CodeGenModule.cpp revision 55fc873017f10f6f566b182b70f6fc22aefa3464
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGCall.h"
18#include "CGDebugInfo.h"
19#include "CGObjCRuntime.h"
20#include "CGOpenCLRuntime.h"
21#include "CodeGenFunction.h"
22#include "CodeGenTBAA.h"
23#include "TargetInfo.h"
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/CharUnits.h"
26#include "clang/AST/DeclCXX.h"
27#include "clang/AST/DeclObjC.h"
28#include "clang/AST/DeclTemplate.h"
29#include "clang/AST/Mangle.h"
30#include "clang/AST/RecordLayout.h"
31#include "clang/AST/RecursiveASTVisitor.h"
32#include "clang/Basic/Builtins.h"
33#include "clang/Basic/ConvertUTF.h"
34#include "clang/Basic/Diagnostic.h"
35#include "clang/Basic/SourceManager.h"
36#include "clang/Basic/TargetInfo.h"
37#include "clang/Frontend/CodeGenOptions.h"
38#include "llvm/ADT/APSInt.h"
39#include "llvm/ADT/Triple.h"
40#include "llvm/CallingConv.h"
41#include "llvm/DataLayout.h"
42#include "llvm/Intrinsics.h"
43#include "llvm/LLVMContext.h"
44#include "llvm/Module.h"
45#include "llvm/Support/CallSite.h"
46#include "llvm/Support/ErrorHandling.h"
47#include "llvm/Target/Mangler.h"
48using namespace clang;
49using namespace CodeGen;
50
51static const char AnnotationSection[] = "llvm.metadata";
52
53static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
54  switch (CGM.getContext().getTargetInfo().getCXXABI()) {
55  case CXXABI_ARM: return *CreateARMCXXABI(CGM);
56  case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
57  case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
58  }
59
60  llvm_unreachable("invalid C++ ABI kind");
61}
62
63
64CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
65                             llvm::Module &M, const llvm::DataLayout &TD,
66                             DiagnosticsEngine &diags)
67  : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
68    TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags),
69    ABI(createCXXABI(*this)),
70    Types(*this),
71    TBAA(0),
72    VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
73    DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
74    RRData(0), CFConstantStringClassRef(0),
75    ConstantStringClassRef(0), NSConstantStringType(0),
76    VMContext(M.getContext()),
77    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
78    BlockObjectAssign(0), BlockObjectDispose(0),
79    BlockDescriptorType(0), GenericBlockLiteralType(0) {
80
81  // Initialize the type cache.
82  llvm::LLVMContext &LLVMContext = M.getContext();
83  VoidTy = llvm::Type::getVoidTy(LLVMContext);
84  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
85  Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
86  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
87  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
88  FloatTy = llvm::Type::getFloatTy(LLVMContext);
89  DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
90  PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
91  PointerAlignInBytes =
92  C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
93  IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
94  IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
95  Int8PtrTy = Int8Ty->getPointerTo(0);
96  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
97
98  if (LangOpts.ObjC1)
99    createObjCRuntime();
100  if (LangOpts.OpenCL)
101    createOpenCLRuntime();
102  if (LangOpts.CUDA)
103    createCUDARuntime();
104
105  // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
106  if (LangOpts.SanitizeThread ||
107      (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
108    TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
109                           ABI.getMangleContext());
110
111  // If debug info or coverage generation is enabled, create the CGDebugInfo
112  // object.
113  if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
114      CodeGenOpts.EmitGcovArcs ||
115      CodeGenOpts.EmitGcovNotes)
116    DebugInfo = new CGDebugInfo(*this);
117
118  Block.GlobalUniqueCount = 0;
119
120  if (C.getLangOpts().ObjCAutoRefCount)
121    ARCData = new ARCEntrypoints();
122  RRData = new RREntrypoints();
123}
124
125CodeGenModule::~CodeGenModule() {
126  delete ObjCRuntime;
127  delete OpenCLRuntime;
128  delete CUDARuntime;
129  delete TheTargetCodeGenInfo;
130  delete &ABI;
131  delete TBAA;
132  delete DebugInfo;
133  delete ARCData;
134  delete RRData;
135}
136
137void CodeGenModule::createObjCRuntime() {
138  // This is just isGNUFamily(), but we want to force implementors of
139  // new ABIs to decide how best to do this.
140  switch (LangOpts.ObjCRuntime.getKind()) {
141  case ObjCRuntime::GNUstep:
142  case ObjCRuntime::GCC:
143  case ObjCRuntime::ObjFW:
144    ObjCRuntime = CreateGNUObjCRuntime(*this);
145    return;
146
147  case ObjCRuntime::FragileMacOSX:
148  case ObjCRuntime::MacOSX:
149  case ObjCRuntime::iOS:
150    ObjCRuntime = CreateMacObjCRuntime(*this);
151    return;
152  }
153  llvm_unreachable("bad runtime kind");
154}
155
156void CodeGenModule::createOpenCLRuntime() {
157  OpenCLRuntime = new CGOpenCLRuntime(*this);
158}
159
160void CodeGenModule::createCUDARuntime() {
161  CUDARuntime = CreateNVCUDARuntime(*this);
162}
163
164void CodeGenModule::Release() {
165  EmitDeferred();
166  EmitCXXGlobalInitFunc();
167  EmitCXXGlobalDtorFunc();
168  if (ObjCRuntime)
169    if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
170      AddGlobalCtor(ObjCInitFunction);
171  EmitCtorList(GlobalCtors, "llvm.global_ctors");
172  EmitCtorList(GlobalDtors, "llvm.global_dtors");
173  EmitGlobalAnnotations();
174  EmitLLVMUsed();
175
176  SimplifyPersonality();
177
178  if (getCodeGenOpts().EmitDeclMetadata)
179    EmitDeclMetadata();
180
181  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
182    EmitCoverageFile();
183
184  if (DebugInfo)
185    DebugInfo->finalize();
186}
187
188void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
189  // Make sure that this type is translated.
190  Types.UpdateCompletedType(TD);
191}
192
193llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
194  if (!TBAA)
195    return 0;
196  return TBAA->getTBAAInfo(QTy);
197}
198
199llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
200  if (!TBAA)
201    return 0;
202  return TBAA->getTBAAInfoForVTablePtr();
203}
204
205llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
206  if (!TBAA)
207    return 0;
208  return TBAA->getTBAAStructInfo(QTy);
209}
210
211void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
212                                        llvm::MDNode *TBAAInfo) {
213  Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
214}
215
216bool CodeGenModule::isTargetDarwin() const {
217  return getContext().getTargetInfo().getTriple().isOSDarwin();
218}
219
220void CodeGenModule::Error(SourceLocation loc, StringRef error) {
221  unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
222  getDiags().Report(Context.getFullLoc(loc), diagID);
223}
224
225/// ErrorUnsupported - Print out an error that codegen doesn't support the
226/// specified stmt yet.
227void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
228                                     bool OmitOnError) {
229  if (OmitOnError && getDiags().hasErrorOccurred())
230    return;
231  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
232                                               "cannot compile this %0 yet");
233  std::string Msg = Type;
234  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
235    << Msg << S->getSourceRange();
236}
237
238/// ErrorUnsupported - Print out an error that codegen doesn't support the
239/// specified decl yet.
240void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
241                                     bool OmitOnError) {
242  if (OmitOnError && getDiags().hasErrorOccurred())
243    return;
244  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
245                                               "cannot compile this %0 yet");
246  std::string Msg = Type;
247  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
248}
249
250llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
251  return llvm::ConstantInt::get(SizeTy, size.getQuantity());
252}
253
254void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
255                                        const NamedDecl *D) const {
256  // Internal definitions always have default visibility.
257  if (GV->hasLocalLinkage()) {
258    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
259    return;
260  }
261
262  // Set visibility for definitions.
263  NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
264  if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
265    GV->setVisibility(GetLLVMVisibility(LV.visibility()));
266}
267
268static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
269  return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
270      .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
271      .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
272      .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
273      .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
274}
275
276static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
277    CodeGenOptions::TLSModel M) {
278  switch (M) {
279  case CodeGenOptions::GeneralDynamicTLSModel:
280    return llvm::GlobalVariable::GeneralDynamicTLSModel;
281  case CodeGenOptions::LocalDynamicTLSModel:
282    return llvm::GlobalVariable::LocalDynamicTLSModel;
283  case CodeGenOptions::InitialExecTLSModel:
284    return llvm::GlobalVariable::InitialExecTLSModel;
285  case CodeGenOptions::LocalExecTLSModel:
286    return llvm::GlobalVariable::LocalExecTLSModel;
287  }
288  llvm_unreachable("Invalid TLS model!");
289}
290
291void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
292                               const VarDecl &D) const {
293  assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
294
295  llvm::GlobalVariable::ThreadLocalMode TLM;
296  TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
297
298  // Override the TLS model if it is explicitly specified.
299  if (D.hasAttr<TLSModelAttr>()) {
300    const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
301    TLM = GetLLVMTLSModel(Attr->getModel());
302  }
303
304  GV->setThreadLocalMode(TLM);
305}
306
307/// Set the symbol visibility of type information (vtable and RTTI)
308/// associated with the given type.
309void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
310                                      const CXXRecordDecl *RD,
311                                      TypeVisibilityKind TVK) const {
312  setGlobalVisibility(GV, RD);
313
314  if (!CodeGenOpts.HiddenWeakVTables)
315    return;
316
317  // We never want to drop the visibility for RTTI names.
318  if (TVK == TVK_ForRTTIName)
319    return;
320
321  // We want to drop the visibility to hidden for weak type symbols.
322  // This isn't possible if there might be unresolved references
323  // elsewhere that rely on this symbol being visible.
324
325  // This should be kept roughly in sync with setThunkVisibility
326  // in CGVTables.cpp.
327
328  // Preconditions.
329  if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
330      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
331    return;
332
333  // Don't override an explicit visibility attribute.
334  if (RD->getExplicitVisibility())
335    return;
336
337  switch (RD->getTemplateSpecializationKind()) {
338  // We have to disable the optimization if this is an EI definition
339  // because there might be EI declarations in other shared objects.
340  case TSK_ExplicitInstantiationDefinition:
341  case TSK_ExplicitInstantiationDeclaration:
342    return;
343
344  // Every use of a non-template class's type information has to emit it.
345  case TSK_Undeclared:
346    break;
347
348  // In theory, implicit instantiations can ignore the possibility of
349  // an explicit instantiation declaration because there necessarily
350  // must be an EI definition somewhere with default visibility.  In
351  // practice, it's possible to have an explicit instantiation for
352  // an arbitrary template class, and linkers aren't necessarily able
353  // to deal with mixed-visibility symbols.
354  case TSK_ExplicitSpecialization:
355  case TSK_ImplicitInstantiation:
356    return;
357  }
358
359  // If there's a key function, there may be translation units
360  // that don't have the key function's definition.  But ignore
361  // this if we're emitting RTTI under -fno-rtti.
362  if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
363    if (Context.getKeyFunction(RD))
364      return;
365  }
366
367  // Otherwise, drop the visibility to hidden.
368  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
369  GV->setUnnamedAddr(true);
370}
371
372StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
373  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
374
375  StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
376  if (!Str.empty())
377    return Str;
378
379  if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
380    IdentifierInfo *II = ND->getIdentifier();
381    assert(II && "Attempt to mangle unnamed decl.");
382
383    Str = II->getName();
384    return Str;
385  }
386
387  SmallString<256> Buffer;
388  llvm::raw_svector_ostream Out(Buffer);
389  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
390    getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
391  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
392    getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
393  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
394    getCXXABI().getMangleContext().mangleBlock(BD, Out,
395      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
396  else
397    getCXXABI().getMangleContext().mangleName(ND, Out);
398
399  // Allocate space for the mangled name.
