CodeGenModule.cpp revision 64aa4b3ec7e62288e2e66c1935487ece995ca94b
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGCall.h"
18#include "CGDebugInfo.h"
19#include "CGObjCRuntime.h"
20#include "CGOpenCLRuntime.h"
21#include "CodeGenFunction.h"
22#include "CodeGenTBAA.h"
23#include "TargetInfo.h"
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/CharUnits.h"
26#include "clang/AST/DeclCXX.h"
27#include "clang/AST/DeclObjC.h"
28#include "clang/AST/DeclTemplate.h"
29#include "clang/AST/Mangle.h"
30#include "clang/AST/RecordLayout.h"
31#include "clang/AST/RecursiveASTVisitor.h"
32#include "clang/Basic/Builtins.h"
33#include "clang/Basic/CharInfo.h"
34#include "clang/Basic/Diagnostic.h"
35#include "clang/Basic/Module.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38#include "clang/Basic/TargetOptions.h"
39#include "clang/Frontend/CodeGenOptions.h"
40#include "llvm/ADT/APSInt.h"
41#include "llvm/ADT/Triple.h"
42#include "llvm/IR/CallingConv.h"
43#include "llvm/IR/DataLayout.h"
44#include "llvm/IR/Intrinsics.h"
45#include "llvm/IR/LLVMContext.h"
46#include "llvm/IR/Module.h"
47#include "llvm/Support/CallSite.h"
48#include "llvm/Support/ConvertUTF.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Target/Mangler.h"
51
52using namespace clang;
53using namespace CodeGen;
54
55static const char AnnotationSection[] = "llvm.metadata";
56
57static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
58  switch (CGM.getTarget().getCXXABI().getKind()) {
59  case TargetCXXABI::GenericAArch64:
60  case TargetCXXABI::GenericARM:
61  case TargetCXXABI::iOS:
62  case TargetCXXABI::GenericItanium:
63    return *CreateItaniumCXXABI(CGM);
64  case TargetCXXABI::Microsoft:
65    return *CreateMicrosoftCXXABI(CGM);
66  }
67
68  llvm_unreachable("invalid C++ ABI kind");
69}
70
71
72CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
73                             const TargetOptions &TO, llvm::Module &M,
74                             const llvm::DataLayout &TD,
75                             DiagnosticsEngine &diags)
76  : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
77    Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
78    ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
79    TheTargetCodeGenInfo(0), Types(*this), VTables(*this),
80    ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
81    DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
82    RRData(0), CFConstantStringClassRef(0),
83    ConstantStringClassRef(0), NSConstantStringType(0),
84    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
85    BlockObjectAssign(0), BlockObjectDispose(0),
86    BlockDescriptorType(0), GenericBlockLiteralType(0),
87    LifetimeStartFn(0), LifetimeEndFn(0),
88    SanitizerBlacklist(CGO.SanitizerBlacklistFile),
89    SanOpts(SanitizerBlacklist.isIn(M) ?
90            SanitizerOptions::Disabled : LangOpts.Sanitize) {
91
92  // Initialize the type cache.
93  llvm::LLVMContext &LLVMContext = M.getContext();
94  VoidTy = llvm::Type::getVoidTy(LLVMContext);
95  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
96  Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
97  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
98  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
99  FloatTy = llvm::Type::getFloatTy(LLVMContext);
100  DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
101  PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
102  PointerAlignInBytes =
103  C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
104  IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
105  IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
106  Int8PtrTy = Int8Ty->getPointerTo(0);
107  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
108
109  RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
110
111  if (LangOpts.ObjC1)
112    createObjCRuntime();
113  if (LangOpts.OpenCL)
114    createOpenCLRuntime();
115  if (LangOpts.CUDA)
116    createCUDARuntime();
117
118  // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
119  if (SanOpts.Thread ||
120      (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
121    TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
122                           ABI.getMangleContext());
123
124  // If debug info or coverage generation is enabled, create the CGDebugInfo
125  // object.
126  if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
127      CodeGenOpts.EmitGcovArcs ||
128      CodeGenOpts.EmitGcovNotes)
129    DebugInfo = new CGDebugInfo(*this);
130
131  Block.GlobalUniqueCount = 0;
132
133  if (C.getLangOpts().ObjCAutoRefCount)
134    ARCData = new ARCEntrypoints();
135  RRData = new RREntrypoints();
136}
137
138CodeGenModule::~CodeGenModule() {
139  delete ObjCRuntime;
140  delete OpenCLRuntime;
141  delete CUDARuntime;
142  delete TheTargetCodeGenInfo;
143  delete &ABI;
144  delete TBAA;
145  delete DebugInfo;
146  delete ARCData;
147  delete RRData;
148}
149
150void CodeGenModule::createObjCRuntime() {
151  // This is just isGNUFamily(), but we want to force implementors of
152  // new ABIs to decide how best to do this.
153  switch (LangOpts.ObjCRuntime.getKind()) {
154  case ObjCRuntime::GNUstep:
155  case ObjCRuntime::GCC:
156  case ObjCRuntime::ObjFW:
157    ObjCRuntime = CreateGNUObjCRuntime(*this);
158    return;
159
160  case ObjCRuntime::FragileMacOSX:
161  case ObjCRuntime::MacOSX:
162  case ObjCRuntime::iOS:
163    ObjCRuntime = CreateMacObjCRuntime(*this);
164    return;
165  }
166  llvm_unreachable("bad runtime kind");
167}
168
169void CodeGenModule::createOpenCLRuntime() {
170  OpenCLRuntime = new CGOpenCLRuntime(*this);
171}
172
173void CodeGenModule::createCUDARuntime() {
174  CUDARuntime = CreateNVCUDARuntime(*this);
175}
176
177void CodeGenModule::Release() {
178  EmitDeferred();
179  EmitCXXGlobalInitFunc();
180  EmitCXXGlobalDtorFunc();
181  if (ObjCRuntime)
182    if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
183      AddGlobalCtor(ObjCInitFunction);
184  EmitCtorList(GlobalCtors, "llvm.global_ctors");
185  EmitCtorList(GlobalDtors, "llvm.global_dtors");
186  EmitGlobalAnnotations();
187  EmitStaticExternCAliases();
188  EmitLLVMUsed();
189
190  if (CodeGenOpts.Autolink && Context.getLangOpts().Modules) {
191    EmitModuleLinkOptions();
192  }
193
194  SimplifyPersonality();
195
196  if (getCodeGenOpts().EmitDeclMetadata)
197    EmitDeclMetadata();
198
199  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
200    EmitCoverageFile();
201
202  if (DebugInfo)
203    DebugInfo->finalize();
204}
205
206void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
207  // Make sure that this type is translated.
208  Types.UpdateCompletedType(TD);
209}
210
211llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
212  if (!TBAA)
213    return 0;
214  return TBAA->getTBAAInfo(QTy);
215}
216
217llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
218  if (!TBAA)
219    return 0;
220  return TBAA->getTBAAInfoForVTablePtr();
221}
222
223llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
224  if (!TBAA)
225    return 0;
226  return TBAA->getTBAAStructInfo(QTy);
227}
228
229llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
230  if (!TBAA)
231    return 0;
232  return TBAA->getTBAAStructTypeInfo(QTy);
233}
234
235llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
236                                                  llvm::MDNode *AccessN,
237                                                  uint64_t O) {
238  if (!TBAA)
239    return 0;
240  return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
241}
242
243/// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag
244/// is the same as the type. For struct-path aware TBAA, the tag
245/// is different from the type: base type, access type and offset.
246/// When ConvertTypeToTag is true, we create a tag based on the scalar type.
247void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
248                                        llvm::MDNode *TBAAInfo,
249                                        bool ConvertTypeToTag) {
250  if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA)
251    Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
252                      TBAA->getTBAAScalarTagInfo(TBAAInfo));
253  else
254    Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
255}
256
257void CodeGenModule::Error(SourceLocation loc, StringRef error) {
258  unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
259  getDiags().Report(Context.getFullLoc(loc), diagID);
260}
261
262/// ErrorUnsupported - Print out an error that codegen doesn't support the
263/// specified stmt yet.
264void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
265                                     bool OmitOnError) {
266  if (OmitOnError && getDiags().hasErrorOccurred())
267    return;
268  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
269                                               "cannot compile this %0 yet");
270  std::string Msg = Type;
271  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
272    << Msg << S->getSourceRange();
273}
274
275/// ErrorUnsupported - Print out an error that codegen doesn't support the
276/// specified decl yet.
277void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
278                                     bool OmitOnError) {
279  if (OmitOnError && getDiags().hasErrorOccurred())
280    return;
281  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
282                                               "cannot compile this %0 yet");
283  std::string Msg = Type;
284  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
285}
286
287llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
288  return llvm::ConstantInt::get(SizeTy, size.getQuantity());
289}
290
291void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
292                                        const NamedDecl *D) const {
293  // Internal definitions always have default visibility.
294  if (GV->hasLocalLinkage()) {
295    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
296    return;
297  }
298
299  // Set visibility for definitions.
300  LinkageInfo LV = D->getLinkageAndVisibility();
301  if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
302    GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
303}
304
305static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
306  return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
307      .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
308      .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
309      .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
310      .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
311}
312
313static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
314    CodeGenOptions::TLSModel M) {
315  switch (M) {
316  case CodeGenOptions::GeneralDynamicTLSModel:
317    return llvm::GlobalVariable::GeneralDynamicTLSModel;
318  case CodeGenOptions::LocalDynamicTLSModel:
319    return llvm::GlobalVariable::LocalDynamicTLSModel;
320  case CodeGenOptions::InitialExecTLSModel:
321    return llvm::GlobalVariable::InitialExecTLSModel;
322  case CodeGenOptions::LocalExecTLSModel:
323    return llvm::GlobalVariable::LocalExecTLSModel;
324  }
325  llvm_unreachable("Invalid TLS model!");
326}
327
328void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
329                               const VarDecl &D) const {
330  assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
331
332  llvm::GlobalVariable::ThreadLocalMode TLM;
333  TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
334
335  // Override the TLS model if it is explicitly specified.
336  if (D.hasAttr<TLSModelAttr>()) {
337    const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
338    TLM = GetLLVMTLSModel(Attr->getModel());
339  }
340
341  GV->setThreadLocalMode(TLM);
342}
343
344/// Set the symbol visibility of type information (vtable and RTTI)
345/// associated with the given type.
346void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
347                                      const CXXRecordDecl *RD,
348                                      TypeVisibilityKind TVK) const {
349  setGlobalVisibility(GV, RD);
350
351  if (!CodeGenOpts.HiddenWeakVTables)
352    return;
353
354  // We never want to drop the visibility for RTTI names.
355  if (TVK == TVK_ForRTTIName)
356    return;
357
358  // We want to drop the visibility to hidden for weak type symbols.
359  // This isn't possible if there might be unresolved references
360  // elsewhere that rely on this symbol being visible.
361
362  // This should be kept roughly in sync with setThunkVisibility
363  // in CGVTables.cpp.
364
365  // Preconditions.
366  if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
367      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
368    return;
369
370  // Don't override an explicit visibility attribute.
371  if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
372    return;
373
374  switch (RD->getTemplateSpecializationKind()) {
375  // We have to disable the optimization if this is an EI definition
376  // because there might be EI declarations in other shared objects.
377  case TSK_ExplicitInstantiationDefinition:
378  case TSK_ExplicitInstantiationDeclaration:
379    return;
380
381  // Every use of a non-template class's type information has to emit it.
382  case TSK_Undeclared:
383    break;
384
385  // In theory, implicit instantiations can ignore the possibility of
386  // an explicit instantiation declaration because there necessarily
387  // must be an EI definition somewhere with default visibility.  In
388  // practice, it's possible to have an explicit instantiation for
389  // an arbitrary template class, and linkers aren't necessarily able
390  // to deal with mixed-visibility symbols.
391  case TSK_ExplicitSpecialization:
392  case TSK_ImplicitInstantiation:
393    return;
394  }
395
396  // If there's a key function, there may be translation units
397  // that don't have the key function's definition.  But ignore
398  // this if we're emitting RTTI under -fno-rtti.
399  if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
400    // FIXME: what should we do if we "lose" the key function during
401    // the emission of the file?
402    if (Context.getCurrentKeyFunction(RD))
403      return;
404  }
405
406  // Otherwise, drop the visibility to hidden.
