CodeGenModule.cpp revision 6dba432c7b862c2219e5d6e52b0cd188fbf84b01
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CGCall.h"
18#include "CGObjCRuntime.h"
19#include "Mangle.h"
20#include "clang/Frontend/CompileOptions.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/Diagnostic.h"
26#include "clang/Basic/SourceManager.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/Basic/ConvertUTF.h"
29#include "llvm/CallingConv.h"
30#include "llvm/Module.h"
31#include "llvm/Intrinsics.h"
32#include "llvm/Target/TargetData.h"
33using namespace clang;
34using namespace CodeGen;
35
36
37CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
38                             llvm::Module &M, const llvm::TargetData &TD,
39                             Diagnostic &diags)
40  : BlockModule(C, M, TD, Types, *this), Context(C),
41    Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
42    TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
43    MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
44
45  if (!Features.ObjC1)
46    Runtime = 0;
47  else if (!Features.NeXTRuntime)
48    Runtime = CreateGNUObjCRuntime(*this);
49  else if (Features.ObjCNonFragileABI)
50    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
51  else
52    Runtime = CreateMacObjCRuntime(*this);
53
54  // If debug info generation is enabled, create the CGDebugInfo object.
55  DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
56}
57
58CodeGenModule::~CodeGenModule() {
59  delete Runtime;
60  delete DebugInfo;
61}
62
63void CodeGenModule::Release() {
64  EmitDeferred();
65  if (Runtime)
66    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
67      AddGlobalCtor(ObjCInitFunction);
68  EmitCtorList(GlobalCtors, "llvm.global_ctors");
69  EmitCtorList(GlobalDtors, "llvm.global_dtors");
70  EmitAnnotations();
71  EmitLLVMUsed();
72}
73
74/// ErrorUnsupported - Print out an error that codegen doesn't support the
75/// specified stmt yet.
76void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
77                                     bool OmitOnError) {
78  if (OmitOnError && getDiags().hasErrorOccurred())
79    return;
80  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
81                                               "cannot compile this %0 yet");
82  std::string Msg = Type;
83  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
84    << Msg << S->getSourceRange();
85}
86
87/// ErrorUnsupported - Print out an error that codegen doesn't support the
88/// specified decl yet.
89void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
90                                     bool OmitOnError) {
91  if (OmitOnError && getDiags().hasErrorOccurred())
92    return;
93  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
94                                               "cannot compile this %0 yet");
95  std::string Msg = Type;
96  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
97}
98
99LangOptions::VisibilityMode
100CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
101  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
102    if (VD->getStorageClass() == VarDecl::PrivateExtern)
103      return LangOptions::Hidden;
104
105  if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
106    switch (attr->getVisibility()) {
107    default: assert(0 && "Unknown visibility!");
108    case VisibilityAttr::DefaultVisibility:
109      return LangOptions::Default;
110    case VisibilityAttr::HiddenVisibility:
111      return LangOptions::Hidden;
112    case VisibilityAttr::ProtectedVisibility:
113      return LangOptions::Protected;
114    }
115  }
116
117  return getLangOptions().getVisibilityMode();
118}
119
120void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
121                                        const Decl *D) const {
122  // Internal definitions always have default visibility.
123  if (GV->hasLocalLinkage()) {
124    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
125    return;
126  }
127
128  switch (getDeclVisibilityMode(D)) {
129  default: assert(0 && "Unknown visibility!");
130  case LangOptions::Default:
131    return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
132  case LangOptions::Hidden:
133    return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
134  case LangOptions::Protected:
135    return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
136  }
137}
138
139const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
140  const NamedDecl *ND = GD.getDecl();
141
142  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
143    return getMangledCXXCtorName(D, GD.getCtorType());
144  if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
145    return getMangledCXXDtorName(D, GD.getDtorType());
146
147  return getMangledName(ND);
148}
149
150/// \brief Retrieves the mangled name for the given declaration.
151///
152/// If the given declaration requires a mangled name, returns an
153/// const char* containing the mangled name.  Otherwise, returns
154/// the unmangled name.
155///
156const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
157  // In C, functions with no attributes never need to be mangled. Fastpath them.
158  if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
159    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
160    return ND->getNameAsCString();
161  }
162
163  llvm::SmallString<256> Name;
164  llvm::raw_svector_ostream Out(Name);
165  if (!mangleName(ND, Context, Out)) {
166    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
167    return ND->getNameAsCString();
168  }
169
170  Name += '\0';
171  return UniqueMangledName(Name.begin(), Name.end());
172}
173
174const char *CodeGenModule::UniqueMangledName(const char *NameStart,
175                                             const char *NameEnd) {
176  assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
177
178  return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
179}
180
181/// AddGlobalCtor - Add a function to the list that will be called before
182/// main() runs.
183void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
184  // FIXME: Type coercion of void()* types.
185  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
186}
187
188/// AddGlobalDtor - Add a function to the list that will be called
189/// when the module is unloaded.
190void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
191  // FIXME: Type coercion of void()* types.
192  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
193}
194
195void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
196  // Ctor function type is void()*.
197  llvm::FunctionType* CtorFTy =
198    llvm::FunctionType::get(llvm::Type::VoidTy,
199                            std::vector<const llvm::Type*>(),
200                            false);
201  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
202
203  // Get the type of a ctor entry, { i32, void ()* }.
204  llvm::StructType* CtorStructTy =
205    llvm::StructType::get(llvm::Type::Int32Ty,
206                          llvm::PointerType::getUnqual(CtorFTy), NULL);
207
208  // Construct the constructor and destructor arrays.
209  std::vector<llvm::Constant*> Ctors;
210  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
211    std::vector<llvm::Constant*> S;
212    S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
213    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
214    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
215  }
216
217  if (!Ctors.empty()) {
218    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
219    new llvm::GlobalVariable(TheModule, AT, false,
220                             llvm::GlobalValue::AppendingLinkage,
221                             llvm::ConstantArray::get(AT, Ctors),
222                             GlobalName);
223  }
224}
225
226void CodeGenModule::EmitAnnotations() {
227  if (Annotations.empty())
228    return;
229
230  // Create a new global variable for the ConstantStruct in the Module.
231  llvm::Constant *Array =
232  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
233                                                Annotations.size()),
234                           Annotations);
235  llvm::GlobalValue *gv =
236  new llvm::GlobalVariable(TheModule, Array->getType(), false,
237                           llvm::GlobalValue::AppendingLinkage, Array,
238                           "llvm.global.annotations");
239  gv->setSection("llvm.metadata");
240}
241
242static CodeGenModule::GVALinkage
243GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
244                      const LangOptions &Features) {
245  // The kind of external linkage this function will have, if it is not
246  // inline or static.
