CodeGenModule.cpp revision 71efba0bbafaefab14419fbd284efff5f7acade7
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CodeGenTBAA.h"
18#include "CGCall.h"
19#include "CGCUDARuntime.h"
20#include "CGCXXABI.h"
21#include "CGObjCRuntime.h"
22#include "CGOpenCLRuntime.h"
23#include "TargetInfo.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "clang/AST/ASTContext.h"
26#include "clang/AST/CharUnits.h"
27#include "clang/AST/DeclObjC.h"
28#include "clang/AST/DeclCXX.h"
29#include "clang/AST/DeclTemplate.h"
30#include "clang/AST/Mangle.h"
31#include "clang/AST/RecordLayout.h"
32#include "clang/AST/RecursiveASTVisitor.h"
33#include "clang/Basic/Builtins.h"
34#include "clang/Basic/Diagnostic.h"
35#include "clang/Basic/SourceManager.h"
36#include "clang/Basic/TargetInfo.h"
37#include "clang/Basic/ConvertUTF.h"
38#include "llvm/CallingConv.h"
39#include "llvm/Module.h"
40#include "llvm/Intrinsics.h"
41#include "llvm/LLVMContext.h"
42#include "llvm/ADT/Triple.h"
43#include "llvm/Target/Mangler.h"
44#include "llvm/Target/TargetData.h"
45#include "llvm/Support/CallSite.h"
46#include "llvm/Support/ErrorHandling.h"
47using namespace clang;
48using namespace CodeGen;
49
50static const char AnnotationSection[] = "llvm.metadata";
51
52static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
53  switch (CGM.getContext().getTargetInfo().getCXXABI()) {
54  case CXXABI_ARM: return *CreateARMCXXABI(CGM);
55  case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
56  case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
57  }
58
59  llvm_unreachable("invalid C++ ABI kind");
60}
61
62
63CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
64                             llvm::Module &M, const llvm::TargetData &TD,
65                             DiagnosticsEngine &diags)
66  : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
67    TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
68    ABI(createCXXABI(*this)),
69    Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO),
70    TBAA(0),
71    VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
72    DebugInfo(0), ARCData(0), RRData(0), CFConstantStringClassRef(0),
73    ConstantStringClassRef(0), NSConstantStringType(0),
74    VMContext(M.getContext()),
75    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
76    BlockObjectAssign(0), BlockObjectDispose(0),
77    BlockDescriptorType(0), GenericBlockLiteralType(0) {
78  if (Features.ObjC1)
79    createObjCRuntime();
80  if (Features.OpenCL)
81    createOpenCLRuntime();
82  if (Features.CUDA)
83    createCUDARuntime();
84
85  // Enable TBAA unless it's suppressed.
86  if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
87    TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
88                           ABI.getMangleContext());
89
90  // If debug info or coverage generation is enabled, create the CGDebugInfo
91  // object.
92  if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
93      CodeGenOpts.EmitGcovNotes)
94    DebugInfo = new CGDebugInfo(*this);
95
96  Block.GlobalUniqueCount = 0;
97
98  if (C.getLangOptions().ObjCAutoRefCount)
99    ARCData = new ARCEntrypoints();
100  RRData = new RREntrypoints();
101
102  // Initialize the type cache.
103  llvm::LLVMContext &LLVMContext = M.getContext();
104  VoidTy = llvm::Type::getVoidTy(LLVMContext);
105  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
106  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
107  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
108  PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
109  PointerAlignInBytes =
110    C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
111  IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
112  IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
113  Int8PtrTy = Int8Ty->getPointerTo(0);
114  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
115}
116
117CodeGenModule::~CodeGenModule() {
118  delete ObjCRuntime;
119  delete OpenCLRuntime;
120  delete CUDARuntime;
121  delete TheTargetCodeGenInfo;
122  delete &ABI;
123  delete TBAA;
124  delete DebugInfo;
125  delete ARCData;
126  delete RRData;
127}
128
129void CodeGenModule::createObjCRuntime() {
130  if (!Features.NeXTRuntime)
131    ObjCRuntime = CreateGNUObjCRuntime(*this);
132  else
133    ObjCRuntime = CreateMacObjCRuntime(*this);
134}
135
136void CodeGenModule::createOpenCLRuntime() {
137  OpenCLRuntime = new CGOpenCLRuntime(*this);
138}
139
140void CodeGenModule::createCUDARuntime() {
141  CUDARuntime = CreateNVCUDARuntime(*this);
142}
143
144void CodeGenModule::Release() {
145  EmitDeferred();
146  EmitCXXGlobalInitFunc();
147  EmitCXXGlobalDtorFunc();
148  if (ObjCRuntime)
149    if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
150      AddGlobalCtor(ObjCInitFunction);
151  EmitCtorList(GlobalCtors, "llvm.global_ctors");
152  EmitCtorList(GlobalDtors, "llvm.global_dtors");
153  EmitGlobalAnnotations();
154  EmitLLVMUsed();
155
156  SimplifyPersonality();
157
158  if (getCodeGenOpts().EmitDeclMetadata)
159    EmitDeclMetadata();
160
161  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
162    EmitCoverageFile();
163
164  if (DebugInfo)
165    DebugInfo->finalize();
166}
167
168void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
169  // Make sure that this type is translated.
170  Types.UpdateCompletedType(TD);
171  if (DebugInfo)
172    DebugInfo->UpdateCompletedType(TD);
173}
174
175llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
176  if (!TBAA)
177    return 0;
178  return TBAA->getTBAAInfo(QTy);
179}
180
181void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
182                                        llvm::MDNode *TBAAInfo) {
183  Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
184}
185
186bool CodeGenModule::isTargetDarwin() const {
187  return getContext().getTargetInfo().getTriple().isOSDarwin();
188}
189
190void CodeGenModule::Error(SourceLocation loc, StringRef error) {
191  unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
192  getDiags().Report(Context.getFullLoc(loc), diagID);
193}
194
195/// ErrorUnsupported - Print out an error that codegen doesn't support the
196/// specified stmt yet.
197void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
198                                     bool OmitOnError) {
199  if (OmitOnError && getDiags().hasErrorOccurred())
200    return;
201  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
202                                               "cannot compile this %0 yet");
203  std::string Msg = Type;
204  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
205    << Msg << S->getSourceRange();
206}
207
208/// ErrorUnsupported - Print out an error that codegen doesn't support the
209/// specified decl yet.
210void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
211                                     bool OmitOnError) {
212  if (OmitOnError && getDiags().hasErrorOccurred())
213    return;
214  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
215                                               "cannot compile this %0 yet");
216  std::string Msg = Type;
217  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
218}
219
220llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
221  return llvm::ConstantInt::get(SizeTy, size.getQuantity());
222}
223
224void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
225                                        const NamedDecl *D) const {
226  // Internal definitions always have default visibility.
227  if (GV->hasLocalLinkage()) {
228    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
229    return;
230  }
231
232  // Set visibility for definitions.
233  NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
234  if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
235    GV->setVisibility(GetLLVMVisibility(LV.visibility()));
236}
237
238/// Set the symbol visibility of type information (vtable and RTTI)
239/// associated with the given type.
240void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
241                                      const CXXRecordDecl *RD,
242                                      TypeVisibilityKind TVK) const {
243  setGlobalVisibility(GV, RD);
244
245  if (!CodeGenOpts.HiddenWeakVTables)
246    return;
247
248  // We never want to drop the visibility for RTTI names.
249  if (TVK == TVK_ForRTTIName)
250    return;
251
252  // We want to drop the visibility to hidden for weak type symbols.
253  // This isn't possible if there might be unresolved references
254  // elsewhere that rely on this symbol being visible.
255
256  // This should be kept roughly in sync with setThunkVisibility
257  // in CGVTables.cpp.
258
259  // Preconditions.
260  if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
261      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
262    return;
263
264  // Don't override an explicit visibility attribute.
265  if (RD->getExplicitVisibility())
266    return;
267
268  switch (RD->getTemplateSpecializationKind()) {
269  // We have to disable the optimization if this is an EI definition
270  // because there might be EI declarations in other shared objects.
271  case TSK_ExplicitInstantiationDefinition:
272  case TSK_ExplicitInstantiationDeclaration:
273    return;
274
275  // Every use of a non-template class's type information has to emit it.
276  case TSK_Undeclared:
277    break;
278
279  // In theory, implicit instantiations can ignore the possibility of
280  // an explicit instantiation declaration because there necessarily
281  // must be an EI definition somewhere with default visibility.  In
282  // practice, it's possible to have an explicit instantiation for
283  // an arbitrary template class, and linkers aren't necessarily able
284  // to deal with mixed-visibility symbols.
285  case TSK_ExplicitSpecialization:
286  case TSK_ImplicitInstantiation:
287    if (!CodeGenOpts.HiddenWeakTemplateVTables)
288      return;
289    break;
290  }
291
292  // If there's a key function, there may be translation units
293  // that don't have the key function's definition.  But ignore
294  // this if we're emitting RTTI under -fno-rtti.
295  if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
296    if (Context.getKeyFunction(RD))
297      return;
298  }
299
300  // Otherwise, drop the visibility to hidden.
301  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
302  GV->setUnnamedAddr(true);
303}
304
305StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
306  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
307
308  StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
309  if (!Str.empty())
310    return Str;
311
312  if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
313    IdentifierInfo *II = ND->getIdentifier();
314    assert(II && "Attempt to mangle unnamed decl.");
315
316    Str = II->getName();
317    return Str;
318  }
319
320  llvm::SmallString<256> Buffer;
321  llvm::raw_svector_ostream Out(Buffer);
322  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
323    getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
324  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
325    getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
326  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
327    getCXXABI().getMangleContext().mangleBlock(BD, Out);
328  else
329    getCXXABI().getMangleContext().mangleName(ND, Out);
330
331  // Allocate space for the mangled name.