400  Out.flush();
401  size_t Length = Buffer.size();
402  char *Name = MangledNamesAllocator.Allocate<char>(Length);
403  std::copy(Buffer.begin(), Buffer.end(), Name);
404
405  Str = StringRef(Name, Length);
406
407  return Str;
408}
409
410void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
411                                        const BlockDecl *BD) {
412  MangleContext &MangleCtx = getCXXABI().getMangleContext();
413  const Decl *D = GD.getDecl();
414  llvm::raw_svector_ostream Out(Buffer.getBuffer());
415  if (D == 0)
416    MangleCtx.mangleGlobalBlock(BD,
417      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
418  else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
419    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
420  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
421    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
422  else
423    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
424}
425
426llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
427  return getModule().getNamedValue(Name);
428}
429
430/// AddGlobalCtor - Add a function to the list that will be called before
431/// main() runs.
432void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
433  // FIXME: Type coercion of void()* types.
434  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
435}
436
437/// AddGlobalDtor - Add a function to the list that will be called
438/// when the module is unloaded.
439void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
440  // FIXME: Type coercion of void()* types.
441  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
442}
443
444void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
445  // Ctor function type is void()*.
446  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
447  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
448
449  // Get the type of a ctor entry, { i32, void ()* }.
450  llvm::StructType *CtorStructTy =
451    llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
452
453  // Construct the constructor and destructor arrays.
454  SmallVector<llvm::Constant*, 8> Ctors;
455  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
456    llvm::Constant *S[] = {
457      llvm::ConstantInt::get(Int32Ty, I->second, false),
458      llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
459    };
460    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
461  }
462
463  if (!Ctors.empty()) {
464    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
465    new llvm::GlobalVariable(TheModule, AT, false,
466                             llvm::GlobalValue::AppendingLinkage,
467                             llvm::ConstantArray::get(AT, Ctors),
468                             GlobalName);
469  }
470}
471
472llvm::GlobalValue::LinkageTypes
473CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
474  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
475
476  if (Linkage == GVA_Internal)
477    return llvm::Function::InternalLinkage;
478
479  if (D->hasAttr<DLLExportAttr>())
480    return llvm::Function::DLLExportLinkage;
481
482  if (D->hasAttr<WeakAttr>())
483    return llvm::Function::WeakAnyLinkage;
484
485  // In C99 mode, 'inline' functions are guaranteed to have a strong
486  // definition somewhere else, so we can use available_externally linkage.
487  if (Linkage == GVA_C99Inline)
488    return llvm::Function::AvailableExternallyLinkage;
489
490  // Note that Apple's kernel linker doesn't support symbol
491  // coalescing, so we need to avoid linkonce and weak linkages there.
492  // Normally, this means we just map to internal, but for explicit
493  // instantiations we'll map to external.
494
495  // In C++, the compiler has to emit a definition in every translation unit
496  // that references the function.  We should use linkonce_odr because
497  // a) if all references in this translation unit are optimized away, we
498  // don't need to codegen it.  b) if the function persists, it needs to be
499  // merged with other definitions. c) C++ has the ODR, so we know the
500  // definition is dependable.
501  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
502    return !Context.getLangOpts().AppleKext
503             ? llvm::Function::LinkOnceODRLinkage
504             : llvm::Function::InternalLinkage;
505
506  // An explicit instantiation of a template has weak linkage, since
507  // explicit instantiations can occur in multiple translation units
508  // and must all be equivalent. However, we are not allowed to
509  // throw away these explicit instantiations.
510  if (Linkage == GVA_ExplicitTemplateInstantiation)
511    return !Context.getLangOpts().AppleKext
512             ? llvm::Function::WeakODRLinkage
513             : llvm::Function::ExternalLinkage;
514
515  // Otherwise, we have strong external linkage.
516  assert(Linkage == GVA_StrongExternal);
517  return llvm::Function::ExternalLinkage;
518}
519
520
521/// SetFunctionDefinitionAttributes - Set attributes for a global.
522///
523/// FIXME: This is currently only done for aliases and functions, but not for
524/// variables (these details are set in EmitGlobalVarDefinition for variables).
525void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
526                                                    llvm::GlobalValue *GV) {
527  SetCommonAttributes(D, GV);
528}
529
530void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
531                                              const CGFunctionInfo &Info,
532                                              llvm::Function *F) {
533  unsigned CallingConv;
534  AttributeListType AttributeList;
535  ConstructAttributeList(Info, D, AttributeList, CallingConv);
536  F->setAttributes(llvm::AttrListPtr::get(getLLVMContext(), AttributeList));
537  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
538}
539
540/// Determines whether the language options require us to model
541/// unwind exceptions.  We treat -fexceptions as mandating this
542/// except under the fragile ObjC ABI with only ObjC exceptions
543/// enabled.  This means, for example, that C with -fexceptions
544/// enables this.
545static bool hasUnwindExceptions(const LangOptions &LangOpts) {
546  // If exceptions are completely disabled, obviously this is false.
547  if (!LangOpts.Exceptions) return false;
548
549  // If C++ exceptions are enabled, this is true.
550  if (LangOpts.CXXExceptions) return true;
551
552  // If ObjC exceptions are enabled, this depends on the ABI.
553  if (LangOpts.ObjCExceptions) {
554    return LangOpts.ObjCRuntime.hasUnwindExceptions();
555  }
556
557  return true;
558}
559
560void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
561                                                           llvm::Function *F) {
562  if (CodeGenOpts.UnwindTables)
563    F->setHasUWTable();
564
565  if (!hasUnwindExceptions(LangOpts))
566    F->addFnAttr(llvm::Attributes::NoUnwind);
567
568  if (D->hasAttr<NakedAttr>()) {
569    // Naked implies noinline: we should not be inlining such functions.
570    F->addFnAttr(llvm::Attributes::Naked);
571    F->addFnAttr(llvm::Attributes::NoInline);
572  }
573
574  if (D->hasAttr<NoInlineAttr>())
575    F->addFnAttr(llvm::Attributes::NoInline);
576
577  // (noinline wins over always_inline, and we can't specify both in IR)
578  if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
579      !F->getFnAttributes().hasAttribute(llvm::Attributes::NoInline))
580    F->addFnAttr(llvm::Attributes::AlwaysInline);
581
582  // FIXME: Communicate hot and cold attributes to LLVM more directly.
583  if (D->hasAttr<ColdAttr>())
584    F->addFnAttr(llvm::Attributes::OptimizeForSize);
585
586  if (D->hasAttr<MinSizeAttr>())
587    F->addFnAttr(llvm::Attributes::MinSize);
588
589  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
590    F->setUnnamedAddr(true);
591
592  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
593    if (MD->isVirtual())
594      F->setUnnamedAddr(true);
595
596  if (LangOpts.getStackProtector() == LangOptions::SSPOn)
597    F->addFnAttr(llvm::Attributes::StackProtect);
598  else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
599    F->addFnAttr(llvm::Attributes::StackProtectReq);
600
601  if (LangOpts.SanitizeAddress) {
602    // When AddressSanitizer is enabled, set AddressSafety attribute
603    // unless __attribute__((no_address_safety_analysis)) is used.
604    if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
605      F->addFnAttr(llvm::Attributes::AddressSafety);
606  }
607
608  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
609  if (alignment)
610    F->setAlignment(alignment);
611
612  // C++ ABI requires 2-byte alignment for member functions.
613  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
614    F->setAlignment(2);
615}
616
617void CodeGenModule::SetCommonAttributes(const Decl *D,
618                                        llvm::GlobalValue *GV) {
619  if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
620    setGlobalVisibility(GV, ND);
621  else
622    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
623
624  if (D->hasAttr<UsedAttr>())
625    AddUsedGlobal(GV);
626
627  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
628    GV->setSection(SA->getName());
629
630  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
631}
632
633void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
634                                                  llvm::Function *F,
635                                                  const CGFunctionInfo &FI) {
636  SetLLVMFunctionAttributes(D, FI, F);
637  SetLLVMFunctionAttributesForDefinition(D, F);
638
639  F->setLinkage(llvm::Function::InternalLinkage);
640
641  SetCommonAttributes(D, F);
642}
643
644void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
645                                          llvm::Function *F,
646                                          bool IsIncompleteFunction) {
647  if (unsigned IID = F->getIntrinsicID()) {
648    // If this is an intrinsic function, set the function's attributes
649    // to the intrinsic's attributes.
650    F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
651                                                    (llvm::Intrinsic::ID)IID));
652    return;
653  }
654
655  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
656
657  if (!IsIncompleteFunction)
658    SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
659
660  // Only a few attributes are set on declarations; these may later be
661  // overridden by a definition.
662
663  if (FD->hasAttr<DLLImportAttr>()) {
664    F->setLinkage(llvm::Function::DLLImportLinkage);
665  } else if (FD->hasAttr<WeakAttr>() ||
666             FD->isWeakImported()) {
667    // "extern_weak" is overloaded in LLVM; we probably should have
668    // separate linkage types for this.
669    F->setLinkage(llvm::Function::ExternalWeakLinkage);
670  } else {
671    F->setLinkage(llvm::Function::ExternalLinkage);
672
673    NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
674    if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
675      F->setVisibility(GetLLVMVisibility(LV.visibility()));
676    }
677  }
678
679  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
680    F->setSection(SA->getName());
681}
682
683void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
684  assert(!GV->isDeclaration() &&
685         "Only globals with definition can force usage.");
686  LLVMUsed.push_back(GV);
687}
688
689void CodeGenModule::EmitLLVMUsed() {
690  // Don't create llvm.used if there is no need.
691  if (LLVMUsed.empty())
692    return;
693
694  // Convert LLVMUsed to what ConstantArray needs.
695  SmallVector<llvm::Constant*, 8> UsedArray;
696  UsedArray.resize(LLVMUsed.size());
697  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
698    UsedArray[i] =
699     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
700                                    Int8PtrTy);
701  }
702
703  if (UsedArray.empty())
704    return;
705  llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
706
707  llvm::GlobalVariable *GV =
708    new llvm::GlobalVariable(getModule(), ATy, false,
709                             llvm::GlobalValue::AppendingLinkage,
710                             llvm::ConstantArray::get(ATy, UsedArray),
711                             "llvm.used");
712
713  GV->setSection("llvm.metadata");
714}
715
716void CodeGenModule::EmitDeferred() {
717  // Emit code for any potentially referenced deferred decls.  Since a
718  // previously unused static decl may become used during the generation of code
719  // for a static function, iterate until no changes are made.
720
721  while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
722    if (!DeferredVTables.empty()) {
723      const CXXRecordDecl *RD = DeferredVTables.back();
724      DeferredVTables.pop_back();
725      getCXXABI().EmitVTables(RD);
726      continue;
727    }
728
729    GlobalDecl D = DeferredDeclsToEmit.back();
730    DeferredDeclsToEmit.pop_back();
731
732    // Check to see if we've already emitted this.  This is necessary
733    // for a couple of reasons: first, decls can end up in the
734    // deferred-decls queue multiple times, and second, decls can end
735    // up with definitions in unusual ways (e.g. by an extern inline
736    // function acquiring a strong function redefinition).  Just
737    // ignore these cases.
738    //
739    // TODO: That said, looking this up multiple times is very wasteful.