407  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
408  GV->setUnnamedAddr(true);
409}
410
411StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
412  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
413
414  StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
415  if (!Str.empty())
416    return Str;
417
418  if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
419    IdentifierInfo *II = ND->getIdentifier();
420    assert(II && "Attempt to mangle unnamed decl.");
421
422    Str = II->getName();
423    return Str;
424  }
425
426  SmallString<256> Buffer;
427  llvm::raw_svector_ostream Out(Buffer);
428  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
429    getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
430  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
431    getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
432  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
433    getCXXABI().getMangleContext().mangleBlock(BD, Out,
434      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
435  else
436    getCXXABI().getMangleContext().mangleName(ND, Out);
437
438  // Allocate space for the mangled name.
439  Out.flush();
440  size_t Length = Buffer.size();
441  char *Name = MangledNamesAllocator.Allocate<char>(Length);
442  std::copy(Buffer.begin(), Buffer.end(), Name);
443
444  Str = StringRef(Name, Length);
445
446  return Str;
447}
448
449void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
450                                        const BlockDecl *BD) {
451  MangleContext &MangleCtx = getCXXABI().getMangleContext();
452  const Decl *D = GD.getDecl();
453  llvm::raw_svector_ostream Out(Buffer.getBuffer());
454  if (D == 0)
455    MangleCtx.mangleGlobalBlock(BD,
456      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
457  else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
458    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
459  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
460    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
461  else
462    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
463}
464
465llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
466  return getModule().getNamedValue(Name);
467}
468
469/// AddGlobalCtor - Add a function to the list that will be called before
470/// main() runs.
471void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
472  // FIXME: Type coercion of void()* types.
473  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
474}
475
476/// AddGlobalDtor - Add a function to the list that will be called
477/// when the module is unloaded.
478void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
479  // FIXME: Type coercion of void()* types.
480  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
481}
482
483void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
484  // Ctor function type is void()*.
485  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
486  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
487
488  // Get the type of a ctor entry, { i32, void ()* }.
489  llvm::StructType *CtorStructTy =
490    llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
491
492  // Construct the constructor and destructor arrays.
493  SmallVector<llvm::Constant*, 8> Ctors;
494  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
495    llvm::Constant *S[] = {
496      llvm::ConstantInt::get(Int32Ty, I->second, false),
497      llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
498    };
499    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
500  }
501
502  if (!Ctors.empty()) {
503    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
504    new llvm::GlobalVariable(TheModule, AT, false,
505                             llvm::GlobalValue::AppendingLinkage,
506                             llvm::ConstantArray::get(AT, Ctors),
507                             GlobalName);
508  }
509}
510
511llvm::GlobalValue::LinkageTypes
512CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
513  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
514
515  if (Linkage == GVA_Internal)
516    return llvm::Function::InternalLinkage;
517
518  if (D->hasAttr<DLLExportAttr>())
519    return llvm::Function::DLLExportLinkage;
520
521  if (D->hasAttr<WeakAttr>())
522    return llvm::Function::WeakAnyLinkage;
523
524  // In C99 mode, 'inline' functions are guaranteed to have a strong
525  // definition somewhere else, so we can use available_externally linkage.
526  if (Linkage == GVA_C99Inline)
527    return llvm::Function::AvailableExternallyLinkage;
528
529  // Note that Apple's kernel linker doesn't support symbol
530  // coalescing, so we need to avoid linkonce and weak linkages there.
531  // Normally, this means we just map to internal, but for explicit
532  // instantiations we'll map to external.
533
534  // In C++, the compiler has to emit a definition in every translation unit
535  // that references the function.  We should use linkonce_odr because
536  // a) if all references in this translation unit are optimized away, we
537  // don't need to codegen it.  b) if the function persists, it needs to be
538  // merged with other definitions. c) C++ has the ODR, so we know the
539  // definition is dependable.
540  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
541    return !Context.getLangOpts().AppleKext
542             ? llvm::Function::LinkOnceODRLinkage
543             : llvm::Function::InternalLinkage;
544
545  // An explicit instantiation of a template has weak linkage, since
546  // explicit instantiations can occur in multiple translation units
547  // and must all be equivalent. However, we are not allowed to
548  // throw away these explicit instantiations.
549  if (Linkage == GVA_ExplicitTemplateInstantiation)
550    return !Context.getLangOpts().AppleKext
551             ? llvm::Function::WeakODRLinkage
552             : llvm::Function::ExternalLinkage;
553
554  // Otherwise, we have strong external linkage.
555  assert(Linkage == GVA_StrongExternal);
556  return llvm::Function::ExternalLinkage;
557}
558
559
560/// SetFunctionDefinitionAttributes - Set attributes for a global.
561///
562/// FIXME: This is currently only done for aliases and functions, but not for
563/// variables (these details are set in EmitGlobalVarDefinition for variables).
564void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
565                                                    llvm::GlobalValue *GV) {
566  SetCommonAttributes(D, GV);
567}
568
569void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
570                                              const CGFunctionInfo &Info,
571                                              llvm::Function *F) {
572  unsigned CallingConv;
573  AttributeListType AttributeList;
574  ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
575  F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
576  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
577}
578
579/// Determines whether the language options require us to model
580/// unwind exceptions.  We treat -fexceptions as mandating this
581/// except under the fragile ObjC ABI with only ObjC exceptions
582/// enabled.  This means, for example, that C with -fexceptions
583/// enables this.
584static bool hasUnwindExceptions(const LangOptions &LangOpts) {
585  // If exceptions are completely disabled, obviously this is false.
586  if (!LangOpts.Exceptions) return false;
587
588  // If C++ exceptions are enabled, this is true.
589  if (LangOpts.CXXExceptions) return true;
590
591  // If ObjC exceptions are enabled, this depends on the ABI.
592  if (LangOpts.ObjCExceptions) {
593    return LangOpts.ObjCRuntime.hasUnwindExceptions();
594  }
595
596  return true;
597}
598
599void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
600                                                           llvm::Function *F) {
601  if (CodeGenOpts.UnwindTables)
602    F->setHasUWTable();
603
604  if (!hasUnwindExceptions(LangOpts))
605    F->addFnAttr(llvm::Attribute::NoUnwind);
606
607  if (D->hasAttr<NakedAttr>()) {
608    // Naked implies noinline: we should not be inlining such functions.
609    F->addFnAttr(llvm::Attribute::Naked);
610    F->addFnAttr(llvm::Attribute::NoInline);
611  }
612
613  if (D->hasAttr<NoInlineAttr>())
614    F->addFnAttr(llvm::Attribute::NoInline);
615
616  // (noinline wins over always_inline, and we can't specify both in IR)
617  if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
618      !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
619                                       llvm::Attribute::NoInline))
620    F->addFnAttr(llvm::Attribute::AlwaysInline);
621
622  // FIXME: Communicate hot and cold attributes to LLVM more directly.
623  if (D->hasAttr<ColdAttr>())
624    F->addFnAttr(llvm::Attribute::OptimizeForSize);
625
626  if (D->hasAttr<MinSizeAttr>())
627    F->addFnAttr(llvm::Attribute::MinSize);
628
629  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
630    F->setUnnamedAddr(true);
631
632  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
633    if (MD->isVirtual())
634      F->setUnnamedAddr(true);
635
636  if (LangOpts.getStackProtector() == LangOptions::SSPOn)
637    F->addFnAttr(llvm::Attribute::StackProtect);
638  else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
639    F->addFnAttr(llvm::Attribute::StackProtectReq);
640
641  // Add sanitizer attributes if function is not blacklisted.
642  if (!SanitizerBlacklist.isIn(*F)) {
643    // When AddressSanitizer is enabled, set SanitizeAddress attribute
644    // unless __attribute__((no_sanitize_address)) is used.
645    if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
646      F->addFnAttr(llvm::Attribute::SanitizeAddress);
647    // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
648    if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
649      F->addFnAttr(llvm::Attribute::SanitizeThread);
650    }
651    // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
652    if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
653      F->addFnAttr(llvm::Attribute::SanitizeMemory);
654  }
655
656  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
657  if (alignment)
658    F->setAlignment(alignment);
659
660  // C++ ABI requires 2-byte alignment for member functions.
661  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
662    F->setAlignment(2);
663}
664
665void CodeGenModule::SetCommonAttributes(const Decl *D,
666                                        llvm::GlobalValue *GV) {
667  if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
668    setGlobalVisibility(GV, ND);
669  else
670    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
671
672  if (D->hasAttr<UsedAttr>())
673    AddUsedGlobal(GV);
674
675  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
676    GV->setSection(SA->getName());
677
678  // Alias cannot have attributes. Filter them here.
679  if (!isa<llvm::GlobalAlias>(GV))
680    getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
681}
682
683void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
684                                                  llvm::Function *F,
685                                                  const CGFunctionInfo &FI) {
686  SetLLVMFunctionAttributes(D, FI, F);
687  SetLLVMFunctionAttributesForDefinition(D, F);
688
689  F->setLinkage(llvm::Function::InternalLinkage);
690
691  SetCommonAttributes(D, F);
692}
693
694void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
695                                          llvm::Function *F,
696                                          bool IsIncompleteFunction) {
697  if (unsigned IID = F->getIntrinsicID()) {
698    // If this is an intrinsic function, set the function's attributes
699    // to the intrinsic's attributes.
700    F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
701                                                    (llvm::Intrinsic::ID)IID));
702    return;
703  }
704
705  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
706
707  if (!IsIncompleteFunction)
708    SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
709
710  // Only a few attributes are set on declarations; these may later be
711  // overridden by a definition.
712
713  if (FD->hasAttr<DLLImportAttr>()) {
714    F->setLinkage(llvm::Function::DLLImportLinkage);
715  } else if (FD->hasAttr<WeakAttr>() ||
716             FD->isWeakImported()) {
717    // "extern_weak" is overloaded in LLVM; we probably should have
718    // separate linkage types for this.
719    F->setLinkage(llvm::Function::ExternalWeakLinkage);
720  } else {
721    F->setLinkage(llvm::Function::ExternalLinkage);
722
723    LinkageInfo LV = FD->getLinkageAndVisibility();
724    if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
725      F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
726    }
727  }
728
729  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
730    F->setSection(SA->getName());
731}
732
733void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
734  assert(!GV->isDeclaration() &&
735         "Only globals with definition can force usage.");
736  LLVMUsed.push_back(GV);
737}
738
739void CodeGenModule::EmitLLVMUsed() {
740  // Don't create llvm.used if there is no need.
741  if (LLVMUsed.empty())
742    return;
743
744  // Convert LLVMUsed to what ConstantArray needs.
745  SmallVector<llvm::Constant*, 8> UsedArray;
746  UsedArray.resize(LLVMUsed.size());
747  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
748    UsedArray[i] =
749     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
750                                    Int8PtrTy);
751  }
752
753  if (UsedArray.empty())
754    return;
755  llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
756
757  llvm::GlobalVariable *GV =
758    new llvm::GlobalVariable(getModule(), ATy, false,
759                             llvm::GlobalValue::AppendingLinkage,
760                             llvm::ConstantArray::get(ATy, UsedArray),
761                             "llvm.used");
762
763  GV->setSection("llvm.metadata");
764}
765
766/// \brief Add link options implied by the given module, including modules
767/// it depends on, using a postorder walk.
768static void addLinkOptionsPostorder(llvm::LLVMContext &Context,
769                                    Module *Mod,
770                                    SmallVectorImpl<llvm::Value *> &Metadata,
771                                    llvm::SmallPtrSet<Module *, 16> &Visited) {
772  // Import this module's parent.
773  if (Mod->Parent && Visited.insert(Mod->Parent)) {
774    addLinkOptionsPostorder(Context, Mod->Parent, Metadata, Visited);
775  }
776
777  // Import this module's dependencies.
778  for (unsigned I = Mod->Imports.size(); I > 0; --I) {
779    if (Visited.insert(Mod->Imports[I-1]))
780      addLinkOptionsPostorder(Context, Mod->Imports[I-1], Metadata, Visited);
781  }
782
783  // Add linker options to link against the libraries/frameworks
784  // described by this module.
785  for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
786    // FIXME: -lfoo is Unix-centric and -framework Foo is Darwin-centric.
787    // We need to know more about the linker to know how to encode these
788    // options propertly.
789
790    // Link against a framework.
791    if (Mod->LinkLibraries[I-1].IsFramework) {
792      llvm::Value *Args[2] = {
793        llvm::MDString::get(Context, "-framework"),
794        llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
795      };
796
797      Metadata.push_back(llvm::MDNode::get(Context, Args));
798      continue;
799    }
800
801    // Link against a library.