332  Out.flush();
333  size_t Length = Buffer.size();
334  char *Name = MangledNamesAllocator.Allocate<char>(Length);
335  std::copy(Buffer.begin(), Buffer.end(), Name);
336
337  Str = StringRef(Name, Length);
338
339  return Str;
340}
341
342void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
343                                        const BlockDecl *BD) {
344  MangleContext &MangleCtx = getCXXABI().getMangleContext();
345  const Decl *D = GD.getDecl();
346  llvm::raw_svector_ostream Out(Buffer.getBuffer());
347  if (D == 0)
348    MangleCtx.mangleGlobalBlock(BD, Out);
349  else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
350    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
351  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
352    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
353  else
354    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
355}
356
357llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
358  return getModule().getNamedValue(Name);
359}
360
361/// AddGlobalCtor - Add a function to the list that will be called before
362/// main() runs.
363void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
364  // FIXME: Type coercion of void()* types.
365  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
366}
367
368/// AddGlobalDtor - Add a function to the list that will be called
369/// when the module is unloaded.
370void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
371  // FIXME: Type coercion of void()* types.
372  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
373}
374
375void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
376  // Ctor function type is void()*.
377  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
378  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
379
380  // Get the type of a ctor entry, { i32, void ()* }.
381  llvm::StructType *CtorStructTy =
382    llvm::StructType::get(llvm::Type::getInt32Ty(VMContext),
383                          llvm::PointerType::getUnqual(CtorFTy), NULL);
384
385  // Construct the constructor and destructor arrays.
386  std::vector<llvm::Constant*> Ctors;
387  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
388    std::vector<llvm::Constant*> S;
389    S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
390                I->second, false));
391    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
392    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
393  }
394
395  if (!Ctors.empty()) {
396    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
397    new llvm::GlobalVariable(TheModule, AT, false,
398                             llvm::GlobalValue::AppendingLinkage,
399                             llvm::ConstantArray::get(AT, Ctors),
400                             GlobalName);
401  }
402}
403
404llvm::GlobalValue::LinkageTypes
405CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
406  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
407
408  if (Linkage == GVA_Internal)
409    return llvm::Function::InternalLinkage;
410
411  if (D->hasAttr<DLLExportAttr>())
412    return llvm::Function::DLLExportLinkage;
413
414  if (D->hasAttr<WeakAttr>())
415    return llvm::Function::WeakAnyLinkage;
416
417  // In C99 mode, 'inline' functions are guaranteed to have a strong
418  // definition somewhere else, so we can use available_externally linkage.
419  if (Linkage == GVA_C99Inline)
420    return llvm::Function::AvailableExternallyLinkage;
421
422  // Note that Apple's kernel linker doesn't support symbol
423  // coalescing, so we need to avoid linkonce and weak linkages there.
424  // Normally, this means we just map to internal, but for explicit
425  // instantiations we'll map to external.
426
427  // In C++, the compiler has to emit a definition in every translation unit
428  // that references the function.  We should use linkonce_odr because
429  // a) if all references in this translation unit are optimized away, we
430  // don't need to codegen it.  b) if the function persists, it needs to be
431  // merged with other definitions. c) C++ has the ODR, so we know the
432  // definition is dependable.
433  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
434    return !Context.getLangOptions().AppleKext
435             ? llvm::Function::LinkOnceODRLinkage
436             : llvm::Function::InternalLinkage;
437
438  // An explicit instantiation of a template has weak linkage, since
439  // explicit instantiations can occur in multiple translation units
440  // and must all be equivalent. However, we are not allowed to
441  // throw away these explicit instantiations.
442  if (Linkage == GVA_ExplicitTemplateInstantiation)
443    return !Context.getLangOptions().AppleKext
444             ? llvm::Function::WeakODRLinkage
445             : llvm::Function::ExternalLinkage;
446
447  // Otherwise, we have strong external linkage.
448  assert(Linkage == GVA_StrongExternal);
449  return llvm::Function::ExternalLinkage;
450}
451
452
453/// SetFunctionDefinitionAttributes - Set attributes for a global.
454///
455/// FIXME: This is currently only done for aliases and functions, but not for
456/// variables (these details are set in EmitGlobalVarDefinition for variables).
457void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
458                                                    llvm::GlobalValue *GV) {
459  SetCommonAttributes(D, GV);
460}
461
462void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
463                                              const CGFunctionInfo &Info,
464                                              llvm::Function *F) {
465  unsigned CallingConv;
466  AttributeListType AttributeList;
467  ConstructAttributeList(Info, D, AttributeList, CallingConv);
468  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
469                                          AttributeList.size()));
470  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
471}
472
473/// Determines whether the language options require us to model
474/// unwind exceptions.  We treat -fexceptions as mandating this
475/// except under the fragile ObjC ABI with only ObjC exceptions
476/// enabled.  This means, for example, that C with -fexceptions
477/// enables this.
478static bool hasUnwindExceptions(const LangOptions &Features) {
479  // If exceptions are completely disabled, obviously this is false.
480  if (!Features.Exceptions) return false;
481
482  // If C++ exceptions are enabled, this is true.
483  if (Features.CXXExceptions) return true;
484
485  // If ObjC exceptions are enabled, this depends on the ABI.
486  if (Features.ObjCExceptions) {
487    if (!Features.ObjCNonFragileABI) return false;
488  }
489
490  return true;
491}
492
493void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
494                                                           llvm::Function *F) {
495  if (CodeGenOpts.UnwindTables)
496    F->setHasUWTable();
497
498  if (!hasUnwindExceptions(Features))
499    F->addFnAttr(llvm::Attribute::NoUnwind);
500
501  if (D->hasAttr<NakedAttr>()) {
502    // Naked implies noinline: we should not be inlining such functions.
503    F->addFnAttr(llvm::Attribute::Naked);
504    F->addFnAttr(llvm::Attribute::NoInline);
505  }
506
507  if (D->hasAttr<NoInlineAttr>())
508    F->addFnAttr(llvm::Attribute::NoInline);
509
510  // (noinline wins over always_inline, and we can't specify both in IR)
511  if (D->hasAttr<AlwaysInlineAttr>() &&
512      !F->hasFnAttr(llvm::Attribute::NoInline))
513    F->addFnAttr(llvm::Attribute::AlwaysInline);
514
515  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
516    F->setUnnamedAddr(true);
517
518  if (Features.getStackProtector() == LangOptions::SSPOn)
519    F->addFnAttr(llvm::Attribute::StackProtect);
520  else if (Features.getStackProtector() == LangOptions::SSPReq)
521    F->addFnAttr(llvm::Attribute::StackProtectReq);
522
523  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
524  if (alignment)
525    F->setAlignment(alignment);
526
527  // C++ ABI requires 2-byte alignment for member functions.
528  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
529    F->setAlignment(2);
530}
531
532void CodeGenModule::SetCommonAttributes(const Decl *D,
533                                        llvm::GlobalValue *GV) {
534  if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
535    setGlobalVisibility(GV, ND);
536  else
537    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
538
539  if (D->hasAttr<UsedAttr>())
540    AddUsedGlobal(GV);
541
542  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
543    GV->setSection(SA->getName());
544
545  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
546}
547
548void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
549                                                  llvm::Function *F,
550                                                  const CGFunctionInfo &FI) {
551  SetLLVMFunctionAttributes(D, FI, F);
552  SetLLVMFunctionAttributesForDefinition(D, F);
553
554  F->setLinkage(llvm::Function::InternalLinkage);
555
556  SetCommonAttributes(D, F);
557}
558
559void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
560                                          llvm::Function *F,
561                                          bool IsIncompleteFunction) {
562  if (unsigned IID = F->getIntrinsicID()) {
563    // If this is an intrinsic function, set the function's attributes
564    // to the intrinsic's attributes.
565    F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
566    return;
567  }
568
569  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
570
571  if (!IsIncompleteFunction)
572    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
573
574  // Only a few attributes are set on declarations; these may later be
575  // overridden by a definition.
576
577  if (FD->hasAttr<DLLImportAttr>()) {
578    F->setLinkage(llvm::Function::DLLImportLinkage);
579  } else if (FD->hasAttr<WeakAttr>() ||
580             FD->isWeakImported()) {
581    // "extern_weak" is overloaded in LLVM; we probably should have
582    // separate linkage types for this.
583    F->setLinkage(llvm::Function::ExternalWeakLinkage);
584  } else {
585    F->setLinkage(llvm::Function::ExternalLinkage);
586
587    NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
588    if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
589      F->setVisibility(GetLLVMVisibility(LV.visibility()));
590    }
591  }
592
593  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
594    F->setSection(SA->getName());
595}
596
597void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
598  assert(!GV->isDeclaration() &&
599         "Only globals with definition can force usage.");
600  LLVMUsed.push_back(GV);
601}
602
603void CodeGenModule::EmitLLVMUsed() {
604  // Don't create llvm.used if there is no need.
605  if (LLVMUsed.empty())
606    return;
607
608  llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
609
610  // Convert LLVMUsed to what ConstantArray needs.
611  std::vector<llvm::Constant*> UsedArray;
612  UsedArray.resize(LLVMUsed.size());
613  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
614    UsedArray[i] =
615     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
616                                      i8PTy);
617  }
618
619  if (UsedArray.empty())
620    return;
621  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
622
623  llvm::GlobalVariable *GV =
624    new llvm::GlobalVariable(getModule(), ATy, false,
625                             llvm::GlobalValue::AppendingLinkage,
626                             llvm::ConstantArray::get(ATy, UsedArray),
627                             "llvm.used");
628
629  GV->setSection("llvm.metadata");
630}
631
632void CodeGenModule::EmitDeferred() {
633  // Emit code for any potentially referenced deferred decls.  Since a
634  // previously unused static decl may become used during the generation of code
635  // for a static function, iterate until no changes are made.
636
637  while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
638    if (!DeferredVTables.empty()) {
639      const CXXRecordDecl *RD = DeferredVTables.back();
640      DeferredVTables.pop_back();
641      getVTables().GenerateClassData(getVTableLinkage(RD), RD);
642      continue;
643    }
644
645    GlobalDecl D = DeferredDeclsToEmit.back();
646    DeferredDeclsToEmit.pop_back();
647
648    // Check to see if we've already emitted this.  This is necessary
649    // for a couple of reasons: first, decls can end up in the
650    // deferred-decls queue multiple times, and second, decls can end
651    // up with definitions in unusual ways (e.g. by an extern inline
652    // function acquiring a strong function redefinition).  Just
653    // ignore these cases.
654    //
655    // TODO: That said, looking this up multiple times is very wasteful.