247  CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
248  if (Context.getLangOptions().CPlusPlus &&
249      (FD->getPrimaryTemplate() || FD->getInstantiatedFromMemberFunction()) &&
250      !FD->isExplicitSpecialization())
251    External = CodeGenModule::GVA_TemplateInstantiation;
252
253  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
254    // C++ member functions defined inside the class are always inline.
255    if (MD->isInline() || !MD->isOutOfLine())
256      return CodeGenModule::GVA_CXXInline;
257
258    return External;
259  }
260
261  // "static" functions get internal linkage.
262  if (FD->getStorageClass() == FunctionDecl::Static)
263    return CodeGenModule::GVA_Internal;
264
265  if (!FD->isInline())
266    return External;
267
268  // If the inline function explicitly has the GNU inline attribute on it, or if
269  // this is C89 mode, we use to GNU semantics.
270  if (!Features.C99 && !Features.CPlusPlus) {
271    // extern inline in GNU mode is like C99 inline.
272    if (FD->getStorageClass() == FunctionDecl::Extern)
273      return CodeGenModule::GVA_C99Inline;
274    // Normal inline is a strong symbol.
275    return CodeGenModule::GVA_StrongExternal;
276  } else if (FD->hasActiveGNUInlineAttribute(Context)) {
277    // GCC in C99 mode seems to use a different decision-making
278    // process for extern inline, which factors in previous
279    // declarations.
280    if (FD->isExternGNUInline(Context))
281      return CodeGenModule::GVA_C99Inline;
282    // Normal inline is a strong symbol.
283    return External;
284  }
285
286  // The definition of inline changes based on the language.  Note that we
287  // have already handled "static inline" above, with the GVA_Internal case.
288  if (Features.CPlusPlus)  // inline and extern inline.
289    return CodeGenModule::GVA_CXXInline;
290
291  assert(Features.C99 && "Must be in C99 mode if not in C89 or C++ mode");
292  if (FD->isC99InlineDefinition())
293    return CodeGenModule::GVA_C99Inline;
294
295  return CodeGenModule::GVA_StrongExternal;
296}
297
298/// SetFunctionDefinitionAttributes - Set attributes for a global.
299///
300/// FIXME: This is currently only done for aliases and functions, but not for
301/// variables (these details are set in EmitGlobalVarDefinition for variables).
302void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
303                                                    llvm::GlobalValue *GV) {
304  GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
305
306  if (Linkage == GVA_Internal) {
307    GV->setLinkage(llvm::Function::InternalLinkage);
308  } else if (D->hasAttr<DLLExportAttr>()) {
309    GV->setLinkage(llvm::Function::DLLExportLinkage);
310  } else if (D->hasAttr<WeakAttr>()) {
311    GV->setLinkage(llvm::Function::WeakAnyLinkage);
312  } else if (Linkage == GVA_C99Inline) {
313    // In C99 mode, 'inline' functions are guaranteed to have a strong
314    // definition somewhere else, so we can use available_externally linkage.
315    GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
316  } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
317    // In C++, the compiler has to emit a definition in every translation unit
318    // that references the function.  We should use linkonce_odr because
319    // a) if all references in this translation unit are optimized away, we
320    // don't need to codegen it.  b) if the function persists, it needs to be
321    // merged with other definitions. c) C++ has the ODR, so we know the
322    // definition is dependable.
323    GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
324  } else {
325    assert(Linkage == GVA_StrongExternal);
326    // Otherwise, we have strong external linkage.
327    GV->setLinkage(llvm::Function::ExternalLinkage);
328  }
329
330  SetCommonAttributes(D, GV);
331}
332
333void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
334                                              const CGFunctionInfo &Info,
335                                              llvm::Function *F) {
336  AttributeListType AttributeList;
337  ConstructAttributeList(Info, D, AttributeList);
338
339  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
340                                        AttributeList.size()));
341
342  // Set the appropriate calling convention for the Function.
343  if (D->hasAttr<FastCallAttr>())
344    F->setCallingConv(llvm::CallingConv::X86_FastCall);
345
346  if (D->hasAttr<StdCallAttr>())
347    F->setCallingConv(llvm::CallingConv::X86_StdCall);
348}
349
350void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
351                                                           llvm::Function *F) {
352  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
353    F->addFnAttr(llvm::Attribute::NoUnwind);
354
355  if (D->hasAttr<AlwaysInlineAttr>())
356    F->addFnAttr(llvm::Attribute::AlwaysInline);
357
358  if (D->hasAttr<NoinlineAttr>())
359    F->addFnAttr(llvm::Attribute::NoInline);
360}
361
362void CodeGenModule::SetCommonAttributes(const Decl *D,
363                                        llvm::GlobalValue *GV) {
364  setGlobalVisibility(GV, D);
365
366  if (D->hasAttr<UsedAttr>())
367    AddUsedGlobal(GV);
368
369  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
370    GV->setSection(SA->getName());
371}
372
373void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
374                                                  llvm::Function *F,
375                                                  const CGFunctionInfo &FI) {
376  SetLLVMFunctionAttributes(D, FI, F);
377  SetLLVMFunctionAttributesForDefinition(D, F);
378
379  F->setLinkage(llvm::Function::InternalLinkage);
380
381  SetCommonAttributes(D, F);
382}
383
384void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
385                                          llvm::Function *F,
386                                          bool IsIncompleteFunction) {
387  if (!IsIncompleteFunction)
388    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
389
390  // Only a few attributes are set on declarations; these may later be
391  // overridden by a definition.
392
393  if (FD->hasAttr<DLLImportAttr>()) {
394    F->setLinkage(llvm::Function::DLLImportLinkage);
395  } else if (FD->hasAttr<WeakAttr>() ||
396             FD->hasAttr<WeakImportAttr>()) {
397    // "extern_weak" is overloaded in LLVM; we probably should have
398    // separate linkage types for this.
399    F->setLinkage(llvm::Function::ExternalWeakLinkage);
400  } else {
401    F->setLinkage(llvm::Function::ExternalLinkage);
402  }
403
404  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
405    F->setSection(SA->getName());
406}
407
408void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
409  assert(!GV->isDeclaration() &&
410         "Only globals with definition can force usage.");
411  LLVMUsed.push_back(GV);
412}
413
414void CodeGenModule::EmitLLVMUsed() {
415  // Don't create llvm.used if there is no need.
416  // FIXME. Runtime indicates that there might be more 'used' symbols; but not
417  // necessariy. So, this test is not accurate for emptiness.
