts().AppleKext ?
1450                 llvm::GlobalVariable::LinkOnceODRLinkage :
1451                 llvm::Function::InternalLinkage;
1452    }
1453  }
1454
1455  if (Context.getLangOpts().AppleKext)
1456    return llvm::Function::InternalLinkage;
1457
1458  switch (RD->getTemplateSpecializationKind()) {
1459  case TSK_Undeclared:
1460  case TSK_ExplicitSpecialization:
1461  case TSK_ImplicitInstantiation:
1462    // FIXME: Use available_externally linkage. However, this currently
1463    // breaks LLVM's build due to undefined symbols.
1464    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1465  case TSK_ExplicitInstantiationDeclaration:
1466    return llvm::GlobalVariable::LinkOnceODRLinkage;
1467
1468  case TSK_ExplicitInstantiationDefinition:
1469      return llvm::GlobalVariable::WeakODRLinkage;
1470  }
1471
1472  llvm_unreachable("Invalid TemplateSpecializationKind!");
1473}
1474
1475CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1476    return Context.toCharUnitsFromBits(
1477      TheDataLayout.getTypeStoreSizeInBits(Ty));
1478}
1479
1480llvm::Constant *
1481CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1482                                                       const Expr *rawInit) {
1483  ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1484  if (const ExprWithCleanups *withCleanups =
1485          dyn_cast<ExprWithCleanups>(rawInit)) {
1486    cleanups = withCleanups->getObjects();
1487    rawInit = withCleanups->getSubExpr();
1488  }
1489
1490  const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1491  if (!init || !init->initializesStdInitializerList() ||
1492      init->getNumInits() == 0)
1493    return 0;
1494
1495  ASTContext &ctx = getContext();
1496  unsigned numInits = init->getNumInits();
1497  // FIXME: This check is here because we would otherwise silently miscompile
1498  // nested global std::initializer_lists. Better would be to have a real
1499  // implementation.
1500  for (unsigned i = 0; i < numInits; ++i) {
1501    const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1502    if (inner && inner->initializesStdInitializerList()) {
1503      ErrorUnsupported(inner, "nested global std::initializer_list");
1504      return 0;
1505    }
1506  }
1507
1508  // Synthesize a fake VarDecl for the array and initialize that.
1509  QualType elementType = init->getInit(0)->getType();
1510  llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1511  QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1512                                                ArrayType::Normal, 0);
1513
1514  IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1515  TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1516                                              arrayType, D->getLocation());
1517  VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1518                                                          D->getDeclContext()),
1519                                          D->getLocStart(), D->getLocation(),
1520                                          name, arrayType, sourceInfo,
1521                                          SC_Static, SC_Static);
1522
1523  // Now clone the InitListExpr to initialize the array instead.
1524  // Incredible hack: we want to use the existing InitListExpr here, so we need
1525  // to tell it that it no longer initializes a std::initializer_list.
1526  ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1527                        init->getNumInits());
1528  Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1529                                           init->getRBraceLoc());
1530  arrayInit->setType(arrayType);
1531
1532  if (!cleanups.empty())
1533    arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1534
1535  backingArray->setInit(arrayInit);
1536
1537  // Emit the definition of the array.
1538  EmitGlobalVarDefinition(backingArray);
1539
1540  // Inspect the initializer list to validate it and determine its type.
1541  // FIXME: doing this every time is probably inefficient; caching would be nice
1542  RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1543  RecordDecl::field_iterator field = record->field_begin();
1544  if (field == record->field_end()) {
1545    ErrorUnsupported(D, "weird std::initializer_list");
1546    return 0;
1547  }
1548  QualType elementPtr = ctx.getPointerType(elementType.withConst());
1549  // Start pointer.
1550  if (!ctx.hasSameType(field->getType(), elementPtr)) {
1551    ErrorUnsupported(D, "weird std::initializer_list");
1552    return 0;
1553  }
1554  ++field;
1555  if (field == record->field_end()) {
1556    ErrorUnsupported(D, "weird std::initializer_list");
1557    return 0;
1558  }
1559  bool isStartEnd = false;
1560  if (ctx.hasSameType(field->getType(), elementPtr)) {
1561    // End pointer.
1562    isStartEnd = true;
1563  } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1564    ErrorUnsupported(D, "weird std::initializer_list");
1565    return 0;
1566  }
1567
1568  // Now build an APValue representing the std::initializer_list.
1569  APValue initListValue(APValue::UninitStruct(), 0, 2);
1570  APValue &startField = initListValue.getStructField(0);
1571  APValue::LValuePathEntry startOffsetPathEntry;
1572  startOffsetPathEntry.ArrayIndex = 0;
1573  startField = APValue(APValue::LValueBase(backingArray),
1574                       CharUnits::fromQuantity(0),
1575                       llvm::makeArrayRef(startOffsetPathEntry),
1576                       /*IsOnePastTheEnd=*/false, 0);
1577
1578  if (isStartEnd) {
1579    APValue &endField = initListValue.getStructField(1);
1580    APValue::LValuePathEntry endOffsetPathEntry;
1581    endOffsetPathEntry.ArrayIndex = numInits;
1582    endField = APValue(APValue::LValueBase(backingArray),
1583                       ctx.getTypeSizeInChars(elementType) * numInits,
1584                       llvm::makeArrayRef(endOffsetPathEntry),
1585                       /*IsOnePastTheEnd=*/true, 0);
1586  } else {
1587    APValue &sizeField = initListValue.getStructField(1);
1588    sizeField = APValue(llvm::APSInt(numElements));
1589  }
1590
1591  // Emit the constant for the initializer_list.