802    llvm::Value *OptString
803    = llvm::MDString::get(Context,
804                          "-l" + Mod->LinkLibraries[I-1].Library);
805    Metadata.push_back(llvm::MDNode::get(Context, OptString));
806  }
807}
808
809void CodeGenModule::EmitModuleLinkOptions() {
810  // Collect the set of all of the modules we want to visit to emit link
811  // options, which is essentially the imported modules and all of their
812  // non-explicit child modules.
813  llvm::SetVector<clang::Module *> LinkModules;
814  llvm::SmallPtrSet<clang::Module *, 16> Visited;
815  SmallVector<clang::Module *, 16> Stack;
816
817  // Seed the stack with imported modules.
818  for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
819                                               MEnd = ImportedModules.end();
820       M != MEnd; ++M) {
821    if (Visited.insert(*M))
822      Stack.push_back(*M);
823  }
824
825  // Find all of the modules to import, making a little effort to prune
826  // non-leaf modules.
827  while (!Stack.empty()) {
828    clang::Module *Mod = Stack.back();
829    Stack.pop_back();
830
831    bool AnyChildren = false;
832
833    // Visit the submodules of this module.
834    for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
835                                        SubEnd = Mod->submodule_end();
836         Sub != SubEnd; ++Sub) {
837      // Skip explicit children; they need to be explicitly imported to be
838      // linked against.
839      if ((*Sub)->IsExplicit)
840        continue;
841
842      if (Visited.insert(*Sub)) {
843        Stack.push_back(*Sub);
844        AnyChildren = true;
845      }
846    }
847
848    // We didn't find any children, so add this module to the list of
849    // modules to link against.
850    if (!AnyChildren) {
851      LinkModules.insert(Mod);
852    }
853  }
854
855  // Add link options for all of the imported modules in reverse topological
856  // order.
857  SmallVector<llvm::Value *, 16> MetadataArgs;
858  Visited.clear();
859  for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
860                                               MEnd = LinkModules.end();
861       M != MEnd; ++M) {
862    if (Visited.insert(*M))
863      addLinkOptionsPostorder(getLLVMContext(), *M, MetadataArgs, Visited);
864  }
865  std::reverse(MetadataArgs.begin(), MetadataArgs.end());
866
867  // Add the linker options metadata flag.
868  getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
869                            llvm::MDNode::get(getLLVMContext(), MetadataArgs));
870}
871
872void CodeGenModule::EmitDeferred() {
873  // Emit code for any potentially referenced deferred decls.  Since a
874  // previously unused static decl may become used during the generation of code
875  // for a static function, iterate until no changes are made.
876
877  while (true) {
878    if (!DeferredVTables.empty()) {
879      EmitDeferredVTables();
880
881      // Emitting a v-table doesn't directly cause more v-tables to
882      // become deferred, although it can cause functions to be
883      // emitted that then need those v-tables.
884      assert(DeferredVTables.empty());
885    }
886
887    // Stop if we're out of both deferred v-tables and deferred declarations.
888    if (DeferredDeclsToEmit.empty()) break;
889
890    GlobalDecl D = DeferredDeclsToEmit.back();
891    DeferredDeclsToEmit.pop_back();
892
893    // Check to see if we've already emitted this.  This is necessary
894    // for a couple of reasons: first, decls can end up in the
895    // deferred-decls queue multiple times, and second, decls can end
896    // up with definitions in unusual ways (e.g. by an extern inline
897    // function acquiring a strong function redefinition).  Just
898    // ignore these cases.
899    //
900    // TODO: That said, looking this up multiple times is very wasteful.
901    StringRef Name = getMangledName(D);
902    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
903    assert(CGRef && "Deferred decl wasn't referenced?");
904
905    if (!CGRef->isDeclaration())
906      continue;
907
908    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
909    // purposes an alias counts as a definition.
910    if (isa<llvm::GlobalAlias>(CGRef))
911      continue;
912
913    // Otherwise, emit the definition and move on to the next one.
914    EmitGlobalDefinition(D);
915  }
916}
917
918void CodeGenModule::EmitGlobalAnnotations() {
919  if (Annotations.empty())
920    return;
921
922  // Create a new global variable for the ConstantStruct in the Module.
923  llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
924    Annotations[0]->getType(), Annotations.size()), Annotations);
925  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
926    Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
927    "llvm.global.annotations");
928  gv->setSection(AnnotationSection);
929}
930
931llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
932  llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
933  if (i != AnnotationStrings.end())
934    return i->second;
935
936  // Not found yet, create a new global.
937  llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
938  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
939    true, llvm::GlobalValue::PrivateLinkage, s, ".str");
940  gv->setSection(AnnotationSection);
941  gv->setUnnamedAddr(true);
942  AnnotationStrings[Str] = gv;
943  return gv;
944}
945
946llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
947  SourceManager &SM = getContext().getSourceManager();
948  PresumedLoc PLoc = SM.getPresumedLoc(Loc);
949  if (PLoc.isValid())
950    return EmitAnnotationString(PLoc.getFilename());
951  return EmitAnnotationString(SM.getBufferName(Loc));
952}
953
954llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
955  SourceManager &SM = getContext().getSourceManager();
956  PresumedLoc PLoc = SM.getPresumedLoc(L);
957  unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
958    SM.getExpansionLineNumber(L);
959  return llvm::ConstantInt::get(Int32Ty, LineNo);
960}
961
962llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
963                                                const AnnotateAttr *AA,
964                                                SourceLocation L) {
965  // Get the globals for file name, annotation, and the line number.
966  llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
967                 *UnitGV = EmitAnnotationUnit(L),
968                 *LineNoCst = EmitAnnotationLineNo(L);
969
970  // Create the ConstantStruct for the global annotation.
971  llvm::Constant *Fields[4] = {
972    llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
973    llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
974    llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
975    LineNoCst
976  };
977  return llvm::ConstantStruct::getAnon(Fields);
978}
979
980void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
981                                         llvm::GlobalValue *GV) {
982  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
983  // Get the struct elements for these annotations.
984  for (specific_attr_iterator<AnnotateAttr>
985       ai = D->specific_attr_begin<AnnotateAttr>(),
986       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
987    Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
988}
989
990bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
991  // Never defer when EmitAllDecls is specified.
992  if (LangOpts.EmitAllDecls)
993    return false;
994
995  return !getContext().DeclMustBeEmitted(Global);
996}
997
998llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
999    const CXXUuidofExpr* E) {
1000  // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1001  // well-formed.
1002  StringRef Uuid;
1003  if (E->isTypeOperand())
1004    Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
1005  else {
1006    // Special case: __uuidof(0) means an all-zero GUID.
1007    Expr *Op = E->getExprOperand();
1008    if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
1009      Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
1010    else
1011      Uuid = "00000000-0000-0000-0000-000000000000";
1012  }
1013  std::string Name = "__uuid_" + Uuid.str();
1014
1015  // Look for an existing global.
1016  if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1017    return GV;
1018
1019  llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1020  assert(Init && "failed to initialize as constant");
1021
1022  // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
1023  // first field is declared as "long", which for many targets is 8 bytes.
1024  // Those architectures are not supported. (With the MS abi, long is always 4
1025  // bytes.)
1026  llvm::Type *GuidType = getTypes().ConvertType(E->getType());
1027  if (Init->getType() != GuidType) {
1028    DiagnosticsEngine &Diags = getDiags();
1029    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1030        "__uuidof codegen is not supported on this architecture");
1031    Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
1032    Init = llvm::UndefValue::get(GuidType);
1033  }
1034
1035  llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1036      /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
1037  GV->setUnnamedAddr(true);
1038  return GV;
1039}
1040
1041llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1042  const AliasAttr *AA = VD->getAttr<AliasAttr>();
1043  assert(AA && "No alias?");
1044
1045  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1046
1047  // See if there is already something with the target's name in the module.
1048  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1049  if (Entry) {
1050    unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1051    return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1052  }
1053
1054  llvm::Constant *Aliasee;
1055  if (isa<llvm::FunctionType>(DeclTy))
1056    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1057                                      GlobalDecl(cast<FunctionDecl>(VD)),
1058                                      /*ForVTable=*/false);
1059  else
1060    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1061                                    llvm::PointerType::getUnqual(DeclTy), 0);
1062
1063  llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1064  F->setLinkage(llvm::Function::ExternalWeakLinkage);
1065  WeakRefReferences.insert(F);
1066
1067  return Aliasee;
1068}
1069
1070void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1071  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1072
1073  // Weak references don't produce any output by themselves.
1074  if (Global->hasAttr<WeakRefAttr>())
1075    return;
1076
1077  // If this is an alias definition (which otherwise looks like a declaration)
1078  // emit it now.
1079  if (Global->hasAttr<AliasAttr>())
1080    return EmitAliasDefinition(GD);
1081
1082  // If this is CUDA, be selective about which declarations we emit.
1083  if (LangOpts.CUDA) {
1084    if (CodeGenOpts.CUDAIsDevice) {
1085      if (!Global->hasAttr<CUDADeviceAttr>() &&
1086          !Global->hasAttr<CUDAGlobalAttr>() &&
1087          !Global->hasAttr<CUDAConstantAttr>() &&
1088          !Global->hasAttr<CUDASharedAttr>())
1089        return;
1090    } else {
1091      if (!Global->hasAttr<CUDAHostAttr>() && (
1092            Global->hasAttr<CUDADeviceAttr>() ||
1093            Global->hasAttr<CUDAConstantAttr>() ||
1094            Global->hasAttr<CUDASharedAttr>()))
1095        return;
1096    }
1097  }
1098
1099  // Ignore declarations, they will be emitted on their first use.
1100  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1101    // Forward declarations are emitted lazily on first use.
1102    if (!FD->doesThisDeclarationHaveABody()) {
1103      if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1104        return;
1105
1106      const FunctionDecl *InlineDefinition = 0;
1107      FD->getBody(InlineDefinition);
1108
1109      StringRef MangledName = getMangledName(GD);
1110      DeferredDecls.erase(MangledName);
1111      EmitGlobalDefinition(InlineDefinition);
1112      return;
1113    }
1114  } else {
1115    const VarDecl *VD = cast<VarDecl>(Global);
1116    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1117
1118    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1119      return;
1120  }
1121
1122  // Defer code generation when possible if this is a static definition, inline
1123  // function etc.  These we only want to emit if they are used.
1124  if (!MayDeferGeneration(Global)) {
1125    // Emit the definition if it can't be deferred.
1126    EmitGlobalDefinition(GD);
1127    return;
1128  }
1129
1130  // If we're deferring emission of a C++ variable with an
1131  // initializer, remember the order in which it appeared in the file.
1132  if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1133      cast<VarDecl>(Global)->hasInit()) {
1134    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1135    CXXGlobalInits.push_back(0);
1136  }
1137
1138  // If the value has already been used, add it directly to the
1139  // DeferredDeclsToEmit list.
1140  StringRef MangledName = getMangledName(GD);
1141  if (GetGlobalValue(MangledName))
1142    DeferredDeclsToEmit.push_back(GD);
1143  else {
1144    // Otherwise, remember that we saw a deferred decl with this name.  The
1145    // first use of the mangled name will cause it to move into
1146    // DeferredDeclsToEmit.
1147    DeferredDecls[MangledName] = GD;
1148  }
1149}
1150
1151namespace {
1152  struct FunctionIsDirectlyRecursive :
1153    public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1154    const StringRef Name;
1155    const Builtin::Context &BI;
1156    bool Result;
1157    FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1158      Name(N), BI(C), Result(false) {
1159    }
1160    typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1161
1162    bool TraverseCallExpr(CallExpr *E) {
1163      const FunctionDecl *FD = E->getDirectCallee();
1164      if (!FD)
1165        return true;
1166      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1167      if (Attr && Name == Attr->getLabel()) {
1168        Result = true;
1169        return false;
1170      }
1171      unsigned BuiltinID = FD->getBuiltinID();
1172      if (!BuiltinID)
1173        return true;
1174      StringRef BuiltinName = BI.GetName(BuiltinID);
1175      if (BuiltinName.startswith("__builtin_") &&
1176          Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1177        Result = true;
1178        return false;
1179      }
1180      return true;
1181    }
1182  };
1183}
1184
1185// isTriviallyRecursive - Check if this function calls another
1186// decl that, because of the asm attribute or the other decl being a builtin,
1187// ends up pointing to itself.