656    StringRef Name = getMangledName(D);
657    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
658    assert(CGRef && "Deferred decl wasn't referenced?");
659
660    if (!CGRef->isDeclaration())
661      continue;
662
663    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
664    // purposes an alias counts as a definition.
665    if (isa<llvm::GlobalAlias>(CGRef))
666      continue;
667
668    // Otherwise, emit the definition and move on to the next one.
669    EmitGlobalDefinition(D);
670  }
671}
672
673void CodeGenModule::EmitGlobalAnnotations() {
674  if (Annotations.empty())
675    return;
676
677  // Create a new global variable for the ConstantStruct in the Module.
678  llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
679    Annotations[0]->getType(), Annotations.size()), Annotations);
680  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
681    Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
682    "llvm.global.annotations");
683  gv->setSection(AnnotationSection);
684}
685
686llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
687  llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
688  if (i != AnnotationStrings.end())
689    return i->second;
690
691  // Not found yet, create a new global.
692  llvm::Constant *s = llvm::ConstantArray::get(getLLVMContext(), Str, true);
693  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
694    true, llvm::GlobalValue::PrivateLinkage, s, ".str");
695  gv->setSection(AnnotationSection);
696  gv->setUnnamedAddr(true);
697  AnnotationStrings[Str] = gv;
698  return gv;
699}
700
701llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
702  SourceManager &SM = getContext().getSourceManager();
703  PresumedLoc PLoc = SM.getPresumedLoc(Loc);
704  if (PLoc.isValid())
705    return EmitAnnotationString(PLoc.getFilename());
706  return EmitAnnotationString(SM.getBufferName(Loc));
707}
708
709llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
710  SourceManager &SM = getContext().getSourceManager();
711  PresumedLoc PLoc = SM.getPresumedLoc(L);
712  unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
713    SM.getExpansionLineNumber(L);
714  return llvm::ConstantInt::get(Int32Ty, LineNo);
715}
716
717llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
718                                                const AnnotateAttr *AA,
719                                                SourceLocation L) {
720  // Get the globals for file name, annotation, and the line number.
721  llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
722                 *UnitGV = EmitAnnotationUnit(L),
723                 *LineNoCst = EmitAnnotationLineNo(L);
724
725  // Create the ConstantStruct for the global annotation.
726  llvm::Constant *Fields[4] = {
727    llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
728    llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
729    llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
730    LineNoCst
731  };
732  return llvm::ConstantStruct::getAnon(Fields);
733}
734
735void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
736                                         llvm::GlobalValue *GV) {
737  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
738  // Get the struct elements for these annotations.
739  for (specific_attr_iterator<AnnotateAttr>
740       ai = D->specific_attr_begin<AnnotateAttr>(),
741       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
742    Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
743}
744
745bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
746  // Never defer when EmitAllDecls is specified.
747  if (Features.EmitAllDecls)
748    return false;
749
750  return !getContext().DeclMustBeEmitted(Global);
751}
752
753llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
754  const AliasAttr *AA = VD->getAttr<AliasAttr>();
755  assert(AA && "No alias?");
756
757  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
758
759  // See if there is already something with the target's name in the module.
760  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
761
762  llvm::Constant *Aliasee;
763  if (isa<llvm::FunctionType>(DeclTy))
764    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
765                                      /*ForVTable=*/false);
766  else
767    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
768                                    llvm::PointerType::getUnqual(DeclTy), 0);
769  if (!Entry) {
770    llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
771    F->setLinkage(llvm::Function::ExternalWeakLinkage);
772    WeakRefReferences.insert(F);
773  }
774
775  return Aliasee;
776}
777
778void CodeGenModule::EmitGlobal(GlobalDecl GD) {
779  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
780
781  // Weak references don't produce any output by themselves.
782  if (Global->hasAttr<WeakRefAttr>())
783    return;
784
785  // If this is an alias definition (which otherwise looks like a declaration)
786  // emit it now.
787  if (Global->hasAttr<AliasAttr>())
788    return EmitAliasDefinition(GD);
789
790  // If this is CUDA, be selective about which declarations we emit.
791  if (Features.CUDA) {
792    if (CodeGenOpts.CUDAIsDevice) {
793      if (!Global->hasAttr<CUDADeviceAttr>() &&
794          !Global->hasAttr<CUDAGlobalAttr>() &&
795          !Global->hasAttr<CUDAConstantAttr>() &&
796          !Global->hasAttr<CUDASharedAttr>())
797        return;
798    } else {
799      if (!Global->hasAttr<CUDAHostAttr>() && (
800            Global->hasAttr<CUDADeviceAttr>() ||
801            Global->hasAttr<CUDAConstantAttr>() ||
802            Global->hasAttr<CUDASharedAttr>()))
803        return;
804    }
805  }
806
807  // Ignore declarations, they will be emitted on their first use.
808  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
809    // Forward declarations are emitted lazily on first use.
810    if (!FD->doesThisDeclarationHaveABody()) {
811      if (!FD->doesDeclarationForceExternallyVisibleDefinition())
812        return;
813
814      const FunctionDecl *InlineDefinition = 0;
815      FD->getBody(InlineDefinition);
816
817      StringRef MangledName = getMangledName(GD);
818      llvm::StringMap<GlobalDecl>::iterator DDI =
819          DeferredDecls.find(MangledName);
820      if (DDI != DeferredDecls.end())
821        DeferredDecls.erase(DDI);
822      EmitGlobalDefinition(InlineDefinition);
823      return;
824    }
825  } else {
826    const VarDecl *VD = cast<VarDecl>(Global);
827    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
828
829    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
830      return;
831  }
832
833  // Defer code generation when possible if this is a static definition, inline
834  // function etc.  These we only want to emit if they are used.
835  if (!MayDeferGeneration(Global)) {
836    // Emit the definition if it can't be deferred.
837    EmitGlobalDefinition(GD);
838    return;
839  }
840
841  // If we're deferring emission of a C++ variable with an
842  // initializer, remember the order in which it appeared in the file.
843  if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
844      cast<VarDecl>(Global)->hasInit()) {
845    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
846    CXXGlobalInits.push_back(0);
847  }
848
849  // If the value has already been used, add it directly to the
850  // DeferredDeclsToEmit list.
851  StringRef MangledName = getMangledName(GD);
852  if (GetGlobalValue(MangledName))
853    DeferredDeclsToEmit.push_back(GD);
854  else {
855    // Otherwise, remember that we saw a deferred decl with this name.  The
856    // first use of the mangled name will cause it to move into
857    // DeferredDeclsToEmit.
858    DeferredDecls[MangledName] = GD;
859  }
860}
861
862namespace {
863  struct FunctionIsDirectlyRecursive :
864    public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
865    const StringRef Name;
866    const Builtin::Context &BI;
867    bool Result;
868    FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
869      Name(N), BI(C), Result(false) {
870    }
871    typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
872
873    bool TraverseCallExpr(CallExpr *E) {
874      const FunctionDecl *FD = E->getDirectCallee();
875      if (!FD)
876        return true;
877      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
878      if (Attr && Name == Attr->getLabel()) {
879        Result = true;
880        return false;
881      }
882      unsigned BuiltinID = FD->getBuiltinID();
883      if (!BuiltinID)
884        return true;
885      StringRef BuiltinName = BI.GetName(BuiltinID);
886      if (BuiltinName.startswith("__builtin_") &&
887          Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
888        Result = true;
889        return false;
890      }
891      return true;
892    }
893  };
894}
895
896// isTriviallyRecursive - Check if this function calls another
897// decl that, because of the asm attribute or the other decl being a builtin,
898// ends up pointing to itself.
899bool
900CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
901  StringRef Name;
902  if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
903    // asm labels are a special kind of mangling we have to support.
904    AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
905    if (!Attr)
906      return false;
907    Name = Attr->getLabel();
908  } else {
909    Name = FD->getName();
910  }
911
912  FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
913  Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
914  return Walker.Result;
915}
916
917bool
918CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
919  if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
920    return true;
921  if (CodeGenOpts.OptimizationLevel == 0 &&
922      !F->hasAttr<AlwaysInlineAttr>())
923    return false;
924  // PR9614. Avoid cases where the source code is lying to us. An available
925  // externally function should have an equivalent function somewhere else,
926  // but a function that calls itself is clearly not equivalent to the real
927  // implementation.
928  // This happens in glibc's btowc and in some configure checks.
929  return !isTriviallyRecursive(F);
930}
931
932void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
933  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
934
935  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
936                                 Context.getSourceManager(),
937                                 "Generating code for declaration");
938
939  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
940    // At -O0, don't generate IR for functions with available_externally
941    // linkage.
942    if (!shouldEmitFunction(Function))
943      return;
944
945    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
946      // Make sure to emit the definition(s) before we emit the thunks.
947      // This is necessary for the generation of certain thunks.
948      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
949        EmitCXXConstructor(CD, GD.getCtorType());
950      else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
951        EmitCXXDestructor(DD, GD.getDtorType());
952      else
953        EmitGlobalFunctionDefinition(GD);
954
955      if (Method->isVirtual())
956        getVTables().EmitThunks(GD);
957
958      return;
959    }
960
961    return EmitGlobalFunctionDefinition(GD);
962  }
963
964  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
965    return EmitGlobalVarDefinition(VD);
966
967  llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
968}
969
970/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
971/// module, create and return an llvm Function with the specified type. If there
972/// is something in the module with the specified name, return it potentially
973/// bitcasted to the right type.
974///
975/// If D is non-null, it specifies a decl that correspond to this.  This is used
976/// to set the attributes on the function when it is first created.
977llvm::Constant *
978CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
979                                       llvm::Type *Ty,
980                                       GlobalDecl D, bool ForVTable,
981                                       llvm::Attributes ExtraAttrs) {
982  // Lookup the entry, lazily creating it if necessary.
983  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
984  if (Entry) {
985    if (WeakRefReferences.count(Entry)) {
986      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
987      if (FD && !FD->hasAttr<WeakAttr>())
988        Entry->setLinkage(llvm::Function::ExternalLinkage);
989
990      WeakRefReferences.erase(Entry);
991    }
992
993    if (Entry->getType()->getElementType() == Ty)
994      return Entry;
995
996    // Make sure the result is of the correct type.