1592  llvm::Constant *llvmInit =
1593      EmitConstantValueForMemory(initListValue, D->getType());
1594  assert(llvmInit && "failed to initialize as constant");
1595  return llvmInit;
1596}
1597
1598unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1599                                                 unsigned AddrSpace) {
1600  if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1601    if (D->hasAttr<CUDAConstantAttr>())
1602      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1603    else if (D->hasAttr<CUDASharedAttr>())
1604      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1605    else
1606      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1607  }
1608
1609  return AddrSpace;
1610}
1611
1612void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1613  llvm::Constant *Init = 0;
1614  QualType ASTTy = D->getType();
1615  CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1616  bool NeedsGlobalCtor = false;
1617  bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1618
1619  const VarDecl *InitDecl;
1620  const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1621
1622  if (!InitExpr) {
1623    // This is a tentative definition; tentative definitions are
1624    // implicitly initialized with { 0 }.
1625    //
1626    // Note that tentative definitions are only emitted at the end of
1627    // a translation unit, so they should never have incomplete
1628    // type. In addition, EmitTentativeDefinition makes sure that we
1629    // never attempt to emit a tentative definition if a real one
1630    // exists. A use may still exists, however, so we still may need
1631    // to do a RAUW.
1632    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1633    Init = EmitNullConstant(D->getType());
1634  } else {
1635    // If this is a std::initializer_list, emit the special initializer.
1636    Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1637    // An empty init list will perform zero-initialization, which happens
1638    // to be exactly what we want.
1639    // FIXME: It does so in a global constructor, which is *not* what we
1640    // want.
1641
1642    if (!Init) {
1643      initializedGlobalDecl = GlobalDecl(D);
1644      Init = EmitConstantInit(*InitDecl);
1645    }
1646    if (!Init) {
1647      QualType T = InitExpr->getType();
1648      if (D->getType()->isReferenceType())
1649        T = D->getType();
1650
1651      if (getLangOpts().CPlusPlus) {
1652        Init = EmitNullConstant(T);
1653        NeedsGlobalCtor = true;
1654      } else {
1655        ErrorUnsupported(D, "static initializer");
1656        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1657      }
1658    } else {
1659      // We don't need an initializer, so remove the entry for the delayed
1660      // initializer position (just in case this entry was delayed) if we
1661      // also don't need to register a destructor.
1662      if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1663        DelayedCXXInitPosition.erase(D);
1664    }
1665  }
1666
1667  llvm::Type* InitType = Init->getType();
1668  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1669
1670  // Strip off a bitcast if we got one back.
1671  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1672    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1673           // all zero index gep.
1674           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1675    Entry = CE->getOperand(0);
1676  }
1677
1678  // Entry is now either a Function or GlobalVariable.
1679  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1680
1681  // We have a definition after a declaration with the wrong type.
1682  // We must make a new GlobalVariable* and update everything that used OldGV
1683  // (a declaration or tentative definition) with the new GlobalVariable*
1684  // (which will be a definition).
1685  //
1686  // This happens if there is a prototype for a global (e.g.
1687  // "extern int x[];") and then a definition of a different type (e.g.
1688  // "int x[10];"). This also happens when an initializer has a different type
1689  // from the type of the global (this happens with unions).
1690  if (GV == 0 ||
1691      GV->getType()->getElementType() != InitType ||
1692      GV->getType()->getAddressSpace() !=
1693       GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1694
1695    // Move the old entry aside so that we'll create a new one.
1696    Entry->setName(StringRef());
1697
1698    // Make a new global with the correct type, this is now guaranteed to work.
1699    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1700
1701    // Replace all uses of the old global with the new global
1702    llvm::Constant *NewPtrForOldDecl =
1703        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1704    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1705
1706    // Erase the old global, since it is no longer used.
1707    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1708  }
1709
1710  if (D->hasAttr<AnnotateAttr>())
1711    AddGlobalAnnotations(D, GV);
1712
1713  GV->setInitializer(Init);
1714
1715  // If it is safe to mark the global 'constant', do so now.
1716  GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1717                  isTypeConstant(D->getType(), true));
1718
1719  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1720
1721  // Set the llvm linkage type as appropriate.
1722  llvm::GlobalValue::LinkageTypes Linkage =
1723    GetLLVMLinkageVarDefinition(D, GV);
1724  GV->setLinkage(Linkage);
1725  if (Linkage == llvm::GlobalVariable::CommonLinkage)
1726    // common vars aren't constant even if declared const.
1727    GV->setConstant(false);
1728
1729  SetCommonAttributes(D, GV);
1730
1731  // Emit the initializer function if necessary.
1732  if (NeedsGlobalCtor || NeedsGlobalDtor)
1733    EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1734
1735  // If we are compiling with ASan, add metadata indicating dynamically
1736  // initialized globals.
1737  if (LangOpts.AddressSanitizer && NeedsGlobalCtor) {
1738    llvm::Module &M = getModule();
1739
1740    llvm::NamedMDNode *DynamicInitializers =
1741        M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1742    llvm::Value *GlobalToAdd[] = { GV };
1743    llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1744    DynamicInitializers->addOperand(ThisGlobal);
1745  }
1746
1747  // Emit global variable debug information.
1748  if (CGDebugInfo *DI = getModuleDebugInfo())
1749    if (getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo)
1750      DI->EmitGlobalVariable(GV, D);
1751}
1752
1753llvm::GlobalValue::LinkageTypes
1754CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1755                                           llvm::GlobalVariable *GV) {
1756  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1757  if (Linkage == GVA_Internal)
1758    return llvm::Function::InternalLinkage;
1759  else if (D->hasAttr<DLLImportAttr>())
1760    return llvm::Function::DLLImportLinkage;
1761  else if (D->hasAttr<DLLExportAttr>())
1762    return llvm::Function::DLLExportLinkage;
1763  else if (D->hasAttr<WeakAttr>()) {
1764    if (GV->isConstant())
1765      return llvm::GlobalVariable::WeakODRLinkage;
1766    else
1767      return llvm::GlobalVariable::WeakAnyLinkage;
1768  } else if (Linkage == GVA_TemplateInstantiation ||
1769             Linkage == GVA_ExplicitTemplateInstantiation)
1770    return llvm::GlobalVariable::WeakODRLinkage;
1771  else if (!getLangOpts().CPlusPlus &&
1772           ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1773             D->getAttr<CommonAttr>()) &&
1774           !D->hasExternalStorage() && !D->getInit() &&
1775           !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1776           !D->getAttr<WeakImportAttr>()) {
1777    // Thread local vars aren't considered common linkage.