1188bool
1189CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1190  StringRef Name;
1191  if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1192    // asm labels are a special kind of mangling we have to support.
1193    AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1194    if (!Attr)
1195      return false;
1196    Name = Attr->getLabel();
1197  } else {
1198    Name = FD->getName();
1199  }
1200
1201  FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1202  Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1203  return Walker.Result;
1204}
1205
1206bool
1207CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1208  if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1209    return true;
1210  if (CodeGenOpts.OptimizationLevel == 0 &&
1211      !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1212    return false;
1213  // PR9614. Avoid cases where the source code is lying to us. An available
1214  // externally function should have an equivalent function somewhere else,
1215  // but a function that calls itself is clearly not equivalent to the real
1216  // implementation.
1217  // This happens in glibc's btowc and in some configure checks.
1218  return !isTriviallyRecursive(F);
1219}
1220
1221void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1222  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1223
1224  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1225                                 Context.getSourceManager(),
1226                                 "Generating code for declaration");
1227
1228  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1229    // At -O0, don't generate IR for functions with available_externally
1230    // linkage.
1231    if (!shouldEmitFunction(Function))
1232      return;
1233
1234    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1235      // Make sure to emit the definition(s) before we emit the thunks.
1236      // This is necessary for the generation of certain thunks.
1237      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1238        EmitCXXConstructor(CD, GD.getCtorType());
1239      else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1240        EmitCXXDestructor(DD, GD.getDtorType());
1241      else
1242        EmitGlobalFunctionDefinition(GD);
1243
1244      if (Method->isVirtual())
1245        getVTables().EmitThunks(GD);
1246
1247      return;
1248    }
1249
1250    return EmitGlobalFunctionDefinition(GD);
1251  }
1252
1253  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1254    return EmitGlobalVarDefinition(VD);
1255
1256  llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1257}
1258
1259/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1260/// module, create and return an llvm Function with the specified type. If there
1261/// is something in the module with the specified name, return it potentially
1262/// bitcasted to the right type.
1263///
1264/// If D is non-null, it specifies a decl that correspond to this.  This is used
1265/// to set the attributes on the function when it is first created.
1266llvm::Constant *
1267CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1268                                       llvm::Type *Ty,
1269                                       GlobalDecl D, bool ForVTable,
1270                                       llvm::AttributeSet ExtraAttrs) {
1271  // Lookup the entry, lazily creating it if necessary.
1272  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1273  if (Entry) {
1274    if (WeakRefReferences.erase(Entry)) {
1275      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1276      if (FD && !FD->hasAttr<WeakAttr>())
1277        Entry->setLinkage(llvm::Function::ExternalLinkage);
1278    }
1279
1280    if (Entry->getType()->getElementType() == Ty)
1281      return Entry;
1282
1283    // Make sure the result is of the correct type.
1284    return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1285  }
1286
1287  // This function doesn't have a complete type (for example, the return
1288  // type is an incomplete struct). Use a fake type instead, and make
1289  // sure not to try to set attributes.
1290  bool IsIncompleteFunction = false;
1291
1292  llvm::FunctionType *FTy;
1293  if (isa<llvm::FunctionType>(Ty)) {
1294    FTy = cast<llvm::FunctionType>(Ty);
1295  } else {
1296    FTy = llvm::FunctionType::get(VoidTy, false);
1297    IsIncompleteFunction = true;
1298  }
1299
1300  llvm::Function *F = llvm::Function::Create(FTy,
1301                                             llvm::Function::ExternalLinkage,
1302                                             MangledName, &getModule());
1303  assert(F->getName() == MangledName && "name was uniqued!");
1304  if (D.getDecl())
1305    SetFunctionAttributes(D, F, IsIncompleteFunction);
1306  if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1307    llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1308    F->addAttributes(llvm::AttributeSet::FunctionIndex,
1309                     llvm::AttributeSet::get(VMContext,
1310                                             llvm::AttributeSet::FunctionIndex,
1311                                             B));
1312  }
1313
1314  // This is the first use or definition of a mangled name.  If there is a
1315  // deferred decl with this name, remember that we need to emit it at the end
1316  // of the file.
1317  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1318  if (DDI != DeferredDecls.end()) {
1319    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1320    // list, and remove it from DeferredDecls (since we don't need it anymore).
1321    DeferredDeclsToEmit.push_back(DDI->second);
1322    DeferredDecls.erase(DDI);
1323
1324  // Otherwise, there are cases we have to worry about where we're
1325  // using a declaration for which we must emit a definition but where
1326  // we might not find a top-level definition:
1327  //   - member functions defined inline in their classes
1328  //   - friend functions defined inline in some class
1329  //   - special member functions with implicit definitions
1330  // If we ever change our AST traversal to walk into class methods,
1331  // this will be unnecessary.
1332  //
1333  // We also don't emit a definition for a function if it's going to be an entry
1334  // in a vtable, unless it's already marked as used.
1335  } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1336    // Look for a declaration that's lexically in a record.
1337    const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1338    FD = FD->getMostRecentDecl();
1339    do {
1340      if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1341        if (FD->isImplicit() && !ForVTable) {
1342          assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1343          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1344          break;
1345        } else if (FD->doesThisDeclarationHaveABody()) {
1346          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1347          break;
1348        }
1349      }
1350      FD = FD->getPreviousDecl();
1351    } while (FD);
1352  }
1353
1354  // Make sure the result is of the requested type.
1355  if (!IsIncompleteFunction) {
1356    assert(F->getType()->getElementType() == Ty);
1357    return F;
1358  }
1359
1360  llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1361  return llvm::ConstantExpr::getBitCast(F, PTy);
1362}
1363
1364/// GetAddrOfFunction - Return the address of the given function.  If Ty is
1365/// non-null, then this function will use the specified type if it has to
1366/// create it (this occurs when we see a definition of the function).
1367llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1368                                                 llvm::Type *Ty,
1369                                                 bool ForVTable) {
1370  // If there was no specific requested type, just convert it now.
1371  if (!Ty)
1372    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1373
1374  StringRef MangledName = getMangledName(GD);
1375  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1376}
1377
1378/// CreateRuntimeFunction - Create a new runtime function with the specified
1379/// type and name.
1380llvm::Constant *
1381CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1382                                     StringRef Name,
1383                                     llvm::AttributeSet ExtraAttrs) {
1384  llvm::Constant *C
1385    = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1386                              ExtraAttrs);
1387  if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1388    if (F->empty())
1389      F->setCallingConv(getRuntimeCC());
1390  return C;
1391}
1392
1393/// isTypeConstant - Determine whether an object of this type can be emitted
1394/// as a constant.
1395///
1396/// If ExcludeCtor is true, the duration when the object's constructor runs
1397/// will not be considered. The caller will need to verify that the object is
1398/// not written to during its construction.
1399bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1400  if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1401    return false;
1402
1403  if (Context.getLangOpts().CPlusPlus) {
1404    if (const CXXRecordDecl *Record
1405          = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1406      return ExcludeCtor && !Record->hasMutableFields() &&
1407             Record->hasTrivialDestructor();
1408  }
1409
1410  return true;
1411}
1412
1413/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1414/// create and return an llvm GlobalVariable with the specified type.  If there
1415/// is something in the module with the specified name, return it potentially
1416/// bitcasted to the right type.
1417///
1418/// If D is non-null, it specifies a decl that correspond to this.  This is used
1419/// to set the attributes on the global when it is first created.
1420llvm::Constant *
1421CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1422                                     llvm::PointerType *Ty,
1423                                     const VarDecl *D,
1424                                     bool UnnamedAddr) {
1425  // Lookup the entry, lazily creating it if necessary.
1426  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1427  if (Entry) {
1428    if (WeakRefReferences.erase(Entry)) {
1429      if (D && !D->hasAttr<WeakAttr>())
1430        Entry->setLinkage(llvm::Function::ExternalLinkage);
1431    }
1432
1433    if (UnnamedAddr)
1434      Entry->setUnnamedAddr(true);
1435
1436    if (Entry->getType() == Ty)
1437      return Entry;
1438
1439    // Make sure the result is of the correct type.
1440    return llvm::ConstantExpr::getBitCast(Entry, Ty);
1441  }
1442
1443  // This is the first use or definition of a mangled name.  If there is a
1444  // deferred decl with this name, remember that we need to emit it at the end
1445  // of the file.
1446  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1447  if (DDI != DeferredDecls.end()) {
1448    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1449    // list, and remove it from DeferredDecls (since we don't need it anymore).
1450    DeferredDeclsToEmit.push_back(DDI->second);
1451    DeferredDecls.erase(DDI);
1452  }
1453
1454  unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1455  llvm::GlobalVariable *GV =
1456    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1457                             llvm::GlobalValue::ExternalLinkage,
1458                             0, MangledName, 0,
1459                             llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1460
1461  // Handle things which are present even on external declarations.
1462  if (D) {
1463    // FIXME: This code is overly simple and should be merged with other global
1464    // handling.
1465    GV->setConstant(isTypeConstant(D->getType(), false));
1466
1467    // Set linkage and visibility in case we never see a definition.
1468    LinkageInfo LV = D->getLinkageAndVisibility();
1469    if (LV.getLinkage() != ExternalLinkage) {
1470      // Don't set internal linkage on declarations.
1471    } else {
1472      if (D->hasAttr<DLLImportAttr>())
1473        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1474      else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1475        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1476
1477      // Set visibility on a declaration only if it's explicit.
1478      if (LV.isVisibilityExplicit())
1479        GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1480    }
1481
1482    if (D->getTLSKind())
1483      setTLSMode(GV, *D);
1484  }
1485
1486  if (AddrSpace != Ty->getAddressSpace())
1487    return llvm::ConstantExpr::getBitCast(GV, Ty);
1488  else
1489    return GV;
1490}
1491
1492
1493llvm::GlobalVariable *
1494CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1495                                      llvm::Type *Ty,
1496                                      llvm::GlobalValue::LinkageTypes Linkage) {
1497  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1498  llvm::GlobalVariable *OldGV = 0;
1499
1500
1501  if (GV) {
1502    // Check if the variable has the right type.
1503    if (GV->getType()->getElementType() == Ty)
1504      return GV;
1505
1506    // Because C++ name mangling, the only way we can end up with an already
1507    // existing global with the same name is if it has been declared extern "C".
1508    assert(GV->isDeclaration() && "Declaration has wrong type!");
1509    OldGV = GV;
1510  }
1511
1512  // Create a new variable.
1513  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1514                                Linkage, 0, Name);
1515
1516  if (OldGV) {
1517    // Replace occurrences of the old variable if needed.
1518    GV->takeName(OldGV);
1519
1520    if (!OldGV->use_empty()) {
1521      llvm::Constant *NewPtrForOldDecl =
1522      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1523      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1524    }
1525
1526    OldGV->eraseFromParent();
1527  }
1528
1529  return GV;
1530}
1531
1532/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1533/// given global variable.  If Ty is non-null and if the global doesn't exist,
1534/// then it will be created with the specified type instead of whatever the
1535/// normal requested type would be.
1536llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1537                                                  llvm::Type *Ty) {
1538  assert(D->hasGlobalStorage() && "Not a global variable");
1539  QualType ASTTy = D->getType();
1540  if (Ty == 0)
1541    Ty = getTypes().ConvertTypeForMem(ASTTy);
1542
1543  llvm::PointerType *PTy =
1544    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1545
1546  StringRef MangledName = getMangledName(D);
1547  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1548}
1549
1550/// CreateRuntimeVariable - Create a new runtime global variable with the
1551/// specified type and name.
1552llvm::Constant *
1553CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1554                                     StringRef Name) {
1555  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1556                               true);
1557}
1558
1559void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1560  assert(!D->getInit() && "Cannot emit definite definitions here!");
1561
1562  if (MayDeferGeneration(D)) {
1563    // If we have not seen a reference to this variable yet, place it
1564    // into the deferred declarations table to be emitted if needed
1565    // later.
1566    StringRef MangledName = getMangledName(D);
1567    if (!GetGlobalValue(MangledName)) {
1568      DeferredDecls[MangledName] = D;
1569      return;
1570    }
1571  }
1572
1573  // The tentative definition is the only definition.
