CodeGenModule.cpp revision 555b4bb2749aea2ec8e2adc351a71ec1cb9bdc33
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CGCall.h"
18#include "CGObjCRuntime.h"
19#include "Mangle.h"
20#include "clang/Frontend/CompileOptions.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/SourceManager.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/Basic/ConvertUTF.h"
29#include "llvm/CallingConv.h"
30#include "llvm/Module.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Target/TargetData.h"
33using namespace clang;
34using namespace CodeGen;
35
36
37CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                             llvm::Module &M, const llvm::TargetData &TD,
39                             Diagnostic &diags)
40  : BlockModule(C, M, TD, Types, *this), Context(C),
41    Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42    TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43    MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
44    VMContext(M.getContext()) {
45
46  if (!Features.ObjC1)
47    Runtime = 0;
48  else if (!Features.NeXTRuntime)
49    Runtime = CreateGNUObjCRuntime(*this);
50  else if (Features.ObjCNonFragileABI)
51    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
52  else
53    Runtime = CreateMacObjCRuntime(*this);
54
55  // If debug info generation is enabled, create the CGDebugInfo object.
56  DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
57}
58
59CodeGenModule::~CodeGenModule() {
60  delete Runtime;
61  delete DebugInfo;
62}
63
64void CodeGenModule::Release() {
65  // We need to call this first because it can add deferred declarations.
66  EmitCXXGlobalInitFunc();
67
68  EmitDeferred();
69  if (Runtime)
70    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
71      AddGlobalCtor(ObjCInitFunction);
72  EmitCtorList(GlobalCtors, "llvm.global_ctors");
73  EmitCtorList(GlobalDtors, "llvm.global_dtors");
74  EmitAnnotations();
75  EmitLLVMUsed();
76}
77
78/// ErrorUnsupported - Print out an error that codegen doesn't support the
79/// specified stmt yet.
80void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
81                                     bool OmitOnError) {
82  if (OmitOnError && getDiags().hasErrorOccurred())
83    return;
84  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
85                                               "cannot compile this %0 yet");
86  std::string Msg = Type;
87  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
88    << Msg << S->getSourceRange();
89}
90
91/// ErrorUnsupported - Print out an error that codegen doesn't support the
92/// specified decl yet.
93void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
94                                     bool OmitOnError) {
95  if (OmitOnError && getDiags().hasErrorOccurred())
96    return;
97  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
98                                               "cannot compile this %0 yet");
99  std::string Msg = Type;
100  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
101}
102
103LangOptions::VisibilityMode
104CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
105  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
106    if (VD->getStorageClass() == VarDecl::PrivateExtern)
107      return LangOptions::Hidden;
108
109  if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
110    switch (attr->getVisibility()) {
111    default: assert(0 && "Unknown visibility!");
112    case VisibilityAttr::DefaultVisibility:
113      return LangOptions::Default;
114    case VisibilityAttr::HiddenVisibility:
115      return LangOptions::Hidden;
116    case VisibilityAttr::ProtectedVisibility:
117      return LangOptions::Protected;
118    }
119  }
120
121  return getLangOptions().getVisibilityMode();
122}
123
124void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
125                                        const Decl *D) const {
126  // Internal definitions always have default visibility.
127  if (GV->hasLocalLinkage()) {
128    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
129    return;
130  }
131
132  switch (getDeclVisibilityMode(D)) {
133  default: assert(0 && "Unknown visibility!");
134  case LangOptions::Default:
135    return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
136  case LangOptions::Hidden:
137    return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
138  case LangOptions::Protected:
139    return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
140  }
141}
142
143const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
144  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
145
146  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
147    return getMangledCXXCtorName(D, GD.getCtorType());
148  if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
149    return getMangledCXXDtorName(D, GD.getDtorType());
150
151  return getMangledName(ND);
152}
153
154/// \brief Retrieves the mangled name for the given declaration.
155///
156/// If the given declaration requires a mangled name, returns an
157/// const char* containing the mangled name.  Otherwise, returns
158/// the unmangled name.
159///
160const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
161  // In C, functions with no attributes never need to be mangled. Fastpath them.
162  if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
163    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
164    return ND->getNameAsCString();
165  }
166
167  llvm::SmallString<256> Name;
168  llvm::raw_svector_ostream Out(Name);
169  if (!mangleName(ND, Context, Out)) {
170    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
171    return ND->getNameAsCString();
172  }
173
174  Name += '\0';
175  return UniqueMangledName(Name.begin(), Name.end());
176}
177
178const char *CodeGenModule::UniqueMangledName(const char *NameStart,
179                                             const char *NameEnd) {
180  assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
181
182  return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
183}
184
185/// AddGlobalCtor - Add a function to the list that will be called before
186/// main() runs.
187void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
188  // FIXME: Type coercion of void()* types.
189  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
190}
191
192/// AddGlobalDtor - Add a function to the list that will be called
193/// when the module is unloaded.
194void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
195  // FIXME: Type coercion of void()* types.
196  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
197}
198
199void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
200  // Ctor function type is void()*.
201  llvm::FunctionType* CtorFTy =
202    llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
203                            std::vector<const llvm::Type*>(),
204                            false);
205  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
206
207  // Get the type of a ctor entry, { i32, void ()* }.
208  llvm::StructType* CtorStructTy =
209    llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
210                          llvm::PointerType::getUnqual(CtorFTy), NULL);
211
212  // Construct the constructor and destructor arrays.
213  std::vector<llvm::Constant*> Ctors;
214  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
215    std::vector<llvm::Constant*> S;
216    S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
217                I->second, false));
218    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
219    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
220  }
221
222  if (!Ctors.empty()) {
223    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
224    new llvm::GlobalVariable(TheModule, AT, false,
225                             llvm::GlobalValue::AppendingLinkage,
226                             llvm::ConstantArray::get(AT, Ctors),
227                             GlobalName);
228  }
229}
230
231void CodeGenModule::EmitAnnotations() {
232  if (Annotations.empty())
233    return;
234
235  // Create a new global variable for the ConstantStruct in the Module.
236  llvm::Constant *Array =
237  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
238                                                Annotations.size()),
239                           Annotations);
240  llvm::GlobalValue *gv =
241  new llvm::GlobalVariable(TheModule, Array->getType(), false,
242                           llvm::GlobalValue::AppendingLinkage, Array,
243                           "llvm.global.annotations");
244  gv->setSection("llvm.metadata");
245}
246
247static CodeGenModule::GVALinkage
248GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
249                      const LangOptions &Features) {
250  // The kind of external linkage this function will have, if it is not
251  // inline or static.
252  CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
253  if (Context.getLangOptions().CPlusPlus &&
254      FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
255    External = CodeGenModule::GVA_TemplateInstantiation;
256
257  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
258    // C++ member functions defined inside the class are always inline.
259    if (MD->isInline() || !MD->isOutOfLine())
260      return CodeGenModule::GVA_CXXInline;
261
262    return External;
263  }
264
265  // "static" functions get internal linkage.
266  if (FD->getStorageClass() == FunctionDecl::Static)
267    return CodeGenModule::GVA_Internal;
268
269  if (!FD->isInline())
270    return External;
271
272  // If the inline function explicitly has the GNU inline attribute on it, or if
273  // this is C89 mode, we use to GNU semantics.