1778    return llvm::GlobalVariable::CommonLinkage;
1779  }
1780  return llvm::GlobalVariable::ExternalLinkage;
1781}
1782
1783/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1784/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1785/// existing call uses of the old function in the module, this adjusts them to
1786/// call the new function directly.
1787///
1788/// This is not just a cleanup: the always_inline pass requires direct calls to
1789/// functions to be able to inline them.  If there is a bitcast in the way, it
1790/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1791/// run at -O0.
1792static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1793                                                      llvm::Function *NewFn) {
1794  // If we're redefining a global as a function, don't transform it.
1795  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1796  if (OldFn == 0) return;
1797
1798  llvm::Type *NewRetTy = NewFn->getReturnType();
1799  SmallVector<llvm::Value*, 4> ArgList;
1800
1801  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1802       UI != E; ) {
1803    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1804    llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1805    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1806    if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1807    llvm::CallSite CS(CI);
1808    if (!CI || !CS.isCallee(I)) continue;
1809
1810    // If the return types don't match exactly, and if the call isn't dead, then
1811    // we can't transform this call.
1812    if (CI->getType() != NewRetTy && !CI->use_empty())
1813      continue;
1814
1815    // Get the attribute list.
1816    llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1817    llvm::AttrListPtr AttrList = CI->getAttributes();
1818
1819    // Get any return attributes.
1820    llvm::Attributes RAttrs = AttrList.getRetAttributes();
1821
1822    // Add the return attributes.
1823    if (RAttrs.hasAttributes())
1824      AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1825
1826    // If the function was passed too few arguments, don't transform.  If extra
1827    // arguments were passed, we silently drop them.  If any of the types
1828    // mismatch, we don't transform.
1829    unsigned ArgNo = 0;
1830    bool DontTransform = false;
1831    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1832         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1833      if (CS.arg_size() == ArgNo ||
1834          CS.getArgument(ArgNo)->getType() != AI->getType()) {
1835        DontTransform = true;
1836        break;
1837      }
1838
1839      // Add any parameter attributes.
1840      llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1);
1841      if (PAttrs.hasAttributes())
1842        AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1843    }
1844    if (DontTransform)
1845      continue;
1846
1847    llvm::Attributes FnAttrs =  AttrList.getFnAttributes();
1848    if (FnAttrs.hasAttributes())
1849      AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1850
1851    // Okay, we can transform this.  Create the new call instruction and copy
1852    // over the required information.
1853    ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1854    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1855    ArgList.clear();
1856    if (!NewCall->getType()->isVoidTy())
1857      NewCall->takeName(CI);
1858    NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec));
1859    NewCall->setCallingConv(CI->getCallingConv());
1860
1861    // Finally, remove the old call, replacing any uses with the new one.
1862    if (!CI->use_empty())
1863      CI->replaceAllUsesWith(NewCall);
1864
1865    // Copy debug location attached to CI.
1866    if (!CI->getDebugLoc().isUnknown())
1867      NewCall->setDebugLoc(CI->getDebugLoc());
1868    CI->eraseFromParent();
1869  }
1870}
1871
1872void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1873  TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1874  // If we have a definition, this might be a deferred decl. If the
1875  // instantiation is explicit, make sure we emit it at the end.
1876  if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1877    GetAddrOfGlobalVar(VD);
1878}
1879
1880void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1881  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1882
1883  // Compute the function info and LLVM type.
1884  const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1885  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
1886
1887  // Get or create the prototype for the function.
1888  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1889
1890  // Strip off a bitcast if we got one back.
1891  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1892    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1893    Entry = CE->getOperand(0);
1894  }
1895
1896
1897  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1898    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1899
1900    // If the types mismatch then we have to rewrite the definition.
1901    assert(OldFn->isDeclaration() &&
1902           "Shouldn't replace non-declaration");
1903
1904    // F is the Function* for the one with the wrong type, we must make a new
1905    // Function* and update everything that used F (a declaration) with the new
1906    // Function* (which will be a definition).
1907    //
1908    // This happens if there is a prototype for a function
1909    // (e.g. "int f()") and then a definition of a different type
1910    // (e.g. "int f(int x)").  Move the old function aside so that it
1911    // doesn't interfere with GetAddrOfFunction.
1912    OldFn->setName(StringRef());
1913    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1914
1915    // If this is an implementation of a function without a prototype, try to
1916    // replace any existing uses of the function (which may be calls) with uses
1917    // of the new function
1918    if (D->getType()->isFunctionNoProtoType()) {
1919      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1920      OldFn->removeDeadConstantUsers();
1921    }
1922
1923    // Replace uses of F with the Function we will endow with a body.
1924    if (!Entry->use_empty()) {
1925      llvm::Constant *NewPtrForOldDecl =
1926        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1927      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1928    }
1929
1930    // Ok, delete the old function now, which is dead.
1931    OldFn->eraseFromParent();
1932
1933    Entry = NewFn;
1934  }
1935
1936  // We need to set linkage and visibility on the function before
1937  // generating code for it because various parts of IR generation
1938  // want to propagate this information down (e.g. to local static
1939  // declarations).