418  if (LLVMUsed.empty() && !Runtime)
419    return;
420
421  llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
422
423  // Convert LLVMUsed to what ConstantArray needs.
424  std::vector<llvm::Constant*> UsedArray;
425  UsedArray.resize(LLVMUsed.size());
426  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
427    UsedArray[i] =
428     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
429  }
430
431  if (Runtime)
432    Runtime->MergeMetadataGlobals(UsedArray);
433  if (UsedArray.empty())
434    return;
435  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
436
437  llvm::GlobalVariable *GV =
438    new llvm::GlobalVariable(getModule(), ATy, false,
439                             llvm::GlobalValue::AppendingLinkage,
440                             llvm::ConstantArray::get(ATy, UsedArray),
441                             "llvm.used");
442
443  GV->setSection("llvm.metadata");
444}
445
446void CodeGenModule::EmitDeferred() {
447  // Emit code for any potentially referenced deferred decls.  Since a
448  // previously unused static decl may become used during the generation of code
449  // for a static function, iterate until no  changes are made.
450  while (!DeferredDeclsToEmit.empty()) {
451    GlobalDecl D = DeferredDeclsToEmit.back();
452    DeferredDeclsToEmit.pop_back();
453
454    // The mangled name for the decl must have been emitted in GlobalDeclMap.
455    // Look it up to see if it was defined with a stronger definition (e.g. an
456    // extern inline function with a strong function redefinition).  If so,
457    // just ignore the deferred decl.
458    llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
459    assert(CGRef && "Deferred decl wasn't referenced?");
460
461    if (!CGRef->isDeclaration())
462      continue;
463
464    // Otherwise, emit the definition and move on to the next one.
465    EmitGlobalDefinition(D);
466  }
467}
468
469/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
470/// annotation information for a given GlobalValue.  The annotation struct is
471/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
472/// GlobalValue being annotated.  The second field is the constant string
473/// created from the AnnotateAttr's annotation.  The third field is a constant
474/// string containing the name of the translation unit.  The fourth field is
475/// the line number in the file of the annotated value declaration.
476///
477/// FIXME: this does not unique the annotation string constants, as llvm-gcc
478///        appears to.
479///
480llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
481                                                const AnnotateAttr *AA,
482                                                unsigned LineNo) {
483  llvm::Module *M = &getModule();
484
485  // get [N x i8] constants for the annotation string, and the filename string
486  // which are the 2nd and 3rd elements of the global annotation structure.
487  const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
488  llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
489  llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
490                                                  true);
491
492  // Get the two global values corresponding to the ConstantArrays we just
493  // created to hold the bytes of the strings.
494  const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
495  llvm::GlobalValue *annoGV =
496  new llvm::GlobalVariable(*M, anno->getType(), false,
497                           llvm::GlobalValue::InternalLinkage, anno,
498                           GV->getName() + StringPrefix);
499  // translation unit name string, emitted into the llvm.metadata section.
500  llvm::GlobalValue *unitGV =
501  new llvm::GlobalVariable(*M, unit->getType(), false,
502                           llvm::GlobalValue::InternalLinkage, unit,
503                           StringPrefix);
504
505  // Create the ConstantStruct for the global annotation.
506  llvm::Constant *Fields[4] = {
507    llvm::ConstantExpr::getBitCast(GV, SBP),
508    llvm::ConstantExpr::getBitCast(annoGV, SBP),
509    llvm::ConstantExpr::getBitCast(unitGV, SBP),
510    llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
511  };
512  return llvm::ConstantStruct::get(Fields, 4, false);
513}
514
515bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
516  // Never defer when EmitAllDecls is specified or the decl has
517  // attribute used.
518  if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
519    return false;
520
521  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
522    // Constructors and destructors should never be deferred.
523    if (FD->hasAttr<ConstructorAttr>() ||
524        FD->hasAttr<DestructorAttr>())
525      return false;
526
527    GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
528
529    // static, static inline, always_inline, and extern inline functions can
530    // always be deferred.  Normal inline functions can be deferred in C99/C++.
531    if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
532        Linkage == GVA_CXXInline)
533      return true;
534    return false;
535  }
536
537  const VarDecl *VD = cast<VarDecl>(Global);
538  assert(VD->isFileVarDecl() && "Invalid decl");
539
540  return VD->getStorageClass() == VarDecl::Static;
541}
542
543void CodeGenModule::EmitGlobal(GlobalDecl GD) {
544  const ValueDecl *Global = GD.getDecl();
545
546  // If this is an alias definition (which otherwise looks like a declaration)
547  // emit it now.
548  if (Global->hasAttr<AliasAttr>())
549    return EmitAliasDefinition(Global);
550
551  // Ignore declarations, they will be emitted on their first use.
552  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
553    // Forward declarations are emitted lazily on first use.
554    if (!FD->isThisDeclarationADefinition())
555      return;
556  } else {
557    const VarDecl *VD = cast<VarDecl>(Global);
558    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
559
560    // In C++, if this is marked "extern", defer code generation.
561    if (getLangOptions().CPlusPlus && !VD->getInit() &&
562        (VD->getStorageClass() == VarDecl::Extern ||
563         VD->isExternC(getContext())))
564      return;
565
566    // In C, if this isn't a definition, defer code generation.
567    if (!getLangOptions().CPlusPlus && !VD->getInit())
568      return;
569  }
570
571  // Defer code generation when possible if this is a static definition, inline
572  // function etc.  These we only want to emit if they are used.
573  if (MayDeferGeneration(Global)) {
574    // If the value has already been used, add it directly to the
575    // DeferredDeclsToEmit list.
576    const char *MangledName = getMangledName(GD);
577    if (GlobalDeclMap.count(MangledName))
578      DeferredDeclsToEmit.push_back(GD);
579    else {
580      // Otherwise, remember that we saw a deferred decl with this name.  The
581      // first use of the mangled name will cause it to move into
582      // DeferredDeclsToEmit.
583      DeferredDecls[MangledName] = GD;
584    }
585    return;
586  }
587
588  // Otherwise emit the definition.
589  EmitGlobalDefinition(GD);
590}
591
592void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
593  const ValueDecl *D = GD.getDecl();
594
595  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
596    EmitCXXConstructor(CD, GD.getCtorType());
597  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
598    EmitCXXDestructor(DD, GD.getDtorType());
599  else if (isa<FunctionDecl>(D))
600    EmitGlobalFunctionDefinition(GD);
601  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
602    EmitGlobalVarDefinition(VD);
603  else {
604    assert(0 && "Invalid argument to EmitGlobalDefinition()");
605  }
606}
607
608/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
609/// module, create and return an llvm Function with the specified type. If there
610/// is something in the module with the specified name, return it potentially
611/// bitcasted to the right type.