274  if (!Features.C99 && !Features.CPlusPlus) {
275    // extern inline in GNU mode is like C99 inline.
276    if (FD->getStorageClass() == FunctionDecl::Extern)
277      return CodeGenModule::GVA_C99Inline;
278    // Normal inline is a strong symbol.
279    return CodeGenModule::GVA_StrongExternal;
280  } else if (FD->hasActiveGNUInlineAttribute(Context)) {
281    // GCC in C99 mode seems to use a different decision-making
282    // process for extern inline, which factors in previous
283    // declarations.
284    if (FD->isExternGNUInline(Context))
285      return CodeGenModule::GVA_C99Inline;
286    // Normal inline is a strong symbol.
287    return External;
288  }
289
290  // The definition of inline changes based on the language.  Note that we
291  // have already handled "static inline" above, with the GVA_Internal case.
292  if (Features.CPlusPlus)  // inline and extern inline.
293    return CodeGenModule::GVA_CXXInline;
294
295  assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
296  if (FD->isC99InlineDefinition())
297    return CodeGenModule::GVA_C99Inline;
298
299  return CodeGenModule::GVA_StrongExternal;
300}
301
302/// SetFunctionDefinitionAttributes - Set attributes for a global.
303///
304/// FIXME: This is currently only done for aliases and functions, but not for
305/// variables (these details are set in EmitGlobalVarDefinition for variables).
306void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
307                                                    llvm::GlobalValue *GV) {
308  GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
309
310  if (Linkage == GVA_Internal) {
311    GV->setLinkage(llvm::Function::InternalLinkage);
312  } else if (D->hasAttr<DLLExportAttr>()) {
313    GV->setLinkage(llvm::Function::DLLExportLinkage);
314  } else if (D->hasAttr<WeakAttr>()) {
315    GV->setLinkage(llvm::Function::WeakAnyLinkage);
316  } else if (Linkage == GVA_C99Inline) {
317    // In C99 mode, 'inline' functions are guaranteed to have a strong
318    // definition somewhere else, so we can use available_externally linkage.
319    GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
320  } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
321    // In C++, the compiler has to emit a definition in every translation unit
322    // that references the function.  We should use linkonce_odr because
323    // a) if all references in this translation unit are optimized away, we
324    // don't need to codegen it.  b) if the function persists, it needs to be
325    // merged with other definitions. c) C++ has the ODR, so we know the
326    // definition is dependable.
327    GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
328  } else {
329    assert(Linkage == GVA_StrongExternal);
330    // Otherwise, we have strong external linkage.
331    GV->setLinkage(llvm::Function::ExternalLinkage);
332  }
333
334  SetCommonAttributes(D, GV);
335}
336
337void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
338                                              const CGFunctionInfo &Info,
339                                              llvm::Function *F) {
340  AttributeListType AttributeList;
341  ConstructAttributeList(Info, D, AttributeList);
342
343  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
344                                        AttributeList.size()));
345
346  // Set the appropriate calling convention for the Function.
347  if (D->hasAttr<FastCallAttr>())
348    F->setCallingConv(llvm::CallingConv::X86_FastCall);
349
350  if (D->hasAttr<StdCallAttr>())
351    F->setCallingConv(llvm::CallingConv::X86_StdCall);
352}
353
354void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
355                                                           llvm::Function *F) {
356  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
357    F->addFnAttr(llvm::Attribute::NoUnwind);
358
359  if (D->hasAttr<AlwaysInlineAttr>())
360    F->addFnAttr(llvm::Attribute::AlwaysInline);
361
362  if (D->hasAttr<NoInlineAttr>())
363    F->addFnAttr(llvm::Attribute::NoInline);
364}
365
366void CodeGenModule::SetCommonAttributes(const Decl *D,
367                                        llvm::GlobalValue *GV) {
368  setGlobalVisibility(GV, D);
369
370  if (D->hasAttr<UsedAttr>())
371    AddUsedGlobal(GV);
372
373  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
374    GV->setSection(SA->getName());
375}
376
377void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
378                                                  llvm::Function *F,
379                                                  const CGFunctionInfo &FI) {
380  SetLLVMFunctionAttributes(D, FI, F);
381  SetLLVMFunctionAttributesForDefinition(D, F);
382
383  F->setLinkage(llvm::Function::InternalLinkage);
384
385  SetCommonAttributes(D, F);
386}
387
388void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
389                                          llvm::Function *F,
390                                          bool IsIncompleteFunction) {
391  if (!IsIncompleteFunction)
392    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
393
394  // Only a few attributes are set on declarations; these may later be
395  // overridden by a definition.
396
397  if (FD->hasAttr<DLLImportAttr>()) {
398    F->setLinkage(llvm::Function::DLLImportLinkage);
399  } else if (FD->hasAttr<WeakAttr>() ||
400             FD->hasAttr<WeakImportAttr>()) {
401    // "extern_weak" is overloaded in LLVM; we probably should have
402    // separate linkage types for this.
403    F->setLinkage(llvm::Function::ExternalWeakLinkage);
404  } else {
405    F->setLinkage(llvm::Function::ExternalLinkage);
406  }
407
408  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
409    F->setSection(SA->getName());
410}
411
412void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
413  assert(!GV->isDeclaration() &&
414         "Only globals with definition can force usage.");
415  LLVMUsed.push_back(GV);
416}
417
418void CodeGenModule::EmitLLVMUsed() {
419  // Don't create llvm.used if there is no need.
420  if (LLVMUsed.empty())
421    return;
422
423  llvm::Type *i8PTy =
424      llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
425
426  // Convert LLVMUsed to what ConstantArray needs.
427  std::vector<llvm::Constant*> UsedArray;
428  UsedArray.resize(LLVMUsed.size());
429  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
430    UsedArray[i] =
431     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
432                                      i8PTy);
433  }
434
435  if (UsedArray.empty())
436    return;
437  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
438
439  llvm::GlobalVariable *GV =
440    new llvm::GlobalVariable(getModule(), ATy, false,
441                             llvm::GlobalValue::AppendingLinkage,
442                             llvm::ConstantArray::get(ATy, UsedArray),
443                             "llvm.used");
444
445  GV->setSection("llvm.metadata");
446}
447
448void CodeGenModule::EmitDeferred() {
449  // Emit code for any potentially referenced deferred decls.  Since a
450  // previously unused static decl may become used during the generation of code
451  // for a static function, iterate until no  changes are made.
452  while (!DeferredDeclsToEmit.empty()) {
453    GlobalDecl D = DeferredDeclsToEmit.back();
454    DeferredDeclsToEmit.pop_back();
455
456    // The mangled name for the decl must have been emitted in GlobalDeclMap.
457    // Look it up to see if it was defined with a stronger definition (e.g. an
458    // extern inline function with a strong function redefinition).  If so,
459    // just ignore the deferred decl.
460    llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
461    assert(CGRef && "Deferred decl wasn't referenced?");
462
463    if (!CGRef->isDeclaration())
464      continue;
465
466    // Otherwise, emit the definition and move on to the next one.