1574  EmitGlobalVarDefinition(D);
1575}
1576
1577CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1578    return Context.toCharUnitsFromBits(
1579      TheDataLayout.getTypeStoreSizeInBits(Ty));
1580}
1581
1582llvm::Constant *
1583CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1584                                                       const Expr *rawInit) {
1585  ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1586  if (const ExprWithCleanups *withCleanups =
1587          dyn_cast<ExprWithCleanups>(rawInit)) {
1588    cleanups = withCleanups->getObjects();
1589    rawInit = withCleanups->getSubExpr();
1590  }
1591
1592  const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1593  if (!init || !init->initializesStdInitializerList() ||
1594      init->getNumInits() == 0)
1595    return 0;
1596
1597  ASTContext &ctx = getContext();
1598  unsigned numInits = init->getNumInits();
1599  // FIXME: This check is here because we would otherwise silently miscompile
1600  // nested global std::initializer_lists. Better would be to have a real
1601  // implementation.
1602  for (unsigned i = 0; i < numInits; ++i) {
1603    const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1604    if (inner && inner->initializesStdInitializerList()) {
1605      ErrorUnsupported(inner, "nested global std::initializer_list");
1606      return 0;
1607    }
1608  }
1609
1610  // Synthesize a fake VarDecl for the array and initialize that.
1611  QualType elementType = init->getInit(0)->getType();
1612  llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1613  QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1614                                                ArrayType::Normal, 0);
1615
1616  IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1617  TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1618                                              arrayType, D->getLocation());
1619  VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1620                                                          D->getDeclContext()),
1621                                          D->getLocStart(), D->getLocation(),
1622                                          name, arrayType, sourceInfo,
1623                                          SC_Static);
1624  backingArray->setTLSKind(D->getTLSKind());
1625
1626  // Now clone the InitListExpr to initialize the array instead.
1627  // Incredible hack: we want to use the existing InitListExpr here, so we need
1628  // to tell it that it no longer initializes a std::initializer_list.
1629  ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1630                        init->getNumInits());
1631  Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1632                                           init->getRBraceLoc());
1633  arrayInit->setType(arrayType);
1634
1635  if (!cleanups.empty())
1636    arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1637
1638  backingArray->setInit(arrayInit);
1639
1640  // Emit the definition of the array.
1641  EmitGlobalVarDefinition(backingArray);
1642
1643  // Inspect the initializer list to validate it and determine its type.
1644  // FIXME: doing this every time is probably inefficient; caching would be nice
1645  RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1646  RecordDecl::field_iterator field = record->field_begin();
1647  if (field == record->field_end()) {
1648    ErrorUnsupported(D, "weird std::initializer_list");
1649    return 0;
1650  }
1651  QualType elementPtr = ctx.getPointerType(elementType.withConst());
1652  // Start pointer.
1653  if (!ctx.hasSameType(field->getType(), elementPtr)) {
1654    ErrorUnsupported(D, "weird std::initializer_list");
1655    return 0;
1656  }
1657  ++field;
1658  if (field == record->field_end()) {
1659    ErrorUnsupported(D, "weird std::initializer_list");
1660    return 0;
1661  }
1662  bool isStartEnd = false;
1663  if (ctx.hasSameType(field->getType(), elementPtr)) {
1664    // End pointer.
1665    isStartEnd = true;
1666  } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1667    ErrorUnsupported(D, "weird std::initializer_list");
1668    return 0;
1669  }
1670
1671  // Now build an APValue representing the std::initializer_list.
1672  APValue initListValue(APValue::UninitStruct(), 0, 2);
1673  APValue &startField = initListValue.getStructField(0);
1674  APValue::LValuePathEntry startOffsetPathEntry;
1675  startOffsetPathEntry.ArrayIndex = 0;
1676  startField = APValue(APValue::LValueBase(backingArray),
1677                       CharUnits::fromQuantity(0),
1678                       llvm::makeArrayRef(startOffsetPathEntry),
1679                       /*IsOnePastTheEnd=*/false, 0);
1680
1681  if (isStartEnd) {
1682    APValue &endField = initListValue.getStructField(1);
1683    APValue::LValuePathEntry endOffsetPathEntry;
1684    endOffsetPathEntry.ArrayIndex = numInits;
1685    endField = APValue(APValue::LValueBase(backingArray),
1686                       ctx.getTypeSizeInChars(elementType) * numInits,
1687                       llvm::makeArrayRef(endOffsetPathEntry),
1688                       /*IsOnePastTheEnd=*/true, 0);
1689  } else {
1690    APValue &sizeField = initListValue.getStructField(1);
1691    sizeField = APValue(llvm::APSInt(numElements));
1692  }
1693
1694  // Emit the constant for the initializer_list.
1695  llvm::Constant *llvmInit =
1696      EmitConstantValueForMemory(initListValue, D->getType());
1697  assert(llvmInit && "failed to initialize as constant");
1698  return llvmInit;
1699}
1700
1701unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1702                                                 unsigned AddrSpace) {
1703  if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1704    if (D->hasAttr<CUDAConstantAttr>())
1705      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1706    else if (D->hasAttr<CUDASharedAttr>())
1707      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1708    else
1709      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1710  }
1711
1712  return AddrSpace;
1713}
1714
1715template<typename SomeDecl>
1716void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1717                                               llvm::GlobalValue *GV) {
1718  if (!getLangOpts().CPlusPlus)
1719    return;
1720
1721  // Must have 'used' attribute, or else inline assembly can't rely on
1722  // the name existing.
1723  if (!D->template hasAttr<UsedAttr>())
1724    return;
1725
1726  // Must have internal linkage and an ordinary name.
1727  if (!D->getIdentifier() || D->getLinkage() != InternalLinkage)
1728    return;
1729
1730  // Must be in an extern "C" context. Entities declared directly within
1731  // a record are not extern "C" even if the record is in such a context.
1732  const DeclContext *DC = D->getFirstDeclaration()->getDeclContext();
1733  if (DC->isRecord() || !DC->isExternCContext())
1734    return;
1735
1736  // OK, this is an internal linkage entity inside an extern "C" linkage
1737  // specification. Make a note of that so we can give it the "expected"
1738  // mangled name if nothing else is using that name.
1739  std::pair<StaticExternCMap::iterator, bool> R =
1740      StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1741
1742  // If we have multiple internal linkage entities with the same name
1743  // in extern "C" regions, none of them gets that name.
1744  if (!R.second)
1745    R.first->second = 0;
1746}
1747
1748void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1749  llvm::Constant *Init = 0;
1750  QualType ASTTy = D->getType();
1751  CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1752  bool NeedsGlobalCtor = false;
1753  bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1754
1755  const VarDecl *InitDecl;
1756  const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1757
1758  if (!InitExpr) {
1759    // This is a tentative definition; tentative definitions are
1760    // implicitly initialized with { 0 }.
1761    //
1762    // Note that tentative definitions are only emitted at the end of
1763    // a translation unit, so they should never have incomplete
1764    // type. In addition, EmitTentativeDefinition makes sure that we
1765    // never attempt to emit a tentative definition if a real one
1766    // exists. A use may still exists, however, so we still may need
1767    // to do a RAUW.
1768    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1769    Init = EmitNullConstant(D->getType());
1770  } else {
1771    // If this is a std::initializer_list, emit the special initializer.
1772    Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1773    // An empty init list will perform zero-initialization, which happens
1774    // to be exactly what we want.
1775    // FIXME: It does so in a global constructor, which is *not* what we
1776    // want.
1777
1778    if (!Init) {
1779      initializedGlobalDecl = GlobalDecl(D);
1780      Init = EmitConstantInit(*InitDecl);
1781    }
1782    if (!Init) {
1783      QualType T = InitExpr->getType();
1784      if (D->getType()->isReferenceType())
1785        T = D->getType();
1786
1787      if (getLangOpts().CPlusPlus) {
1788        Init = EmitNullConstant(T);
1789        NeedsGlobalCtor = true;
1790      } else {
1791        ErrorUnsupported(D, "static initializer");
1792        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1793      }
1794    } else {
1795      // We don't need an initializer, so remove the entry for the delayed
1796      // initializer position (just in case this entry was delayed) if we
1797      // also don't need to register a destructor.
1798      if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1799        DelayedCXXInitPosition.erase(D);
1800    }
1801  }
1802
1803  llvm::Type* InitType = Init->getType();
1804  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1805
1806  // Strip off a bitcast if we got one back.
1807  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1808    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1809           // all zero index gep.
1810           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1811    Entry = CE->getOperand(0);
1812  }
1813
1814  // Entry is now either a Function or GlobalVariable.
1815  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1816
1817  // We have a definition after a declaration with the wrong type.
1818  // We must make a new GlobalVariable* and update everything that used OldGV
1819  // (a declaration or tentative definition) with the new GlobalVariable*
1820  // (which will be a definition).
1821  //
1822  // This happens if there is a prototype for a global (e.g.
1823  // "extern int x[];") and then a definition of a different type (e.g.
1824  // "int x[10];"). This also happens when an initializer has a different type
1825  // from the type of the global (this happens with unions).
1826  if (GV == 0 ||
1827      GV->getType()->getElementType() != InitType ||
1828      GV->getType()->getAddressSpace() !=
1829       GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1830
1831    // Move the old entry aside so that we'll create a new one.
1832    Entry->setName(StringRef());
1833
1834    // Make a new global with the correct type, this is now guaranteed to work.
1835    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1836
1837    // Replace all uses of the old global with the new global
1838    llvm::Constant *NewPtrForOldDecl =
1839        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1840    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1841
1842    // Erase the old global, since it is no longer used.
1843    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1844  }
1845
1846  MaybeHandleStaticInExternC(D, GV);
1847
1848  if (D->hasAttr<AnnotateAttr>())
1849    AddGlobalAnnotations(D, GV);
1850
1851  GV->setInitializer(Init);
1852
1853  // If it is safe to mark the global 'constant', do so now.
1854  GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1855                  isTypeConstant(D->getType(), true));
1856
1857  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1858
1859  // Set the llvm linkage type as appropriate.
1860  llvm::GlobalValue::LinkageTypes Linkage =
1861    GetLLVMLinkageVarDefinition(D, GV);
1862  GV->setLinkage(Linkage);
1863  if (Linkage == llvm::GlobalVariable::CommonLinkage)
1864    // common vars aren't constant even if declared const.
1865    GV->setConstant(false);
1866
1867  SetCommonAttributes(D, GV);
1868
1869  // Emit the initializer function if necessary.
1870  if (NeedsGlobalCtor || NeedsGlobalDtor)
1871    EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1872
1873  // If we are compiling with ASan, add metadata indicating dynamically
1874  // initialized globals.
1875  if (SanOpts.Address && NeedsGlobalCtor) {
1876    llvm::Module &M = getModule();
1877
1878    llvm::NamedMDNode *DynamicInitializers =
1879        M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1880    llvm::Value *GlobalToAdd[] = { GV };
1881    llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1882    DynamicInitializers->addOperand(ThisGlobal);
1883  }
1884
1885  // Emit global variable debug information.
1886  if (CGDebugInfo *DI = getModuleDebugInfo())
1887    if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1888      DI->EmitGlobalVariable(GV, D);
1889}
1890
1891llvm::GlobalValue::LinkageTypes
1892CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1893                                           llvm::GlobalVariable *GV) {
1894  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1895  if (Linkage == GVA_Internal)
1896    return llvm::Function::InternalLinkage;
1897  else if (D->hasAttr<DLLImportAttr>())
1898    return llvm::Function::DLLImportLinkage;
1899  else if (D->hasAttr<DLLExportAttr>())
1900    return llvm::Function::DLLExportLinkage;
1901  else if (D->hasAttr<WeakAttr>()) {
1902    if (GV->isConstant())
1903      return llvm::GlobalVariable::WeakODRLinkage;
1904    else
1905      return llvm::GlobalVariable::WeakAnyLinkage;
1906  } else if (Linkage == GVA_TemplateInstantiation ||
1907             Linkage == GVA_ExplicitTemplateInstantiation)
1908    return llvm::GlobalVariable::WeakODRLinkage;
1909  else if (!getLangOpts().CPlusPlus &&
1910           ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1911             D->getAttr<CommonAttr>()) &&
1912           !D->hasExternalStorage() && !D->getInit() &&
1913           !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1914           !D->getAttr<WeakImportAttr>()) {
1915    // Thread local vars aren't considered common linkage.