612///
613/// If D is non-null, it specifies a decl that correspond to this.  This is used
614/// to set the attributes on the function when it is first created.
615llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
616                                                       const llvm::Type *Ty,
617                                                       GlobalDecl D) {
618  // Lookup the entry, lazily creating it if necessary.
619  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
620  if (Entry) {
621    if (Entry->getType()->getElementType() == Ty)
622      return Entry;
623
624    // Make sure the result is of the correct type.
625    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
626    return llvm::ConstantExpr::getBitCast(Entry, PTy);
627  }
628
629  // This is the first use or definition of a mangled name.  If there is a
630  // deferred decl with this name, remember that we need to emit it at the end
631  // of the file.
632  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
633    DeferredDecls.find(MangledName);
634  if (DDI != DeferredDecls.end()) {
635    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
636    // list, and remove it from DeferredDecls (since we don't need it anymore).
637    DeferredDeclsToEmit.push_back(DDI->second);
638    DeferredDecls.erase(DDI);
639  } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
640    // If this the first reference to a C++ inline function in a class, queue up
641    // the deferred function body for emission.  These are not seen as
642    // top-level declarations.
643    if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
644      DeferredDeclsToEmit.push_back(D);
645  }
646
647  // This function doesn't have a complete type (for example, the return
648  // type is an incomplete struct). Use a fake type instead, and make
649  // sure not to try to set attributes.
650  bool IsIncompleteFunction = false;
651  if (!isa<llvm::FunctionType>(Ty)) {
652    Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
653                                 std::vector<const llvm::Type*>(), false);
654    IsIncompleteFunction = true;
655  }
656  llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
657                                             llvm::Function::ExternalLinkage,
658                                             "", &getModule());
659  F->setName(MangledName);
660  if (D.getDecl())
661    SetFunctionAttributes(cast<FunctionDecl>(D.getDecl()), F,
662                          IsIncompleteFunction);
663  Entry = F;
664  return F;
665}
666
667/// GetAddrOfFunction - Return the address of the given function.  If Ty is
668/// non-null, then this function will use the specified type if it has to
669/// create it (this occurs when we see a definition of the function).
670llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
671                                                 const llvm::Type *Ty) {
672  // If there was no specific requested type, just convert it now.
673  if (!Ty)
674    Ty = getTypes().ConvertType(GD.getDecl()->getType());
675  return GetOrCreateLLVMFunction(getMangledName(GD.getDecl()), Ty, GD);
676}
677
678/// CreateRuntimeFunction - Create a new runtime function with the specified
679/// type and name.
680llvm::Constant *
681CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
682                                     const char *Name) {
683  // Convert Name to be a uniqued string from the IdentifierInfo table.
684  Name = getContext().Idents.get(Name).getName();
685  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
686}
687
688/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
689/// create and return an llvm GlobalVariable with the specified type.  If there
690/// is something in the module with the specified name, return it potentially
691/// bitcasted to the right type.
692///
693/// If D is non-null, it specifies a decl that correspond to this.  This is used
694/// to set the attributes on the global when it is first created.
695llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
696                                                     const llvm::PointerType*Ty,
697                                                     const VarDecl *D) {
698  // Lookup the entry, lazily creating it if necessary.
699  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
700  if (Entry) {
701    if (Entry->getType() == Ty)
702      return Entry;
703
704    // Make sure the result is of the correct type.
705    return llvm::ConstantExpr::getBitCast(Entry, Ty);
706  }
707
708  // This is the first use or definition of a mangled name.  If there is a
709  // deferred decl with this name, remember that we need to emit it at the end
710  // of the file.
711  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
712    DeferredDecls.find(MangledName);
713  if (DDI != DeferredDecls.end()) {
714    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
715    // list, and remove it from DeferredDecls (since we don't need it anymore).
716    DeferredDeclsToEmit.push_back(DDI->second);
717    DeferredDecls.erase(DDI);
718  }
719
720  llvm::GlobalVariable *GV =
721    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
722                             llvm::GlobalValue::ExternalLinkage,
723                             0, "", 0,
724                             false, Ty->getAddressSpace());
725  GV->setName(MangledName);
726
727  // Handle things which are present even on external declarations.
728  if (D) {
729    // FIXME: This code is overly simple and should be merged with other global
730    // handling.
731    GV->setConstant(D->getType().isConstant(Context));
732
733    // FIXME: Merge with other attribute handling code.
734    if (D->getStorageClass() == VarDecl::PrivateExtern)
735      GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
736
737    if (D->hasAttr<WeakAttr>() ||
738        D->hasAttr<WeakImportAttr>())
739      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
740
741    GV->setThreadLocal(D->isThreadSpecified());
742  }
743
744  return Entry = GV;
745}
746
747
748/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
749/// given global variable.  If Ty is non-null and if the global doesn't exist,
750/// then it will be greated with the specified type instead of whatever the
751/// normal requested type would be.
752llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
753                                                  const llvm::Type *Ty) {
754  assert(D->hasGlobalStorage() && "Not a global variable");
755  QualType ASTTy = D->getType();
756  if (Ty == 0)
757    Ty = getTypes().ConvertTypeForMem(ASTTy);
758
759  const llvm::PointerType *PTy =
760    llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
761  return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
762}
763
764/// CreateRuntimeVariable - Create a new runtime global variable with the
765/// specified type and name.
766llvm::Constant *
767CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
768                                     const char *Name) {
769  // Convert Name to be a uniqued string from the IdentifierInfo table.
770  Name = getContext().Idents.get(Name).getName();
771  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
772}
773
774void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
775  assert(!D->getInit() && "Cannot emit definite definitions here!");
776
777  if (MayDeferGeneration(D)) {
778    // If we have not seen a reference to this variable yet, place it
779    // into the deferred declarations table to be emitted if needed
780    // later.
781    const char *MangledName = getMangledName(D);
782    if (GlobalDeclMap.count(MangledName) == 0) {
783      DeferredDecls[MangledName] = GlobalDecl(D);
784      return;
785    }
786  }
787
788  // The tentative definition is the only definition.
789  EmitGlobalVarDefinition(D);
790}
791
792void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
793  llvm::Constant *Init = 0;
794  QualType ASTTy = D->getType();
795
796  if (D->getInit() == 0) {
797    // This is a tentative definition; tentative definitions are
798    // implicitly initialized with { 0 }.