467    EmitGlobalDefinition(D);
468  }
469}
470
471/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
472/// annotation information for a given GlobalValue.  The annotation struct is
473/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
474/// GlobalValue being annotated.  The second field is the constant string
475/// created from the AnnotateAttr's annotation.  The third field is a constant
476/// string containing the name of the translation unit.  The fourth field is
477/// the line number in the file of the annotated value declaration.
478///
479/// FIXME: this does not unique the annotation string constants, as llvm-gcc
480///        appears to.
481///
482llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
483                                                const AnnotateAttr *AA,
484                                                unsigned LineNo) {
485  llvm::Module *M = &getModule();
486
487  // get [N x i8] constants for the annotation string, and the filename string
488  // which are the 2nd and 3rd elements of the global annotation structure.
489  const llvm::Type *SBP =
490      llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(VMContext));
491  llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
492                                                  AA->getAnnotation(), true);
493  llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
494                                                  M->getModuleIdentifier(),
495                                                  true);
496
497  // Get the two global values corresponding to the ConstantArrays we just
498  // created to hold the bytes of the strings.
499  llvm::GlobalValue *annoGV =
500    new llvm::GlobalVariable(*M, anno->getType(), false,
501                             llvm::GlobalValue::PrivateLinkage, anno,
502                             GV->getName());
503  // translation unit name string, emitted into the llvm.metadata section.
504  llvm::GlobalValue *unitGV =
505    new llvm::GlobalVariable(*M, unit->getType(), false,
506                             llvm::GlobalValue::PrivateLinkage, unit,
507                             ".str");
508
509  // Create the ConstantStruct for the global annotation.
510  llvm::Constant *Fields[4] = {
511    llvm::ConstantExpr::getBitCast(GV, SBP),
512    llvm::ConstantExpr::getBitCast(annoGV, SBP),
513    llvm::ConstantExpr::getBitCast(unitGV, SBP),
514    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
515  };
516  return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
517}
518
519bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
520  // Never defer when EmitAllDecls is specified or the decl has
521  // attribute used.
522  if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
523    return false;
524
525  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
526    // Constructors and destructors should never be deferred.
527    if (FD->hasAttr<ConstructorAttr>() ||
528        FD->hasAttr<DestructorAttr>())
529      return false;
530
531    GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
532
533    // static, static inline, always_inline, and extern inline functions can
534    // always be deferred.  Normal inline functions can be deferred in C99/C++.
535    if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
536        Linkage == GVA_CXXInline)
537      return true;
538    return false;
539  }
540
541  const VarDecl *VD = cast<VarDecl>(Global);
542  assert(VD->isFileVarDecl() && "Invalid decl");
543
544  return VD->getStorageClass() == VarDecl::Static;
545}
546
547void CodeGenModule::EmitGlobal(GlobalDecl GD) {
548  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
549
550  // If this is an alias definition (which otherwise looks like a declaration)
551  // emit it now.
552  if (Global->hasAttr<AliasAttr>())
553    return EmitAliasDefinition(Global);
554
555  // Ignore declarations, they will be emitted on their first use.
556  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
557    // Forward declarations are emitted lazily on first use.
558    if (!FD->isThisDeclarationADefinition())
559      return;
560  } else {
561    const VarDecl *VD = cast<VarDecl>(Global);
562    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
563
564    // In C++, if this is marked "extern", defer code generation.
565    if (getLangOptions().CPlusPlus && !VD->getInit() &&
566        (VD->getStorageClass() == VarDecl::Extern ||
567         VD->isExternC(getContext())))
568      return;
569
570    // In C, if this isn't a definition, defer code generation.
571    if (!getLangOptions().CPlusPlus && !VD->getInit())
572      return;
573  }
574
575  // Defer code generation when possible if this is a static definition, inline
576  // function etc.  These we only want to emit if they are used.
577  if (MayDeferGeneration(Global)) {
578    // If the value has already been used, add it directly to the
579    // DeferredDeclsToEmit list.
580    const char *MangledName = getMangledName(GD);
581    if (GlobalDeclMap.count(MangledName))
582      DeferredDeclsToEmit.push_back(GD);
583    else {
584      // Otherwise, remember that we saw a deferred decl with this name.  The
585      // first use of the mangled name will cause it to move into
586      // DeferredDeclsToEmit.
587      DeferredDecls[MangledName] = GD;
588    }
589    return;
590  }
591
592  // Otherwise emit the definition.
593  EmitGlobalDefinition(GD);
594}
595
596void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
597  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
598
599  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
600    EmitCXXConstructor(CD, GD.getCtorType());
601  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
602    EmitCXXDestructor(DD, GD.getDtorType());
603  else if (isa<FunctionDecl>(D))
604    EmitGlobalFunctionDefinition(GD);
605  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
606    EmitGlobalVarDefinition(VD);
607  else {
608    assert(0 && "Invalid argument to EmitGlobalDefinition()");
609  }
610}
611
612/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
613/// module, create and return an llvm Function with the specified type. If there
614/// is something in the module with the specified name, return it potentially
615/// bitcasted to the right type.
616///
617/// If D is non-null, it specifies a decl that correspond to this.  This is used
618/// to set the attributes on the function when it is first created.
619llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
620                                                       const llvm::Type *Ty,
621                                                       GlobalDecl D) {
622  // Lookup the entry, lazily creating it if necessary.
623  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
624  if (Entry) {
625    if (Entry->getType()->getElementType() == Ty)
626      return Entry;
627
628    // Make sure the result is of the correct type.
629    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
630    return llvm::ConstantExpr::getBitCast(Entry, PTy);
631  }
632
633  // This is the first use or definition of a mangled name.  If there is a
634  // deferred decl with this name, remember that we need to emit it at the end
635  // of the file.
636  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
637    DeferredDecls.find(MangledName);
638  if (DDI != DeferredDecls.end()) {
639    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
640    // list, and remove it from DeferredDecls (since we don't need it anymore).
641    DeferredDeclsToEmit.push_back(DDI->second);
642    DeferredDecls.erase(DDI);
643  } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
644    // If this the first reference to a C++ inline function in a class, queue up
645    // the deferred function body for emission.  These are not seen as
646    // top-level declarations.
647    if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
648      DeferredDeclsToEmit.push_back(D);
649    // A called constructor which has no definition or declaration need be
650    // synthesized.
651    else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
652      const CXXRecordDecl *ClassDecl =
653        cast<CXXRecordDecl>(CD->getDeclContext());
654      if (CD->isCopyConstructor(getContext()))
655        DeferredCopyConstructorToEmit(D);
656      else if (!ClassDecl->hasUserDeclaredConstructor())
657        DeferredDeclsToEmit.push_back(D);
658    }
659    else if (isa<CXXDestructorDecl>(FD))
660       DeferredDestructorToEmit(D);
661    else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
662           if (MD->isCopyAssignment())
663             DeferredCopyAssignmentToEmit(D);
664  }
665
666  // This function doesn't have a complete type (for example, the return
667  // type is an incomplete struct). Use a fake type instead, and make
668  // sure not to try to set attributes.