1916    return llvm::GlobalVariable::CommonLinkage;
1917  }
1918  return llvm::GlobalVariable::ExternalLinkage;
1919}
1920
1921/// Replace the uses of a function that was declared with a non-proto type.
1922/// We want to silently drop extra arguments from call sites
1923static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1924                                          llvm::Function *newFn) {
1925  // Fast path.
1926  if (old->use_empty()) return;
1927
1928  llvm::Type *newRetTy = newFn->getReturnType();
1929  SmallVector<llvm::Value*, 4> newArgs;
1930
1931  for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1932         ui != ue; ) {
1933    llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1934    llvm::User *user = *use;
1935
1936    // Recognize and replace uses of bitcasts.  Most calls to
1937    // unprototyped functions will use bitcasts.
1938    if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1939      if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1940        replaceUsesOfNonProtoConstant(bitcast, newFn);
1941      continue;
1942    }
1943
1944    // Recognize calls to the function.
1945    llvm::CallSite callSite(user);
1946    if (!callSite) continue;
1947    if (!callSite.isCallee(use)) continue;
1948
1949    // If the return types don't match exactly, then we can't
1950    // transform this call unless it's dead.
1951    if (callSite->getType() != newRetTy && !callSite->use_empty())
1952      continue;
1953
1954    // Get the call site's attribute list.
1955    SmallVector<llvm::AttributeSet, 8> newAttrs;
1956    llvm::AttributeSet oldAttrs = callSite.getAttributes();
1957
1958    // Collect any return attributes from the call.
1959    if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1960      newAttrs.push_back(
1961        llvm::AttributeSet::get(newFn->getContext(),
1962                                oldAttrs.getRetAttributes()));
1963
1964    // If the function was passed too few arguments, don't transform.
1965    unsigned newNumArgs = newFn->arg_size();
1966    if (callSite.arg_size() < newNumArgs) continue;
1967
1968    // If extra arguments were passed, we silently drop them.
1969    // If any of the types mismatch, we don't transform.
1970    unsigned argNo = 0;
1971    bool dontTransform = false;
1972    for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1973           ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1974      if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1975        dontTransform = true;
1976        break;
1977      }
1978
1979      // Add any parameter attributes.
1980      if (oldAttrs.hasAttributes(argNo + 1))
1981        newAttrs.
1982          push_back(llvm::
1983                    AttributeSet::get(newFn->getContext(),
1984                                      oldAttrs.getParamAttributes(argNo + 1)));
1985    }
1986    if (dontTransform)
1987      continue;
1988
1989    if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1990      newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1991                                                 oldAttrs.getFnAttributes()));
1992
1993    // Okay, we can transform this.  Create the new call instruction and copy
1994    // over the required information.
1995    newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1996
1997    llvm::CallSite newCall;
1998    if (callSite.isCall()) {
1999      newCall = llvm::CallInst::Create(newFn, newArgs, "",
2000                                       callSite.getInstruction());
2001    } else {
2002      llvm::InvokeInst *oldInvoke =
2003        cast<llvm::InvokeInst>(callSite.getInstruction());
2004      newCall = llvm::InvokeInst::Create(newFn,
2005                                         oldInvoke->getNormalDest(),
2006                                         oldInvoke->getUnwindDest(),
2007                                         newArgs, "",
2008                                         callSite.getInstruction());
2009    }
2010    newArgs.clear(); // for the next iteration
2011
2012    if (!newCall->getType()->isVoidTy())
2013      newCall->takeName(callSite.getInstruction());
2014    newCall.setAttributes(
2015                     llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2016    newCall.setCallingConv(callSite.getCallingConv());
2017
2018    // Finally, remove the old call, replacing any uses with the new one.
2019    if (!callSite->use_empty())
2020      callSite->replaceAllUsesWith(newCall.getInstruction());
2021
2022    // Copy debug location attached to CI.
2023    if (!callSite->getDebugLoc().isUnknown())
2024      newCall->setDebugLoc(callSite->getDebugLoc());
2025    callSite->eraseFromParent();
2026  }
2027}
2028
2029/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2030/// implement a function with no prototype, e.g. "int foo() {}".  If there are
2031/// existing call uses of the old function in the module, this adjusts them to
2032/// call the new function directly.
2033///
2034/// This is not just a cleanup: the always_inline pass requires direct calls to
2035/// functions to be able to inline them.  If there is a bitcast in the way, it
2036/// won't inline them.  Instcombine normally deletes these calls, but it isn't
2037/// run at -O0.
2038static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2039                                                      llvm::Function *NewFn) {
2040  // If we're redefining a global as a function, don't transform it.
2041  if (!isa<llvm::Function>(Old)) return;
2042
2043  replaceUsesOfNonProtoConstant(Old, NewFn);
2044}
2045
2046void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2047  TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2048  // If we have a definition, this might be a deferred decl. If the
2049  // instantiation is explicit, make sure we emit it at the end.
2050  if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2051    GetAddrOfGlobalVar(VD);
2052
2053  EmitTopLevelDecl(VD);
2054}
2055
2056void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2057  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2058
2059  // Compute the function info and LLVM type.
2060  const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2061  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2062
2063  // Get or create the prototype for the function.
2064  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2065
2066  // Strip off a bitcast if we got one back.
2067  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2068    assert(CE->getOpcode() == llvm::Instruction::BitCast);
2069    Entry = CE->getOperand(0);
2070  }
2071
2072
2073  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2074    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2075
2076    // If the types mismatch then we have to rewrite the definition.
2077    assert(OldFn->isDeclaration() &&
2078           "Shouldn't replace non-declaration");
2079
2080    // F is the Function* for the one with the wrong type, we must make a new
2081    // Function* and update everything that used F (a declaration) with the new
2082    // Function* (which will be a definition).
2083    //
2084    // This happens if there is a prototype for a function
2085    // (e.g. "int f()") and then a definition of a different type
2086    // (e.g. "int f(int x)").  Move the old function aside so that it
2087    // doesn't interfere with GetAddrOfFunction.
2088    OldFn->setName(StringRef());
2089    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2090
2091    // This might be an implementation of a function without a
2092    // prototype, in which case, try to do special replacement of
2093    // calls which match the new prototype.  The really key thing here
2094    // is that we also potentially drop arguments from the call site
2095    // so as to make a direct call, which makes the inliner happier
2096    // and suppresses a number of optimizer warnings (!) about
2097    // dropping arguments.
2098    if (!OldFn->use_empty()) {
2099      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2100      OldFn->removeDeadConstantUsers();
2101    }
2102
2103    // Replace uses of F with the Function we will endow with a body.
2104    if (!Entry->use_empty()) {
2105      llvm::Constant *NewPtrForOldDecl =
2106        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2107      Entry->replaceAllUsesWith(NewPtrForOldDecl);
2108    }
2109
2110    // Ok, delete the old function now, which is dead.
2111    OldFn->eraseFromParent();
2112
2113    Entry = NewFn;
2114  }
2115
2116  // We need to set linkage and visibility on the function before
2117  // generating code for it because various parts of IR generation
2118  // want to propagate this information down (e.g. to local static
2119  // declarations).
2120  llvm::Function *Fn = cast<llvm::Function>(Entry);
2121  setFunctionLinkage(D, Fn);
2122
2123  // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2124  setGlobalVisibility(Fn, D);
2125
2126  MaybeHandleStaticInExternC(D, Fn);
2127
2128  CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2129
2130  SetFunctionDefinitionAttributes(D, Fn);
2131  SetLLVMFunctionAttributesForDefinition(D, Fn);
2132
2133  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2134    AddGlobalCtor(Fn, CA->getPriority());
2135  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2136    AddGlobalDtor(Fn, DA->getPriority());
2137  if (D->hasAttr<AnnotateAttr>())
2138    AddGlobalAnnotations(D, Fn);
2139}
2140
2141void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2142  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2143  const AliasAttr *AA = D->getAttr<AliasAttr>();
2144  assert(AA && "Not an alias?");
2145
2146  StringRef MangledName = getMangledName(GD);
2147
2148  // If there is a definition in the module, then it wins over the alias.
2149  // This is dubious, but allow it to be safe.  Just ignore the alias.
2150  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2151  if (Entry && !Entry->isDeclaration())
2152    return;
2153
2154  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2155
2156  // Create a reference to the named value.  This ensures that it is emitted
2157  // if a deferred decl.
2158  llvm::Constant *Aliasee;
2159  if (isa<llvm::FunctionType>(DeclTy))
2160    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2161                                      /*ForVTable=*/false);
2162  else
2163    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2164                                    llvm::PointerType::getUnqual(DeclTy), 0);
2165
2166  // Create the new alias itself, but don't set a name yet.
2167  llvm::GlobalValue *GA =
2168    new llvm::GlobalAlias(Aliasee->getType(),
2169                          llvm::Function::ExternalLinkage,
2170                          "", Aliasee, &getModule());
2171
2172  if (Entry) {
2173    assert(Entry->isDeclaration());
2174
2175    // If there is a declaration in the module, then we had an extern followed
2176    // by the alias, as in:
2177    //   extern int test6();
2178    //   ...
2179    //   int test6() __attribute__((alias("test7")));
2180    //
2181    // Remove it and replace uses of it with the alias.
2182    GA->takeName(Entry);
2183
2184    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2185                                                          Entry->getType()));
2186    Entry->eraseFromParent();
2187  } else {
2188    GA->setName(MangledName);
2189  }
2190
2191  // Set attributes which are particular to an alias; this is a
2192  // specialization of the attributes which may be set on a global
2193  // variable/function.
2194  if (D->hasAttr<DLLExportAttr>()) {
2195    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2196      // The dllexport attribute is ignored for undefined symbols.
2197      if (FD->hasBody())
2198        GA->setLinkage(llvm::Function::DLLExportLinkage);
2199    } else {
2200      GA->setLinkage(llvm::Function::DLLExportLinkage);
2201    }
2202  } else if (D->hasAttr<WeakAttr>() ||
2203             D->hasAttr<WeakRefAttr>() ||
2204             D->isWeakImported()) {
2205    GA->setLinkage(llvm::Function::WeakAnyLinkage);
2206  }
2207
2208  SetCommonAttributes(D, GA);
2209}
2210
2211llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2212                                            ArrayRef<llvm::Type*> Tys) {
2213  return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2214                                         Tys);
2215}
2216
2217static llvm::StringMapEntry<llvm::Constant*> &
2218GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2219                         const StringLiteral *Literal,
2220                         bool TargetIsLSB,
2221                         bool &IsUTF16,
2222                         unsigned &StringLength) {
2223  StringRef String = Literal->getString();
2224  unsigned NumBytes = String.size();
2225
2226  // Check for simple case.
2227  if (!Literal->containsNonAsciiOrNull()) {
2228    StringLength = NumBytes;
2229    return Map.GetOrCreateValue(String);
2230  }
2231
2232  // Otherwise, convert the UTF8 literals into a string of shorts.
2233  IsUTF16 = true;
2234
2235  SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2236  const UTF8 *FromPtr = (const UTF8 *)String.data();
2237  UTF16 *ToPtr = &ToBuf[0];
2238
2239  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2240                           &ToPtr, ToPtr + NumBytes,
2241                           strictConversion);
2242
2243  // ConvertUTF8toUTF16 returns the length in ToPtr.
2244  StringLength = ToPtr - &ToBuf[0];
2245
2246  // Add an explicit null.
2247  *ToPtr = 0;
2248  return Map.
2249    GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2250                               (StringLength + 1) * 2));
2251}
2252
2253static llvm::StringMapEntry<llvm::Constant*> &
2254GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2255                       const StringLiteral *Literal,
2256                       unsigned &StringLength) {
2257  StringRef String = Literal->getString();
2258  StringLength = String.size();
2259  return Map.GetOrCreateValue(String);
2260}
2261
2262llvm::Constant *
2263CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2264  unsigned StringLength = 0;
2265  bool isUTF16 = false;
2266  llvm::StringMapEntry<llvm::Constant*> &Entry =
2267    GetConstantCFStringEntry(CFConstantStringMap, Literal,
2268                             getDataLayout().isLittleEndian(),
2269                             isUTF16, StringLength);
2270
2271  if (llvm::Constant *C = Entry.getValue())
2272    return C;
2273
2274  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2275  llvm::Constant *Zeros[] = { Zero, Zero };
2276  llvm::Value *V;
2277
2278  // If we don't already have it, get __CFConstantStringClassReference.