997    return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
998  }
999
1000  // This function doesn't have a complete type (for example, the return
1001  // type is an incomplete struct). Use a fake type instead, and make
1002  // sure not to try to set attributes.
1003  bool IsIncompleteFunction = false;
1004
1005  llvm::FunctionType *FTy;
1006  if (isa<llvm::FunctionType>(Ty)) {
1007    FTy = cast<llvm::FunctionType>(Ty);
1008  } else {
1009    FTy = llvm::FunctionType::get(VoidTy, false);
1010    IsIncompleteFunction = true;
1011  }
1012
1013  llvm::Function *F = llvm::Function::Create(FTy,
1014                                             llvm::Function::ExternalLinkage,
1015                                             MangledName, &getModule());
1016  assert(F->getName() == MangledName && "name was uniqued!");
1017  if (D.getDecl())
1018    SetFunctionAttributes(D, F, IsIncompleteFunction);
1019  if (ExtraAttrs != llvm::Attribute::None)
1020    F->addFnAttr(ExtraAttrs);
1021
1022  if (Features.AddressSanitizer) {
1023    // When AddressSanitizer is enabled, set AddressSafety attribute
1024    // unless __attribute__((no_address_safety_analysis)) is used.
1025    const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1026    if (!FD || !FD->hasAttr<NoAddressSafetyAnalysisAttr>())
1027      F->addFnAttr(llvm::Attribute::AddressSafety);
1028  }
1029
1030  // This is the first use or definition of a mangled name.  If there is a
1031  // deferred decl with this name, remember that we need to emit it at the end
1032  // of the file.
1033  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1034  if (DDI != DeferredDecls.end()) {
1035    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1036    // list, and remove it from DeferredDecls (since we don't need it anymore).
1037    DeferredDeclsToEmit.push_back(DDI->second);
1038    DeferredDecls.erase(DDI);
1039
1040  // Otherwise, there are cases we have to worry about where we're
1041  // using a declaration for which we must emit a definition but where
1042  // we might not find a top-level definition:
1043  //   - member functions defined inline in their classes
1044  //   - friend functions defined inline in some class
1045  //   - special member functions with implicit definitions
1046  // If we ever change our AST traversal to walk into class methods,
1047  // this will be unnecessary.
1048  //
1049  // We also don't emit a definition for a function if it's going to be an entry
1050  // in a vtable, unless it's already marked as used.
1051  } else if (getLangOptions().CPlusPlus && D.getDecl()) {
1052    // Look for a declaration that's lexically in a record.
1053    const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1054    do {
1055      if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1056        if (FD->isImplicit() && !ForVTable) {
1057          assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1058          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1059          break;
1060        } else if (FD->doesThisDeclarationHaveABody()) {
1061          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1062          break;
1063        }
1064      }
1065      FD = FD->getPreviousDecl();
1066    } while (FD);
1067  }
1068
1069  // Make sure the result is of the requested type.
1070  if (!IsIncompleteFunction) {
1071    assert(F->getType()->getElementType() == Ty);
1072    return F;
1073  }
1074
1075  llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1076  return llvm::ConstantExpr::getBitCast(F, PTy);
1077}
1078
1079/// GetAddrOfFunction - Return the address of the given function.  If Ty is
1080/// non-null, then this function will use the specified type if it has to
1081/// create it (this occurs when we see a definition of the function).
1082llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1083                                                 llvm::Type *Ty,
1084                                                 bool ForVTable) {
1085  // If there was no specific requested type, just convert it now.
1086  if (!Ty)
1087    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1088
1089  StringRef MangledName = getMangledName(GD);
1090  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1091}
1092
1093/// CreateRuntimeFunction - Create a new runtime function with the specified
1094/// type and name.
1095llvm::Constant *
1096CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1097                                     StringRef Name,
1098                                     llvm::Attributes ExtraAttrs) {
1099  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1100                                 ExtraAttrs);
1101}
1102
1103static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D,
1104                                 bool ConstantInit) {
1105  if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
1106    return false;
1107
1108  if (Context.getLangOptions().CPlusPlus) {
1109    if (const RecordType *Record
1110          = Context.getBaseElementType(D->getType())->getAs<RecordType>())
1111      return ConstantInit &&
1112             cast<CXXRecordDecl>(Record->getDecl())->isPOD() &&
1113             !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields();
1114  }
1115
1116  return true;
1117}
1118
1119/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1120/// create and return an llvm GlobalVariable with the specified type.  If there
1121/// is something in the module with the specified name, return it potentially
1122/// bitcasted to the right type.
1123///
1124/// If D is non-null, it specifies a decl that correspond to this.  This is used
1125/// to set the attributes on the global when it is first created.
1126llvm::Constant *
1127CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1128                                     llvm::PointerType *Ty,
1129                                     const VarDecl *D,
1130                                     bool UnnamedAddr) {
1131  // Lookup the entry, lazily creating it if necessary.
1132  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1133  if (Entry) {
1134    if (WeakRefReferences.count(Entry)) {
1135      if (D && !D->hasAttr<WeakAttr>())
1136        Entry->setLinkage(llvm::Function::ExternalLinkage);
1137
1138      WeakRefReferences.erase(Entry);
1139    }
1140
1141    if (UnnamedAddr)
1142      Entry->setUnnamedAddr(true);
1143
1144    if (Entry->getType() == Ty)
1145      return Entry;
1146
1147    // Make sure the result is of the correct type.
1148    return llvm::ConstantExpr::getBitCast(Entry, Ty);
1149  }
1150
1151  // This is the first use or definition of a mangled name.  If there is a
1152  // deferred decl with this name, remember that we need to emit it at the end
1153  // of the file.
1154  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1155  if (DDI != DeferredDecls.end()) {
1156    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1157    // list, and remove it from DeferredDecls (since we don't need it anymore).
1158    DeferredDeclsToEmit.push_back(DDI->second);
1159    DeferredDecls.erase(DDI);
1160  }
1161
1162  llvm::GlobalVariable *GV =
1163    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1164                             llvm::GlobalValue::ExternalLinkage,
1165                             0, MangledName, 0,
1166                             false, Ty->getAddressSpace());
1167
1168  // Handle things which are present even on external declarations.
1169  if (D) {
1170    // FIXME: This code is overly simple and should be merged with other global
1171    // handling.
1172    GV->setConstant(DeclIsConstantGlobal(Context, D, false));
1173
1174    // Set linkage and visibility in case we never see a definition.
1175    NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1176    if (LV.linkage() != ExternalLinkage) {
1177      // Don't set internal linkage on declarations.
1178    } else {
1179      if (D->hasAttr<DLLImportAttr>())
1180        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1181      else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1182        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1183
1184      // Set visibility on a declaration only if it's explicit.
1185      if (LV.visibilityExplicit())
1186        GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1187    }
1188
1189    GV->setThreadLocal(D->isThreadSpecified());
1190  }
1191
1192  return GV;
1193}
1194
1195
1196llvm::GlobalVariable *
1197CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1198                                      llvm::Type *Ty,
1199                                      llvm::GlobalValue::LinkageTypes Linkage) {
1200  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1201  llvm::GlobalVariable *OldGV = 0;
1202
1203
1204  if (GV) {
1205    // Check if the variable has the right type.
1206    if (GV->getType()->getElementType() == Ty)
1207      return GV;
1208
1209    // Because C++ name mangling, the only way we can end up with an already
1210    // existing global with the same name is if it has been declared extern "C".
1211      assert(GV->isDeclaration() && "Declaration has wrong type!");
1212    OldGV = GV;
1213  }
1214
1215  // Create a new variable.
1216  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1217                                Linkage, 0, Name);
1218
1219  if (OldGV) {
1220    // Replace occurrences of the old variable if needed.
1221    GV->takeName(OldGV);
1222
1223    if (!OldGV->use_empty()) {
1224      llvm::Constant *NewPtrForOldDecl =
1225      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1226      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1227    }
1228
1229    OldGV->eraseFromParent();
1230  }
1231
1232  return GV;
1233}
1234
1235/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1236/// given global variable.  If Ty is non-null and if the global doesn't exist,
1237/// then it will be greated with the specified type instead of whatever the
1238/// normal requested type would be.
1239llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1240                                                  llvm::Type *Ty) {
1241  assert(D->hasGlobalStorage() && "Not a global variable");
1242  QualType ASTTy = D->getType();
1243  if (Ty == 0)
1244    Ty = getTypes().ConvertTypeForMem(ASTTy);
1245
1246  llvm::PointerType *PTy =
1247    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1248
1249  StringRef MangledName = getMangledName(D);
1250  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1251}
1252
1253/// CreateRuntimeVariable - Create a new runtime global variable with the
1254/// specified type and name.
1255llvm::Constant *
1256CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1257                                     StringRef Name) {
1258  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1259                               true);
1260}
1261
1262void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1263  assert(!D->getInit() && "Cannot emit definite definitions here!");
1264
1265  if (MayDeferGeneration(D)) {
1266    // If we have not seen a reference to this variable yet, place it
1267    // into the deferred declarations table to be emitted if needed
1268    // later.
1269    StringRef MangledName = getMangledName(D);
1270    if (!GetGlobalValue(MangledName)) {
1271      DeferredDecls[MangledName] = D;
1272      return;
1273    }
1274  }
1275
1276  // The tentative definition is the only definition.
1277  EmitGlobalVarDefinition(D);
1278}
1279
1280void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1281  if (DefinitionRequired)
1282    getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1283}
1284
1285llvm::GlobalVariable::LinkageTypes
1286CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1287  if (RD->getLinkage() != ExternalLinkage)
1288    return llvm::GlobalVariable::InternalLinkage;
1289
1290  if (const CXXMethodDecl *KeyFunction
1291                                    = RD->getASTContext().getKeyFunction(RD)) {
1292    // If this class has a key function, use that to determine the linkage of
1293    // the vtable.
1294    const FunctionDecl *Def = 0;
1295    if (KeyFunction->hasBody(Def))
1296      KeyFunction = cast<CXXMethodDecl>(Def);
1297
1298    switch (KeyFunction->getTemplateSpecializationKind()) {
1299      case TSK_Undeclared:
1300      case TSK_ExplicitSpecialization:
1301        // When compiling with optimizations turned on, we emit all vtables,
1302        // even if the key function is not defined in the current translation
1303        // unit. If this is the case, use available_externally linkage.