1940  llvm::Function *Fn = cast<llvm::Function>(Entry);
1941  setFunctionLinkage(D, Fn);
1942
1943  // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1944  setGlobalVisibility(Fn, D);
1945
1946  CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1947
1948  SetFunctionDefinitionAttributes(D, Fn);
1949  SetLLVMFunctionAttributesForDefinition(D, Fn);
1950
1951  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1952    AddGlobalCtor(Fn, CA->getPriority());
1953  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1954    AddGlobalDtor(Fn, DA->getPriority());
1955  if (D->hasAttr<AnnotateAttr>())
1956    AddGlobalAnnotations(D, Fn);
1957}
1958
1959void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1960  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1961  const AliasAttr *AA = D->getAttr<AliasAttr>();
1962  assert(AA && "Not an alias?");
1963
1964  StringRef MangledName = getMangledName(GD);
1965
1966  // If there is a definition in the module, then it wins over the alias.
1967  // This is dubious, but allow it to be safe.  Just ignore the alias.
1968  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1969  if (Entry && !Entry->isDeclaration())
1970    return;
1971
1972  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1973
1974  // Create a reference to the named value.  This ensures that it is emitted
1975  // if a deferred decl.
1976  llvm::Constant *Aliasee;
1977  if (isa<llvm::FunctionType>(DeclTy))
1978    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
1979                                      /*ForVTable=*/false);
1980  else
1981    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1982                                    llvm::PointerType::getUnqual(DeclTy), 0);
1983
1984  // Create the new alias itself, but don't set a name yet.
1985  llvm::GlobalValue *GA =
1986    new llvm::GlobalAlias(Aliasee->getType(),
1987                          llvm::Function::ExternalLinkage,
1988                          "", Aliasee, &getModule());
1989
1990  if (Entry) {
1991    assert(Entry->isDeclaration());
1992
1993    // If there is a declaration in the module, then we had an extern followed
1994    // by the alias, as in:
1995    //   extern int test6();
1996    //   ...
1997    //   int test6() __attribute__((alias("test7")));
1998    //
1999    // Remove it and replace uses of it with the alias.
2000    GA->takeName(Entry);
2001
2002    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2003                                                          Entry->getType()));
2004    Entry->eraseFromParent();
2005  } else {
2006    GA->setName(MangledName);
2007  }
2008
2009  // Set attributes which are particular to an alias; this is a
2010  // specialization of the attributes which may be set on a global
2011  // variable/function.
2012  if (D->hasAttr<DLLExportAttr>()) {
2013    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2014      // The dllexport attribute is ignored for undefined symbols.
2015      if (FD->hasBody())
2016        GA->setLinkage(llvm::Function::DLLExportLinkage);
2017    } else {
2018      GA->setLinkage(llvm::Function::DLLExportLinkage);
2019    }
2020  } else if (D->hasAttr<WeakAttr>() ||
2021             D->hasAttr<WeakRefAttr>() ||
2022             D->isWeakImported()) {
2023    GA->setLinkage(llvm::Function::WeakAnyLinkage);
2024  }
2025
2026  SetCommonAttributes(D, GA);
2027}
2028
2029llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2030                                            ArrayRef<llvm::Type*> Tys) {
2031  return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2032                                         Tys);
2033}
2034
2035static llvm::StringMapEntry<llvm::Constant*> &
2036GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2037                         const StringLiteral *Literal,
2038                         bool TargetIsLSB,
2039                         bool &IsUTF16,
2040                         unsigned &StringLength) {
2041  StringRef String = Literal->getString();
2042  unsigned NumBytes = String.size();
2043
2044  // Check for simple case.
2045  if (!Literal->containsNonAsciiOrNull()) {
2046    StringLength = NumBytes;
2047    return Map.GetOrCreateValue(String);
2048  }
2049
2050  // Otherwise, convert the UTF8 literals into a string of shorts.
2051  IsUTF16 = true;
2052
2053  SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2054  const UTF8 *FromPtr = (const UTF8 *)String.data();
2055  UTF16 *ToPtr = &ToBuf[0];
2056
2057  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2058                           &ToPtr, ToPtr + NumBytes,
2059                           strictConversion);
2060
2061  // ConvertUTF8toUTF16 returns the length in ToPtr.
2062  StringLength = ToPtr - &ToBuf[0];
2063
2064  // Add an explicit null.
2065  *ToPtr = 0;
2066  return Map.
2067    GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2068                               (StringLength + 1) * 2));
2069}
2070
2071static llvm::StringMapEntry<llvm::Constant*> &
2072GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2073                       const StringLiteral *Literal,
2074                       unsigned &StringLength) {
2075  StringRef String = Literal->getString();
2076  StringLength = String.size();
2077  return Map.GetOrCreateValue(String);
2078}
2079
2080llvm::Constant *
2081CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2082  unsigned StringLength = 0;
2083  bool isUTF16 = false;
2084  llvm::StringMapEntry<llvm::Constant*> &Entry =
2085    GetConstantCFStringEntry(CFConstantStringMap, Literal,
2086                             getDataLayout().isLittleEndian(),
2087                             isUTF16, StringLength);
2088
2089  if (llvm::Constant *C = Entry.getValue())
2090    return C;
2091
2092  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2093  llvm::Constant *Zeros[] = { Zero, Zero };
2094
2095  // If we don't already have it, get __CFConstantStringClassReference.
2096  if (!CFConstantStringClassRef) {
2097    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2098    Ty = llvm::ArrayType::get(Ty, 0);
2099    llvm::Constant *GV = CreateRuntimeVariable(Ty,
2100                                           "__CFConstantStringClassReference");
2101    // Decay array -> ptr
2102    CFConstantStringClassRef =
2103      llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2104  }
2105
2106  QualType CFTy = getContext().getCFConstantStringType();
2107
2108  llvm::StructType *STy =
2109    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2110
2111  llvm::Constant *Fields[4];
2112
2113  // Class pointer.