740    StringRef Name = getMangledName(D);
741    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
742    assert(CGRef && "Deferred decl wasn't referenced?");
743
744    if (!CGRef->isDeclaration())
745      continue;
746
747    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
748    // purposes an alias counts as a definition.
749    if (isa<llvm::GlobalAlias>(CGRef))
750      continue;
751
752    // Otherwise, emit the definition and move on to the next one.
753    EmitGlobalDefinition(D);
754  }
755}
756
757void CodeGenModule::EmitGlobalAnnotations() {
758  if (Annotations.empty())
759    return;
760
761  // Create a new global variable for the ConstantStruct in the Module.
762  llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
763    Annotations[0]->getType(), Annotations.size()), Annotations);
764  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
765    Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
766    "llvm.global.annotations");
767  gv->setSection(AnnotationSection);
768}
769
770llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
771  llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
772  if (i != AnnotationStrings.end())
773    return i->second;
774
775  // Not found yet, create a new global.
776  llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
777  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
778    true, llvm::GlobalValue::PrivateLinkage, s, ".str");
779  gv->setSection(AnnotationSection);
780  gv->setUnnamedAddr(true);
781  AnnotationStrings[Str] = gv;
782  return gv;
783}
784
785llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
786  SourceManager &SM = getContext().getSourceManager();
787  PresumedLoc PLoc = SM.getPresumedLoc(Loc);
788  if (PLoc.isValid())
789    return EmitAnnotationString(PLoc.getFilename());
790  return EmitAnnotationString(SM.getBufferName(Loc));
791}
792
793llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
794  SourceManager &SM = getContext().getSourceManager();
795  PresumedLoc PLoc = SM.getPresumedLoc(L);
796  unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
797    SM.getExpansionLineNumber(L);
798  return llvm::ConstantInt::get(Int32Ty, LineNo);
799}
800
801llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
802                                                const AnnotateAttr *AA,
803                                                SourceLocation L) {
804  // Get the globals for file name, annotation, and the line number.
805  llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
806                 *UnitGV = EmitAnnotationUnit(L),
807                 *LineNoCst = EmitAnnotationLineNo(L);
808
809  // Create the ConstantStruct for the global annotation.
810  llvm::Constant *Fields[4] = {
811    llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
812    llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
813    llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
814    LineNoCst
815  };
816  return llvm::ConstantStruct::getAnon(Fields);
817}
818
819void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
820                                         llvm::GlobalValue *GV) {
821  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
822  // Get the struct elements for these annotations.
823  for (specific_attr_iterator<AnnotateAttr>
824       ai = D->specific_attr_begin<AnnotateAttr>(),
825       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
826    Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
827}
828
829bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
830  // Never defer when EmitAllDecls is specified.
831  if (LangOpts.EmitAllDecls)
832    return false;
833
834  return !getContext().DeclMustBeEmitted(Global);
835}
836
837llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
838    const CXXUuidofExpr* E) {
839  // Sema has verified that IIDSource has a __declspec(uuid()), and that its
840  // well-formed.
841  StringRef Uuid;
842  if (E->isTypeOperand())
843    Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
844  else {
845    // Special case: __uuidof(0) means an all-zero GUID.
846    Expr *Op = E->getExprOperand();
847    if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
848      Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
849    else
850      Uuid = "00000000-0000-0000-0000-000000000000";
851  }
852  std::string Name = "__uuid_" + Uuid.str();
853
854  // Look for an existing global.
855  if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
856    return GV;
857
858  llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
859  assert(Init && "failed to initialize as constant");
860
861  // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
862  // first field is declared as "long", which for many targets is 8 bytes.
863  // Those architectures are not supported. (With the MS abi, long is always 4
864  // bytes.)
865  llvm::Type *GuidType = getTypes().ConvertType(E->getType());
866  if (Init->getType() != GuidType) {
867    DiagnosticsEngine &Diags = getDiags();
868    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
869        "__uuidof codegen is not supported on this architecture");
870    Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
871    Init = llvm::UndefValue::get(GuidType);
872  }
873
874  llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
875      /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
876  GV->setUnnamedAddr(true);
877  return GV;
878}
879
880llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
881  const AliasAttr *AA = VD->getAttr<AliasAttr>();
882  assert(AA && "No alias?");
883
884  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
885
886  // See if there is already something with the target's name in the module.
887  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
888  if (Entry) {
889    unsigned AS = getContext().getTargetAddressSpace(VD->getType());
890    return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
891  }
892
893  llvm::Constant *Aliasee;
894  if (isa<llvm::FunctionType>(DeclTy))
895    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
896                                      GlobalDecl(cast<FunctionDecl>(VD)),
897                                      /*ForVTable=*/false);
898  else
899    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
900                                    llvm::PointerType::getUnqual(DeclTy), 0);
901
902  llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
903  F->setLinkage(llvm::Function::ExternalWeakLinkage);
904  WeakRefReferences.insert(F);
905
906  return Aliasee;
907}
908
909void CodeGenModule::EmitGlobal(GlobalDecl GD) {
910  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
911
912  // Weak references don't produce any output by themselves.
913  if (Global->hasAttr<WeakRefAttr>())
914    return;
915
916  // If this is an alias definition (which otherwise looks like a declaration)
917  // emit it now.
918  if (Global->hasAttr<AliasAttr>())
919    return EmitAliasDefinition(GD);
920
921  // If this is CUDA, be selective about which declarations we emit.
922  if (LangOpts.CUDA) {
923    if (CodeGenOpts.CUDAIsDevice) {
924      if (!Global->hasAttr<CUDADeviceAttr>() &&
925          !Global->hasAttr<CUDAGlobalAttr>() &&
926          !Global->hasAttr<CUDAConstantAttr>() &&
927          !Global->hasAttr<CUDASharedAttr>())
928        return;
929    } else {
930      if (!Global->hasAttr<CUDAHostAttr>() && (
931            Global->hasAttr<CUDADeviceAttr>() ||
932            Global->hasAttr<CUDAConstantAttr>() ||
933            Global->hasAttr<CUDASharedAttr>()))
934        return;
935    }
936  }
937
938  // Ignore declarations, they will be emitted on their first use.
939  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
940    // Forward declarations are emitted lazily on first use.
941    if (!FD->doesThisDeclarationHaveABody()) {
942      if (!FD->doesDeclarationForceExternallyVisibleDefinition())
943        return;
944
945      const FunctionDecl *InlineDefinition = 0;
946      FD->getBody(InlineDefinition);
947
948      StringRef MangledName = getMangledName(GD);
949      DeferredDecls.erase(MangledName);
950      EmitGlobalDefinition(InlineDefinition);
951      return;
952    }
953  } else {
954    const VarDecl *VD = cast<VarDecl>(Global);
955    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
956
957    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
958      return;
959  }
960
961  // Defer code generation when possible if this is a static definition, inline
962  // function etc.  These we only want to emit if they are used.
963  if (!MayDeferGeneration(Global)) {
964    // Emit the definition if it can't be deferred.
965    EmitGlobalDefinition(GD);
966    return;
967  }
968
969  // If we're deferring emission of a C++ variable with an
970  // initializer, remember the order in which it appeared in the file.
971  if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
972      cast<VarDecl>(Global)->hasInit()) {
973    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
974    CXXGlobalInits.push_back(0);
975  }
976
977  // If the value has already been used, add it directly to the
978  // DeferredDeclsToEmit list.
979  StringRef MangledName = getMangledName(GD);
980  if (GetGlobalValue(MangledName))
981    DeferredDeclsToEmit.push_back(GD);
982  else {
983    // Otherwise, remember that we saw a deferred decl with this name.  The
984    // first use of the mangled name will cause it to move into
985    // DeferredDeclsToEmit.
986    DeferredDecls[MangledName] = GD;
987  }
988}
989
990namespace {
991  struct FunctionIsDirectlyRecursive :
992    public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
993    const StringRef Name;
994    const Builtin::Context &BI;
995    bool Result;
996    FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
997      Name(N), BI(C), Result(false) {
998    }
999    typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1000
1001    bool TraverseCallExpr(CallExpr *E) {
1002      const FunctionDecl *FD = E->getDirectCallee();
1003      if (!FD)
1004        return true;
1005      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1006      if (Attr && Name == Attr->getLabel()) {
1007        Result = true;
1008        return false;
1009      }
1010      unsigned BuiltinID = FD->getBuiltinID();
1011      if (!BuiltinID)
1012        return true;
1013      StringRef BuiltinName = BI.GetName(BuiltinID);
1014      if (BuiltinName.startswith("__builtin_") &&
1015          Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1016        Result = true;
1017        return false;
1018      }
1019      return true;
1020    }
1021  };
1022}
1023
1024// isTriviallyRecursive - Check if this function calls another
1025// decl that, because of the asm attribute or the other decl being a builtin,
1026// ends up pointing to itself.
1027bool
1028CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1029  StringRef Name;
1030  if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1031    // asm labels are a special kind of mangling we have to support.
1032    AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1033    if (!Attr)
1034      return false;
1035    Name = Attr->getLabel();
1036  } else {
1037    Name = FD->getName();
1038  }
1039
1040  FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1041  Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1042  return Walker.Result;
1043}
1044
1045bool
1046CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1047  if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1048    return true;
1049  if (CodeGenOpts.OptimizationLevel == 0 &&
1050      !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1051    return false;
1052  // PR9614. Avoid cases where the source code is lying to us. An available
1053  // externally function should have an equivalent function somewhere else,
1054  // but a function that calls itself is clearly not equivalent to the real
1055  // implementation.
1056  // This happens in glibc's btowc and in some configure checks.
1057  return !isTriviallyRecursive(F);
1058}
1059
1060void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1061  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1062
1063  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1064                                 Context.getSourceManager(),
1065                                 "Generating code for declaration");
1066
1067  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1068    // At -O0, don't generate IR for functions with available_externally
1069    // linkage.
1070    if (!shouldEmitFunction(Function))
1071      return;
1072
1073    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1074      // Make sure to emit the definition(s) before we emit the thunks.
1075      // This is necessary for the generation of certain thunks.
1076      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1077        EmitCXXConstructor(CD, GD.getCtorType());
1078      else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1079        EmitCXXDestructor(DD, GD.getDtorType());
1080      else
1081        EmitGlobalFunctionDefinition(GD);
1082
1083      if (Method->isVirtual())
1084        getVTables().EmitThunks(GD);
1085
1086      return;
1087    }
1088
1089    return EmitGlobalFunctionDefinition(GD);
1090  }
1091
1092  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1093    return EmitGlobalVarDefinition(VD);
1094
1095  llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1096}
1097
1098/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1099/// module, create and return an llvm Function with the specified type. If there
1100/// is something in the module with the specified name, return it potentially
1101/// bitcasted to the right type.
1102///
1103/// If D is non-null, it specifies a decl that correspond to this.  This is used
1104/// to set the attributes on the function when it is first created.
1105llvm::Constant *
1106CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1107                                       llvm::Type *Ty,
1108                                       GlobalDecl D, bool ForVTable,
1109                                       llvm::Attributes ExtraAttrs) {
1110  // Lookup the entry, lazily creating it if necessary.
1111  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1112  if (Entry) {
1113    if (WeakRefReferences.erase(Entry)) {
1114      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1115      if (FD && !FD->hasAttr<WeakAttr>())
1116        Entry->setLinkage(llvm::Function::ExternalLinkage);
1117    }
1118
1119    if (Entry->getType()->getElementType() == Ty)
1120      return Entry;
1121
1122    // Make sure the result is of the correct type.