1304        if (!Def && CodeGenOpts.OptimizationLevel)
1305          return llvm::GlobalVariable::AvailableExternallyLinkage;
1306
1307        if (KeyFunction->isInlined())
1308          return !Context.getLangOptions().AppleKext ?
1309                   llvm::GlobalVariable::LinkOnceODRLinkage :
1310                   llvm::Function::InternalLinkage;
1311
1312        return llvm::GlobalVariable::ExternalLinkage;
1313
1314      case TSK_ImplicitInstantiation:
1315        return !Context.getLangOptions().AppleKext ?
1316                 llvm::GlobalVariable::LinkOnceODRLinkage :
1317                 llvm::Function::InternalLinkage;
1318
1319      case TSK_ExplicitInstantiationDefinition:
1320        return !Context.getLangOptions().AppleKext ?
1321                 llvm::GlobalVariable::WeakODRLinkage :
1322                 llvm::Function::InternalLinkage;
1323
1324      case TSK_ExplicitInstantiationDeclaration:
1325        // FIXME: Use available_externally linkage. However, this currently
1326        // breaks LLVM's build due to undefined symbols.
1327        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1328        return !Context.getLangOptions().AppleKext ?
1329                 llvm::GlobalVariable::LinkOnceODRLinkage :
1330                 llvm::Function::InternalLinkage;
1331    }
1332  }
1333
1334  if (Context.getLangOptions().AppleKext)
1335    return llvm::Function::InternalLinkage;
1336
1337  switch (RD->getTemplateSpecializationKind()) {
1338  case TSK_Undeclared:
1339  case TSK_ExplicitSpecialization:
1340  case TSK_ImplicitInstantiation:
1341    // FIXME: Use available_externally linkage. However, this currently
1342    // breaks LLVM's build due to undefined symbols.
1343    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1344  case TSK_ExplicitInstantiationDeclaration:
1345    return llvm::GlobalVariable::LinkOnceODRLinkage;
1346
1347  case TSK_ExplicitInstantiationDefinition:
1348      return llvm::GlobalVariable::WeakODRLinkage;
1349  }
1350
1351  llvm_unreachable("Invalid TemplateSpecializationKind!");
1352}
1353
1354CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1355    return Context.toCharUnitsFromBits(
1356      TheTargetData.getTypeStoreSizeInBits(Ty));
1357}
1358
1359void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1360  llvm::Constant *Init = 0;
1361  QualType ASTTy = D->getType();
1362  bool NonConstInit = false;
1363
1364  const VarDecl *InitDecl;
1365  const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1366
1367  if (!InitExpr) {
1368    // This is a tentative definition; tentative definitions are
1369    // implicitly initialized with { 0 }.
1370    //
1371    // Note that tentative definitions are only emitted at the end of
1372    // a translation unit, so they should never have incomplete
1373    // type. In addition, EmitTentativeDefinition makes sure that we
1374    // never attempt to emit a tentative definition if a real one
1375    // exists. A use may still exists, however, so we still may need
1376    // to do a RAUW.
1377    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1378    Init = EmitNullConstant(D->getType());
1379  } else {
1380    Init = EmitConstantInit(*InitDecl);
1381    if (!Init) {
1382      QualType T = InitExpr->getType();
1383      if (D->getType()->isReferenceType())
1384        T = D->getType();
1385
1386      if (getLangOptions().CPlusPlus) {
1387        Init = EmitNullConstant(T);
1388        NonConstInit = true;
1389      } else {
1390        ErrorUnsupported(D, "static initializer");
1391        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1392      }
1393    } else {
1394      // We don't need an initializer, so remove the entry for the delayed
1395      // initializer position (just in case this entry was delayed).
1396      if (getLangOptions().CPlusPlus)
1397        DelayedCXXInitPosition.erase(D);
1398    }
1399  }
1400
1401  llvm::Type* InitType = Init->getType();
1402  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1403
1404  // Strip off a bitcast if we got one back.
1405  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1406    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1407           // all zero index gep.
1408           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1409    Entry = CE->getOperand(0);
1410  }
1411
1412  // Entry is now either a Function or GlobalVariable.
1413  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1414
1415  // We have a definition after a declaration with the wrong type.
1416  // We must make a new GlobalVariable* and update everything that used OldGV
1417  // (a declaration or tentative definition) with the new GlobalVariable*
1418  // (which will be a definition).
1419  //
1420  // This happens if there is a prototype for a global (e.g.
1421  // "extern int x[];") and then a definition of a different type (e.g.
1422  // "int x[10];"). This also happens when an initializer has a different type
1423  // from the type of the global (this happens with unions).
1424  if (GV == 0 ||
1425      GV->getType()->getElementType() != InitType ||
1426      GV->getType()->getAddressSpace() !=
1427        getContext().getTargetAddressSpace(ASTTy)) {
1428
1429    // Move the old entry aside so that we'll create a new one.
1430    Entry->setName(StringRef());
1431
1432    // Make a new global with the correct type, this is now guaranteed to work.
1433    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1434
1435    // Replace all uses of the old global with the new global
1436    llvm::Constant *NewPtrForOldDecl =
1437        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1438    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1439
1440    // Erase the old global, since it is no longer used.
1441    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1442  }
1443
1444  if (D->hasAttr<AnnotateAttr>())
1445    AddGlobalAnnotations(D, GV);
1446
1447  GV->setInitializer(Init);
1448
1449  // If it is safe to mark the global 'constant', do so now.
1450  GV->setConstant(false);
1451  if (!NonConstInit && DeclIsConstantGlobal(Context, D, true))
1452    GV->setConstant(true);
1453
1454  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1455
1456  // Set the llvm linkage type as appropriate.
1457  llvm::GlobalValue::LinkageTypes Linkage =
1458    GetLLVMLinkageVarDefinition(D, GV);
1459  GV->setLinkage(Linkage);
1460  if (Linkage == llvm::GlobalVariable::CommonLinkage)
1461    // common vars aren't constant even if declared const.
1462    GV->setConstant(false);
1463
1464  SetCommonAttributes(D, GV);
1465
1466  // Emit the initializer function if necessary.
1467  if (NonConstInit)
1468    EmitCXXGlobalVarDeclInitFunc(D, GV);
1469
1470  // Emit global variable debug information.
1471  if (CGDebugInfo *DI = getModuleDebugInfo())
1472    DI->EmitGlobalVariable(GV, D);
1473}
1474
1475llvm::GlobalValue::LinkageTypes
1476CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1477                                           llvm::GlobalVariable *GV) {
1478  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1479  if (Linkage == GVA_Internal)
1480    return llvm::Function::InternalLinkage;
1481  else if (D->hasAttr<DLLImportAttr>())
1482    return llvm::Function::DLLImportLinkage;
1483  else if (D->hasAttr<DLLExportAttr>())
1484    return llvm::Function::DLLExportLinkage;
1485  else if (D->hasAttr<WeakAttr>()) {
1486    if (GV->isConstant())
1487      return llvm::GlobalVariable::WeakODRLinkage;
1488    else
1489      return llvm::GlobalVariable::WeakAnyLinkage;
1490  } else if (Linkage == GVA_TemplateInstantiation ||
1491             Linkage == GVA_ExplicitTemplateInstantiation)
1492    return llvm::GlobalVariable::WeakODRLinkage;
1493  else if (!getLangOptions().CPlusPlus &&
1494           ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1495             D->getAttr<CommonAttr>()) &&
1496           !D->hasExternalStorage() && !D->getInit() &&
1497           !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1498           !D->getAttr<WeakImportAttr>()) {
1499    // Thread local vars aren't considered common linkage.
1500    return llvm::GlobalVariable::CommonLinkage;
1501  }
1502  return llvm::GlobalVariable::ExternalLinkage;
1503}
1504
1505/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1506/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1507/// existing call uses of the old function in the module, this adjusts them to
1508/// call the new function directly.
1509///
1510/// This is not just a cleanup: the always_inline pass requires direct calls to
1511/// functions to be able to inline them.  If there is a bitcast in the way, it
1512/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1513/// run at -O0.
1514static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1515                                                      llvm::Function *NewFn) {
1516  // If we're redefining a global as a function, don't transform it.
1517  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1518  if (OldFn == 0) return;
1519
1520  llvm::Type *NewRetTy = NewFn->getReturnType();
1521  SmallVector<llvm::Value*, 4> ArgList;
1522
1523  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1524       UI != E; ) {
1525    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1526    llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1527    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1528    if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1529    llvm::CallSite CS(CI);
1530    if (!CI || !CS.isCallee(I)) continue;
1531
1532    // If the return types don't match exactly, and if the call isn't dead, then
1533    // we can't transform this call.
1534    if (CI->getType() != NewRetTy && !CI->use_empty())
1535      continue;
1536
1537    // Get the attribute list.
1538    llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1539    llvm::AttrListPtr AttrList = CI->getAttributes();
1540
1541    // Get any return attributes.
1542    llvm::Attributes RAttrs = AttrList.getRetAttributes();
1543
1544    // Add the return attributes.
1545    if (RAttrs)
1546      AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1547
1548    // If the function was passed too few arguments, don't transform.  If extra
1549    // arguments were passed, we silently drop them.  If any of the types
1550    // mismatch, we don't transform.
1551    unsigned ArgNo = 0;
1552    bool DontTransform = false;
1553    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1554         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1555      if (CS.arg_size() == ArgNo ||
1556          CS.getArgument(ArgNo)->getType() != AI->getType()) {
1557        DontTransform = true;
1558        break;
1559      }
1560
1561      // Add any parameter attributes.
1562      if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1563        AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1564    }
1565    if (DontTransform)
1566      continue;
1567
1568    if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
1569      AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1570
1571    // Okay, we can transform this.  Create the new call instruction and copy
1572    // over the required information.
1573    ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1574    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1575    ArgList.clear();
1576    if (!NewCall->getType()->isVoidTy())
1577      NewCall->takeName(CI);
1578    NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(),
1579                                                  AttrVec.end()));
1580    NewCall->setCallingConv(CI->getCallingConv());
1581
1582    // Finally, remove the old call, replacing any uses with the new one.