669  bool IsIncompleteFunction = false;
670  if (!isa<llvm::FunctionType>(Ty)) {
671    Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
672                                 std::vector<const llvm::Type*>(), false);
673    IsIncompleteFunction = true;
674  }
675  llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
676                                             llvm::Function::ExternalLinkage,
677                                             "", &getModule());
678  F->setName(MangledName);
679  if (D.getDecl())
680    SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
681                          IsIncompleteFunction);
682  Entry = F;
683  return F;
684}
685
686/// Defer definition of copy constructor(s) which need be implicitly defined.
687void CodeGenModule::DeferredCopyConstructorToEmit(GlobalDecl CopyCtorDecl) {
688  const CXXConstructorDecl *CD =
689    cast<CXXConstructorDecl>(CopyCtorDecl.getDecl());
690  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
691  if (ClassDecl->hasTrivialCopyConstructor() ||
692      ClassDecl->hasUserDeclaredCopyConstructor())
693    return;
694
695  // First make sure all direct base classes and virtual bases and non-static
696  // data mebers which need to have their copy constructors implicitly defined
697  // are defined. 12.8.p7
698  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
699       Base != ClassDecl->bases_end(); ++Base) {
700    CXXRecordDecl *BaseClassDecl
701      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
702    if (CXXConstructorDecl *BaseCopyCtor =
703        BaseClassDecl->getCopyConstructor(Context, 0))
704      GetAddrOfCXXConstructor(BaseCopyCtor, Ctor_Complete);
705  }
706
707  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
708       FieldEnd = ClassDecl->field_end();
709       Field != FieldEnd; ++Field) {
710    QualType FieldType = Context.getCanonicalType((*Field)->getType());
711    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
712      FieldType = Array->getElementType();
713    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
714      if ((*Field)->isAnonymousStructOrUnion())
715        continue;
716      CXXRecordDecl *FieldClassDecl
717        = cast<CXXRecordDecl>(FieldClassType->getDecl());
718      if (CXXConstructorDecl *FieldCopyCtor =
719          FieldClassDecl->getCopyConstructor(Context, 0))
720        GetAddrOfCXXConstructor(FieldCopyCtor, Ctor_Complete);
721    }
722  }
723  DeferredDeclsToEmit.push_back(CopyCtorDecl);
724}
725
726/// Defer definition of copy assignments which need be implicitly defined.
727void CodeGenModule::DeferredCopyAssignmentToEmit(GlobalDecl CopyAssignDecl) {
728  const CXXMethodDecl *CD = cast<CXXMethodDecl>(CopyAssignDecl.getDecl());
729  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(CD->getDeclContext());
730
731  if (ClassDecl->hasTrivialCopyAssignment() ||
732      ClassDecl->hasUserDeclaredCopyAssignment())
733    return;
734
735  // First make sure all direct base classes and virtual bases and non-static
736  // data mebers which need to have their copy assignments implicitly defined
737  // are defined. 12.8.p12
738  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
739       Base != ClassDecl->bases_end(); ++Base) {
740    CXXRecordDecl *BaseClassDecl
741      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
742    const CXXMethodDecl *MD = 0;
743    if (!BaseClassDecl->hasTrivialCopyAssignment() &&
744        !BaseClassDecl->hasUserDeclaredCopyAssignment() &&
745        BaseClassDecl->hasConstCopyAssignment(getContext(), MD))
746      GetAddrOfFunction(MD, 0);
747  }
748
749  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
750       FieldEnd = ClassDecl->field_end();
751       Field != FieldEnd; ++Field) {
752    QualType FieldType = Context.getCanonicalType((*Field)->getType());
753    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
754      FieldType = Array->getElementType();
755    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
756      if ((*Field)->isAnonymousStructOrUnion())
757        continue;
758      CXXRecordDecl *FieldClassDecl
759        = cast<CXXRecordDecl>(FieldClassType->getDecl());
760      const CXXMethodDecl *MD = 0;
761      if (!FieldClassDecl->hasTrivialCopyAssignment() &&
762          !FieldClassDecl->hasUserDeclaredCopyAssignment() &&
763          FieldClassDecl->hasConstCopyAssignment(getContext(), MD))
764          GetAddrOfFunction(MD, 0);
765    }
766  }
767  DeferredDeclsToEmit.push_back(CopyAssignDecl);
768}
769
770void CodeGenModule::DeferredDestructorToEmit(GlobalDecl DtorDecl) {
771  const CXXDestructorDecl *DD = cast<CXXDestructorDecl>(DtorDecl.getDecl());
772  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(DD->getDeclContext());
773  if (ClassDecl->hasTrivialDestructor() ||
774      ClassDecl->hasUserDeclaredDestructor())
775    return;
776
777  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
778       Base != ClassDecl->bases_end(); ++Base) {
779    CXXRecordDecl *BaseClassDecl
780      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
781    if (const CXXDestructorDecl *BaseDtor =
782          BaseClassDecl->getDestructor(Context))
783      GetAddrOfCXXDestructor(BaseDtor, Dtor_Complete);
784  }
785
786  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
787       FieldEnd = ClassDecl->field_end();
788       Field != FieldEnd; ++Field) {
789    QualType FieldType = Context.getCanonicalType((*Field)->getType());
790    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
791      FieldType = Array->getElementType();
792    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
793      if ((*Field)->isAnonymousStructOrUnion())
794        continue;
795      CXXRecordDecl *FieldClassDecl
796        = cast<CXXRecordDecl>(FieldClassType->getDecl());
797      if (const CXXDestructorDecl *FieldDtor =
798            FieldClassDecl->getDestructor(Context))
799        GetAddrOfCXXDestructor(FieldDtor, Dtor_Complete);
800    }
801  }
802  DeferredDeclsToEmit.push_back(DtorDecl);
803}
804
805
806/// GetAddrOfFunction - Return the address of the given function.  If Ty is
807/// non-null, then this function will use the specified type if it has to
808/// create it (this occurs when we see a definition of the function).
809llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
810                                                 const llvm::Type *Ty) {
811  // If there was no specific requested type, just convert it now.
812  if (!Ty)
813    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
814  return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
815}
816
817/// CreateRuntimeFunction - Create a new runtime function with the specified
818/// type and name.
819llvm::Constant *
820CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
821                                     const char *Name) {
822  // Convert Name to be a uniqued string from the IdentifierInfo table.
823  Name = getContext().Idents.get(Name).getName();
824  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
825}
826
827/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
828/// create and return an llvm GlobalVariable with the specified type.  If there
829/// is something in the module with the specified name, return it potentially
830/// bitcasted to the right type.
831///
832/// If D is non-null, it specifies a decl that correspond to this.  This is used
833/// to set the attributes on the global when it is first created.
834llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
835                                                     const llvm::PointerType*Ty,
836                                                     const VarDecl *D) {
837  // Lookup the entry, lazily creating it if necessary.
838  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
839  if (Entry) {
840    if (Entry->getType() == Ty)
841      return Entry;
842
843    // Make sure the result is of the correct type.
844    return llvm::ConstantExpr::getBitCast(Entry, Ty);
845  }
846
847  // This is the first use or definition of a mangled name.  If there is a
848  // deferred decl with this name, remember that we need to emit it at the end
849  // of the file.