1123    return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1124  }
1125
1126  // This function doesn't have a complete type (for example, the return
1127  // type is an incomplete struct). Use a fake type instead, and make
1128  // sure not to try to set attributes.
1129  bool IsIncompleteFunction = false;
1130
1131  llvm::FunctionType *FTy;
1132  if (isa<llvm::FunctionType>(Ty)) {
1133    FTy = cast<llvm::FunctionType>(Ty);
1134  } else {
1135    FTy = llvm::FunctionType::get(VoidTy, false);
1136    IsIncompleteFunction = true;
1137  }
1138
1139  llvm::Function *F = llvm::Function::Create(FTy,
1140                                             llvm::Function::ExternalLinkage,
1141                                             MangledName, &getModule());
1142  assert(F->getName() == MangledName && "name was uniqued!");
1143  if (D.getDecl())
1144    SetFunctionAttributes(D, F, IsIncompleteFunction);
1145  if (ExtraAttrs.hasAttributes())
1146    F->addAttribute(llvm::AttrListPtr::FunctionIndex, ExtraAttrs);
1147
1148  // This is the first use or definition of a mangled name.  If there is a
1149  // deferred decl with this name, remember that we need to emit it at the end
1150  // of the file.
1151  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1152  if (DDI != DeferredDecls.end()) {
1153    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1154    // list, and remove it from DeferredDecls (since we don't need it anymore).
1155    DeferredDeclsToEmit.push_back(DDI->second);
1156    DeferredDecls.erase(DDI);
1157
1158  // Otherwise, there are cases we have to worry about where we're
1159  // using a declaration for which we must emit a definition but where
1160  // we might not find a top-level definition:
1161  //   - member functions defined inline in their classes
1162  //   - friend functions defined inline in some class
1163  //   - special member functions with implicit definitions
1164  // If we ever change our AST traversal to walk into class methods,
1165  // this will be unnecessary.
1166  //
1167  // We also don't emit a definition for a function if it's going to be an entry
1168  // in a vtable, unless it's already marked as used.
1169  } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1170    // Look for a declaration that's lexically in a record.
1171    const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1172    FD = FD->getMostRecentDecl();
1173    do {
1174      if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1175        if (FD->isImplicit() && !ForVTable) {
1176          assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1177          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1178          break;
1179        } else if (FD->doesThisDeclarationHaveABody()) {
1180          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1181          break;
1182        }
1183      }
1184      FD = FD->getPreviousDecl();
1185    } while (FD);
1186  }
1187
1188  // Make sure the result is of the requested type.
1189  if (!IsIncompleteFunction) {
1190    assert(F->getType()->getElementType() == Ty);
1191    return F;
1192  }
1193
1194  llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1195  return llvm::ConstantExpr::getBitCast(F, PTy);
1196}
1197
1198/// GetAddrOfFunction - Return the address of the given function.  If Ty is
1199/// non-null, then this function will use the specified type if it has to
1200/// create it (this occurs when we see a definition of the function).
1201llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1202                                                 llvm::Type *Ty,
1203                                                 bool ForVTable) {
1204  // If there was no specific requested type, just convert it now.
1205  if (!Ty)
1206    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1207
1208  StringRef MangledName = getMangledName(GD);
1209  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1210}
1211
1212/// CreateRuntimeFunction - Create a new runtime function with the specified
1213/// type and name.
1214llvm::Constant *
1215CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1216                                     StringRef Name,
1217                                     llvm::Attributes ExtraAttrs) {
1218  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1219                                 ExtraAttrs);
1220}
1221
1222/// isTypeConstant - Determine whether an object of this type can be emitted
1223/// as a constant.
1224///
1225/// If ExcludeCtor is true, the duration when the object's constructor runs
1226/// will not be considered. The caller will need to verify that the object is
1227/// not written to during its construction.
1228bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1229  if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1230    return false;
1231
1232  if (Context.getLangOpts().CPlusPlus) {
1233    if (const CXXRecordDecl *Record
1234          = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1235      return ExcludeCtor && !Record->hasMutableFields() &&
1236             Record->hasTrivialDestructor();
1237  }
1238
1239  return true;
1240}
1241
1242/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1243/// create and return an llvm GlobalVariable with the specified type.  If there
1244/// is something in the module with the specified name, return it potentially
1245/// bitcasted to the right type.
1246///
1247/// If D is non-null, it specifies a decl that correspond to this.  This is used
1248/// to set the attributes on the global when it is first created.
1249llvm::Constant *
1250CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1251                                     llvm::PointerType *Ty,
1252                                     const VarDecl *D,
1253                                     bool UnnamedAddr) {
1254  // Lookup the entry, lazily creating it if necessary.
1255  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1256  if (Entry) {
1257    if (WeakRefReferences.erase(Entry)) {
1258      if (D && !D->hasAttr<WeakAttr>())
1259        Entry->setLinkage(llvm::Function::ExternalLinkage);
1260    }
1261
1262    if (UnnamedAddr)
1263      Entry->setUnnamedAddr(true);
1264
1265    if (Entry->getType() == Ty)
1266      return Entry;
1267
1268    // Make sure the result is of the correct type.
1269    return llvm::ConstantExpr::getBitCast(Entry, Ty);
1270  }
1271
1272  // This is the first use or definition of a mangled name.  If there is a
1273  // deferred decl with this name, remember that we need to emit it at the end
1274  // of the file.
1275  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1276  if (DDI != DeferredDecls.end()) {
1277    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1278    // list, and remove it from DeferredDecls (since we don't need it anymore).
1279    DeferredDeclsToEmit.push_back(DDI->second);
1280    DeferredDecls.erase(DDI);
1281  }
1282
1283  unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1284  llvm::GlobalVariable *GV =
1285    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1286                             llvm::GlobalValue::ExternalLinkage,
1287                             0, MangledName, 0,
1288                             llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1289
1290  // Handle things which are present even on external declarations.
1291  if (D) {
1292    // FIXME: This code is overly simple and should be merged with other global
1293    // handling.
1294    GV->setConstant(isTypeConstant(D->getType(), false));
1295
1296    // Set linkage and visibility in case we never see a definition.
1297    NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1298    if (LV.linkage() != ExternalLinkage) {
1299      // Don't set internal linkage on declarations.
1300    } else {
1301      if (D->hasAttr<DLLImportAttr>())
1302        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1303      else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1304        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1305
1306      // Set visibility on a declaration only if it's explicit.
1307      if (LV.visibilityExplicit())
1308        GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1309    }
1310
1311    if (D->isThreadSpecified())
1312      setTLSMode(GV, *D);
1313  }
1314
1315  if (AddrSpace != Ty->getAddressSpace())
1316    return llvm::ConstantExpr::getBitCast(GV, Ty);
1317  else
1318    return GV;
1319}
1320
1321
1322llvm::GlobalVariable *
1323CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1324                                      llvm::Type *Ty,
1325                                      llvm::GlobalValue::LinkageTypes Linkage) {
1326  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1327  llvm::GlobalVariable *OldGV = 0;
1328
1329
1330  if (GV) {
1331    // Check if the variable has the right type.
1332    if (GV->getType()->getElementType() == Ty)
1333      return GV;
1334
1335    // Because C++ name mangling, the only way we can end up with an already
1336    // existing global with the same name is if it has been declared extern "C".
1337    assert(GV->isDeclaration() && "Declaration has wrong type!");
1338    OldGV = GV;
1339  }
1340
1341  // Create a new variable.
1342  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1343                                Linkage, 0, Name);
1344
1345  if (OldGV) {
1346    // Replace occurrences of the old variable if needed.
1347    GV->takeName(OldGV);
1348
1349    if (!OldGV->use_empty()) {
1350      llvm::Constant *NewPtrForOldDecl =
1351      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1352      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1353    }
1354
1355    OldGV->eraseFromParent();
1356  }
1357
1358  return GV;
1359}
1360
1361/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1362/// given global variable.  If Ty is non-null and if the global doesn't exist,
1363/// then it will be created with the specified type instead of whatever the
1364/// normal requested type would be.
1365llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1366                                                  llvm::Type *Ty) {
1367  assert(D->hasGlobalStorage() && "Not a global variable");
1368  QualType ASTTy = D->getType();
1369  if (Ty == 0)
1370    Ty = getTypes().ConvertTypeForMem(ASTTy);
1371
1372  llvm::PointerType *PTy =
1373    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1374
1375  StringRef MangledName = getMangledName(D);
1376  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1377}
1378
1379/// CreateRuntimeVariable - Create a new runtime global variable with the
1380/// specified type and name.
1381llvm::Constant *
1382CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1383                                     StringRef Name) {
1384  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1385                               true);
1386}
1387
1388void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1389  assert(!D->getInit() && "Cannot emit definite definitions here!");
1390
1391  if (MayDeferGeneration(D)) {
1392    // If we have not seen a reference to this variable yet, place it
1393    // into the deferred declarations table to be emitted if needed
1394    // later.
1395    StringRef MangledName = getMangledName(D);
1396    if (!GetGlobalValue(MangledName)) {
1397      DeferredDecls[MangledName] = D;
1398      return;
1399    }
1400  }
1401
1402  // The tentative definition is the only definition.
1403  EmitGlobalVarDefinition(D);
1404}
1405
1406void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1407  if (DefinitionRequired)
1408    getCXXABI().EmitVTables(Class);
1409}
1410
1411llvm::GlobalVariable::LinkageTypes
1412CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1413  if (RD->getLinkage() != ExternalLinkage)
1414    return llvm::GlobalVariable::InternalLinkage;
1415
1416  if (const CXXMethodDecl *KeyFunction
1417                                    = RD->getASTContext().getKeyFunction(RD)) {
1418    // If this class has a key function, use that to determine the linkage of
1419    // the vtable.
1420    const FunctionDecl *Def = 0;
1421    if (KeyFunction->hasBody(Def))
1422      KeyFunction = cast<CXXMethodDecl>(Def);
1423
1424    switch (KeyFunction->getTemplateSpecializationKind()) {
1425      case TSK_Undeclared:
1426      case TSK_ExplicitSpecialization:
1427        // When compiling with optimizations turned on, we emit all vtables,
1428        // even if the key function is not defined in the current translation
1429        // unit. If this is the case, use available_externally linkage.
1430        if (!Def && CodeGenOpts.OptimizationLevel)
1431          return llvm::GlobalVariable::AvailableExternallyLinkage;
1432
1433        if (KeyFunction->isInlined())
1434          return !Context.getLangOpts().AppleKext ?
1435                   llvm::GlobalVariable::LinkOnceODRLinkage :
1436                   llvm::Function::InternalLinkage;
1437
1438        return llvm::GlobalVariable::ExternalLinkage;
1439
1440      case TSK_ImplicitInstantiation:
1441        return !Context.getLangOpts().AppleKext ?
1442                 llvm::GlobalVariable::LinkOnceODRLinkage :
1443                 llvm::Function::InternalLinkage;
1444
1445      case TSK_ExplicitInstantiationDefinition:
1446        return !Context.getLangOpts().AppleKext ?
1447                 llvm::GlobalVariable::WeakODRLinkage :
1448                 llvm::Function::InternalLinkage;
1449
1450      case TSK_ExplicitInstantiationDeclaration:
1451        // FIXME: Use available_externally linkage. However, this currently
1452        // breaks LLVM's build due to undefined symbols.
1453        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1454        return !Context.getLangOpts().AppleKext ?