799    //
800    // Note that tentative definitions are only emitted at the end of
801    // a translation unit, so they should never have incomplete
802    // type. In addition, EmitTentativeDefinition makes sure that we
803    // never attempt to emit a tentative definition if a real one
804    // exists. A use may still exists, however, so we still may need
805    // to do a RAUW.
806    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
807    Init = getLLVMContext().getNullValue(getTypes().ConvertTypeForMem(ASTTy));
808  } else {
809    Init = EmitConstantExpr(D->getInit(), D->getType());
810    if (!Init) {
811      ErrorUnsupported(D, "static initializer");
812      QualType T = D->getInit()->getType();
813      Init = llvm::UndefValue::get(getTypes().ConvertType(T));
814    }
815  }
816
817  const llvm::Type* InitType = Init->getType();
818  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
819
820  // Strip off a bitcast if we got one back.
821  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
822    assert(CE->getOpcode() == llvm::Instruction::BitCast);
823    Entry = CE->getOperand(0);
824  }
825
826  // Entry is now either a Function or GlobalVariable.
827  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
828
829  // We have a definition after a declaration with the wrong type.
830  // We must make a new GlobalVariable* and update everything that used OldGV
831  // (a declaration or tentative definition) with the new GlobalVariable*
832  // (which will be a definition).
833  //
834  // This happens if there is a prototype for a global (e.g.
835  // "extern int x[];") and then a definition of a different type (e.g.
836  // "int x[10];"). This also happens when an initializer has a different type
837  // from the type of the global (this happens with unions).
838  if (GV == 0 ||
839      GV->getType()->getElementType() != InitType ||
840      GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
841
842    // Remove the old entry from GlobalDeclMap so that we'll create a new one.
843    GlobalDeclMap.erase(getMangledName(D));
844
845    // Make a new global with the correct type, this is now guaranteed to work.
846    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
847    GV->takeName(cast<llvm::GlobalValue>(Entry));
848
849    // Replace all uses of the old global with the new global
850    llvm::Constant *NewPtrForOldDecl =
851        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
852    Entry->replaceAllUsesWith(NewPtrForOldDecl);
853
854    // Erase the old global, since it is no longer used.
855    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
856  }
857
858  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
859    SourceManager &SM = Context.getSourceManager();
860    AddAnnotation(EmitAnnotateAttr(GV, AA,
861                              SM.getInstantiationLineNumber(D->getLocation())));
862  }
863
864  GV->setInitializer(Init);
865  GV->setConstant(D->getType().isConstant(Context));
866  GV->setAlignment(getContext().getDeclAlignInBytes(D));
867
868  // Set the llvm linkage type as appropriate.
869  if (D->getStorageClass() == VarDecl::Static)
870    GV->setLinkage(llvm::Function::InternalLinkage);
871  else if (D->hasAttr<DLLImportAttr>())
872    GV->setLinkage(llvm::Function::DLLImportLinkage);
873  else if (D->hasAttr<DLLExportAttr>())
874    GV->setLinkage(llvm::Function::DLLExportLinkage);
875  else if (D->hasAttr<WeakAttr>())
876    GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
877  else if (!CompileOpts.NoCommon &&
878           (!D->hasExternalStorage() && !D->getInit()))
879    GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
880  else
881    GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
882
883  SetCommonAttributes(D, GV);
884
885  // Emit global variable debug information.
886  if (CGDebugInfo *DI = getDebugInfo()) {
887    DI->setLocation(D->getLocation());
888    DI->EmitGlobalVariable(GV, D);
889  }
890}
891
892/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
893/// implement a function with no prototype, e.g. "int foo() {}".  If there are
894/// existing call uses of the old function in the module, this adjusts them to
895/// call the new function directly.
896///
897/// This is not just a cleanup: the always_inline pass requires direct calls to
898/// functions to be able to inline them.  If there is a bitcast in the way, it
899/// won't inline them.  Instcombine normally deletes these calls, but it isn't
900/// run at -O0.
901static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
902                                                      llvm::Function *NewFn) {
903  // If we're redefining a global as a function, don't transform it.
904  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
905  if (OldFn == 0) return;
906
907  const llvm::Type *NewRetTy = NewFn->getReturnType();
908  llvm::SmallVector<llvm::Value*, 4> ArgList;
909
910  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
911       UI != E; ) {
912    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
913    unsigned OpNo = UI.getOperandNo();
914    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
915    if (!CI || OpNo != 0) continue;
916
917    // If the return types don't match exactly, and if the call isn't dead, then
918    // we can't transform this call.
919    if (CI->getType() != NewRetTy && !CI->use_empty())
920      continue;
921
922    // If the function was passed too few arguments, don't transform.  If extra
923    // arguments were passed, we silently drop them.  If any of the types
924    // mismatch, we don't transform.
925    unsigned ArgNo = 0;
926    bool DontTransform = false;
927    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
928         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
929      if (CI->getNumOperands()-1 == ArgNo ||
930          CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
931        DontTransform = true;
932        break;
933      }
934    }
935    if (DontTransform)
936      continue;
937
938    // Okay, we can transform this.  Create the new call instruction and copy
939    // over the required information.
940    ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
941    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
942                                                     ArgList.end(), "", CI);
943    ArgList.clear();
944    if (NewCall->getType() != llvm::Type::VoidTy)
945      NewCall->takeName(CI);
946    NewCall->setCallingConv(CI->getCallingConv());
947    NewCall->setAttributes(CI->getAttributes());
948
949    // Finally, remove the old call, replacing any uses with the new one.
950    if (!CI->use_empty())
951      CI->replaceAllUsesWith(NewCall);
952    CI->eraseFromParent();
953  }
954}
955
956
957void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
958  const llvm::FunctionType *Ty;
959  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
960
961  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
962    bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
963
964    Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
965  } else {
966    Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
967
968    // As a special case, make sure that definitions of K&R function
969    // "type foo()" aren't declared as varargs (which forces the backend
970    // to do unnecessary work).
971    if (D->getType()->isFunctionNoProtoType()) {
972      assert(Ty->isVarArg() && "Didn't lower type as expected");
973      // Due to stret, the lowered function could have arguments.
974      // Just create the same type as was lowered by ConvertType
975      // but strip off the varargs bit.
976      std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
977      Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
978    }
979  }
980
981  // Get or create the prototype for the function.
982  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
983
984  // Strip off a bitcast if we got one back.
985  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
986    assert(CE->getOpcode() == llvm::Instruction::BitCast);
987    Entry = CE->getOperand(0);
988  }
989
990
991  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
992    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
993
994    // If the types mismatch then we have to rewrite the definition.