1583    if (!CI->use_empty())
1584      CI->replaceAllUsesWith(NewCall);
1585
1586    // Copy debug location attached to CI.
1587    if (!CI->getDebugLoc().isUnknown())
1588      NewCall->setDebugLoc(CI->getDebugLoc());
1589    CI->eraseFromParent();
1590  }
1591}
1592
1593
1594void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1595  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1596
1597  // Compute the function info and LLVM type.
1598  const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1599  bool variadic = false;
1600  if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1601    variadic = fpt->isVariadic();
1602  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic);
1603
1604  // Get or create the prototype for the function.
1605  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1606
1607  // Strip off a bitcast if we got one back.
1608  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1609    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1610    Entry = CE->getOperand(0);
1611  }
1612
1613
1614  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1615    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1616
1617    // If the types mismatch then we have to rewrite the definition.
1618    assert(OldFn->isDeclaration() &&
1619           "Shouldn't replace non-declaration");
1620
1621    // F is the Function* for the one with the wrong type, we must make a new
1622    // Function* and update everything that used F (a declaration) with the new
1623    // Function* (which will be a definition).
1624    //
1625    // This happens if there is a prototype for a function
1626    // (e.g. "int f()") and then a definition of a different type
1627    // (e.g. "int f(int x)").  Move the old function aside so that it
1628    // doesn't interfere with GetAddrOfFunction.
1629    OldFn->setName(StringRef());
1630    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1631
1632    // If this is an implementation of a function without a prototype, try to
1633    // replace any existing uses of the function (which may be calls) with uses
1634    // of the new function
1635    if (D->getType()->isFunctionNoProtoType()) {
1636      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1637      OldFn->removeDeadConstantUsers();
1638    }
1639
1640    // Replace uses of F with the Function we will endow with a body.
1641    if (!Entry->use_empty()) {
1642      llvm::Constant *NewPtrForOldDecl =
1643        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1644      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1645    }
1646
1647    // Ok, delete the old function now, which is dead.
1648    OldFn->eraseFromParent();
1649
1650    Entry = NewFn;
1651  }
1652
1653  // We need to set linkage and visibility on the function before
1654  // generating code for it because various parts of IR generation
1655  // want to propagate this information down (e.g. to local static
1656  // declarations).
1657  llvm::Function *Fn = cast<llvm::Function>(Entry);
1658  setFunctionLinkage(D, Fn);
1659
1660  // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1661  setGlobalVisibility(Fn, D);
1662
1663  CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1664
1665  SetFunctionDefinitionAttributes(D, Fn);
1666  SetLLVMFunctionAttributesForDefinition(D, Fn);
1667
1668  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1669    AddGlobalCtor(Fn, CA->getPriority());
1670  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1671    AddGlobalDtor(Fn, DA->getPriority());
1672  if (D->hasAttr<AnnotateAttr>())
1673    AddGlobalAnnotations(D, Fn);
1674}
1675
1676void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1677  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1678  const AliasAttr *AA = D->getAttr<AliasAttr>();
1679  assert(AA && "Not an alias?");
1680
1681  StringRef MangledName = getMangledName(GD);
1682
1683  // If there is a definition in the module, then it wins over the alias.
1684  // This is dubious, but allow it to be safe.  Just ignore the alias.
1685  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1686  if (Entry && !Entry->isDeclaration())
1687    return;
1688
1689  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1690
1691  // Create a reference to the named value.  This ensures that it is emitted
1692  // if a deferred decl.
1693  llvm::Constant *Aliasee;
1694  if (isa<llvm::FunctionType>(DeclTy))
1695    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1696                                      /*ForVTable=*/false);
1697  else
1698    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1699                                    llvm::PointerType::getUnqual(DeclTy), 0);
1700
1701  // Create the new alias itself, but don't set a name yet.
1702  llvm::GlobalValue *GA =
1703    new llvm::GlobalAlias(Aliasee->getType(),
1704                          llvm::Function::ExternalLinkage,
1705                          "", Aliasee, &getModule());
1706
1707  if (Entry) {
1708    assert(Entry->isDeclaration());
1709
1710    // If there is a declaration in the module, then we had an extern followed
1711    // by the alias, as in:
1712    //   extern int test6();
1713    //   ...
1714    //   int test6() __attribute__((alias("test7")));
1715    //
1716    // Remove it and replace uses of it with the alias.
1717    GA->takeName(Entry);
1718
1719    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1720                                                          Entry->getType()));
1721    Entry->eraseFromParent();
1722  } else {
1723    GA->setName(MangledName);
1724  }
1725
1726  // Set attributes which are particular to an alias; this is a
1727  // specialization of the attributes which may be set on a global
1728  // variable/function.
1729  if (D->hasAttr<DLLExportAttr>()) {
1730    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1731      // The dllexport attribute is ignored for undefined symbols.
1732      if (FD->hasBody())
1733        GA->setLinkage(llvm::Function::DLLExportLinkage);
1734    } else {
1735      GA->setLinkage(llvm::Function::DLLExportLinkage);
1736    }
1737  } else if (D->hasAttr<WeakAttr>() ||
1738             D->hasAttr<WeakRefAttr>() ||
1739             D->isWeakImported()) {
1740    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1741  }
1742
1743  SetCommonAttributes(D, GA);
1744}
1745
1746llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1747                                            ArrayRef<llvm::Type*> Tys) {
1748  return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1749                                         Tys);
1750}
1751
1752static llvm::StringMapEntry<llvm::Constant*> &
1753GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1754                         const StringLiteral *Literal,
1755                         bool TargetIsLSB,
1756                         bool &IsUTF16,
1757                         unsigned &StringLength) {
1758  StringRef String = Literal->getString();
1759  unsigned NumBytes = String.size();
1760
1761  // Check for simple case.
1762  if (!Literal->containsNonAsciiOrNull()) {
1763    StringLength = NumBytes;
1764    return Map.GetOrCreateValue(String);
1765  }
1766
1767  // Otherwise, convert the UTF8 literals into a byte string.
1768  SmallVector<UTF16, 128> ToBuf(NumBytes);
1769  const UTF8 *FromPtr = (UTF8 *)String.data();
1770  UTF16 *ToPtr = &ToBuf[0];
1771
1772  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1773                           &ToPtr, ToPtr + NumBytes,
1774                           strictConversion);
1775
1776  // ConvertUTF8toUTF16 returns the length in ToPtr.
1777  StringLength = ToPtr - &ToBuf[0];
1778
1779  // Render the UTF-16 string into a byte array and convert to the target byte
1780  // order.
1781  //
1782  // FIXME: This isn't something we should need to do here.
1783  llvm::SmallString<128> AsBytes;
1784  AsBytes.reserve(StringLength * 2);
1785  for (unsigned i = 0; i != StringLength; ++i) {
1786    unsigned short Val = ToBuf[i];
1787    if (TargetIsLSB) {
1788      AsBytes.push_back(Val & 0xFF);
1789      AsBytes.push_back(Val >> 8);
1790    } else {
1791      AsBytes.push_back(Val >> 8);
1792      AsBytes.push_back(Val & 0xFF);
1793    }
1794  }
1795  // Append one extra null character, the second is automatically added by our
1796  // caller.
1797  AsBytes.push_back(0);
1798
1799  IsUTF16 = true;
1800  return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size()));
1801}
1802
1803static llvm::StringMapEntry<llvm::Constant*> &
1804GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1805		       const StringLiteral *Literal,
1806		       unsigned &StringLength)
1807{
1808	StringRef String = Literal->getString();
1809	StringLength = String.size();
1810	return Map.GetOrCreateValue(String);
1811}
1812
1813llvm::Constant *
1814CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1815  unsigned StringLength = 0;
1816  bool isUTF16 = false;
1817  llvm::StringMapEntry<llvm::Constant*> &Entry =
1818    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1819                             getTargetData().isLittleEndian(),
1820                             isUTF16, StringLength);
1821
1822  if (llvm::Constant *C = Entry.getValue())
1823    return C;
1824
1825  llvm::Constant *Zero =
1826      llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1827  llvm::Constant *Zeros[] = { Zero, Zero };
1828
1829  // If we don't already have it, get __CFConstantStringClassReference.
1830  if (!CFConstantStringClassRef) {
1831    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1832    Ty = llvm::ArrayType::get(Ty, 0);
1833    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1834                                           "__CFConstantStringClassReference");
1835    // Decay array -> ptr
1836    CFConstantStringClassRef =
1837      llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1838  }
1839
1840  QualType CFTy = getContext().getCFConstantStringType();
1841
1842  llvm::StructType *STy =
1843    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1844
1845  llvm::Constant *Fields[4];
1846
1847  // Class pointer.
1848  Fields[0] = CFConstantStringClassRef;
1849
1850  // Flags.
1851  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1852  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1853    llvm::ConstantInt::get(Ty, 0x07C8);
1854
1855  // String pointer.
1856  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1857
1858  llvm::GlobalValue::LinkageTypes Linkage;
1859  if (isUTF16)
1860    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1861    Linkage = llvm::GlobalValue::InternalLinkage;
1862  else
1863    // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1864    // when using private linkage. It is not clear if this is a bug in ld
1865    // or a reasonable new restriction.
1866    Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1867
1868  // Note: -fwritable-strings doesn't make the backing store strings of
1869  // CFStrings writable. (See <rdar://problem/10657500>)
1870  llvm::GlobalVariable *GV =
1871    new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
1872                             Linkage, C, ".str");
1873  GV->setUnnamedAddr(true);
1874  if (isUTF16) {
1875    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1876    GV->setAlignment(Align.getQuantity());
1877  } else {
1878    CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1879    GV->setAlignment(Align.getQuantity());
1880  }
1881  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1882
1883  // String length.
1884  Ty = getTypes().ConvertType(getContext().LongTy);
1885  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1886
1887  // The struct.