1455                 llvm::GlobalVariable::LinkOnceODRLinkage :
1456                 llvm::Function::InternalLinkage;
1457    }
1458  }
1459
1460  if (Context.getLangOpts().AppleKext)
1461    return llvm::Function::InternalLinkage;
1462
1463  switch (RD->getTemplateSpecializationKind()) {
1464  case TSK_Undeclared:
1465  case TSK_ExplicitSpecialization:
1466  case TSK_ImplicitInstantiation:
1467    // FIXME: Use available_externally linkage. However, this currently
1468    // breaks LLVM's build due to undefined symbols.
1469    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1470  case TSK_ExplicitInstantiationDeclaration:
1471    return llvm::GlobalVariable::LinkOnceODRLinkage;
1472
1473  case TSK_ExplicitInstantiationDefinition:
1474      return llvm::GlobalVariable::WeakODRLinkage;
1475  }
1476
1477  llvm_unreachable("Invalid TemplateSpecializationKind!");
1478}
1479
1480CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1481    return Context.toCharUnitsFromBits(
1482      TheDataLayout.getTypeStoreSizeInBits(Ty));
1483}
1484
1485llvm::Constant *
1486CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1487                                                       const Expr *rawInit) {
1488  ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1489  if (const ExprWithCleanups *withCleanups =
1490          dyn_cast<ExprWithCleanups>(rawInit)) {
1491    cleanups = withCleanups->getObjects();
1492    rawInit = withCleanups->getSubExpr();
1493  }
1494
1495  const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1496  if (!init || !init->initializesStdInitializerList() ||
1497      init->getNumInits() == 0)
1498    return 0;
1499
1500  ASTContext &ctx = getContext();
1501  unsigned numInits = init->getNumInits();
1502  // FIXME: This check is here because we would otherwise silently miscompile
1503  // nested global std::initializer_lists. Better would be to have a real
1504  // implementation.
1505  for (unsigned i = 0; i < numInits; ++i) {
1506    const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1507    if (inner && inner->initializesStdInitializerList()) {
1508      ErrorUnsupported(inner, "nested global std::initializer_list");
1509      return 0;
1510    }
1511  }
1512
1513  // Synthesize a fake VarDecl for the array and initialize that.
1514  QualType elementType = init->getInit(0)->getType();
1515  llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1516  QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1517                                                ArrayType::Normal, 0);
1518
1519  IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1520  TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1521                                              arrayType, D->getLocation());
1522  VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1523                                                          D->getDeclContext()),
1524                                          D->getLocStart(), D->getLocation(),
1525                                          name, arrayType, sourceInfo,
1526                                          SC_Static, SC_Static);
1527
1528  // Now clone the InitListExpr to initialize the array instead.
1529  // Incredible hack: we want to use the existing InitListExpr here, so we need
1530  // to tell it that it no longer initializes a std::initializer_list.
1531  ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1532                        init->getNumInits());
1533  Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1534                                           init->getRBraceLoc());
1535  arrayInit->setType(arrayType);
1536
1537  if (!cleanups.empty())
1538    arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1539
1540  backingArray->setInit(arrayInit);
1541
1542  // Emit the definition of the array.
1543  EmitGlobalVarDefinition(backingArray);
1544
1545  // Inspect the initializer list to validate it and determine its type.
1546  // FIXME: doing this every time is probably inefficient; caching would be nice
1547  RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1548  RecordDecl::field_iterator field = record->field_begin();
1549  if (field == record->field_end()) {
1550    ErrorUnsupported(D, "weird std::initializer_list");
1551    return 0;
1552  }
1553  QualType elementPtr = ctx.getPointerType(elementType.withConst());
1554  // Start pointer.
1555  if (!ctx.hasSameType(field->getType(), elementPtr)) {
1556    ErrorUnsupported(D, "weird std::initializer_list");
1557    return 0;
1558  }
1559  ++field;
1560  if (field == record->field_end()) {
1561    ErrorUnsupported(D, "weird std::initializer_list");
1562    return 0;
1563  }
1564  bool isStartEnd = false;
1565  if (ctx.hasSameType(field->getType(), elementPtr)) {
1566    // End pointer.
1567    isStartEnd = true;
1568  } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1569    ErrorUnsupported(D, "weird std::initializer_list");
1570    return 0;
1571  }
1572
1573  // Now build an APValue representing the std::initializer_list.
1574  APValue initListValue(APValue::UninitStruct(), 0, 2);
1575  APValue &startField = initListValue.getStructField(0);
1576  APValue::LValuePathEntry startOffsetPathEntry;
1577  startOffsetPathEntry.ArrayIndex = 0;
1578  startField = APValue(APValue::LValueBase(backingArray),
1579                       CharUnits::fromQuantity(0),
1580                       llvm::makeArrayRef(startOffsetPathEntry),
1581                       /*IsOnePastTheEnd=*/false, 0);
1582
1583  if (isStartEnd) {
1584    APValue &endField = initListValue.getStructField(1);
1585    APValue::LValuePathEntry endOffsetPathEntry;
1586    endOffsetPathEntry.ArrayIndex = numInits;
1587    endField = APValue(APValue::LValueBase(backingArray),
1588                       ctx.getTypeSizeInChars(elementType) * numInits,
1589                       llvm::makeArrayRef(endOffsetPathEntry),
1590                       /*IsOnePastTheEnd=*/true, 0);
1591  } else {
1592    APValue &sizeField = initListValue.getStructField(1);
1593    sizeField = APValue(llvm::APSInt(numElements));
1594  }
1595
1596  // Emit the constant for the initializer_list.
1597  llvm::Constant *llvmInit =
1598      EmitConstantValueForMemory(initListValue, D->getType());
1599  assert(llvmInit && "failed to initialize as constant");
1600  return llvmInit;
1601}
1602
1603unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1604                                                 unsigned AddrSpace) {
1605  if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1606    if (D->hasAttr<CUDAConstantAttr>())
1607      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1608    else if (D->hasAttr<CUDASharedAttr>())
1609      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1610    else
1611      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1612  }
1613
1614  return AddrSpace;
1615}
1616
1617void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1618  llvm::Constant *Init = 0;
1619  QualType ASTTy = D->getType();
1620  CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1621  bool NeedsGlobalCtor = false;
1622  bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1623
1624  const VarDecl *InitDecl;
1625  const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1626
1627  if (!InitExpr) {
1628    // This is a tentative definition; tentative definitions are
1629    // implicitly initialized with { 0 }.
1630    //
1631    // Note that tentative definitions are only emitted at the end of
1632    // a translation unit, so they should never have incomplete
1633    // type. In addition, EmitTentativeDefinition makes sure that we
1634    // never attempt to emit a tentative definition if a real one
1635    // exists. A use may still exists, however, so we still may need
1636    // to do a RAUW.
1637    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1638    Init = EmitNullConstant(D->getType());
1639  } else {
1640    // If this is a std::initializer_list, emit the special initializer.
1641    Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1642    // An empty init list will perform zero-initialization, which happens
1643    // to be exactly what we want.
1644    // FIXME: It does so in a global constructor, which is *not* what we
1645    // want.
1646
1647    if (!Init) {
1648      initializedGlobalDecl = GlobalDecl(D);
1649      Init = EmitConstantInit(*InitDecl);
1650    }
1651    if (!Init) {
1652      QualType T = InitExpr->getType();
1653      if (D->getType()->isReferenceType())
1654        T = D->getType();
1655
1656      if (getLangOpts().CPlusPlus) {
1657        Init = EmitNullConstant(T);
1658        NeedsGlobalCtor = true;
1659      } else {
1660        ErrorUnsupported(D, "static initializer");
1661        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1662      }
1663    } else {
1664      // We don't need an initializer, so remove the entry for the delayed
1665      // initializer position (just in case this entry was delayed) if we
1666      // also don't need to register a destructor.
1667      if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1668        DelayedCXXInitPosition.erase(D);
1669    }
1670  }
1671
1672  llvm::Type* InitType = Init->getType();
1673  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1674
1675  // Strip off a bitcast if we got one back.
1676  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1677    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1678           // all zero index gep.
1679           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1680    Entry = CE->getOperand(0);
1681  }
1682
1683  // Entry is now either a Function or GlobalVariable.
1684  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1685
1686  // We have a definition after a declaration with the wrong type.
1687  // We must make a new GlobalVariable* and update everything that used OldGV
1688  // (a declaration or tentative definition) with the new GlobalVariable*
1689  // (which will be a definition).
1690  //
1691  // This happens if there is a prototype for a global (e.g.
1692  // "extern int x[];") and then a definition of a different type (e.g.
1693  // "int x[10];"). This also happens when an initializer has a different type
1694  // from the type of the global (this happens with unions).
1695  if (GV == 0 ||
1696      GV->getType()->getElementType() != InitType ||
1697      GV->getType()->getAddressSpace() !=
1698       GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1699
1700    // Move the old entry aside so that we'll create a new one.
1701    Entry->setName(StringRef());
1702
1703    // Make a new global with the correct type, this is now guaranteed to work.
1704    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1705
1706    // Replace all uses of the old global with the new global
1707    llvm::Constant *NewPtrForOldDecl =
1708        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1709    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1710
1711    // Erase the old global, since it is no longer used.
1712    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1713  }
1714
1715  if (D->hasAttr<AnnotateAttr>())
1716    AddGlobalAnnotations(D, GV);
1717
1718  GV->setInitializer(Init);
1719
1720  // If it is safe to mark the global 'constant', do so now.
1721  GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1722                  isTypeConstant(D->getType(), true));
1723
1724  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1725
1726  // Set the llvm linkage type as appropriate.
1727  llvm::GlobalValue::LinkageTypes Linkage =
1728    GetLLVMLinkageVarDefinition(D, GV);
1729  GV->setLinkage(Linkage);
1730  if (Linkage == llvm::GlobalVariable::CommonLinkage)
1731    // common vars aren't constant even if declared const.
1732    GV->setConstant(false);
1733
1734  SetCommonAttributes(D, GV);
1735
1736  // Emit the initializer function if necessary.
1737  if (NeedsGlobalCtor || NeedsGlobalDtor)
1738    EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1739
1740  // If we are compiling with ASan, add metadata indicating dynamically
1741  // initialized globals.
1742  if (LangOpts.SanitizeAddress && NeedsGlobalCtor) {
1743    llvm::Module &M = getModule();
1744
1745    llvm::NamedMDNode *DynamicInitializers =
1746        M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1747    llvm::Value *GlobalToAdd[] = { GV };
1748    llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1749    DynamicInitializers->addOperand(ThisGlobal);
1750  }
1751
1752  // Emit global variable debug information.
1753  if (CGDebugInfo *DI = getModuleDebugInfo())
1754    if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1755      DI->EmitGlobalVariable(GV, D);
1756}
1757
1758llvm::GlobalValue::LinkageTypes
1759CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1760                                           llvm::GlobalVariable *GV) {
1761  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1762  if (Linkage == GVA_Internal)
1763    return llvm::Function::InternalLinkage;
1764  else if (D->hasAttr<DLLImportAttr>())
1765    return llvm::Function::DLLImportLinkage;
1766  else if (D->hasAttr<DLLExportAttr>())
1767    return llvm::Function::DLLExportLinkage;
1768  else if (D->hasAttr<WeakAttr>()) {
1769    if (GV->isConstant())
1770      return llvm::GlobalVariable::WeakODRLinkage;
1771    else
1772      return llvm::GlobalVariable::WeakAnyLinkage;
1773  } else if (Linkage == GVA_TemplateInstantiation ||
1774             Linkage == GVA_ExplicitTemplateInstantiation)
1775    return llvm::GlobalVariable::WeakODRLinkage;
1776  else if (!getLangOpts().CPlusPlus &&
1777           ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1778             D->getAttr<CommonAttr>()) &&
1779           !D->hasExternalStorage() && !D->getInit() &&
1780           !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1781           !D->getAttr<WeakImportAttr>()) {
1782    // Thread local vars aren't considered common linkage.