2114  Fields[0] = CFConstantStringClassRef;
2115
2116  // Flags.
2117  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2118  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2119    llvm::ConstantInt::get(Ty, 0x07C8);
2120
2121  // String pointer.
2122  llvm::Constant *C = 0;
2123  if (isUTF16) {
2124    ArrayRef<uint16_t> Arr =
2125      llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(),
2126                                   Entry.getKey().size() / 2);
2127    C = llvm::ConstantDataArray::get(VMContext, Arr);
2128  } else {
2129    C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2130  }
2131
2132  llvm::GlobalValue::LinkageTypes Linkage;
2133  if (isUTF16)
2134    // FIXME: why do utf strings get "_" labels instead of "L" labels?
2135    Linkage = llvm::GlobalValue::InternalLinkage;
2136  else
2137    // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2138    // when using private linkage. It is not clear if this is a bug in ld
2139    // or a reasonable new restriction.
2140    Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2141
2142  // Note: -fwritable-strings doesn't make the backing store strings of
2143  // CFStrings writable. (See <rdar://problem/10657500>)
2144  llvm::GlobalVariable *GV =
2145    new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2146                             Linkage, C, ".str");
2147  GV->setUnnamedAddr(true);
2148  if (isUTF16) {
2149    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2150    GV->setAlignment(Align.getQuantity());
2151  } else {
2152    CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2153    GV->setAlignment(Align.getQuantity());
2154  }
2155
2156  // String.
2157  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2158
2159  if (isUTF16)
2160    // Cast the UTF16 string to the correct type.
2161    Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2162
2163  // String length.
2164  Ty = getTypes().ConvertType(getContext().LongTy);
2165  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2166
2167  // The struct.
2168  C = llvm::ConstantStruct::get(STy, Fields);
2169  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2170                                llvm::GlobalVariable::PrivateLinkage, C,
2171                                "_unnamed_cfstring_");
2172  if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2173    GV->setSection(Sect);
2174  Entry.setValue(GV);
2175
2176  return GV;
2177}
2178
2179static RecordDecl *
2180CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2181                 DeclContext *DC, IdentifierInfo *Id) {
2182  SourceLocation Loc;
2183  if (Ctx.getLangOpts().CPlusPlus)
2184    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2185  else
2186    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2187}
2188
2189llvm::Constant *
2190CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2191  unsigned StringLength = 0;
2192  llvm::StringMapEntry<llvm::Constant*> &Entry =
2193    GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2194
2195  if (llvm::Constant *C = Entry.getValue())
2196    return C;
2197
2198  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2199  llvm::Constant *Zeros[] = { Zero, Zero };
2200
2201  // If we don't already have it, get _NSConstantStringClassReference.
2202  if (!ConstantStringClassRef) {
2203    std::string StringClass(getLangOpts().ObjCConstantStringClass);
2204    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2205    llvm::Constant *GV;
2206    if (LangOpts.ObjCRuntime.isNonFragile()) {
2207      std::string str =
2208        StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2209                            : "OBJC_CLASS_$_" + StringClass;
2210      GV = getObjCRuntime().GetClassGlobal(str);
2211      // Make sure the result is of the correct type.
2212      llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2213      ConstantStringClassRef =
2214        llvm::ConstantExpr::getBitCast(GV, PTy);
2215    } else {
2216      std::string str =
2217        StringClass.empty() ? "_NSConstantStringClassReference"
2218                            : "_" + StringClass + "ClassReference";
2219      llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2220      GV = CreateRuntimeVariable(PTy, str);
2221      // Decay array -> ptr
2222      ConstantStringClassRef =
2223        llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2224    }
2225  }
2226
2227  if (!NSConstantStringType) {
2228    // Construct the type for a constant NSString.
2229    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2230                                     Context.getTranslationUnitDecl(),
2231                                   &Context.Idents.get("__builtin_NSString"));
2232    D->startDefinition();
2233
2234    QualType FieldTypes[3];
2235
2236    // const int *isa;
2237    FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2238    // const char *str;
2239    FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2240    // unsigned int length;
2241    FieldTypes[2] = Context.UnsignedIntTy;
2242
2243    // Create fields
2244    for (unsigned i = 0; i < 3; ++i) {
2245      FieldDecl *Field = FieldDecl::Create(Context, D,
2246                                           SourceLocation(),
2247                                           SourceLocation(), 0,
2248                                           FieldTypes[i], /*TInfo=*/0,
2249                                           /*BitWidth=*/0,
2250                                           /*Mutable=*/false,
2251                                           ICIS_NoInit);
2252      Field->setAccess(AS_public);
2253      D->addDecl(Field);
2254    }
2255
2256    D->completeDefinition();
2257    QualType NSTy = Context.getTagDeclType(D);
2258    NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2259  }
2260
2261  llvm::Constant *Fields[3];
2262
2263  // Class pointer.
2264  Fields[0] = ConstantStringClassRef;
2265
2266  // String pointer.
2267  llvm::Constant *C =
2268    llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2269
2270  llvm::GlobalValue::LinkageTypes Linkage;
2271  bool isConstant;
2272  Linkage = llvm::GlobalValue::PrivateLinkage;
2273  isConstant = !LangOpts.WritableStrings;
2274
2275  llvm::GlobalVariable *GV =
2276  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2277                           ".str");
2278  GV->setUnnamedAddr(true);
2279  CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2280  GV->setAlignment(Align.getQuantity());
2281  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2282
2283  // String length.
2284  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2285  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2286
2287  // The struct.
2288  C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2289  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2290                                llvm::GlobalVariable::PrivateLinkage, C,
2291                                "_unnamed_nsstring_");
2292  // FIXME. Fix section.