850  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
851    DeferredDecls.find(MangledName);
852  if (DDI != DeferredDecls.end()) {
853    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
854    // list, and remove it from DeferredDecls (since we don't need it anymore).
855    DeferredDeclsToEmit.push_back(DDI->second);
856    DeferredDecls.erase(DDI);
857  }
858
859  llvm::GlobalVariable *GV =
860    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
861                             llvm::GlobalValue::ExternalLinkage,
862                             0, "", 0,
863                             false, Ty->getAddressSpace());
864  GV->setName(MangledName);
865
866  // Handle things which are present even on external declarations.
867  if (D) {
868    // FIXME: This code is overly simple and should be merged with other global
869    // handling.
870    GV->setConstant(D->getType().isConstant(Context));
871
872    // FIXME: Merge with other attribute handling code.
873    if (D->getStorageClass() == VarDecl::PrivateExtern)
874      GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
875
876    if (D->hasAttr<WeakAttr>() ||
877        D->hasAttr<WeakImportAttr>())
878      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
879
880    GV->setThreadLocal(D->isThreadSpecified());
881  }
882
883  return Entry = GV;
884}
885
886
887/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
888/// given global variable.  If Ty is non-null and if the global doesn't exist,
889/// then it will be greated with the specified type instead of whatever the
890/// normal requested type would be.
891llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
892                                                  const llvm::Type *Ty) {
893  assert(D->hasGlobalStorage() && "Not a global variable");
894  QualType ASTTy = D->getType();
895  if (Ty == 0)
896    Ty = getTypes().ConvertTypeForMem(ASTTy);
897
898  const llvm::PointerType *PTy =
899    llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
900  return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
901}
902
903/// CreateRuntimeVariable - Create a new runtime global variable with the
904/// specified type and name.
905llvm::Constant *
906CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
907                                     const char *Name) {
908  // Convert Name to be a uniqued string from the IdentifierInfo table.
909  Name = getContext().Idents.get(Name).getName();
910  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
911}
912
913void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
914  assert(!D->getInit() && "Cannot emit definite definitions here!");
915
916  if (MayDeferGeneration(D)) {
917    // If we have not seen a reference to this variable yet, place it
918    // into the deferred declarations table to be emitted if needed
919    // later.
920    const char *MangledName = getMangledName(D);
921    if (GlobalDeclMap.count(MangledName) == 0) {
922      DeferredDecls[MangledName] = D;
923      return;
924    }
925  }
926
927  // The tentative definition is the only definition.
928  EmitGlobalVarDefinition(D);
929}
930
931void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
932  llvm::Constant *Init = 0;
933  QualType ASTTy = D->getType();
934
935  if (D->getInit() == 0) {
936    // This is a tentative definition; tentative definitions are
937    // implicitly initialized with { 0 }.
938    //
939    // Note that tentative definitions are only emitted at the end of
940    // a translation unit, so they should never have incomplete
941    // type. In addition, EmitTentativeDefinition makes sure that we
942    // never attempt to emit a tentative definition if a real one
943    // exists. A use may still exists, however, so we still may need
944    // to do a RAUW.
945    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
946    Init = EmitNullConstant(D->getType());
947  } else {
948    Init = EmitConstantExpr(D->getInit(), D->getType());
949
950    if (!Init) {
951      QualType T = D->getInit()->getType();
952      if (getLangOptions().CPlusPlus) {
953        CXXGlobalInits.push_back(D);
954        Init = EmitNullConstant(T);
955      } else {
956        ErrorUnsupported(D, "static initializer");
957        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
958      }
959    }
960  }
961
962  const llvm::Type* InitType = Init->getType();
963  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
964
965  // Strip off a bitcast if we got one back.
966  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
967    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
968           // all zero index gep.
969           CE->getOpcode() == llvm::Instruction::GetElementPtr);
970    Entry = CE->getOperand(0);
971  }
972
973  // Entry is now either a Function or GlobalVariable.
974  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
975
976  // We have a definition after a declaration with the wrong type.
977  // We must make a new GlobalVariable* and update everything that used OldGV
978  // (a declaration or tentative definition) with the new GlobalVariable*
979  // (which will be a definition).
980  //
981  // This happens if there is a prototype for a global (e.g.
982  // "extern int x[];") and then a definition of a different type (e.g.
983  // "int x[10];"). This also happens when an initializer has a different type
984  // from the type of the global (this happens with unions).
985  if (GV == 0 ||
986      GV->getType()->getElementType() != InitType ||
987      GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
988
989    // Remove the old entry from GlobalDeclMap so that we'll create a new one.
990    GlobalDeclMap.erase(getMangledName(D));
991
992    // Make a new global with the correct type, this is now guaranteed to work.
993    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
994    GV->takeName(cast<llvm::GlobalValue>(Entry));
995
996    // Replace all uses of the old global with the new global
997    llvm::Constant *NewPtrForOldDecl =
998        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
999    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1000
1001    // Erase the old global, since it is no longer used.
1002    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1003  }
1004
1005  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1006    SourceManager &SM = Context.getSourceManager();
1007    AddAnnotation(EmitAnnotateAttr(GV, AA,
1008                              SM.getInstantiationLineNumber(D->getLocation())));
1009  }
1010
1011  GV->setInitializer(Init);
1012
1013  // If it is safe to mark the global 'constant', do so now.
1014  GV->setConstant(false);
1015  if (D->getType().isConstant(Context)) {
1016    // FIXME: In C++, if the variable has a non-trivial ctor/dtor or any mutable
1017    // members, it cannot be declared "LLVM const".
1018    GV->setConstant(true);
1019  }
1020
1021  GV->setAlignment(getContext().getDeclAlignInBytes(D));
1022
1023  // Set the llvm linkage type as appropriate.
1024  if (D->getStorageClass() == VarDecl::Static)
1025    GV->setLinkage(llvm::Function::InternalLinkage);
1026  else if (D->hasAttr<DLLImportAttr>())
1027    GV->setLinkage(llvm::Function::DLLImportLinkage);
1028  else if (D->hasAttr<DLLExportAttr>())
1029    GV->setLinkage(llvm::Function::DLLExportLinkage);
1030  else if (D->hasAttr<WeakAttr>()) {
1031    if (GV->isConstant())
1032      GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1033    else
1034      GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1035  } else if (!CompileOpts.NoCommon &&
1036           !D->hasExternalStorage() && !D->getInit() &&
1037           !D->getAttr<SectionAttr>()) {
1038    GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1039    // common vars aren't constant even if declared const.
1040    GV->setConstant(false);
1041  } else
1042    GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1043
1044  SetCommonAttributes(D, GV);
1045
1046  // Emit global variable debug information.
1047  if (CGDebugInfo *DI = getDebugInfo()) {
1048    DI->setLocation(D->getLocation());
1049    DI->EmitGlobalVariable(GV, D);
1050  }
1051}
1052
1053/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1054/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1055/// existing call uses of the old function in the module, this adjusts them to
1056/// call the new function directly.
1057///
1058/// This is not just a cleanup: the always_inline pass requires direct calls to
1059/// functions to be able to inline them.  If there is a bitcast in the way, it
1060/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1061/// run at -O0.