2279  if (!CFConstantStringClassRef) {
2280    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2281    Ty = llvm::ArrayType::get(Ty, 0);
2282    llvm::Constant *GV = CreateRuntimeVariable(Ty,
2283                                           "__CFConstantStringClassReference");
2284    // Decay array -> ptr
2285    V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2286    CFConstantStringClassRef = V;
2287  }
2288  else
2289    V = CFConstantStringClassRef;
2290
2291  QualType CFTy = getContext().getCFConstantStringType();
2292
2293  llvm::StructType *STy =
2294    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2295
2296  llvm::Constant *Fields[4];
2297
2298  // Class pointer.
2299  Fields[0] = cast<llvm::ConstantExpr>(V);
2300
2301  // Flags.
2302  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2303  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2304    llvm::ConstantInt::get(Ty, 0x07C8);
2305
2306  // String pointer.
2307  llvm::Constant *C = 0;
2308  if (isUTF16) {
2309    ArrayRef<uint16_t> Arr =
2310      llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2311                                     const_cast<char *>(Entry.getKey().data())),
2312                                   Entry.getKey().size() / 2);
2313    C = llvm::ConstantDataArray::get(VMContext, Arr);
2314  } else {
2315    C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2316  }
2317
2318  llvm::GlobalValue::LinkageTypes Linkage;
2319  if (isUTF16)
2320    // FIXME: why do utf strings get "_" labels instead of "L" labels?
2321    Linkage = llvm::GlobalValue::InternalLinkage;
2322  else
2323    // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2324    // when using private linkage. It is not clear if this is a bug in ld
2325    // or a reasonable new restriction.
2326    Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2327
2328  // Note: -fwritable-strings doesn't make the backing store strings of
2329  // CFStrings writable. (See <rdar://problem/10657500>)
2330  llvm::GlobalVariable *GV =
2331    new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2332                             Linkage, C, ".str");
2333  GV->setUnnamedAddr(true);
2334  if (isUTF16) {
2335    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2336    GV->setAlignment(Align.getQuantity());
2337  } else {
2338    CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2339    GV->setAlignment(Align.getQuantity());
2340  }
2341
2342  // String.
2343  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2344
2345  if (isUTF16)
2346    // Cast the UTF16 string to the correct type.
2347    Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2348
2349  // String length.
2350  Ty = getTypes().ConvertType(getContext().LongTy);
2351  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2352
2353  // The struct.
2354  C = llvm::ConstantStruct::get(STy, Fields);
2355  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2356                                llvm::GlobalVariable::PrivateLinkage, C,
2357                                "_unnamed_cfstring_");
2358  if (const char *Sect = getTarget().getCFStringSection())
2359    GV->setSection(Sect);
2360  Entry.setValue(GV);
2361
2362  return GV;
2363}
2364
2365static RecordDecl *
2366CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2367                 DeclContext *DC, IdentifierInfo *Id) {
2368  SourceLocation Loc;
2369  if (Ctx.getLangOpts().CPlusPlus)
2370    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2371  else
2372    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2373}
2374
2375llvm::Constant *
2376CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2377  unsigned StringLength = 0;
2378  llvm::StringMapEntry<llvm::Constant*> &Entry =
2379    GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2380
2381  if (llvm::Constant *C = Entry.getValue())
2382    return C;
2383
2384  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2385  llvm::Constant *Zeros[] = { Zero, Zero };
2386  llvm::Value *V;
2387  // If we don't already have it, get _NSConstantStringClassReference.
2388  if (!ConstantStringClassRef) {
2389    std::string StringClass(getLangOpts().ObjCConstantStringClass);
2390    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2391    llvm::Constant *GV;
2392    if (LangOpts.ObjCRuntime.isNonFragile()) {
2393      std::string str =
2394        StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2395                            : "OBJC_CLASS_$_" + StringClass;
2396      GV = getObjCRuntime().GetClassGlobal(str);
2397      // Make sure the result is of the correct type.
2398      llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2399      V = llvm::ConstantExpr::getBitCast(GV, PTy);
2400      ConstantStringClassRef = V;
2401    } else {
2402      std::string str =
2403        StringClass.empty() ? "_NSConstantStringClassReference"
2404                            : "_" + StringClass + "ClassReference";
2405      llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2406      GV = CreateRuntimeVariable(PTy, str);
2407      // Decay array -> ptr
2408      V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2409      ConstantStringClassRef = V;
2410    }
2411  }
2412  else
2413    V = ConstantStringClassRef;
2414
2415  if (!NSConstantStringType) {
2416    // Construct the type for a constant NSString.
2417    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2418                                     Context.getTranslationUnitDecl(),
2419                                   &Context.Idents.get("__builtin_NSString"));
2420    D->startDefinition();
2421
2422    QualType FieldTypes[3];
2423
2424    // const int *isa;
2425    FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2426    // const char *str;
2427    FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2428    // unsigned int length;
2429    FieldTypes[2] = Context.UnsignedIntTy;
2430
2431    // Create fields
2432    for (unsigned i = 0; i < 3; ++i) {
2433      FieldDecl *Field = FieldDecl::Create(Context, D,
2434                                           SourceLocation(),
2435                                           SourceLocation(), 0,
2436                                           FieldTypes[i], /*TInfo=*/0,
2437                                           /*BitWidth=*/0,
2438                                           /*Mutable=*/false,
2439                                           ICIS_NoInit);
2440      Field->setAccess(AS_public);
2441      D->addDecl(Field);
2442    }
2443
2444    D->completeDefinition();
2445    QualType NSTy = Context.getTagDeclType(D);
2446    NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2447  }
2448
2449  llvm::Constant *Fields[3];
2450
2451  // Class pointer.
2452  Fields[0] = cast<llvm::ConstantExpr>(V);
2453
2454  // String pointer.
2455  llvm::Constant *C =
2456    llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2457
2458  llvm::GlobalValue::LinkageTypes Linkage;
2459  bool isConstant;
2460  Linkage = llvm::GlobalValue::PrivateLinkage;
2461  isConstant = !LangOpts.WritableStrings;
2462
2463  llvm::GlobalVariable *GV =
2464  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2465                           ".str");
2466  GV->setUnnamedAddr(true);
2467  CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2468  GV->setAlignment(Align.getQuantity());
2469  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2470
2471  // String length.
2472  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2473  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2474
2475  // The struct.
2476  C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2477  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2478                                llvm::GlobalVariable::PrivateLinkage, C,
2479                                "_unnamed_nsstring_");
2480  // FIXME. Fix section.
2481  if (const char *Sect =
2482        LangOpts.ObjCRuntime.isNonFragile()
2483          ? getTarget().getNSStringNonFragileABISection()
2484          : getTarget().getNSStringSection())
2485    GV->setSection(Sect);
2486  Entry.setValue(GV);
2487
2488  return GV;
2489}
2490
2491QualType CodeGenModule::getObjCFastEnumerationStateType() {
2492  if (ObjCFastEnumerationStateType.isNull()) {
2493    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2494                                     Context.getTranslationUnitDecl(),
2495                      &Context.Idents.get("__objcFastEnumerationState"));
2496    D->startDefinition();
2497
2498    QualType FieldTypes[] = {
2499      Context.UnsignedLongTy,
2500      Context.getPointerType(Context.getObjCIdType()),
2501      Context.getPointerType(Context.UnsignedLongTy),
2502      Context.getConstantArrayType(Context.UnsignedLongTy,
2503                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2504    };
2505
2506    for (size_t i = 0; i < 4; ++i) {
2507      FieldDecl *Field = FieldDecl::Create(Context,
2508                                           D,
2509                                           SourceLocation(),
2510                                           SourceLocation(), 0,
2511                                           FieldTypes[i], /*TInfo=*/0,
2512                                           /*BitWidth=*/0,
2513                                           /*Mutable=*/false,
2514                                           ICIS_NoInit);
2515      Field->setAccess(AS_public);
2516      D->addDecl(Field);
2517    }
2518
2519    D->completeDefinition();
2520    ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2521  }
2522
2523  return ObjCFastEnumerationStateType;
2524}
2525
2526llvm::Constant *
2527CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2528  assert(!E->getType()->isPointerType() && "Strings are always arrays");
2529
2530  // Don't emit it as the address of the string, emit the string data itself
2531  // as an inline array.
2532  if (E->getCharByteWidth() == 1) {
2533    SmallString<64> Str(E->getString());
2534
2535    // Resize the string to the right size, which is indicated by its type.
2536    const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2537    Str.resize(CAT->getSize().getZExtValue());
2538    return llvm::ConstantDataArray::getString(VMContext, Str, false);
2539  }
2540
2541  llvm::ArrayType *AType =
2542    cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2543  llvm::Type *ElemTy = AType->getElementType();
2544  unsigned NumElements = AType->getNumElements();
2545
2546  // Wide strings have either 2-byte or 4-byte elements.
2547  if (ElemTy->getPrimitiveSizeInBits() == 16) {
2548    SmallVector<uint16_t, 32> Elements;
2549    Elements.reserve(NumElements);
2550
2551    for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2552      Elements.push_back(E->getCodeUnit(i));
2553    Elements.resize(NumElements);
2554    return llvm::ConstantDataArray::get(VMContext, Elements);
2555  }
2556
2557  assert(ElemTy->getPrimitiveSizeInBits() == 32);
2558  SmallVector<uint32_t, 32> Elements;
2559  Elements.reserve(NumElements);
2560
2561  for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2562    Elements.push_back(E->getCodeUnit(i));
2563  Elements.resize(NumElements);
2564  return llvm::ConstantDataArray::get(VMContext, Elements);
2565}
2566
2567/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2568/// constant array for the given string literal.
2569llvm::Constant *
2570CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2571  CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2572  if (S->isAscii() || S->isUTF8()) {
2573    SmallString<64> Str(S->getString());
2574
2575    // Resize the string to the right size, which is indicated by its type.
2576    const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2577    Str.resize(CAT->getSize().getZExtValue());
2578    return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2579  }
2580
2581  // FIXME: the following does not memoize wide strings.
2582  llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2583  llvm::GlobalVariable *GV =
2584    new llvm::GlobalVariable(getModule(),C->getType(),
2585                             !LangOpts.WritableStrings,
2586                             llvm::GlobalValue::PrivateLinkage,
2587                             C,".str");
2588
2589  GV->setAlignment(Align.getQuantity());
2590  GV->setUnnamedAddr(true);
2591  return GV;
2592}
2593
2594/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2595/// array for the given ObjCEncodeExpr node.
2596llvm::Constant *
2597CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2598  std::string Str;
2599  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2600
2601  return GetAddrOfConstantCString(Str);
2602}
2603
2604
2605/// GenerateWritableString -- Creates storage for a string literal.
2606static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2607                                             bool constant,
2608                                             CodeGenModule &CGM,
2609                                             const char *GlobalName,
2610                                             unsigned Alignment) {
2611  // Create Constant for this string literal. Don't add a '\0'.
2612  llvm::Constant *C =
2613      llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2614
2615  // Create a global variable for this string
2616  llvm::GlobalVariable *GV =
2617    new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2618                             llvm::GlobalValue::PrivateLinkage,
2619                             C, GlobalName);
2620  GV->setAlignment(Alignment);
2621  GV->setUnnamedAddr(true);
2622  return GV;
2623}
2624
2625/// GetAddrOfConstantString - Returns a pointer to a character array
2626/// containing the literal. This contents are exactly that of the
2627/// given string, i.e. it will not be null terminated automatically;
2628/// see GetAddrOfConstantCString. Note that whether the result is
2629/// actually a pointer to an LLVM constant depends on
2630/// Feature.WriteableStrings.
2631///
2632/// The result has pointer to array type.
2633llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2634                                                       const char *GlobalName,
2635                                                       unsigned Alignment) {
2636  // Get the default prefix if a name wasn't specified.
2637  if (!GlobalName)
2638    GlobalName = ".str";
2639
2640  // Don't share any string literals if strings aren't constant.
2641  if (LangOpts.WritableStrings)
2642    return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2643
2644  llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2645    ConstantStringMap.GetOrCreateValue(Str);
2646
2647  if (llvm::GlobalVariable *GV = Entry.getValue()) {
2648    if (Alignment > GV->getAlignment()) {
2649      GV->setAlignment(Alignment);
2650    }
2651    return GV;
2652  }
2653
2654  // Create a global variable for this.
2655  llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2656                                                   Alignment);
2657  Entry.setValue(GV);
2658  return GV;
2659}
2660
2661/// GetAddrOfConstantCString - Returns a pointer to a character
2662/// array containing the literal and a terminating '\0'
2663/// character. The result has pointer to array type.