1783    return llvm::GlobalVariable::CommonLinkage;
1784  }
1785  return llvm::GlobalVariable::ExternalLinkage;
1786}
1787
1788/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1789/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1790/// existing call uses of the old function in the module, this adjusts them to
1791/// call the new function directly.
1792///
1793/// This is not just a cleanup: the always_inline pass requires direct calls to
1794/// functions to be able to inline them.  If there is a bitcast in the way, it
1795/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1796/// run at -O0.
1797static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1798                                                      llvm::Function *NewFn) {
1799  // If we're redefining a global as a function, don't transform it.
1800  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1801  if (OldFn == 0) return;
1802
1803  llvm::Type *NewRetTy = NewFn->getReturnType();
1804  SmallVector<llvm::Value*, 4> ArgList;
1805
1806  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1807       UI != E; ) {
1808    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1809    llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1810    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1811    if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1812    llvm::CallSite CS(CI);
1813    if (!CI || !CS.isCallee(I)) continue;
1814
1815    // If the return types don't match exactly, and if the call isn't dead, then
1816    // we can't transform this call.
1817    if (CI->getType() != NewRetTy && !CI->use_empty())
1818      continue;
1819
1820    // Get the attribute list.
1821    llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1822    llvm::AttrListPtr AttrList = CI->getAttributes();
1823
1824    // Get any return attributes.
1825    llvm::Attributes RAttrs = AttrList.getRetAttributes();
1826
1827    // Add the return attributes.
1828    if (RAttrs.hasAttributes())
1829      AttrVec.push_back(llvm::
1830                        AttributeWithIndex::get(llvm::AttrListPtr::ReturnIndex,
1831                                                RAttrs));
1832
1833    // If the function was passed too few arguments, don't transform.  If extra
1834    // arguments were passed, we silently drop them.  If any of the types
1835    // mismatch, we don't transform.
1836    unsigned ArgNo = 0;
1837    bool DontTransform = false;
1838    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1839         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1840      if (CS.arg_size() == ArgNo ||
1841          CS.getArgument(ArgNo)->getType() != AI->getType()) {
1842        DontTransform = true;
1843        break;
1844      }
1845
1846      // Add any parameter attributes.
1847      llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1);
1848      if (PAttrs.hasAttributes())
1849        AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1850    }
1851    if (DontTransform)
1852      continue;
1853
1854    llvm::Attributes FnAttrs =  AttrList.getFnAttributes();
1855    if (FnAttrs.hasAttributes())
1856      AttrVec.push_back(llvm::
1857                       AttributeWithIndex::get(llvm::AttrListPtr::FunctionIndex,
1858                                               FnAttrs));
1859
1860    // Okay, we can transform this.  Create the new call instruction and copy
1861    // over the required information.
1862    ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1863    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1864    ArgList.clear();
1865    if (!NewCall->getType()->isVoidTy())
1866      NewCall->takeName(CI);
1867    NewCall->setAttributes(llvm::AttrListPtr::get(OldFn->getContext(), AttrVec));
1868    NewCall->setCallingConv(CI->getCallingConv());
1869
1870    // Finally, remove the old call, replacing any uses with the new one.
1871    if (!CI->use_empty())
1872      CI->replaceAllUsesWith(NewCall);
1873
1874    // Copy debug location attached to CI.
1875    if (!CI->getDebugLoc().isUnknown())
1876      NewCall->setDebugLoc(CI->getDebugLoc());
1877    CI->eraseFromParent();
1878  }
1879}
1880
1881void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1882  TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1883  // If we have a definition, this might be a deferred decl. If the
1884  // instantiation is explicit, make sure we emit it at the end.
1885  if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1886    GetAddrOfGlobalVar(VD);
1887}
1888
1889void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1890  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1891
1892  // Compute the function info and LLVM type.
1893  const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1894  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
1895
1896  // Get or create the prototype for the function.
1897  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1898
1899  // Strip off a bitcast if we got one back.
1900  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1901    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1902    Entry = CE->getOperand(0);
1903  }
1904
1905
1906  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1907    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1908
1909    // If the types mismatch then we have to rewrite the definition.
1910    assert(OldFn->isDeclaration() &&
1911           "Shouldn't replace non-declaration");
1912
1913    // F is the Function* for the one with the wrong type, we must make a new
1914    // Function* and update everything that used F (a declaration) with the new
1915    // Function* (which will be a definition).
1916    //
1917    // This happens if there is a prototype for a function
1918    // (e.g. "int f()") and then a definition of a different type
1919    // (e.g. "int f(int x)").  Move the old function aside so that it
1920    // doesn't interfere with GetAddrOfFunction.
1921    OldFn->setName(StringRef());
1922    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1923
1924    // If this is an implementation of a function without a prototype, try to
1925    // replace any existing uses of the function (which may be calls) with uses
1926    // of the new function
1927    if (D->getType()->isFunctionNoProtoType()) {
1928      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1929      OldFn->removeDeadConstantUsers();
1930    }
1931
1932    // Replace uses of F with the Function we will endow with a body.
1933    if (!Entry->use_empty()) {
1934      llvm::Constant *NewPtrForOldDecl =
1935        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1936      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1937    }
1938
1939    // Ok, delete the old function now, which is dead.
1940    OldFn->eraseFromParent();
1941
1942    Entry = NewFn;
1943  }
1944
1945  // We need to set linkage and visibility on the function before
1946  // generating code for it because various parts of IR generation
1947  // want to propagate this information down (e.g. to local static
1948  // declarations).
1949  llvm::Function *Fn = cast<llvm::Function>(Entry);
1950  setFunctionLinkage(D, Fn);
1951
1952  // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1953  setGlobalVisibility(Fn, D);
1954
1955  CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1956
1957  SetFunctionDefinitionAttributes(D, Fn);
1958  SetLLVMFunctionAttributesForDefinition(D, Fn);
1959
1960  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1961    AddGlobalCtor(Fn, CA->getPriority());
1962  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1963    AddGlobalDtor(Fn, DA->getPriority());
1964  if (D->hasAttr<AnnotateAttr>())
1965    AddGlobalAnnotations(D, Fn);
1966}
1967
1968void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1969  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1970  const AliasAttr *AA = D->getAttr<AliasAttr>();
1971  assert(AA && "Not an alias?");
1972
1973  StringRef MangledName = getMangledName(GD);
1974
1975  // If there is a definition in the module, then it wins over the alias.
1976  // This is dubious, but allow it to be safe.  Just ignore the alias.
1977  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1978  if (Entry && !Entry->isDeclaration())
1979    return;
1980
1981  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1982
1983  // Create a reference to the named value.  This ensures that it is emitted
1984  // if a deferred decl.
1985  llvm::Constant *Aliasee;
1986  if (isa<llvm::FunctionType>(DeclTy))
1987    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
1988                                      /*ForVTable=*/false);
1989  else
1990    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1991                                    llvm::PointerType::getUnqual(DeclTy), 0);
1992
1993  // Create the new alias itself, but don't set a name yet.
1994  llvm::GlobalValue *GA =
1995    new llvm::GlobalAlias(Aliasee->getType(),
1996                          llvm::Function::ExternalLinkage,
1997                          "", Aliasee, &getModule());
1998
1999  if (Entry) {
2000    assert(Entry->isDeclaration());
2001
2002    // If there is a declaration in the module, then we had an extern followed
2003    // by the alias, as in:
2004    //   extern int test6();
2005    //   ...
2006    //   int test6() __attribute__((alias("test7")));
2007    //
2008    // Remove it and replace uses of it with the alias.
2009    GA->takeName(Entry);
2010
2011    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2012                                                          Entry->getType()));
2013    Entry->eraseFromParent();
2014  } else {
2015    GA->setName(MangledName);
2016  }
2017
2018  // Set attributes which are particular to an alias; this is a
2019  // specialization of the attributes which may be set on a global
2020  // variable/function.
2021  if (D->hasAttr<DLLExportAttr>()) {
2022    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2023      // The dllexport attribute is ignored for undefined symbols.
2024      if (FD->hasBody())
2025        GA->setLinkage(llvm::Function::DLLExportLinkage);
2026    } else {
2027      GA->setLinkage(llvm::Function::DLLExportLinkage);
2028    }
2029  } else if (D->hasAttr<WeakAttr>() ||
2030             D->hasAttr<WeakRefAttr>() ||
2031             D->isWeakImported()) {
2032    GA->setLinkage(llvm::Function::WeakAnyLinkage);
2033  }
2034
2035  SetCommonAttributes(D, GA);
2036}
2037
2038llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2039                                            ArrayRef<llvm::Type*> Tys) {
2040  return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2041                                         Tys);
2042}
2043
2044static llvm::StringMapEntry<llvm::Constant*> &
2045GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2046                         const StringLiteral *Literal,
2047                         bool TargetIsLSB,
2048                         bool &IsUTF16,
2049                         unsigned &StringLength) {
2050  StringRef String = Literal->getString();
2051  unsigned NumBytes = String.size();
2052
2053  // Check for simple case.
2054  if (!Literal->containsNonAsciiOrNull()) {
2055    StringLength = NumBytes;
2056    return Map.GetOrCreateValue(String);
2057  }
2058
2059  // Otherwise, convert the UTF8 literals into a string of shorts.
2060  IsUTF16 = true;
2061
2062  SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2063  const UTF8 *FromPtr = (const UTF8 *)String.data();
2064  UTF16 *ToPtr = &ToBuf[0];
2065
2066  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2067                           &ToPtr, ToPtr + NumBytes,
2068                           strictConversion);
2069
2070  // ConvertUTF8toUTF16 returns the length in ToPtr.
2071  StringLength = ToPtr - &ToBuf[0];
2072
2073  // Add an explicit null.
2074  *ToPtr = 0;
2075  return Map.
2076    GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2077                               (StringLength + 1) * 2));
2078}
2079
2080static llvm::StringMapEntry<llvm::Constant*> &
2081GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2082                       const StringLiteral *Literal,
2083                       unsigned &StringLength) {
2084  StringRef String = Literal->getString();
2085  StringLength = String.size();
2086  return Map.GetOrCreateValue(String);
2087}
2088
2089llvm::Constant *
2090CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2091  unsigned StringLength = 0;
2092  bool isUTF16 = false;
2093  llvm::StringMapEntry<llvm::Constant*> &Entry =
2094    GetConstantCFStringEntry(CFConstantStringMap, Literal,
2095                             getDataLayout().isLittleEndian(),
2096                             isUTF16, StringLength);
2097
2098  if (llvm::Constant *C = Entry.getValue())
2099    return C;
2100
2101  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2102  llvm::Constant *Zeros[] = { Zero, Zero };
2103
2104  // If we don't already have it, get __CFConstantStringClassReference.
2105  if (!CFConstantStringClassRef) {
2106    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2107    Ty = llvm::ArrayType::get(Ty, 0);
2108    llvm::Constant *GV = CreateRuntimeVariable(Ty,
2109                                           "__CFConstantStringClassReference");
2110    // Decay array -> ptr
2111    CFConstantStringClassRef =
2112      llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2113  }
2114
2115  QualType CFTy = getContext().getCFConstantStringType();
2116
2117  llvm::StructType *STy =
2118    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2119
2120  llvm::Constant *Fields[4];
2121
2122  // Class pointer.