995    assert(OldFn->isDeclaration() &&
996           "Shouldn't replace non-declaration");
997
998    // F is the Function* for the one with the wrong type, we must make a new
999    // Function* and update everything that used F (a declaration) with the new
1000    // Function* (which will be a definition).
1001    //
1002    // This happens if there is a prototype for a function
1003    // (e.g. "int f()") and then a definition of a different type
1004    // (e.g. "int f(int x)").  Start by making a new function of the
1005    // correct type, RAUW, then steal the name.
1006    GlobalDeclMap.erase(getMangledName(D));
1007    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1008    NewFn->takeName(OldFn);
1009
1010    // If this is an implementation of a function without a prototype, try to
1011    // replace any existing uses of the function (which may be calls) with uses
1012    // of the new function
1013    if (D->getType()->isFunctionNoProtoType()) {
1014      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1015      OldFn->removeDeadConstantUsers();
1016    }
1017
1018    // Replace uses of F with the Function we will endow with a body.
1019    if (!Entry->use_empty()) {
1020      llvm::Constant *NewPtrForOldDecl =
1021        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1022      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1023    }
1024
1025    // Ok, delete the old function now, which is dead.
1026    OldFn->eraseFromParent();
1027
1028    Entry = NewFn;
1029  }
1030
1031  llvm::Function *Fn = cast<llvm::Function>(Entry);
1032
1033  CodeGenFunction(*this).GenerateCode(D, Fn);
1034
1035  SetFunctionDefinitionAttributes(D, Fn);
1036  SetLLVMFunctionAttributesForDefinition(D, Fn);
1037
1038  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1039    AddGlobalCtor(Fn, CA->getPriority());
1040  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1041    AddGlobalDtor(Fn, DA->getPriority());
1042}
1043
1044void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1045  const AliasAttr *AA = D->getAttr<AliasAttr>();
1046  assert(AA && "Not an alias?");
1047
1048  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1049
1050  // Unique the name through the identifier table.
1051  const char *AliaseeName = AA->getAliasee().c_str();
1052  AliaseeName = getContext().Idents.get(AliaseeName).getName();
1053
1054  // Create a reference to the named value.  This ensures that it is emitted
1055  // if a deferred decl.
1056  llvm::Constant *Aliasee;
1057  if (isa<llvm::FunctionType>(DeclTy))
1058    Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1059  else
1060    Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1061                                    llvm::PointerType::getUnqual(DeclTy), 0);
1062
1063  // Create the new alias itself, but don't set a name yet.
1064  llvm::GlobalValue *GA =
1065    new llvm::GlobalAlias(Aliasee->getType(),
1066                          llvm::Function::ExternalLinkage,
1067                          "", Aliasee, &getModule());
1068
1069  // See if there is already something with the alias' name in the module.
1070  const char *MangledName = getMangledName(D);
1071  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1072
1073  if (Entry && !Entry->isDeclaration()) {
1074    // If there is a definition in the module, then it wins over the alias.
1075    // This is dubious, but allow it to be safe.  Just ignore the alias.
1076    GA->eraseFromParent();
1077    return;
1078  }
1079
1080  if (Entry) {
1081    // If there is a declaration in the module, then we had an extern followed
1082    // by the alias, as in:
1083    //   extern int test6();
1084    //   ...
1085    //   int test6() __attribute__((alias("test7")));
1086    //
1087    // Remove it and replace uses of it with the alias.
1088
1089    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1090                                                          Entry->getType()));
1091    Entry->eraseFromParent();
1092  }
1093
1094  // Now we know that there is no conflict, set the name.
1095  Entry = GA;
1096  GA->setName(MangledName);
1097
1098  // Set attributes which are particular to an alias; this is a
1099  // specialization of the attributes which may be set on a global
1100  // variable/function.
1101  if (D->hasAttr<DLLExportAttr>()) {
1102    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1103      // The dllexport attribute is ignored for undefined symbols.
1104      if (FD->getBody())
1105        GA->setLinkage(llvm::Function::DLLExportLinkage);
1106    } else {
1107      GA->setLinkage(llvm::Function::DLLExportLinkage);
1108    }
1109  } else if (D->hasAttr<WeakAttr>() ||
1110             D->hasAttr<WeakImportAttr>()) {
1111    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1112  }
1113
1114  SetCommonAttributes(D, GA);
1115}
1116
1117/// getBuiltinLibFunction - Given a builtin id for a function like
1118/// "__builtin_fabsf", return a Function* for "fabsf".
1119llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
1120  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1121          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1122         "isn't a lib fn");
1123
1124  // Get the name, skip over the __builtin_ prefix (if necessary).
1125  const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1126  if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1127    Name += 10;
1128
1129  // Get the type for the builtin.
1130  ASTContext::GetBuiltinTypeError Error;
1131  QualType Type = Context.GetBuiltinType(BuiltinID, Error);
1132  assert(Error == ASTContext::GE_None && "Can't get builtin type");
1133
1134  const llvm::FunctionType *Ty =
1135    cast<llvm::FunctionType>(getTypes().ConvertType(Type));
1136
1137  // Unique the name through the identifier table.
1138  Name = getContext().Idents.get(Name).getName();
1139  // FIXME: param attributes for sext/zext etc.
1140  return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl());
1141}
1142
1143llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1144                                            unsigned NumTys) {
1145  return llvm::Intrinsic::getDeclaration(&getModule(),
1146                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1147}
1148
1149llvm::Function *CodeGenModule::getMemCpyFn() {
1150  if (MemCpyFn) return MemCpyFn;
1151  const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1152  return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1153}
1154
1155llvm::Function *CodeGenModule::getMemMoveFn() {
1156  if (MemMoveFn) return MemMoveFn;
1157  const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1158  return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1159}
1160
1161llvm::Function *CodeGenModule::getMemSetFn() {
1162  if (MemSetFn) return MemSetFn;
1163  const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1164  return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1165}
1166
1167static void appendFieldAndPadding(CodeGenModule &CGM,
1168                                  std::vector<llvm::Constant*>& Fields,
1169                                  FieldDecl *FieldD, FieldDecl *NextFieldD,
1170                                  llvm::Constant* Field,
1171                                  RecordDecl* RD, const llvm::StructType *STy) {
1172  // Append the field.