1888  C = llvm::ConstantStruct::get(STy, Fields);
1889  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1890                                llvm::GlobalVariable::PrivateLinkage, C,
1891                                "_unnamed_cfstring_");
1892  if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
1893    GV->setSection(Sect);
1894  Entry.setValue(GV);
1895
1896  return GV;
1897}
1898
1899static RecordDecl *
1900CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
1901                 DeclContext *DC, IdentifierInfo *Id) {
1902  SourceLocation Loc;
1903  if (Ctx.getLangOptions().CPlusPlus)
1904    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
1905  else
1906    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
1907}
1908
1909llvm::Constant *
1910CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1911  unsigned StringLength = 0;
1912  llvm::StringMapEntry<llvm::Constant*> &Entry =
1913    GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
1914
1915  if (llvm::Constant *C = Entry.getValue())
1916    return C;
1917
1918  llvm::Constant *Zero =
1919  llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1920  llvm::Constant *Zeros[] = { Zero, Zero };
1921
1922  // If we don't already have it, get _NSConstantStringClassReference.
1923  if (!ConstantStringClassRef) {
1924    std::string StringClass(getLangOptions().ObjCConstantStringClass);
1925    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1926    llvm::Constant *GV;
1927    if (Features.ObjCNonFragileABI) {
1928      std::string str =
1929        StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1930                            : "OBJC_CLASS_$_" + StringClass;
1931      GV = getObjCRuntime().GetClassGlobal(str);
1932      // Make sure the result is of the correct type.
1933      llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1934      ConstantStringClassRef =
1935        llvm::ConstantExpr::getBitCast(GV, PTy);
1936    } else {
1937      std::string str =
1938        StringClass.empty() ? "_NSConstantStringClassReference"
1939                            : "_" + StringClass + "ClassReference";
1940      llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
1941      GV = CreateRuntimeVariable(PTy, str);
1942      // Decay array -> ptr
1943      ConstantStringClassRef =
1944        llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1945    }
1946  }
1947
1948  if (!NSConstantStringType) {
1949    // Construct the type for a constant NSString.
1950    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
1951                                     Context.getTranslationUnitDecl(),
1952                                   &Context.Idents.get("__builtin_NSString"));
1953    D->startDefinition();
1954
1955    QualType FieldTypes[3];
1956
1957    // const int *isa;
1958    FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
1959    // const char *str;
1960    FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
1961    // unsigned int length;
1962    FieldTypes[2] = Context.UnsignedIntTy;
1963
1964    // Create fields
1965    for (unsigned i = 0; i < 3; ++i) {
1966      FieldDecl *Field = FieldDecl::Create(Context, D,
1967                                           SourceLocation(),
1968                                           SourceLocation(), 0,
1969                                           FieldTypes[i], /*TInfo=*/0,
1970                                           /*BitWidth=*/0,
1971                                           /*Mutable=*/false,
1972                                           /*HasInit=*/false);
1973      Field->setAccess(AS_public);
1974      D->addDecl(Field);
1975    }
1976
1977    D->completeDefinition();
1978    QualType NSTy = Context.getTagDeclType(D);
1979    NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1980  }
1981
1982  llvm::Constant *Fields[3];
1983
1984  // Class pointer.
1985  Fields[0] = ConstantStringClassRef;
1986
1987  // String pointer.
1988  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1989
1990  llvm::GlobalValue::LinkageTypes Linkage;
1991  bool isConstant;
1992  Linkage = llvm::GlobalValue::PrivateLinkage;
1993  isConstant = !Features.WritableStrings;
1994
1995  llvm::GlobalVariable *GV =
1996  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1997                           ".str");
1998  GV->setUnnamedAddr(true);
1999  CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2000  GV->setAlignment(Align.getQuantity());
2001  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2002
2003  // String length.
2004  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2005  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2006
2007  // The struct.
2008  C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2009  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2010                                llvm::GlobalVariable::PrivateLinkage, C,
2011                                "_unnamed_nsstring_");
2012  // FIXME. Fix section.
2013  if (const char *Sect =
2014        Features.ObjCNonFragileABI
2015          ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2016          : getContext().getTargetInfo().getNSStringSection())
2017    GV->setSection(Sect);
2018  Entry.setValue(GV);
2019
2020  return GV;
2021}
2022
2023QualType CodeGenModule::getObjCFastEnumerationStateType() {
2024  if (ObjCFastEnumerationStateType.isNull()) {
2025    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2026                                     Context.getTranslationUnitDecl(),
2027                      &Context.Idents.get("__objcFastEnumerationState"));
2028    D->startDefinition();
2029
2030    QualType FieldTypes[] = {
2031      Context.UnsignedLongTy,
2032      Context.getPointerType(Context.getObjCIdType()),
2033      Context.getPointerType(Context.UnsignedLongTy),
2034      Context.getConstantArrayType(Context.UnsignedLongTy,
2035                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2036    };
2037
2038    for (size_t i = 0; i < 4; ++i) {
2039      FieldDecl *Field = FieldDecl::Create(Context,
2040                                           D,
2041                                           SourceLocation(),
2042                                           SourceLocation(), 0,
2043                                           FieldTypes[i], /*TInfo=*/0,
2044                                           /*BitWidth=*/0,
2045                                           /*Mutable=*/false,
2046                                           /*HasInit=*/false);
2047      Field->setAccess(AS_public);
2048      D->addDecl(Field);
2049    }
2050
2051    D->completeDefinition();
2052    ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2053  }
2054
2055  return ObjCFastEnumerationStateType;
2056}
2057
2058/// GetStringForStringLiteral - Return the appropriate bytes for a
2059/// string literal, properly padded to match the literal type.
2060std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
2061  assert((E->isAscii() || E->isUTF8())
2062         && "Use GetConstantArrayFromStringLiteral for wide strings");
2063  const ASTContext &Context = getContext();
2064  const ConstantArrayType *CAT =
2065    Context.getAsConstantArrayType(E->getType());
2066  assert(CAT && "String isn't pointer or array!");
2067
2068  // Resize the string to the right size.
2069  uint64_t RealLen = CAT->getSize().getZExtValue();
2070
2071  std::string Str = E->getString().str();
2072  Str.resize(RealLen, '\0');
2073
2074  return Str;
2075}
2076
2077llvm::Constant *
2078CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2079  assert(!E->getType()->isPointerType() && "Strings are always arrays");
2080
2081  // Don't emit it as the address of the string, emit the string data itself
2082  // as an inline array.
2083  if (E->getCharByteWidth()==1) {
2084    return llvm::ConstantArray::get(VMContext,
2085                                    GetStringForStringLiteral(E), false);
2086  } else {
2087    llvm::ArrayType *AType =
2088      cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2089    llvm::Type *ElemTy = AType->getElementType();
2090    unsigned NumElements = AType->getNumElements();
2091    std::vector<llvm::Constant*> Elts;
2092    Elts.reserve(NumElements);
2093
2094    for(unsigned i=0;i<E->getLength();++i) {
2095      unsigned value = E->getCodeUnit(i);
2096      llvm::Constant *C = llvm::ConstantInt::get(ElemTy,value,false);
2097      Elts.push_back(C);
2098    }
2099    for(unsigned i=E->getLength();i<NumElements;++i) {
2100      llvm::Constant *C = llvm::ConstantInt::get(ElemTy,0,false);
2101      Elts.push_back(C);
2102    }
2103
2104    return llvm::ConstantArray::get(AType, Elts);
2105  }
2106
2107}
2108
2109/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2110/// constant array for the given string literal.
2111llvm::Constant *
2112CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2113  // FIXME: This can be more efficient.
2114  // FIXME: We shouldn't need to bitcast the constant in the wide string case.
2115  CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2116  if (S->isAscii() || S->isUTF8()) {
2117    return GetAddrOfConstantString(GetStringForStringLiteral(S),
2118                                   /* GlobalName */ 0,
2119                                   Align.getQuantity());
2120  }
2121
2122  // FIXME: the following does not memoize wide strings
2123  llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2124  llvm::GlobalVariable *GV =
2125    new llvm::GlobalVariable(getModule(),C->getType(),
2126                             !Features.WritableStrings,
2127                             llvm::GlobalValue::PrivateLinkage,
2128                             C,".str");
2129
2130  GV->setAlignment(Align.getQuantity());
2131  GV->setUnnamedAddr(true);
2132
2133  return GV;
2134}
2135
2136/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2137/// array for the given ObjCEncodeExpr node.
2138llvm::Constant *
2139CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2140  std::string Str;
2141  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2142
2143  return GetAddrOfConstantCString(Str);
2144}
2145
2146
2147/// GenerateWritableString -- Creates storage for a string literal.
2148static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2149                                             bool constant,
2150                                             CodeGenModule &CGM,
2151                                             const char *GlobalName,
2152                                             unsigned Alignment) {
2153  // Create Constant for this string literal. Don't add a '\0'.
2154  llvm::Constant *C =
2155      llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
2156
2157  // Create a global variable for this string
2158  llvm::GlobalVariable *GV =
2159    new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2160                             llvm::GlobalValue::PrivateLinkage,
2161                             C, GlobalName);
2162  GV->setAlignment(Alignment);
2163  GV->setUnnamedAddr(true);
2164  return GV;
2165}
2166
2167/// GetAddrOfConstantString - Returns a pointer to a character array
2168/// containing the literal. This contents are exactly that of the
2169/// given string, i.e. it will not be null terminated automatically;
2170/// see GetAddrOfConstantCString. Note that whether the result is
2171/// actually a pointer to an LLVM constant depends on
2172/// Feature.WriteableStrings.
2173///
2174/// The result has pointer to array type.
2175llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2176                                                       const char *GlobalName,
2177                                                       unsigned Alignment) {
2178  bool IsConstant = !Features.WritableStrings;
2179
2180  // Get the default prefix if a name wasn't specified.
2181  if (!GlobalName)
2182    GlobalName = ".str";
2183
2184  // Don't share any string literals if strings aren't constant.
2185  if (!IsConstant)
2186    return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2187
2188  llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2189    ConstantStringMap.GetOrCreateValue(Str);
2190
2191  if (llvm::GlobalVariable *GV = Entry.getValue()) {
2192    if (Alignment > GV->getAlignment()) {
2193      GV->setAlignment(Alignment);
2194    }
2195    return GV;
2196  }
2197
2198  // Create a global variable for this.
2199  llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName, Alignment);
2200  Entry.setValue(GV);
2201  return GV;
2202}
2203
2204/// GetAddrOfConstantCString - Returns a pointer to a character
2205/// array containing the literal and a terminating '\0'
2206/// character. The result has pointer to array type.