2293  if (const char *Sect =
2294        LangOpts.ObjCRuntime.isNonFragile()
2295          ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2296          : getContext().getTargetInfo().getNSStringSection())
2297    GV->setSection(Sect);
2298  Entry.setValue(GV);
2299
2300  return GV;
2301}
2302
2303QualType CodeGenModule::getObjCFastEnumerationStateType() {
2304  if (ObjCFastEnumerationStateType.isNull()) {
2305    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2306                                     Context.getTranslationUnitDecl(),
2307                      &Context.Idents.get("__objcFastEnumerationState"));
2308    D->startDefinition();
2309
2310    QualType FieldTypes[] = {
2311      Context.UnsignedLongTy,
2312      Context.getPointerType(Context.getObjCIdType()),
2313      Context.getPointerType(Context.UnsignedLongTy),
2314      Context.getConstantArrayType(Context.UnsignedLongTy,
2315                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2316    };
2317
2318    for (size_t i = 0; i < 4; ++i) {
2319      FieldDecl *Field = FieldDecl::Create(Context,
2320                                           D,
2321                                           SourceLocation(),
2322                                           SourceLocation(), 0,
2323                                           FieldTypes[i], /*TInfo=*/0,
2324                                           /*BitWidth=*/0,
2325                                           /*Mutable=*/false,
2326                                           ICIS_NoInit);
2327      Field->setAccess(AS_public);
2328      D->addDecl(Field);
2329    }
2330
2331    D->completeDefinition();
2332    ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2333  }
2334
2335  return ObjCFastEnumerationStateType;
2336}
2337
2338llvm::Constant *
2339CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2340  assert(!E->getType()->isPointerType() && "Strings are always arrays");
2341
2342  // Don't emit it as the address of the string, emit the string data itself
2343  // as an inline array.
2344  if (E->getCharByteWidth() == 1) {
2345    SmallString<64> Str(E->getString());
2346
2347    // Resize the string to the right size, which is indicated by its type.
2348    const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2349    Str.resize(CAT->getSize().getZExtValue());
2350    return llvm::ConstantDataArray::getString(VMContext, Str, false);
2351  }
2352
2353  llvm::ArrayType *AType =
2354    cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2355  llvm::Type *ElemTy = AType->getElementType();
2356  unsigned NumElements = AType->getNumElements();
2357
2358  // Wide strings have either 2-byte or 4-byte elements.
2359  if (ElemTy->getPrimitiveSizeInBits() == 16) {
2360    SmallVector<uint16_t, 32> Elements;
2361    Elements.reserve(NumElements);
2362
2363    for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2364      Elements.push_back(E->getCodeUnit(i));
2365    Elements.resize(NumElements);
2366    return llvm::ConstantDataArray::get(VMContext, Elements);
2367  }
2368
2369  assert(ElemTy->getPrimitiveSizeInBits() == 32);
2370  SmallVector<uint32_t, 32> Elements;
2371  Elements.reserve(NumElements);
2372
2373  for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2374    Elements.push_back(E->getCodeUnit(i));
2375  Elements.resize(NumElements);
2376  return llvm::ConstantDataArray::get(VMContext, Elements);
2377}
2378
2379/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2380/// constant array for the given string literal.
2381llvm::Constant *
2382CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2383  CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2384  if (S->isAscii() || S->isUTF8()) {
2385    SmallString<64> Str(S->getString());
2386
2387    // Resize the string to the right size, which is indicated by its type.
2388    const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2389    Str.resize(CAT->getSize().getZExtValue());
2390    return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2391  }
2392
2393  // FIXME: the following does not memoize wide strings.
2394  llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2395  llvm::GlobalVariable *GV =
2396    new llvm::GlobalVariable(getModule(),C->getType(),
2397                             !LangOpts.WritableStrings,
2398                             llvm::GlobalValue::PrivateLinkage,
2399                             C,".str");
2400
2401  GV->setAlignment(Align.getQuantity());
2402  GV->setUnnamedAddr(true);
2403  return GV;
2404}
2405
2406/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2407/// array for the given ObjCEncodeExpr node.
2408llvm::Constant *
2409CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2410  std::string Str;
2411  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2412
2413  return GetAddrOfConstantCString(Str);
2414}
2415
2416
2417/// GenerateWritableString -- Creates storage for a string literal.
2418static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2419                                             bool constant,
2420                                             CodeGenModule &CGM,
2421                                             const char *GlobalName,
2422                                             unsigned Alignment) {
2423  // Create Constant for this string literal. Don't add a '\0'.
2424  llvm::Constant *C =
2425      llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2426
2427  // Create a global variable for this string
2428  llvm::GlobalVariable *GV =
2429    new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2430                             llvm::GlobalValue::PrivateLinkage,
2431                             C, GlobalName);
2432  GV->setAlignment(Alignment);
2433  GV->setUnnamedAddr(true);
2434  return GV;
2435}
2436
2437/// GetAddrOfConstantString - Returns a pointer to a character array
2438/// containing the literal. This contents are exactly that of the
2439/// given string, i.e. it will not be null terminated automatically;
2440/// see GetAddrOfConstantCString. Note that whether the result is
2441/// actually a pointer to an LLVM constant depends on
2442/// Feature.WriteableStrings.
2443///
2444/// The result has pointer to array type.
2445llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2446                                                       const char *GlobalName,
2447                                                       unsigned Alignment) {
2448  // Get the default prefix if a name wasn't specified.
2449  if (!GlobalName)
2450    GlobalName = ".str";
2451
2452  // Don't share any string literals if strings aren't constant.