2123  Fields[0] = CFConstantStringClassRef;
2124
2125  // Flags.
2126  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2127  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2128    llvm::ConstantInt::get(Ty, 0x07C8);
2129
2130  // String pointer.
2131  llvm::Constant *C = 0;
2132  if (isUTF16) {
2133    ArrayRef<uint16_t> Arr =
2134      llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(),
2135                                   Entry.getKey().size() / 2);
2136    C = llvm::ConstantDataArray::get(VMContext, Arr);
2137  } else {
2138    C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2139  }
2140
2141  llvm::GlobalValue::LinkageTypes Linkage;
2142  if (isUTF16)
2143    // FIXME: why do utf strings get "_" labels instead of "L" labels?
2144    Linkage = llvm::GlobalValue::InternalLinkage;
2145  else
2146    // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2147    // when using private linkage. It is not clear if this is a bug in ld
2148    // or a reasonable new restriction.
2149    Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2150
2151  // Note: -fwritable-strings doesn't make the backing store strings of
2152  // CFStrings writable. (See <rdar://problem/10657500>)
2153  llvm::GlobalVariable *GV =
2154    new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2155                             Linkage, C, ".str");
2156  GV->setUnnamedAddr(true);
2157  if (isUTF16) {
2158    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2159    GV->setAlignment(Align.getQuantity());
2160  } else {
2161    CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2162    GV->setAlignment(Align.getQuantity());
2163  }
2164
2165  // String.
2166  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2167
2168  if (isUTF16)
2169    // Cast the UTF16 string to the correct type.
2170    Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2171
2172  // String length.
2173  Ty = getTypes().ConvertType(getContext().LongTy);
2174  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2175
2176  // The struct.
2177  C = llvm::ConstantStruct::get(STy, Fields);
2178  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2179                                llvm::GlobalVariable::PrivateLinkage, C,
2180                                "_unnamed_cfstring_");
2181  if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2182    GV->setSection(Sect);
2183  Entry.setValue(GV);
2184
2185  return GV;
2186}
2187
2188static RecordDecl *
2189CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2190                 DeclContext *DC, IdentifierInfo *Id) {
2191  SourceLocation Loc;
2192  if (Ctx.getLangOpts().CPlusPlus)
2193    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2194  else
2195    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2196}
2197
2198llvm::Constant *
2199CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2200  unsigned StringLength = 0;
2201  llvm::StringMapEntry<llvm::Constant*> &Entry =
2202    GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2203
2204  if (llvm::Constant *C = Entry.getValue())
2205    return C;
2206
2207  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2208  llvm::Constant *Zeros[] = { Zero, Zero };
2209
2210  // If we don't already have it, get _NSConstantStringClassReference.
2211  if (!ConstantStringClassRef) {
2212    std::string StringClass(getLangOpts().ObjCConstantStringClass);
2213    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2214    llvm::Constant *GV;
2215    if (LangOpts.ObjCRuntime.isNonFragile()) {
2216      std::string str =
2217        StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2218                            : "OBJC_CLASS_$_" + StringClass;
2219      GV = getObjCRuntime().GetClassGlobal(str);
2220      // Make sure the result is of the correct type.
2221      llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2222      ConstantStringClassRef =
2223        llvm::ConstantExpr::getBitCast(GV, PTy);
2224    } else {
2225      std::string str =
2226        StringClass.empty() ? "_NSConstantStringClassReference"
2227                            : "_" + StringClass + "ClassReference";
2228      llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2229      GV = CreateRuntimeVariable(PTy, str);
2230      // Decay array -> ptr
2231      ConstantStringClassRef =
2232        llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2233    }
2234  }
2235
2236  if (!NSConstantStringType) {
2237    // Construct the type for a constant NSString.
2238    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2239                                     Context.getTranslationUnitDecl(),
2240                                   &Context.Idents.get("__builtin_NSString"));
2241    D->startDefinition();
2242
2243    QualType FieldTypes[3];
2244
2245    // const int *isa;
2246    FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2247    // const char *str;
2248    FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2249    // unsigned int length;
2250    FieldTypes[2] = Context.UnsignedIntTy;
2251
2252    // Create fields
2253    for (unsigned i = 0; i < 3; ++i) {
2254      FieldDecl *Field = FieldDecl::Create(Context, D,
2255                                           SourceLocation(),
2256                                           SourceLocation(), 0,
2257                                           FieldTypes[i], /*TInfo=*/0,
2258                                           /*BitWidth=*/0,
2259                                           /*Mutable=*/false,
2260                                           ICIS_NoInit);
2261      Field->setAccess(AS_public);
2262      D->addDecl(Field);
2263    }
2264
2265    D->completeDefinition();
2266    QualType NSTy = Context.getTagDeclType(D);
2267    NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2268  }
2269
2270  llvm::Constant *Fields[3];
2271
2272  // Class pointer.
2273  Fields[0] = ConstantStringClassRef;
2274
2275  // String pointer.
2276  llvm::Constant *C =
2277    llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2278
2279  llvm::GlobalValue::LinkageTypes Linkage;
2280  bool isConstant;
2281  Linkage = llvm::GlobalValue::PrivateLinkage;
2282  isConstant = !LangOpts.WritableStrings;
2283
2284  llvm::GlobalVariable *GV =
2285  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2286                           ".str");
2287  GV->setUnnamedAddr(true);
2288  CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2289  GV->setAlignment(Align.getQuantity());
2290  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2291
2292  // String length.
2293  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2294  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2295
2296  // The struct.
2297  C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2298  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2299                                llvm::GlobalVariable::PrivateLinkage, C,
2300                                "_unnamed_nsstring_");
2301  // FIXME. Fix section.
2302  if (const char *Sect =
2303        LangOpts.ObjCRuntime.isNonFragile()
2304          ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2305          : getContext().getTargetInfo().getNSStringSection())
2306    GV->setSection(Sect);
2307  Entry.setValue(GV);
2308
2309  return GV;
2310}
2311
2312QualType CodeGenModule::getObjCFastEnumerationStateType() {
2313  if (ObjCFastEnumerationStateType.isNull()) {
2314    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2315                                     Context.getTranslationUnitDecl(),
2316                      &Context.Idents.get("__objcFastEnumerationState"));
2317    D->startDefinition();
2318
2319    QualType FieldTypes[] = {
2320      Context.UnsignedLongTy,
2321      Context.getPointerType(Context.getObjCIdType()),
2322      Context.getPointerType(Context.UnsignedLongTy),
2323      Context.getConstantArrayType(Context.UnsignedLongTy,
2324                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2325    };
2326
2327    for (size_t i = 0; i < 4; ++i) {
2328      FieldDecl *Field = FieldDecl::Create(Context,
2329                                           D,
2330                                           SourceLocation(),
2331                                           SourceLocation(), 0,
2332                                           FieldTypes[i], /*TInfo=*/0,
2333                                           /*BitWidth=*/0,
2334                                           /*Mutable=*/false,
2335                                           ICIS_NoInit);
2336      Field->setAccess(AS_public);
2337      D->addDecl(Field);
2338    }
2339
2340    D->completeDefinition();
2341    ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2342  }
2343
2344  return ObjCFastEnumerationStateType;
2345}
2346
2347llvm::Constant *
2348CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2349  assert(!E->getType()->isPointerType() && "Strings are always arrays");
2350
2351  // Don't emit it as the address of the string, emit the string data itself
2352  // as an inline array.
2353  if (E->getCharByteWidth() == 1) {
2354    SmallString<64> Str(E->getString());
2355
2356    // Resize the string to the right size, which is indicated by its type.
2357    const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2358    Str.resize(CAT->getSize().getZExtValue());
2359    return llvm::ConstantDataArray::getString(VMContext, Str, false);
2360  }
2361
2362  llvm::ArrayType *AType =
2363    cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2364  llvm::Type *ElemTy = AType->getElementType();
2365  unsigned NumElements = AType->getNumElements();
2366
2367  // Wide strings have either 2-byte or 4-byte elements.
2368  if (ElemTy->getPrimitiveSizeInBits() == 16) {
2369    SmallVector<uint16_t, 32> Elements;
2370    Elements.reserve(NumElements);
2371
2372    for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2373      Elements.push_back(E->getCodeUnit(i));
2374    Elements.resize(NumElements);
2375    return llvm::ConstantDataArray::get(VMContext, Elements);
2376  }
2377
2378  assert(ElemTy->getPrimitiveSizeInBits() == 32);
2379  SmallVector<uint32_t, 32> Elements;
2380  Elements.reserve(NumElements);
2381
2382  for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2383    Elements.push_back(E->getCodeUnit(i));
2384  Elements.resize(NumElements);
2385  return llvm::ConstantDataArray::get(VMContext, Elements);
2386}
2387
2388/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2389/// constant array for the given string literal.
2390llvm::Constant *
2391CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2392  CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2393  if (S->isAscii() || S->isUTF8()) {
2394    SmallString<64> Str(S->getString());
2395
2396    // Resize the string to the right size, which is indicated by its type.
2397    const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2398    Str.resize(CAT->getSize().getZExtValue());
2399    return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2400  }
2401
2402  // FIXME: the following does not memoize wide strings.
2403  llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2404  llvm::GlobalVariable *GV =
2405    new llvm::GlobalVariable(getModule(),C->getType(),
2406                             !LangOpts.WritableStrings,
2407                             llvm::GlobalValue::PrivateLinkage,
2408                             C,".str");
2409
2410  GV->setAlignment(Align.getQuantity());
2411  GV->setUnnamedAddr(true);
2412  return GV;
2413}
2414
2415/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2416/// array for the given ObjCEncodeExpr node.
2417llvm::Constant *
2418CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2419  std::string Str;
2420  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2421
2422  return GetAddrOfConstantCString(Str);
2423}
2424
2425
2426/// GenerateWritableString -- Creates storage for a string literal.
2427static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2428                                             bool constant,
2429                                             CodeGenModule &CGM,
2430                                             const char *GlobalName,
2431                                             unsigned Alignment) {
2432  // Create Constant for this string literal. Don't add a '\0'.
2433  llvm::Constant *C =
2434      llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2435
2436  // Create a global variable for this string
2437  llvm::GlobalVariable *GV =
2438    new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2439                             llvm::GlobalValue::PrivateLinkage,
2440                             C, GlobalName);
2441  GV->setAlignment(Alignment);
2442  GV->setUnnamedAddr(true);
2443  return GV;
2444}
2445
2446/// GetAddrOfConstantString - Returns a pointer to a character array
2447/// containing the literal. This contents are exactly that of the
2448/// given string, i.e. it will not be null terminated automatically;
2449/// see GetAddrOfConstantCString. Note that whether the result is
2450/// actually a pointer to an LLVM constant depends on
2451/// Feature.WriteableStrings.
2452///
2453/// The result has pointer to array type.
2454llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2455                                                       const char *GlobalName,
2456                                                       unsigned Alignment) {
2457  // Get the default prefix if a name wasn't specified.
2458  if (!GlobalName)
2459    GlobalName = ".str";
2460
2461  // Don't share any string literals if strings aren't constant.
2462  if (LangOpts.WritableStrings)
2463    return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2464
2465  llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2466    ConstantStringMap.GetOrCreateValue(Str);
2467
2468  if (llvm::GlobalVariable *GV = Entry.getValue()) {
2469    if (Alignment > GV->getAlignment()) {
2470      GV->setAlignment(Alignment);
2471    }
2472    return GV;
2473  }
2474
2475  // Create a global variable for this.