1062static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1063                                                      llvm::Function *NewFn) {
1064  // If we're redefining a global as a function, don't transform it.
1065  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1066  if (OldFn == 0) return;
1067
1068  const llvm::Type *NewRetTy = NewFn->getReturnType();
1069  llvm::SmallVector<llvm::Value*, 4> ArgList;
1070
1071  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1072       UI != E; ) {
1073    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1074    unsigned OpNo = UI.getOperandNo();
1075    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1076    if (!CI || OpNo != 0) continue;
1077
1078    // If the return types don't match exactly, and if the call isn't dead, then
1079    // we can't transform this call.
1080    if (CI->getType() != NewRetTy && !CI->use_empty())
1081      continue;
1082
1083    // If the function was passed too few arguments, don't transform.  If extra
1084    // arguments were passed, we silently drop them.  If any of the types
1085    // mismatch, we don't transform.
1086    unsigned ArgNo = 0;
1087    bool DontTransform = false;
1088    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1089         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1090      if (CI->getNumOperands()-1 == ArgNo ||
1091          CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1092        DontTransform = true;
1093        break;
1094      }
1095    }
1096    if (DontTransform)
1097      continue;
1098
1099    // Okay, we can transform this.  Create the new call instruction and copy
1100    // over the required information.
1101    ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1102    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1103                                                     ArgList.end(), "", CI);
1104    ArgList.clear();
1105    if (NewCall->getType() != llvm::Type::getVoidTy(Old->getContext()))
1106      NewCall->takeName(CI);
1107    NewCall->setCallingConv(CI->getCallingConv());
1108    NewCall->setAttributes(CI->getAttributes());
1109
1110    // Finally, remove the old call, replacing any uses with the new one.
1111    if (!CI->use_empty())
1112      CI->replaceAllUsesWith(NewCall);
1113    CI->eraseFromParent();
1114  }
1115}
1116
1117
1118void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1119  const llvm::FunctionType *Ty;
1120  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1121
1122  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1123    bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
1124
1125    Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1126  } else {
1127    Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1128
1129    // As a special case, make sure that definitions of K&R function
1130    // "type foo()" aren't declared as varargs (which forces the backend
1131    // to do unnecessary work).
1132    if (D->getType()->isFunctionNoProtoType()) {
1133      assert(Ty->isVarArg() && "Didn't lower type as expected");
1134      // Due to stret, the lowered function could have arguments.
1135      // Just create the same type as was lowered by ConvertType
1136      // but strip off the varargs bit.
1137      std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1138      Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1139    }
1140  }
1141
1142  // Get or create the prototype for the function.
1143  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1144
1145  // Strip off a bitcast if we got one back.
1146  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1147    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1148    Entry = CE->getOperand(0);
1149  }
1150
1151
1152  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1153    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1154
1155    // If the types mismatch then we have to rewrite the definition.
1156    assert(OldFn->isDeclaration() &&
1157           "Shouldn't replace non-declaration");
1158
1159    // F is the Function* for the one with the wrong type, we must make a new
1160    // Function* and update everything that used F (a declaration) with the new
1161    // Function* (which will be a definition).
1162    //
1163    // This happens if there is a prototype for a function
1164    // (e.g. "int f()") and then a definition of a different type
1165    // (e.g. "int f(int x)").  Start by making a new function of the
1166    // correct type, RAUW, then steal the name.
1167    GlobalDeclMap.erase(getMangledName(D));
1168    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1169    NewFn->takeName(OldFn);
1170
1171    // If this is an implementation of a function without a prototype, try to
1172    // replace any existing uses of the function (which may be calls) with uses
1173    // of the new function
1174    if (D->getType()->isFunctionNoProtoType()) {
1175      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1176      OldFn->removeDeadConstantUsers();
1177    }
1178
1179    // Replace uses of F with the Function we will endow with a body.
1180    if (!Entry->use_empty()) {
1181      llvm::Constant *NewPtrForOldDecl =
1182        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1183      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1184    }
1185
1186    // Ok, delete the old function now, which is dead.
1187    OldFn->eraseFromParent();
1188
1189    Entry = NewFn;
1190  }
1191
1192  llvm::Function *Fn = cast<llvm::Function>(Entry);
1193
1194  CodeGenFunction(*this).GenerateCode(D, Fn);
1195
1196  SetFunctionDefinitionAttributes(D, Fn);
1197  SetLLVMFunctionAttributesForDefinition(D, Fn);
1198
1199  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1200    AddGlobalCtor(Fn, CA->getPriority());
1201  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1202    AddGlobalDtor(Fn, DA->getPriority());
1203}
1204
1205void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1206  const AliasAttr *AA = D->getAttr<AliasAttr>();
1207  assert(AA && "Not an alias?");
1208
1209  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1210
1211  // Unique the name through the identifier table.
1212  const char *AliaseeName = AA->getAliasee().c_str();
1213  AliaseeName = getContext().Idents.get(AliaseeName).getName();
1214
1215  // Create a reference to the named value.  This ensures that it is emitted
1216  // if a deferred decl.
1217  llvm::Constant *Aliasee;
1218  if (isa<llvm::FunctionType>(DeclTy))
1219    Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1220  else
1221    Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1222                                    llvm::PointerType::getUnqual(DeclTy), 0);
1223
1224  // Create the new alias itself, but don't set a name yet.
1225  llvm::GlobalValue *GA =
1226    new llvm::GlobalAlias(Aliasee->getType(),
1227                          llvm::Function::ExternalLinkage,
1228                          "", Aliasee, &getModule());
1229
1230  // See if there is already something with the alias' name in the module.
1231  const char *MangledName = getMangledName(D);
1232  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1233
1234  if (Entry && !Entry->isDeclaration()) {
1235    // If there is a definition in the module, then it wins over the alias.
1236    // This is dubious, but allow it to be safe.  Just ignore the alias.
1237    GA->eraseFromParent();
1238    return;
1239  }
1240
1241  if (Entry) {
1242    // If there is a declaration in the module, then we had an extern followed
1243    // by the alias, as in:
1244    //   extern int test6();
1245    //   ...
1246    //   int test6() __attribute__((alias("test7")));
1247    //
1248    // Remove it and replace uses of it with the alias.
1249
1250    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1251                                                          Entry->getType()));
1252    Entry->eraseFromParent();
1253  }
1254
1255  // Now we know that there is no conflict, set the name.
1256  Entry = GA;
1257  GA->setName(MangledName);
1258
1259  // Set attributes which are particular to an alias; this is a
1260  // specialization of the attributes which may be set on a global
1261  // variable/function.
1262  if (D->hasAttr<DLLExportAttr>()) {
1263    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1264      // The dllexport attribute is ignored for undefined symbols.
1265      if (FD->getBody())
1266        GA->setLinkage(llvm::Function::DLLExportLinkage);
1267    } else {
1268      GA->setLinkage(llvm::Function::DLLExportLinkage);
1269    }
1270  } else if (D->hasAttr<WeakAttr>() ||
1271             D->hasAttr<WeakImportAttr>()) {
1272    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1273  }
1274
1275  SetCommonAttributes(D, GA);
1276}
1277
1278/// getBuiltinLibFunction - Given a builtin id for a function like
1279/// "__builtin_fabsf", return a Function* for "fabsf".