2453  if (LangOpts.WritableStrings)
2454    return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2455
2456  llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2457    ConstantStringMap.GetOrCreateValue(Str);
2458
2459  if (llvm::GlobalVariable *GV = Entry.getValue()) {
2460    if (Alignment > GV->getAlignment()) {
2461      GV->setAlignment(Alignment);
2462    }
2463    return GV;
2464  }
2465
2466  // Create a global variable for this.
2467  llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2468                                                   Alignment);
2469  Entry.setValue(GV);
2470  return GV;
2471}
2472
2473/// GetAddrOfConstantCString - Returns a pointer to a character
2474/// array containing the literal and a terminating '\0'
2475/// character. The result has pointer to array type.
2476llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2477                                                        const char *GlobalName,
2478                                                        unsigned Alignment) {
2479  StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2480  return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2481}
2482
2483/// EmitObjCPropertyImplementations - Emit information for synthesized
2484/// properties for an implementation.
2485void CodeGenModule::EmitObjCPropertyImplementations(const
2486                                                    ObjCImplementationDecl *D) {
2487  for (ObjCImplementationDecl::propimpl_iterator
2488         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2489    ObjCPropertyImplDecl *PID = *i;
2490
2491    // Dynamic is just for type-checking.
2492    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2493      ObjCPropertyDecl *PD = PID->getPropertyDecl();
2494
2495      // Determine which methods need to be implemented, some may have
2496      // been overridden. Note that ::isPropertyAccessor is not the method
2497      // we want, that just indicates if the decl came from a
2498      // property. What we want to know is if the method is defined in
2499      // this implementation.
2500      if (!D->getInstanceMethod(PD->getGetterName()))
2501        CodeGenFunction(*this).GenerateObjCGetter(
2502                                 const_cast<ObjCImplementationDecl *>(D), PID);
2503      if (!PD->isReadOnly() &&
2504          !D->getInstanceMethod(PD->getSetterName()))
2505        CodeGenFunction(*this).GenerateObjCSetter(
2506                                 const_cast<ObjCImplementationDecl *>(D), PID);
2507    }
2508  }
2509}
2510
2511static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2512  const ObjCInterfaceDecl *iface = impl->getClassInterface();
2513  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2514       ivar; ivar = ivar->getNextIvar())
2515    if (ivar->getType().isDestructedType())
2516      return true;
2517
2518  return false;
2519}
2520
2521/// EmitObjCIvarInitializations - Emit information for ivar initialization
2522/// for an implementation.
2523void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2524  // We might need a .cxx_destruct even if we don't have any ivar initializers.
2525  if (needsDestructMethod(D)) {
2526    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2527    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2528    ObjCMethodDecl *DTORMethod =
2529      ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2530                             cxxSelector, getContext().VoidTy, 0, D,
2531                             /*isInstance=*/true, /*isVariadic=*/false,
2532                          /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2533                             /*isDefined=*/false, ObjCMethodDecl::Required);
2534    D->addInstanceMethod(DTORMethod);
2535    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2536    D->setHasCXXStructors(true);
2537  }
2538
2539  // If the implementation doesn't have any ivar initializers, we don't need
2540  // a .cxx_construct.
2541  if (D->getNumIvarInitializers() == 0)
2542    return;
2543
2544  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2545  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2546  // The constructor returns 'self'.
2547  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2548                                                D->getLocation(),
2549                                                D->getLocation(),
2550                                                cxxSelector,
2551                                                getContext().getObjCIdType(), 0,
2552                                                D, /*isInstance=*/true,
2553                                                /*isVariadic=*/false,
2554                                                /*isPropertyAccessor=*/true,
2555                                                /*isImplicitlyDeclared=*/true,
2556                                                /*isDefined=*/false,
2557                                                ObjCMethodDecl::Required);
2558  D->addInstanceMethod(CTORMethod);
2559  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2560  D->setHasCXXStructors(true);
2561}
2562
2563/// EmitNamespace - Emit all declarations in a namespace.
2564void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2565  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2566       I != E; ++I)
2567    EmitTopLevelDecl(*I);
2568}
2569
2570// EmitLinkageSpec - Emit all declarations in a linkage spec.
2571void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2572  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2573      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2574    ErrorUnsupported(LSD, "linkage spec");
2575    return;
2576  }
2577
2578  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2579       I != E; ++I)
2580    EmitTopLevelDecl(*I);
2581}
2582
2583/// EmitTopLevelDecl - Emit code for a single top level declaration.
2584void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2585  // If an error has occurred, stop code generation, but continue
2586  // parsing and semantic analysis (to ensure all warnings and errors
2587  // are emitted).
2588  if (Diags.hasErrorOccurred())
2589    return;
2590
2591  // Ignore dependent declarations.
2592  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2593    return;
2594
2595  switch (D->getKind()) {
2596  case Decl::CXXConversion:
2597  case Decl::CXXMethod:
2598  case Decl::Function:
2599    // Skip function templates
2600    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2601        cast<FunctionDecl>(D)->isLateTemplateParsed())
2602      return;
2603
2604    EmitGlobal(cast<FunctionDecl>(D));
2605    break;
2606
2607  case Decl::Var:
2608    EmitGlobal(cast<VarDecl>(D));
2609    break;
2610
2611  // Indirect fields from global anonymous structs and unions can be
2612  // ignored; only the actual variable requires IR gen support.
2613  case Decl::IndirectField:
2614    break;
2615
2616  // C++ Decls
2617  case Decl::Namespace:
2618    EmitNamespace(cast<NamespaceDecl>(D));
2619    break;
2620    // No code generation needed.
2621  case Decl::UsingShadow:
2622  case Decl::Using:
2623  case Decl::UsingDirective:
2624  case Decl::ClassTemplate:
2625  case Decl::FunctionTemplate:
2626  case Decl::TypeAliasTemplate:
2627  case Decl::NamespaceAlias:
2628  case Decl::Block:
2629  case Decl::Import:
2630    break;
2631  case Decl::CXXConstructor:
2632    // Skip function templates
2633    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2634        cast<FunctionDecl>(D)->isLateTemplateParsed())
2635      return;
2636
2637    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2638    break;
2639  case Decl::CXXDestructor:
2640    if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2641      return;
2642    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2643    break;
2644
2645  case Decl::StaticAssert:
2646    // Nothing to do.