2664llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2665                                                        const char *GlobalName,
2666                                                        unsigned Alignment) {
2667  StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2668  return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2669}
2670
2671/// EmitObjCPropertyImplementations - Emit information for synthesized
2672/// properties for an implementation.
2673void CodeGenModule::EmitObjCPropertyImplementations(const
2674                                                    ObjCImplementationDecl *D) {
2675  for (ObjCImplementationDecl::propimpl_iterator
2676         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2677    ObjCPropertyImplDecl *PID = *i;
2678
2679    // Dynamic is just for type-checking.
2680    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2681      ObjCPropertyDecl *PD = PID->getPropertyDecl();
2682
2683      // Determine which methods need to be implemented, some may have
2684      // been overridden. Note that ::isPropertyAccessor is not the method
2685      // we want, that just indicates if the decl came from a
2686      // property. What we want to know is if the method is defined in
2687      // this implementation.
2688      if (!D->getInstanceMethod(PD->getGetterName()))
2689        CodeGenFunction(*this).GenerateObjCGetter(
2690                                 const_cast<ObjCImplementationDecl *>(D), PID);
2691      if (!PD->isReadOnly() &&
2692          !D->getInstanceMethod(PD->getSetterName()))
2693        CodeGenFunction(*this).GenerateObjCSetter(
2694                                 const_cast<ObjCImplementationDecl *>(D), PID);
2695    }
2696  }
2697}
2698
2699static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2700  const ObjCInterfaceDecl *iface = impl->getClassInterface();
2701  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2702       ivar; ivar = ivar->getNextIvar())
2703    if (ivar->getType().isDestructedType())
2704      return true;
2705
2706  return false;
2707}
2708
2709/// EmitObjCIvarInitializations - Emit information for ivar initialization
2710/// for an implementation.
2711void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2712  // We might need a .cxx_destruct even if we don't have any ivar initializers.
2713  if (needsDestructMethod(D)) {
2714    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2715    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2716    ObjCMethodDecl *DTORMethod =
2717      ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2718                             cxxSelector, getContext().VoidTy, 0, D,
2719                             /*isInstance=*/true, /*isVariadic=*/false,
2720                          /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2721                             /*isDefined=*/false, ObjCMethodDecl::Required);
2722    D->addInstanceMethod(DTORMethod);
2723    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2724    D->setHasDestructors(true);
2725  }
2726
2727  // If the implementation doesn't have any ivar initializers, we don't need
2728  // a .cxx_construct.
2729  if (D->getNumIvarInitializers() == 0)
2730    return;
2731
2732  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2733  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2734  // The constructor returns 'self'.
2735  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2736                                                D->getLocation(),
2737                                                D->getLocation(),
2738                                                cxxSelector,
2739                                                getContext().getObjCIdType(), 0,
2740                                                D, /*isInstance=*/true,
2741                                                /*isVariadic=*/false,
2742                                                /*isPropertyAccessor=*/true,
2743                                                /*isImplicitlyDeclared=*/true,
2744                                                /*isDefined=*/false,
2745                                                ObjCMethodDecl::Required);
2746  D->addInstanceMethod(CTORMethod);
2747  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2748  D->setHasNonZeroConstructors(true);
2749}
2750
2751/// EmitNamespace - Emit all declarations in a namespace.
2752void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2753  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2754       I != E; ++I)
2755    EmitTopLevelDecl(*I);
2756}
2757
2758// EmitLinkageSpec - Emit all declarations in a linkage spec.
2759void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2760  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2761      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2762    ErrorUnsupported(LSD, "linkage spec");
2763    return;
2764  }
2765
2766  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2767       I != E; ++I) {
2768    // Meta-data for ObjC class includes references to implemented methods.
2769    // Generate class's method definitions first.
2770    if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2771      for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2772           MEnd = OID->meth_end();
2773           M != MEnd; ++M)
2774        EmitTopLevelDecl(*M);
2775    }
2776    EmitTopLevelDecl(*I);
2777  }
2778}
2779
2780/// EmitTopLevelDecl - Emit code for a single top level declaration.
2781void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2782  // If an error has occurred, stop code generation, but continue
2783  // parsing and semantic analysis (to ensure all warnings and errors
2784  // are emitted).
2785  if (Diags.hasErrorOccurred())
2786    return;
2787
2788  // Ignore dependent declarations.
2789  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2790    return;
2791
2792  switch (D->getKind()) {
2793  case Decl::CXXConversion:
2794  case Decl::CXXMethod:
2795  case Decl::Function:
2796    // Skip function templates
2797    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2798        cast<FunctionDecl>(D)->isLateTemplateParsed())
2799      return;
2800
2801    EmitGlobal(cast<FunctionDecl>(D));
2802    break;
2803
2804  case Decl::Var:
2805    EmitGlobal(cast<VarDecl>(D));
2806    break;
2807
2808  // Indirect fields from global anonymous structs and unions can be
2809  // ignored; only the actual variable requires IR gen support.
2810  case Decl::IndirectField:
2811    break;
2812
2813  // C++ Decls
2814  case Decl::Namespace:
2815    EmitNamespace(cast<NamespaceDecl>(D));
2816    break;
2817    // No code generation needed.
2818  case Decl::UsingShadow:
2819  case Decl::Using:
2820  case Decl::UsingDirective:
2821  case Decl::ClassTemplate:
2822  case Decl::FunctionTemplate:
2823  case Decl::TypeAliasTemplate:
2824  case Decl::NamespaceAlias:
2825  case Decl::Block:
2826  case Decl::Empty:
2827    break;
2828  case Decl::CXXConstructor:
2829    // Skip function templates
2830    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2831        cast<FunctionDecl>(D)->isLateTemplateParsed())
2832      return;
2833
2834    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2835    break;
2836  case Decl::CXXDestructor:
2837    if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2838      return;
2839    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2840    break;
2841
2842  case Decl::StaticAssert:
2843    // Nothing to do.
2844    break;
2845
2846  // Objective-C Decls
2847
2848  // Forward declarations, no (immediate) code generation.
2849  case Decl::ObjCInterface:
2850  case Decl::ObjCCategory:
2851    break;
2852
2853  case Decl::ObjCProtocol: {
2854    ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2855    if (Proto->isThisDeclarationADefinition())
2856      ObjCRuntime->GenerateProtocol(Proto);
2857    break;
2858  }
2859
2860  case Decl::ObjCCategoryImpl:
2861    // Categories have properties but don't support synthesize so we
2862    // can ignore them here.
2863    ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2864    break;
2865
2866  case Decl::ObjCImplementation: {
2867    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2868    EmitObjCPropertyImplementations(OMD);
2869    EmitObjCIvarInitializations(OMD);
2870    ObjCRuntime->GenerateClass(OMD);
2871    // Emit global variable debug information.
2872    if (CGDebugInfo *DI = getModuleDebugInfo())
2873      if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2874        DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2875            OMD->getClassInterface()), OMD->getLocation());
2876    break;
2877  }
2878  case Decl::ObjCMethod: {
2879    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2880    // If this is not a prototype, emit the body.
2881    if (OMD->getBody())
2882      CodeGenFunction(*this).GenerateObjCMethod(OMD);
2883    break;
2884  }
2885  case Decl::ObjCCompatibleAlias:
2886    ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2887    break;
2888
2889  case Decl::LinkageSpec:
2890    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2891    break;
2892
2893  case Decl::FileScopeAsm: {
2894    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2895    StringRef AsmString = AD->getAsmString()->getString();
2896
2897    const std::string &S = getModule().getModuleInlineAsm();
2898    if (S.empty())
2899      getModule().setModuleInlineAsm(AsmString);
2900    else if (S.end()[-1] == '\n')
2901      getModule().setModuleInlineAsm(S + AsmString.str());
2902    else
2903      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2904    break;
2905  }
2906
2907  case Decl::Import: {
2908    ImportDecl *Import = cast<ImportDecl>(D);
2909
2910    // Ignore import declarations that come from imported modules.
2911    if (clang::Module *Owner = Import->getOwningModule()) {
2912      if (getLangOpts().CurrentModule.empty() ||
2913          Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2914        break;
2915    }
2916
2917    ImportedModules.insert(Import->getImportedModule());
2918    break;
2919 }
2920
2921  default:
2922    // Make sure we handled everything we should, every other kind is a
2923    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2924    // function. Need to recode Decl::Kind to do that easily.
2925    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2926  }
2927}
2928
2929/// Turns the given pointer into a constant.
2930static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2931                                          const void *Ptr) {
2932  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2933  llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2934  return llvm::ConstantInt::get(i64, PtrInt);
2935}
2936
2937static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2938                                   llvm::NamedMDNode *&GlobalMetadata,
2939                                   GlobalDecl D,
2940                                   llvm::GlobalValue *Addr) {
2941  if (!GlobalMetadata)
2942    GlobalMetadata =
2943      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2944
2945  // TODO: should we report variant information for ctors/dtors?
2946  llvm::Value *Ops[] = {
2947    Addr,
2948    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2949  };
2950  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2951}
2952
2953/// For each function which is declared within an extern "C" region and marked
2954/// as 'used', but has internal linkage, create an alias from the unmangled
2955/// name to the mangled name if possible. People expect to be able to refer
2956/// to such functions with an unmangled name from inline assembly within the
2957/// same translation unit.
2958void CodeGenModule::EmitStaticExternCAliases() {
2959  for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
2960                                  E = StaticExternCValues.end();
2961       I != E; ++I) {
2962    IdentifierInfo *Name = I->first;
2963    llvm::GlobalValue *Val = I->second;
2964    if (Val && !getModule().getNamedValue(Name->getName()))
2965      AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
2966                                          Name->getName(), Val, &getModule()));
2967  }
2968}
2969
2970/// Emits metadata nodes associating all the global values in the
2971/// current module with the Decls they came from.  This is useful for
2972/// projects using IR gen as a subroutine.
2973///
2974/// Since there's currently no way to associate an MDNode directly
2975/// with an llvm::GlobalValue, we create a global named metadata
2976/// with the name 'clang.global.decl.ptrs'.
2977void CodeGenModule::EmitDeclMetadata() {
2978  llvm::NamedMDNode *GlobalMetadata = 0;
2979
2980  // StaticLocalDeclMap
2981  for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2982         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2983       I != E; ++I) {
2984    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2985    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2986  }
2987}
2988
2989/// Emits metadata nodes for all the local variables in the current
2990/// function.
2991void CodeGenFunction::EmitDeclMetadata() {
2992  if (LocalDeclMap.empty()) return;
2993
2994  llvm::LLVMContext &Context = getLLVMContext();
2995
2996  // Find the unique metadata ID for this name.
2997  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2998
2999  llvm::NamedMDNode *GlobalMetadata = 0;
3000
3001  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3002         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3003    const Decl *D = I->first;
3004    llvm::Value *Addr = I->second;
3005
3006    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3007      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3008      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3009    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3010      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3011      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3012    }
3013  }
3014}
3015
3016void CodeGenModule::EmitCoverageFile() {
3017  if (!getCodeGenOpts().CoverageFile.empty()) {
3018    if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3019      llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3020      llvm::LLVMContext &Ctx = TheModule.getContext();
3021      llvm::MDString *CoverageFile =
3022          llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3023      for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3024        llvm::MDNode *CU = CUNode->getOperand(i);
3025        llvm::Value *node[] = { CoverageFile, CU };
3026        llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3027        GCov->addOperand(N);
3028      }
3029    }
3030  }
3031}
3032
3033llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3034                                                     QualType GuidType) {
3035  // Sema has checked that all uuid strings are of the form
3036  // "12345678-1234-1234-1234-1234567890ab".
3037  assert(Uuid.size() == 36);
3038  const char *Uuidstr = Uuid.data();
3039  for (int i = 0; i < 36; ++i) {
3040    if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
3041    else                                         assert(isHexDigit(Uuidstr[i]));
3042  }
3043
3044  llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3045  llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3046  llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3047  static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3048
3049  APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3050  InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3051  InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3052  InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3053  APValue& Arr = InitStruct.getStructField(3);
3054  Arr = APValue(APValue::UninitArray(), 8, 8);
3055  for (int t = 0; t < 8; ++t)
3056    Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3057          llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3058
3059  return EmitConstantValue(InitStruct, GuidType);
3060}
3061