2476  llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2477                                                   Alignment);
2478  Entry.setValue(GV);
2479  return GV;
2480}
2481
2482/// GetAddrOfConstantCString - Returns a pointer to a character
2483/// array containing the literal and a terminating '\0'
2484/// character. The result has pointer to array type.
2485llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2486                                                        const char *GlobalName,
2487                                                        unsigned Alignment) {
2488  StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2489  return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2490}
2491
2492/// EmitObjCPropertyImplementations - Emit information for synthesized
2493/// properties for an implementation.
2494void CodeGenModule::EmitObjCPropertyImplementations(const
2495                                                    ObjCImplementationDecl *D) {
2496  for (ObjCImplementationDecl::propimpl_iterator
2497         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2498    ObjCPropertyImplDecl *PID = *i;
2499
2500    // Dynamic is just for type-checking.
2501    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2502      ObjCPropertyDecl *PD = PID->getPropertyDecl();
2503
2504      // Determine which methods need to be implemented, some may have
2505      // been overridden. Note that ::isPropertyAccessor is not the method
2506      // we want, that just indicates if the decl came from a
2507      // property. What we want to know is if the method is defined in
2508      // this implementation.
2509      if (!D->getInstanceMethod(PD->getGetterName()))
2510        CodeGenFunction(*this).GenerateObjCGetter(
2511                                 const_cast<ObjCImplementationDecl *>(D), PID);
2512      if (!PD->isReadOnly() &&
2513          !D->getInstanceMethod(PD->getSetterName()))
2514        CodeGenFunction(*this).GenerateObjCSetter(
2515                                 const_cast<ObjCImplementationDecl *>(D), PID);
2516    }
2517  }
2518}
2519
2520static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2521  const ObjCInterfaceDecl *iface = impl->getClassInterface();
2522  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2523       ivar; ivar = ivar->getNextIvar())
2524    if (ivar->getType().isDestructedType())
2525      return true;
2526
2527  return false;
2528}
2529
2530/// EmitObjCIvarInitializations - Emit information for ivar initialization
2531/// for an implementation.
2532void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2533  // We might need a .cxx_destruct even if we don't have any ivar initializers.
2534  if (needsDestructMethod(D)) {
2535    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2536    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2537    ObjCMethodDecl *DTORMethod =
2538      ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2539                             cxxSelector, getContext().VoidTy, 0, D,
2540                             /*isInstance=*/true, /*isVariadic=*/false,
2541                          /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2542                             /*isDefined=*/false, ObjCMethodDecl::Required);
2543    D->addInstanceMethod(DTORMethod);
2544    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2545    D->setHasDestructors(true);
2546  }
2547
2548  // If the implementation doesn't have any ivar initializers, we don't need
2549  // a .cxx_construct.
2550  if (D->getNumIvarInitializers() == 0)
2551    return;
2552
2553  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2554  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2555  // The constructor returns 'self'.
2556  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2557                                                D->getLocation(),
2558                                                D->getLocation(),
2559                                                cxxSelector,
2560                                                getContext().getObjCIdType(), 0,
2561                                                D, /*isInstance=*/true,
2562                                                /*isVariadic=*/false,
2563                                                /*isPropertyAccessor=*/true,
2564                                                /*isImplicitlyDeclared=*/true,
2565                                                /*isDefined=*/false,
2566                                                ObjCMethodDecl::Required);
2567  D->addInstanceMethod(CTORMethod);
2568  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2569  D->setHasNonZeroConstructors(true);
2570}
2571
2572/// EmitNamespace - Emit all declarations in a namespace.
2573void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2574  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2575       I != E; ++I)
2576    EmitTopLevelDecl(*I);
2577}
2578
2579// EmitLinkageSpec - Emit all declarations in a linkage spec.
2580void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2581  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2582      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2583    ErrorUnsupported(LSD, "linkage spec");
2584    return;
2585  }
2586
2587  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2588       I != E; ++I) {
2589    // Meta-data for ObjC class includes references to implemented methods.
2590    // Generate class's method definitions first.
2591    if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2592      for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2593           MEnd = OID->meth_end();
2594           M != MEnd; ++M)
2595        EmitTopLevelDecl(*M);
2596    }
2597    EmitTopLevelDecl(*I);
2598  }
2599}
2600
2601/// EmitTopLevelDecl - Emit code for a single top level declaration.
2602void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2603  // If an error has occurred, stop code generation, but continue
2604  // parsing and semantic analysis (to ensure all warnings and errors
2605  // are emitted).
2606  if (Diags.hasErrorOccurred())
2607    return;
2608
2609  // Ignore dependent declarations.
2610  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2611    return;
2612
2613  switch (D->getKind()) {
2614  case Decl::CXXConversion:
2615  case Decl::CXXMethod:
2616  case Decl::Function:
2617    // Skip function templates
2618    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2619        cast<FunctionDecl>(D)->isLateTemplateParsed())
2620      return;
2621
2622    EmitGlobal(cast<FunctionDecl>(D));
2623    break;
2624
2625  case Decl::Var:
2626    EmitGlobal(cast<VarDecl>(D));
2627    break;
2628
2629  // Indirect fields from global anonymous structs and unions can be
2630  // ignored; only the actual variable requires IR gen support.
2631  case Decl::IndirectField:
2632    break;
2633
2634  // C++ Decls
2635  case Decl::Namespace:
2636    EmitNamespace(cast<NamespaceDecl>(D));
2637    break;
2638    // No code generation needed.
2639  case Decl::UsingShadow:
2640  case Decl::Using:
2641  case Decl::UsingDirective:
2642  case Decl::ClassTemplate:
2643  case Decl::FunctionTemplate:
2644  case Decl::TypeAliasTemplate:
2645  case Decl::NamespaceAlias:
2646  case Decl::Block:
2647  case Decl::Import:
2648    break;
2649  case Decl::CXXConstructor:
2650    // Skip function templates
2651    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2652        cast<FunctionDecl>(D)->isLateTemplateParsed())
2653      return;
2654
2655    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2656    break;
2657  case Decl::CXXDestructor:
2658    if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2659      return;
2660    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2661    break;
2662
2663  case Decl::StaticAssert:
2664    // Nothing to do.
2665    break;
2666
2667  // Objective-C Decls
2668
2669  // Forward declarations, no (immediate) code generation.
2670  case Decl::ObjCInterface:
2671  case Decl::ObjCCategory:
2672    break;
2673
2674  case Decl::ObjCProtocol: {
2675    ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2676    if (Proto->isThisDeclarationADefinition())
2677      ObjCRuntime->GenerateProtocol(Proto);
2678    break;
2679  }
2680
2681  case Decl::ObjCCategoryImpl:
2682    // Categories have properties but don't support synthesize so we
2683    // can ignore them here.
2684    ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2685    break;
2686
2687  case Decl::ObjCImplementation: {
2688    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2689    EmitObjCPropertyImplementations(OMD);
2690    EmitObjCIvarInitializations(OMD);
2691    ObjCRuntime->GenerateClass(OMD);
2692    // Emit global variable debug information.
2693    if (CGDebugInfo *DI = getModuleDebugInfo())
2694      if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2695        DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2696            OMD->getClassInterface()), OMD->getLocation());
2697    break;
2698  }
2699  case Decl::ObjCMethod: {
2700    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2701    // If this is not a prototype, emit the body.
2702    if (OMD->getBody())
2703      CodeGenFunction(*this).GenerateObjCMethod(OMD);
2704    break;
2705  }
2706  case Decl::ObjCCompatibleAlias:
2707    ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2708    break;
2709
2710  case Decl::LinkageSpec:
2711    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2712    break;
2713
2714  case Decl::FileScopeAsm: {
2715    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2716    StringRef AsmString = AD->getAsmString()->getString();
2717
2718    const std::string &S = getModule().getModuleInlineAsm();
2719    if (S.empty())
2720      getModule().setModuleInlineAsm(AsmString);
2721    else if (S.end()[-1] == '\n')
2722      getModule().setModuleInlineAsm(S + AsmString.str());
2723    else
2724      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2725    break;
2726  }
2727
2728  default:
2729    // Make sure we handled everything we should, every other kind is a
2730    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2731    // function. Need to recode Decl::Kind to do that easily.
2732    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2733  }
2734}
2735
2736/// Turns the given pointer into a constant.
2737static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2738                                          const void *Ptr) {
2739  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2740  llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2741  return llvm::ConstantInt::get(i64, PtrInt);
2742}
2743
2744static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2745                                   llvm::NamedMDNode *&GlobalMetadata,
2746                                   GlobalDecl D,
2747                                   llvm::GlobalValue *Addr) {
2748  if (!GlobalMetadata)
2749    GlobalMetadata =
2750      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2751
2752  // TODO: should we report variant information for ctors/dtors?
2753  llvm::Value *Ops[] = {
2754    Addr,
2755    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2756  };
2757  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2758}
2759
2760/// Emits metadata nodes associating all the global values in the
2761/// current module with the Decls they came from.  This is useful for
2762/// projects using IR gen as a subroutine.
2763///
2764/// Since there's currently no way to associate an MDNode directly
2765/// with an llvm::GlobalValue, we create a global named metadata
2766/// with the name 'clang.global.decl.ptrs'.
2767void CodeGenModule::EmitDeclMetadata() {
2768  llvm::NamedMDNode *GlobalMetadata = 0;
2769
2770  // StaticLocalDeclMap
2771  for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2772         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2773       I != E; ++I) {
2774    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2775    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2776  }
2777}
2778
2779/// Emits metadata nodes for all the local variables in the current
2780/// function.
2781void CodeGenFunction::EmitDeclMetadata() {
2782  if (LocalDeclMap.empty()) return;
2783
2784  llvm::LLVMContext &Context = getLLVMContext();
2785
2786  // Find the unique metadata ID for this name.
2787  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2788
2789  llvm::NamedMDNode *GlobalMetadata = 0;
2790
2791  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2792         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2793    const Decl *D = I->first;
2794    llvm::Value *Addr = I->second;
2795
2796    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2797      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2798      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2799    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2800      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2801      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2802    }
2803  }
2804}
2805
2806void CodeGenModule::EmitCoverageFile() {
2807  if (!getCodeGenOpts().CoverageFile.empty()) {
2808    if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2809      llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2810      llvm::LLVMContext &Ctx = TheModule.getContext();
2811      llvm::MDString *CoverageFile =
2812          llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2813      for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2814        llvm::MDNode *CU = CUNode->getOperand(i);
2815        llvm::Value *node[] = { CoverageFile, CU };
2816        llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2817        GCov->addOperand(N);
2818      }
2819    }
2820  }
2821}
2822
2823llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
2824                                                     QualType GuidType) {
2825  // Sema has checked that all uuid strings are of the form
2826  // "12345678-1234-1234-1234-1234567890ab".
2827  assert(Uuid.size() == 36);
2828  const char *Uuidstr = Uuid.data();
2829  for (int i = 0; i < 36; ++i) {
2830    if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
2831    else                                         assert(isxdigit(Uuidstr[i]));
2832  }
2833
2834  llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
2835  llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
2836  llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
2837  static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
2838
2839  APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
2840  InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
2841  InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
2842  InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
2843  APValue& Arr = InitStruct.getStructField(3);
2844  Arr = APValue(APValue::UninitArray(), 8, 8);
2845  for (int t = 0; t < 8; ++t)
2846    Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
2847          llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
2848
2849  return EmitConstantValue(InitStruct, GuidType);
2850}
2851