1173  Fields.push_back(Field);
1174
1175  int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1176
1177  int NextStructFieldNo;
1178  if (!NextFieldD) {
1179    NextStructFieldNo = STy->getNumElements();
1180  } else {
1181    NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1182  }
1183
1184  // Append padding
1185  for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1186    llvm::Constant *C =
1187      CGM.getLLVMContext().getNullValue(STy->getElementType(StructFieldNo + 1));
1188
1189    Fields.push_back(C);
1190  }
1191}
1192
1193llvm::Constant *CodeGenModule::
1194GetAddrOfConstantCFString(const StringLiteral *Literal) {
1195  std::string str;
1196  unsigned StringLength = 0;
1197
1198  bool isUTF16 = false;
1199  if (Literal->containsNonAsciiOrNull()) {
1200    // Convert from UTF-8 to UTF-16.
1201    llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1202    const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1203    UTF16 *ToPtr = &ToBuf[0];
1204
1205    ConversionResult Result;
1206    Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1207                                &ToPtr, ToPtr+Literal->getByteLength(),
1208                                strictConversion);
1209    if (Result == conversionOK) {
1210      // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1211      // without doing more surgery to this routine. Since we aren't explicitly
1212      // checking for endianness here, it's also a bug (when generating code for
1213      // a target that doesn't match the host endianness). Modeling this as an
1214      // i16 array is likely the cleanest solution.
1215      StringLength = ToPtr-&ToBuf[0];
1216      str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1217      isUTF16 = true;
1218    } else if (Result == sourceIllegal) {
1219      // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1220      str.assign(Literal->getStrData(), Literal->getByteLength());
1221      StringLength = str.length();
1222    } else
1223      assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1224
1225  } else {
1226    str.assign(Literal->getStrData(), Literal->getByteLength());
1227    StringLength = str.length();
1228  }
1229  llvm::StringMapEntry<llvm::Constant *> &Entry =
1230    CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1231
1232  if (llvm::Constant *C = Entry.getValue())
1233    return C;
1234
1235  llvm::Constant *Zero = getLLVMContext().getNullValue(llvm::Type::Int32Ty);
1236  llvm::Constant *Zeros[] = { Zero, Zero };
1237
1238  if (!CFConstantStringClassRef) {
1239    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1240    Ty = llvm::ArrayType::get(Ty, 0);
1241
1242    // FIXME: This is fairly broken if __CFConstantStringClassReference is
1243    // already defined, in that it will get renamed and the user will most
1244    // likely see an opaque error message. This is a general issue with relying
1245    // on particular names.
1246    llvm::GlobalVariable *GV =
1247      new llvm::GlobalVariable(getModule(), Ty, false,
1248                               llvm::GlobalVariable::ExternalLinkage, 0,
1249                               "__CFConstantStringClassReference");
1250
1251    // Decay array -> ptr
1252    CFConstantStringClassRef =
1253      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1254  }
1255
1256  QualType CFTy = getContext().getCFConstantStringType();
1257  RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1258
1259  const llvm::StructType *STy =
1260    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1261
1262  std::vector<llvm::Constant*> Fields;
1263  RecordDecl::field_iterator Field = CFRD->field_begin();
1264
1265  // Class pointer.
1266  FieldDecl *CurField = *Field++;
1267  FieldDecl *NextField = *Field++;
1268  appendFieldAndPadding(*this, Fields, CurField, NextField,
1269                        CFConstantStringClassRef, CFRD, STy);
1270
1271  // Flags.
1272  CurField = NextField;
1273  NextField = *Field++;
1274  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1275  appendFieldAndPadding(*this, Fields, CurField, NextField,
1276                        isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1277                                : llvm::ConstantInt::get(Ty, 0x07C8),
1278                        CFRD, STy);
1279
1280  // String pointer.
1281  CurField = NextField;
1282  NextField = *Field++;
1283  llvm::Constant *C = llvm::ConstantArray::get(str);
1284
1285  const char *Sect, *Prefix;
1286  bool isConstant;
1287  if (isUTF16) {
1288    Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1289    Sect = getContext().Target.getUnicodeStringSection();
1290    // FIXME: Why does GCC not set constant here?
1291    isConstant = false;
1292  } else {
1293    Prefix = getContext().Target.getStringSymbolPrefix(true);
1294    Sect = getContext().Target.getCFStringDataSection();
1295    // FIXME: -fwritable-strings should probably affect this, but we
1296    // are following gcc here.
1297    isConstant = true;
1298  }
1299  llvm::GlobalVariable *GV =
1300    new llvm::GlobalVariable(getModule(), C->getType(), isConstant,
1301                             llvm::GlobalValue::InternalLinkage,
1302                             C, Prefix);
1303  if (Sect)
1304    GV->setSection(Sect);
1305  if (isUTF16) {
1306    unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1307    GV->setAlignment(Align);
1308  }
1309  appendFieldAndPadding(*this, Fields, CurField, NextField,
1310                        llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1311                        CFRD, STy);
1312
1313  // String length.
1314  CurField = NextField;
1315  NextField = 0;
1316  Ty = getTypes().ConvertType(getContext().LongTy);
1317  appendFieldAndPadding(*this, Fields, CurField, NextField,
1318                        llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1319
1320  // The struct.
1321  C = llvm::ConstantStruct::get(STy, Fields);
1322  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1323                                llvm::GlobalVariable::InternalLinkage, C,
1324                                getContext().Target.getCFStringSymbolPrefix());
1325  if (const char *Sect = getContext().Target.getCFStringSection())
1326    GV->setSection(Sect);
1327  Entry.setValue(GV);
1328
1329  return GV;
1330}
1331
1332/// GetStringForStringLiteral - Return the appropriate bytes for a
1333/// string literal, properly padded to match the literal type.
1334std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1335  const char *StrData = E->getStrData();
1336  unsigned Len = E->getByteLength();
1337
1338  const ConstantArrayType *CAT =
1339    getContext().getAsConstantArrayType(E->getType());
1340  assert(CAT && "String isn't pointer or array!");
1341
1342  // Resize the string to the right size.
1343  std::string Str(StrData, StrData+Len);
1344  uint64_t RealLen = CAT->getSize().getZExtValue();
1345
1346  if (E->isWide())
1347    RealLen *= getContext().Target.getWCharWidth()/8;
1348
1349  Str.resize(RealLen, '\0');
1350
1351  return Str;
1352}
1353
1354/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1355/// constant array for the given string literal.
1356llvm::Constant *
1357CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1358  // FIXME: This can be more efficient.
1359  return GetAddrOfConstantString(GetStringForStringLiteral(S));
1360}
1361
1362/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1363/// array for the given ObjCEncodeExpr node.
1364llvm::Constant *
1365CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1366  std::string Str;
1367  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1368
1369  return GetAddrOfConstantCString(Str);
1370}
1371
1372
1373/// GenerateWritableString -- Creates storage for a string literal.