2647    break;
2648
2649  // Objective-C Decls
2650
2651  // Forward declarations, no (immediate) code generation.
2652  case Decl::ObjCInterface:
2653  case Decl::ObjCCategory:
2654    break;
2655
2656  case Decl::ObjCProtocol: {
2657    ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2658    if (Proto->isThisDeclarationADefinition())
2659      ObjCRuntime->GenerateProtocol(Proto);
2660    break;
2661  }
2662
2663  case Decl::ObjCCategoryImpl:
2664    // Categories have properties but don't support synthesize so we
2665    // can ignore them here.
2666    ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2667    break;
2668
2669  case Decl::ObjCImplementation: {
2670    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2671    EmitObjCPropertyImplementations(OMD);
2672    EmitObjCIvarInitializations(OMD);
2673    ObjCRuntime->GenerateClass(OMD);
2674    // Emit global variable debug information.
2675    if (CGDebugInfo *DI = getModuleDebugInfo())
2676      DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()),
2677				   OMD->getLocation());
2678
2679    break;
2680  }
2681  case Decl::ObjCMethod: {
2682    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2683    // If this is not a prototype, emit the body.
2684    if (OMD->getBody())
2685      CodeGenFunction(*this).GenerateObjCMethod(OMD);
2686    break;
2687  }
2688  case Decl::ObjCCompatibleAlias:
2689    ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2690    break;
2691
2692  case Decl::LinkageSpec:
2693    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2694    break;
2695
2696  case Decl::FileScopeAsm: {
2697    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2698    StringRef AsmString = AD->getAsmString()->getString();
2699
2700    const std::string &S = getModule().getModuleInlineAsm();
2701    if (S.empty())
2702      getModule().setModuleInlineAsm(AsmString);
2703    else if (S.end()[-1] == '\n')
2704      getModule().setModuleInlineAsm(S + AsmString.str());
2705    else
2706      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2707    break;
2708  }
2709
2710  default:
2711    // Make sure we handled everything we should, every other kind is a
2712    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2713    // function. Need to recode Decl::Kind to do that easily.
2714    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2715  }
2716}
2717
2718/// Turns the given pointer into a constant.
2719static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2720                                          const void *Ptr) {
2721  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2722  llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2723  return llvm::ConstantInt::get(i64, PtrInt);
2724}
2725
2726static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2727                                   llvm::NamedMDNode *&GlobalMetadata,
2728                                   GlobalDecl D,
2729                                   llvm::GlobalValue *Addr) {
2730  if (!GlobalMetadata)
2731    GlobalMetadata =
2732      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2733
2734  // TODO: should we report variant information for ctors/dtors?
2735  llvm::Value *Ops[] = {
2736    Addr,
2737    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2738  };
2739  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2740}
2741
2742/// Emits metadata nodes associating all the global values in the
2743/// current module with the Decls they came from.  This is useful for
2744/// projects using IR gen as a subroutine.
2745///
2746/// Since there's currently no way to associate an MDNode directly
2747/// with an llvm::GlobalValue, we create a global named metadata
2748/// with the name 'clang.global.decl.ptrs'.
2749void CodeGenModule::EmitDeclMetadata() {
2750  llvm::NamedMDNode *GlobalMetadata = 0;
2751
2752  // StaticLocalDeclMap
2753  for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2754         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2755       I != E; ++I) {
2756    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2757    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2758  }
2759}
2760
2761/// Emits metadata nodes for all the local variables in the current
2762/// function.
2763void CodeGenFunction::EmitDeclMetadata() {
2764  if (LocalDeclMap.empty()) return;
2765
2766  llvm::LLVMContext &Context = getLLVMContext();
2767
2768  // Find the unique metadata ID for this name.
2769  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2770
2771  llvm::NamedMDNode *GlobalMetadata = 0;
2772
2773  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2774         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2775    const Decl *D = I->first;
2776    llvm::Value *Addr = I->second;
2777
2778    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2779      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2780      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2781    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2782      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2783      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2784    }
2785  }
2786}
2787
2788void CodeGenModule::EmitCoverageFile() {
2789  if (!getCodeGenOpts().CoverageFile.empty()) {
2790    if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2791      llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2792      llvm::LLVMContext &Ctx = TheModule.getContext();
2793      llvm::MDString *CoverageFile =
2794          llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2795      for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2796        llvm::MDNode *CU = CUNode->getOperand(i);
2797        llvm::Value *node[] = { CoverageFile, CU };
2798        llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2799        GCov->addOperand(N);
2800      }
2801    }
2802  }
2803}
2804
2805llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
2806                                                     QualType GuidType) {
2807  // Sema has checked that all uuid strings are of the form
2808  // "12345678-1234-1234-1234-1234567890ab".
2809  assert(Uuid.size() == 36);
2810  const char *Uuidstr = Uuid.data();
2811  for (int i = 0; i < 36; ++i) {
2812    if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
2813    else                                         assert(isxdigit(Uuidstr[i]));
2814  }
2815
2816  llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
2817  llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
2818  llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
2819  int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
2820
2821  APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
2822  InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
2823  InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
2824  InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
2825  APValue& Arr = InitStruct.getStructField(3);
2826  Arr = APValue(APValue::UninitArray(), 8, 8);
2827  for (int t = 0; t < 8; ++t)
2828    Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
2829          llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
2830
2831  return EmitConstantValue(InitStruct, GuidType);
2832}
2833