2207llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2208                                                        const char *GlobalName,
2209                                                        unsigned Alignment) {
2210  StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2211  return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2212}
2213
2214/// EmitObjCPropertyImplementations - Emit information for synthesized
2215/// properties for an implementation.
2216void CodeGenModule::EmitObjCPropertyImplementations(const
2217                                                    ObjCImplementationDecl *D) {
2218  for (ObjCImplementationDecl::propimpl_iterator
2219         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2220    ObjCPropertyImplDecl *PID = *i;
2221
2222    // Dynamic is just for type-checking.
2223    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2224      ObjCPropertyDecl *PD = PID->getPropertyDecl();
2225
2226      // Determine which methods need to be implemented, some may have
2227      // been overridden. Note that ::isSynthesized is not the method
2228      // we want, that just indicates if the decl came from a
2229      // property. What we want to know is if the method is defined in
2230      // this implementation.
2231      if (!D->getInstanceMethod(PD->getGetterName()))
2232        CodeGenFunction(*this).GenerateObjCGetter(
2233                                 const_cast<ObjCImplementationDecl *>(D), PID);
2234      if (!PD->isReadOnly() &&
2235          !D->getInstanceMethod(PD->getSetterName()))
2236        CodeGenFunction(*this).GenerateObjCSetter(
2237                                 const_cast<ObjCImplementationDecl *>(D), PID);
2238    }
2239  }
2240}
2241
2242static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2243  const ObjCInterfaceDecl *iface = impl->getClassInterface();
2244  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2245       ivar; ivar = ivar->getNextIvar())
2246    if (ivar->getType().isDestructedType())
2247      return true;
2248
2249  return false;
2250}
2251
2252/// EmitObjCIvarInitializations - Emit information for ivar initialization
2253/// for an implementation.
2254void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2255  // We might need a .cxx_destruct even if we don't have any ivar initializers.
2256  if (needsDestructMethod(D)) {
2257    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2258    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2259    ObjCMethodDecl *DTORMethod =
2260      ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2261                             cxxSelector, getContext().VoidTy, 0, D,
2262                             /*isInstance=*/true, /*isVariadic=*/false,
2263                          /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
2264                             /*isDefined=*/false, ObjCMethodDecl::Required);
2265    D->addInstanceMethod(DTORMethod);
2266    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2267    D->setHasCXXStructors(true);
2268  }
2269
2270  // If the implementation doesn't have any ivar initializers, we don't need
2271  // a .cxx_construct.
2272  if (D->getNumIvarInitializers() == 0)
2273    return;
2274
2275  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2276  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2277  // The constructor returns 'self'.
2278  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2279                                                D->getLocation(),
2280                                                D->getLocation(),
2281                                                cxxSelector,
2282                                                getContext().getObjCIdType(), 0,
2283                                                D, /*isInstance=*/true,
2284                                                /*isVariadic=*/false,
2285                                                /*isSynthesized=*/true,
2286                                                /*isImplicitlyDeclared=*/true,
2287                                                /*isDefined=*/false,
2288                                                ObjCMethodDecl::Required);
2289  D->addInstanceMethod(CTORMethod);
2290  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2291  D->setHasCXXStructors(true);
2292}
2293
2294/// EmitNamespace - Emit all declarations in a namespace.
2295void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2296  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2297       I != E; ++I)
2298    EmitTopLevelDecl(*I);
2299}
2300
2301// EmitLinkageSpec - Emit all declarations in a linkage spec.
2302void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2303  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2304      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2305    ErrorUnsupported(LSD, "linkage spec");
2306    return;
2307  }
2308
2309  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2310       I != E; ++I)
2311    EmitTopLevelDecl(*I);
2312}
2313
2314/// EmitTopLevelDecl - Emit code for a single top level declaration.
2315void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2316  // If an error has occurred, stop code generation, but continue
2317  // parsing and semantic analysis (to ensure all warnings and errors
2318  // are emitted).
2319  if (Diags.hasErrorOccurred())
2320    return;
2321
2322  // Ignore dependent declarations.
2323  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2324    return;
2325
2326  switch (D->getKind()) {
2327  case Decl::CXXConversion:
2328  case Decl::CXXMethod:
2329  case Decl::Function:
2330    // Skip function templates
2331    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2332        cast<FunctionDecl>(D)->isLateTemplateParsed())
2333      return;
2334
2335    EmitGlobal(cast<FunctionDecl>(D));
2336    break;
2337
2338  case Decl::Var:
2339    EmitGlobal(cast<VarDecl>(D));
2340    break;
2341
2342  // Indirect fields from global anonymous structs and unions can be
2343  // ignored; only the actual variable requires IR gen support.
2344  case Decl::IndirectField:
2345    break;
2346
2347  // C++ Decls
2348  case Decl::Namespace:
2349    EmitNamespace(cast<NamespaceDecl>(D));
2350    break;
2351    // No code generation needed.
2352  case Decl::UsingShadow:
2353  case Decl::Using:
2354  case Decl::UsingDirective:
2355  case Decl::ClassTemplate:
2356  case Decl::FunctionTemplate:
2357  case Decl::TypeAliasTemplate:
2358  case Decl::NamespaceAlias:
2359  case Decl::Block:
2360  case Decl::Import:
2361    break;
2362  case Decl::CXXConstructor:
2363    // Skip function templates
2364    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2365        cast<FunctionDecl>(D)->isLateTemplateParsed())
2366      return;
2367
2368    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2369    break;
2370  case Decl::CXXDestructor:
2371    if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2372      return;
2373    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2374    break;
2375
2376  case Decl::StaticAssert:
2377    // Nothing to do.
2378    break;
2379
2380  // Objective-C Decls
2381
2382  // Forward declarations, no (immediate) code generation.
2383  case Decl::ObjCInterface:
2384    break;
2385
2386  case Decl::ObjCCategory: {
2387    ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2388    if (CD->IsClassExtension() && CD->hasSynthBitfield())
2389      Context.ResetObjCLayout(CD->getClassInterface());
2390    break;
2391  }
2392
2393  case Decl::ObjCProtocol: {
2394    ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2395    if (Proto->isThisDeclarationADefinition())
2396      ObjCRuntime->GenerateProtocol(Proto);
2397    break;
2398  }
2399
2400  case Decl::ObjCCategoryImpl:
2401    // Categories have properties but don't support synthesize so we
2402    // can ignore them here.
2403    ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2404    break;
2405
2406  case Decl::ObjCImplementation: {
2407    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2408    if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2409      Context.ResetObjCLayout(OMD->getClassInterface());
2410    EmitObjCPropertyImplementations(OMD);
2411    EmitObjCIvarInitializations(OMD);
2412    ObjCRuntime->GenerateClass(OMD);
2413    break;
2414  }
2415  case Decl::ObjCMethod: {
2416    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2417    // If this is not a prototype, emit the body.
2418    if (OMD->getBody())
2419      CodeGenFunction(*this).GenerateObjCMethod(OMD);
2420    break;
2421  }
2422  case Decl::ObjCCompatibleAlias:
2423    // compatibility-alias is a directive and has no code gen.
2424    break;
2425
2426  case Decl::LinkageSpec:
2427    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2428    break;
2429
2430  case Decl::FileScopeAsm: {
2431    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2432    StringRef AsmString = AD->getAsmString()->getString();
2433
2434    const std::string &S = getModule().getModuleInlineAsm();
2435    if (S.empty())
2436      getModule().setModuleInlineAsm(AsmString);
2437    else if (*--S.end() == '\n')
2438      getModule().setModuleInlineAsm(S + AsmString.str());
2439    else
2440      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2441    break;
2442  }
2443
2444  default:
2445    // Make sure we handled everything we should, every other kind is a
2446    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2447    // function. Need to recode Decl::Kind to do that easily.
2448    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2449  }
2450}
2451
2452/// Turns the given pointer into a constant.
2453static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2454                                          const void *Ptr) {
2455  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2456  llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2457  return llvm::ConstantInt::get(i64, PtrInt);
2458}
2459
2460static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2461                                   llvm::NamedMDNode *&GlobalMetadata,
2462                                   GlobalDecl D,
2463                                   llvm::GlobalValue *Addr) {
2464  if (!GlobalMetadata)
2465    GlobalMetadata =
2466      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2467
2468  // TODO: should we report variant information for ctors/dtors?
2469  llvm::Value *Ops[] = {
2470    Addr,
2471    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2472  };
2473  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2474}
2475
2476/// Emits metadata nodes associating all the global values in the
2477/// current module with the Decls they came from.  This is useful for
2478/// projects using IR gen as a subroutine.
2479///
2480/// Since there's currently no way to associate an MDNode directly
2481/// with an llvm::GlobalValue, we create a global named metadata
2482/// with the name 'clang.global.decl.ptrs'.
2483void CodeGenModule::EmitDeclMetadata() {
2484  llvm::NamedMDNode *GlobalMetadata = 0;
2485
2486  // StaticLocalDeclMap
2487  for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2488         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2489       I != E; ++I) {
2490    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2491    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2492  }
2493}
2494
2495/// Emits metadata nodes for all the local variables in the current
2496/// function.
2497void CodeGenFunction::EmitDeclMetadata() {
2498  if (LocalDeclMap.empty()) return;
2499
2500  llvm::LLVMContext &Context = getLLVMContext();
2501
2502  // Find the unique metadata ID for this name.
2503  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2504
2505  llvm::NamedMDNode *GlobalMetadata = 0;
2506
2507  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2508         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2509    const Decl *D = I->first;
2510    llvm::Value *Addr = I->second;
2511
2512    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2513      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2514      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2515    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2516      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2517      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2518    }
2519  }
2520}
2521
2522void CodeGenModule::EmitCoverageFile() {
2523  if (!getCodeGenOpts().CoverageFile.empty()) {
2524    if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2525      llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2526      llvm::LLVMContext &Ctx = TheModule.getContext();
2527      llvm::MDString *CoverageFile =
2528          llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2529      for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2530        llvm::MDNode *CU = CUNode->getOperand(i);
2531        llvm::Value *node[] = { CoverageFile, CU };
2532        llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2533        GCov->addOperand(N);
2534      }
2535    }
2536  }
2537}
2538