1374static llvm::Constant *GenerateStringLiteral(const std::string &str,
1375                                             bool constant,
1376                                             CodeGenModule &CGM,
1377                                             const char *GlobalName) {
1378  // Create Constant for this string literal. Don't add a '\0'.
1379  llvm::Constant *C = llvm::ConstantArray::get(str, false);
1380
1381  // Create a global variable for this string
1382  return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1383                                  llvm::GlobalValue::InternalLinkage,
1384                                  C, GlobalName);
1385}
1386
1387/// GetAddrOfConstantString - Returns a pointer to a character array
1388/// containing the literal. This contents are exactly that of the
1389/// given string, i.e. it will not be null terminated automatically;
1390/// see GetAddrOfConstantCString. Note that whether the result is
1391/// actually a pointer to an LLVM constant depends on
1392/// Feature.WriteableStrings.
1393///
1394/// The result has pointer to array type.
1395llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1396                                                       const char *GlobalName) {
1397  bool IsConstant = !Features.WritableStrings;
1398
1399  // Get the default prefix if a name wasn't specified.
1400  if (!GlobalName)
1401    GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1402
1403  // Don't share any string literals if strings aren't constant.
1404  if (!IsConstant)
1405    return GenerateStringLiteral(str, false, *this, GlobalName);
1406
1407  llvm::StringMapEntry<llvm::Constant *> &Entry =
1408  ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1409
1410  if (Entry.getValue())
1411    return Entry.getValue();
1412
1413  // Create a global variable for this.
1414  llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1415  Entry.setValue(C);
1416  return C;
1417}
1418
1419/// GetAddrOfConstantCString - Returns a pointer to a character
1420/// array containing the literal and a terminating '\-'
1421/// character. The result has pointer to array type.
1422llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1423                                                        const char *GlobalName){
1424  return GetAddrOfConstantString(str + '\0', GlobalName);
1425}
1426
1427/// EmitObjCPropertyImplementations - Emit information for synthesized
1428/// properties for an implementation.
1429void CodeGenModule::EmitObjCPropertyImplementations(const
1430                                                    ObjCImplementationDecl *D) {
1431  for (ObjCImplementationDecl::propimpl_iterator
1432         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1433    ObjCPropertyImplDecl *PID = *i;
1434
1435    // Dynamic is just for type-checking.
1436    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1437      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1438
1439      // Determine which methods need to be implemented, some may have
1440      // been overridden. Note that ::isSynthesized is not the method
1441      // we want, that just indicates if the decl came from a
1442      // property. What we want to know is if the method is defined in
1443      // this implementation.
1444      if (!D->getInstanceMethod(PD->getGetterName()))
1445        CodeGenFunction(*this).GenerateObjCGetter(
1446                                 const_cast<ObjCImplementationDecl *>(D), PID);
1447      if (!PD->isReadOnly() &&
1448          !D->getInstanceMethod(PD->getSetterName()))
1449        CodeGenFunction(*this).GenerateObjCSetter(
1450                                 const_cast<ObjCImplementationDecl *>(D), PID);
1451    }
1452  }
1453}
1454
1455/// EmitNamespace - Emit all declarations in a namespace.
1456void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1457  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1458       I != E; ++I)
1459    EmitTopLevelDecl(*I);
1460}
1461
1462// EmitLinkageSpec - Emit all declarations in a linkage spec.
1463void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1464  if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1465    ErrorUnsupported(LSD, "linkage spec");
1466    return;
1467  }
1468
1469  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1470       I != E; ++I)
1471    EmitTopLevelDecl(*I);
1472}
1473
1474/// EmitTopLevelDecl - Emit code for a single top level declaration.
1475void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1476  // If an error has occurred, stop code generation, but continue
1477  // parsing and semantic analysis (to ensure all warnings and errors
1478  // are emitted).
1479  if (Diags.hasErrorOccurred())
1480    return;
1481
1482  // Ignore dependent declarations.
1483  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1484    return;
1485
1486  switch (D->getKind()) {
1487  case Decl::CXXMethod:
1488  case Decl::Function:
1489    // Skip function templates
1490    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1491      return;
1492
1493    // Fall through
1494
1495  case Decl::Var:
1496    EmitGlobal(GlobalDecl(cast<ValueDecl>(D)));
1497    break;
1498
1499  // C++ Decls
1500  case Decl::Namespace:
1501    EmitNamespace(cast<NamespaceDecl>(D));
1502    break;
1503    // No code generation needed.
1504  case Decl::Using:
1505  case Decl::ClassTemplate:
1506  case Decl::FunctionTemplate:
1507    break;
1508  case Decl::CXXConstructor:
1509    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1510    break;
1511  case Decl::CXXDestructor:
1512    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1513    break;
1514
1515  case Decl::StaticAssert:
1516    // Nothing to do.
1517    break;
1518
1519  // Objective-C Decls
1520
1521  // Forward declarations, no (immediate) code generation.
1522  case Decl::ObjCClass:
1523  case Decl::ObjCForwardProtocol:
1524  case Decl::ObjCCategory:
1525  case Decl::ObjCInterface:
1526    break;
1527
1528  case Decl::ObjCProtocol:
1529    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1530    break;
1531
1532  case Decl::ObjCCategoryImpl:
1533    // Categories have properties but don't support synthesize so we
1534    // can ignore them here.
1535    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1536    break;
1537
1538  case Decl::ObjCImplementation: {
1539    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1540    EmitObjCPropertyImplementations(OMD);
1541    Runtime->GenerateClass(OMD);
1542    break;
1543  }
1544  case Decl::ObjCMethod: {
1545    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1546    // If this is not a prototype, emit the body.
1547    if (OMD->getBody())
1548      CodeGenFunction(*this).GenerateObjCMethod(OMD);
1549    break;
1550  }
1551  case Decl::ObjCCompatibleAlias:
1552    // compatibility-alias is a directive and has no code gen.
1553    break;
1554
1555  case Decl::LinkageSpec:
1556    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1557    break;
1558
1559  case Decl::FileScopeAsm: {
1560    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1561    std::string AsmString(AD->getAsmString()->getStrData(),
1562                          AD->getAsmString()->getByteLength());
1563
1564    const std::string &S = getModule().getModuleInlineAsm();
1565    if (S.empty())
1566      getModule().setModuleInlineAsm(AsmString);
1567    else
1568      getModule().setModuleInlineAsm(S + '\n' + AsmString);
1569    break;
1570  }
1571
1572  default:
1573    // Make sure we handled everything we should, every other kind is a
1574    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1575    // function. Need to recode Decl::Kind to do that easily.
1576    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1577  }
1578}
1579