1280llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1281  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1282          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1283         "isn't a lib fn");
1284
1285  // Get the name, skip over the __builtin_ prefix (if necessary).
1286  const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1287  if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1288    Name += 10;
1289
1290  // Get the type for the builtin.
1291  ASTContext::GetBuiltinTypeError Error;
1292  QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1293  assert(Error == ASTContext::GE_None && "Can't get builtin type");
1294
1295  const llvm::FunctionType *Ty =
1296    cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1297
1298  // Unique the name through the identifier table.
1299  Name = getContext().Idents.get(Name).getName();
1300  // FIXME: param attributes for sext/zext etc.
1301  return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1302}
1303
1304llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1305                                            unsigned NumTys) {
1306  return llvm::Intrinsic::getDeclaration(&getModule(),
1307                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1308}
1309
1310llvm::Function *CodeGenModule::getMemCpyFn() {
1311  if (MemCpyFn) return MemCpyFn;
1312  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1313  return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1314}
1315
1316llvm::Function *CodeGenModule::getMemMoveFn() {
1317  if (MemMoveFn) return MemMoveFn;
1318  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1319  return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1320}
1321
1322llvm::Function *CodeGenModule::getMemSetFn() {
1323  if (MemSetFn) return MemSetFn;
1324  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1325  return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1326}
1327
1328static llvm::StringMapEntry<llvm::Constant*> &
1329GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1330                         const StringLiteral *Literal,
1331                         bool TargetIsLSB,
1332                         bool &IsUTF16,
1333                         unsigned &StringLength) {
1334  unsigned NumBytes = Literal->getByteLength();
1335
1336  // Check for simple case.
1337  if (!Literal->containsNonAsciiOrNull()) {
1338    StringLength = NumBytes;
1339    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1340                                                StringLength));
1341  }
1342
1343  // Otherwise, convert the UTF8 literals into a byte string.
1344  llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1345  const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1346  UTF16 *ToPtr = &ToBuf[0];
1347
1348  ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1349                                               &ToPtr, ToPtr + NumBytes,
1350                                               strictConversion);
1351
1352  // Check for conversion failure.
1353  if (Result != conversionOK) {
1354    // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1355    // this duplicate code.
1356    assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1357    StringLength = NumBytes;
1358    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1359                                                StringLength));
1360  }
1361
1362  // ConvertUTF8toUTF16 returns the length in ToPtr.
1363  StringLength = ToPtr - &ToBuf[0];
1364
1365  // Render the UTF-16 string into a byte array and convert to the target byte
1366  // order.
1367  //
1368  // FIXME: This isn't something we should need to do here.
1369  llvm::SmallString<128> AsBytes;
1370  AsBytes.reserve(StringLength * 2);
1371  for (unsigned i = 0; i != StringLength; ++i) {
1372    unsigned short Val = ToBuf[i];
1373    if (TargetIsLSB) {
1374      AsBytes.push_back(Val & 0xFF);
1375      AsBytes.push_back(Val >> 8);
1376    } else {
1377      AsBytes.push_back(Val >> 8);
1378      AsBytes.push_back(Val & 0xFF);
1379    }
1380  }
1381  // Append one extra null character, the second is automatically added by our
1382  // caller.
1383  AsBytes.push_back(0);
1384
1385  IsUTF16 = true;
1386  return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1387}
1388
1389llvm::Constant *
1390CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1391  unsigned StringLength = 0;
1392  bool isUTF16 = false;
1393  llvm::StringMapEntry<llvm::Constant*> &Entry =
1394    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1395                             getTargetData().isLittleEndian(),
1396                             isUTF16, StringLength);
1397
1398  if (llvm::Constant *C = Entry.getValue())
1399    return C;
1400
1401  llvm::Constant *Zero =
1402      llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1403  llvm::Constant *Zeros[] = { Zero, Zero };
1404
1405  // If we don't already have it, get __CFConstantStringClassReference.
1406  if (!CFConstantStringClassRef) {
1407    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1408    Ty = llvm::ArrayType::get(Ty, 0);
1409    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1410                                           "__CFConstantStringClassReference");
1411    // Decay array -> ptr
1412    CFConstantStringClassRef =
1413      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1414  }
1415
1416  QualType CFTy = getContext().getCFConstantStringType();
1417
1418  const llvm::StructType *STy =
1419    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1420
1421  std::vector<llvm::Constant*> Fields(4);
1422
1423  // Class pointer.
1424  Fields[0] = CFConstantStringClassRef;
1425
1426  // Flags.
1427  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1428  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1429    llvm::ConstantInt::get(Ty, 0x07C8);
1430
1431  // String pointer.
1432  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1433
1434  const char *Sect, *Prefix;
1435  bool isConstant;
1436  llvm::GlobalValue::LinkageTypes Linkage;
1437  if (isUTF16) {
1438    Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1439    Sect = getContext().Target.getUnicodeStringSection();
1440    // FIXME: why do utf strings get "l" labels instead of "L" labels?
1441    Linkage = llvm::GlobalValue::InternalLinkage;
1442    // FIXME: Why does GCC not set constant here?
1443    isConstant = false;
1444  } else {
1445    Prefix = ".str";
1446    Sect = getContext().Target.getCFStringDataSection();
1447    Linkage = llvm::GlobalValue::PrivateLinkage;
1448    // FIXME: -fwritable-strings should probably affect this, but we
1449    // are following gcc here.
1450    isConstant = true;
1451  }
1452  llvm::GlobalVariable *GV =
1453    new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
1454                             Linkage, C, Prefix);
1455  if (Sect)
1456    GV->setSection(Sect);
1457  if (isUTF16) {
1458    unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1459    GV->setAlignment(Align);
1460  }
1461  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1462
1463  // String length.
1464  Ty = getTypes().ConvertType(getContext().LongTy);
1465  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1466
1467  // The struct.
1468  C = llvm::ConstantStruct::get(STy, Fields);
1469  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1470                                llvm::GlobalVariable::PrivateLinkage, C,
1471                                "_unnamed_cfstring_");
1472  if (const char *Sect = getContext().Target.getCFStringSection())
1473    GV->setSection(Sect);
1474  Entry.setValue(GV);
1475
1476  return GV;
1477}
1478
1479/// GetStringForStringLiteral - Return the appropriate bytes for a
1480/// string literal, properly padded to match the literal type.
1481std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1482  const char *StrData = E->getStrData();
1483  unsigned Len = E->getByteLength();
1484
1485  const ConstantArrayType *CAT =
1486    getContext().getAsConstantArrayType(E->getType());
1487  assert(CAT && "String isn't pointer or array!");
1488
1489  // Resize the string to the right size.
1490  std::string Str(StrData, StrData+Len);
1491  uint64_t RealLen = CAT->getSize().getZExtValue();
1492
1493  if (E->isWide())
1494    RealLen *= getContext().Target.getWCharWidth()/8;
1495
1496  Str.resize(RealLen, '\0');
1497
1498  return Str;
1499}
1500
1501/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1502/// constant array for the given string literal.
1503llvm::Constant *
1504CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1505  // FIXME: This can be more efficient.
1506  return GetAddrOfConstantString(GetStringForStringLiteral(S));
1507}
1508
1509/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1510/// array for the given ObjCEncodeExpr node.
1511llvm::Constant *
1512CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1513  std::string Str;
1514  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1515
1516  return GetAddrOfConstantCString(Str);
1517}
1518
1519
1520/// GenerateWritableString -- Creates storage for a string literal.
1521static llvm::Constant *GenerateStringLiteral(const std::string &str,
1522                                             bool constant,
1523                                             CodeGenModule &CGM,
1524                                             const char *GlobalName) {
1525  // Create Constant for this string literal. Don't add a '\0'.
1526  llvm::Constant *C =
1527      llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1528
1529  // Create a global variable for this string
1530  return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1531                                  llvm::GlobalValue::PrivateLinkage,
1532                                  C, GlobalName);
1533}
1534
1535/// GetAddrOfConstantString - Returns a pointer to a character array
1536/// containing the literal. This contents are exactly that of the
1537/// given string, i.e. it will not be null terminated automatically;
1538/// see GetAddrOfConstantCString. Note that whether the result is
1539/// actually a pointer to an LLVM constant depends on
1540/// Feature.WriteableStrings.
1541///
1542/// The result has pointer to array type.
1543llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1544                                                       const char *GlobalName) {
1545  bool IsConstant = !Features.WritableStrings;
1546
1547  // Get the default prefix if a name wasn't specified.
1548  if (!GlobalName)
1549    GlobalName = ".str";
1550
1551  // Don't share any string literals if strings aren't constant.
1552  if (!IsConstant)
1553    return GenerateStringLiteral(str, false, *this, GlobalName);
1554
1555  llvm::StringMapEntry<llvm::Constant *> &Entry =
1556    ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1557
1558  if (Entry.getValue())
1559    return Entry.getValue();
1560
1561  // Create a global variable for this.
1562  llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1563  Entry.setValue(C);
1564  return C;
1565}
1566
1567/// GetAddrOfConstantCString - Returns a pointer to a character
1568/// array containing the literal and a terminating '\-'
1569/// character. The result has pointer to array type.
1570llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1571                                                        const char *GlobalName){
1572  return GetAddrOfConstantString(str + '\0', GlobalName);
1573}
1574
1575/// EmitObjCPropertyImplementations - Emit information for synthesized
1576/// properties for an implementation.
1577void CodeGenModule::EmitObjCPropertyImplementations(const
1578                                                    ObjCImplementationDecl *D) {
1579  for (ObjCImplementationDecl::propimpl_iterator
1580         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1581    ObjCPropertyImplDecl *PID = *i;
1582
1583    // Dynamic is just for type-checking.
1584    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1585      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1586
1587      // Determine which methods need to be implemented, some may have
1588      // been overridden. Note that ::isSynthesized is not the method
1589      // we want, that just indicates if the decl came from a
1590      // property. What we want to know is if the method is defined in
1591      // this implementation.
1592      if (!D->getInstanceMethod(PD->getGetterName()))
1593        CodeGenFunction(*this).GenerateObjCGetter(
1594                                 const_cast<ObjCImplementationDecl *>(D), PID);
1595      if (!PD->isReadOnly() &&
1596          !D->getInstanceMethod(PD->getSetterName()))
1597        CodeGenFunction(*this).GenerateObjCSetter(
1598                                 const_cast<ObjCImplementationDecl *>(D), PID);
1599    }
1600  }
1601}
1602
1603/// EmitNamespace - Emit all declarations in a namespace.
1604void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1605  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1606       I != E; ++I)
1607    EmitTopLevelDecl(*I);
1608}
1609
1610// EmitLinkageSpec - Emit all declarations in a linkage spec.
1611void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1612  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1613      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1614    ErrorUnsupported(LSD, "linkage spec");
1615    return;
1616  }
1617
1618  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1619       I != E; ++I)
1620    EmitTopLevelDecl(*I);
1621}
1622
1623/// EmitTopLevelDecl - Emit code for a single top level declaration.
1624void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1625  // If an error has occurred, stop code generation, but continue
1626  // parsing and semantic analysis (to ensure all warnings and errors
1627  // are emitted).
1628  if (Diags.hasErrorOccurred())
1629    return;
1630
1631  // Ignore dependent declarations.
1632  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1633    return;
1634
1635  switch (D->getKind()) {
1636  case Decl::CXXConversion:
1637  case Decl::CXXMethod:
1638  case Decl::Function:
1639    // Skip function templates
1640    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1641      return;
1642
1643    EmitGlobal(cast<FunctionDecl>(D));
1644    break;
1645
1646  case Decl::Var:
1647    EmitGlobal(cast<VarDecl>(D));
1648    break;
1649
1650  // C++ Decls
1651  case Decl::Namespace:
1652    EmitNamespace(cast<NamespaceDecl>(D));
1653    break;
1654    // No code generation needed.
1655  case Decl::Using:
1656  case Decl::UsingDirective:
1657  case Decl::ClassTemplate:
1658  case Decl::FunctionTemplate:
1659    break;
1660  case Decl::CXXConstructor:
1661    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1662    break;
1663  case Decl::CXXDestructor:
1664    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1665    break;
1666
1667  case Decl::StaticAssert:
1668    // Nothing to do.
1669    break;
1670
1671  // Objective-C Decls
1672
1673  // Forward declarations, no (immediate) code generation.
1674  case Decl::ObjCClass:
1675  case Decl::ObjCForwardProtocol:
1676  case Decl::ObjCCategory:
1677  case Decl::ObjCInterface:
1678    break;
1679
1680  case Decl::ObjCProtocol:
1681    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1682    break;
1683
1684  case Decl::ObjCCategoryImpl:
1685    // Categories have properties but don't support synthesize so we
1686    // can ignore them here.
1687    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1688    break;
1689
1690  case Decl::ObjCImplementation: {
1691    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1692    EmitObjCPropertyImplementations(OMD);
1693    Runtime->GenerateClass(OMD);
1694    break;
1695  }
1696  case Decl::ObjCMethod: {
1697    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1698    // If this is not a prototype, emit the body.
1699    if (OMD->getBody())
1700      CodeGenFunction(*this).GenerateObjCMethod(OMD);
1701    break;
1702  }
1703  case Decl::ObjCCompatibleAlias:
1704    // compatibility-alias is a directive and has no code gen.
1705    break;
1706
1707  case Decl::LinkageSpec:
1708    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1709    break;
1710
1711  case Decl::FileScopeAsm: {
1712    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1713    std::string AsmString(AD->getAsmString()->getStrData(),
1714                          AD->getAsmString()->getByteLength());
1715
1716    const std::string &S = getModule().getModuleInlineAsm();
1717    if (S.empty())
1718      getModule().setModuleInlineAsm(AsmString);
1719    else
1720      getModule().setModuleInlineAsm(S + '\n' + AsmString);
1721    break;
1722  }
1723
1724  default:
1725    // Make sure we handled everything we should, every other kind is a
1726    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1727    // function. Need to recode Decl::Kind to do that easily.
1728    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1729  }
1730}
1731