CodeGenModule.cpp revision 87a4ed905e2febe64021dcdfcdc7f00b27e92f32
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CodeGenTBAA.h"
18#include "CGCall.h"
19#include "CGCXXABI.h"
20#include "CGObjCRuntime.h"
21#include "Mangle.h"
22#include "TargetInfo.h"
23#include "clang/Frontend/CodeGenOptions.h"
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/CharUnits.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclCXX.h"
28#include "clang/AST/DeclTemplate.h"
29#include "clang/AST/RecordLayout.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/Diagnostic.h"
32#include "clang/Basic/SourceManager.h"
33#include "clang/Basic/TargetInfo.h"
34#include "clang/Basic/ConvertUTF.h"
35#include "llvm/CallingConv.h"
36#include "llvm/Module.h"
37#include "llvm/Intrinsics.h"
38#include "llvm/LLVMContext.h"
39#include "llvm/ADT/Triple.h"
40#include "llvm/Target/TargetData.h"
41#include "llvm/Support/CallSite.h"
42#include "llvm/Support/ErrorHandling.h"
43using namespace clang;
44using namespace CodeGen;
45
46static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
47  switch (CGM.getContext().Target.getCXXABI()) {
48  case CXXABI_ARM: return *CreateARMCXXABI(CGM);
49  case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
50  case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
51  }
52
53  llvm_unreachable("invalid C++ ABI kind");
54  return *CreateItaniumCXXABI(CGM);
55}
56
57
58CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
59                             llvm::Module &M, const llvm::TargetData &TD,
60                             Diagnostic &diags)
61  : BlockModule(C, M, TD, Types, *this), Context(C),
62    Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63    TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64    ABI(createCXXABI(*this)),
65    Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI),
66    TBAA(0),
67    VTables(*this), Runtime(0),
68    CFConstantStringClassRef(0), ConstantStringClassRef(0),
69    VMContext(M.getContext()),
70    NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72    BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73    BlockObjectAssign(0), BlockObjectDispose(0){
74
75  if (!Features.ObjC1)
76    Runtime = 0;
77  else if (!Features.NeXTRuntime)
78    Runtime = CreateGNUObjCRuntime(*this);
79  else if (Features.ObjCNonFragileABI)
80    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
81  else
82    Runtime = CreateMacObjCRuntime(*this);
83
84  // Enable TBAA unless it's suppressed.
85  if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
86    TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
87                           ABI.getMangleContext());
88
89  // If debug info generation is enabled, create the CGDebugInfo object.
90  DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
91}
92
93CodeGenModule::~CodeGenModule() {
94  delete Runtime;
95  delete &ABI;
96  delete TBAA;
97  delete DebugInfo;
98}
99
100void CodeGenModule::createObjCRuntime() {
101  if (!Features.NeXTRuntime)
102    Runtime = CreateGNUObjCRuntime(*this);
103  else if (Features.ObjCNonFragileABI)
104    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
105  else
106    Runtime = CreateMacObjCRuntime(*this);
107}
108
109void CodeGenModule::Release() {
110  EmitDeferred();
111  EmitCXXGlobalInitFunc();
112  EmitCXXGlobalDtorFunc();
113  if (Runtime)
114    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
115      AddGlobalCtor(ObjCInitFunction);
116  EmitCtorList(GlobalCtors, "llvm.global_ctors");
117  EmitCtorList(GlobalDtors, "llvm.global_dtors");
118  EmitAnnotations();
119  EmitLLVMUsed();
120
121  SimplifyPersonality();
122
123  if (getCodeGenOpts().EmitDeclMetadata)
124    EmitDeclMetadata();
125}
126
127llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
128  if (!TBAA)
129    return 0;
130  return TBAA->getTBAAInfo(QTy);
131}
132
133void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
134                                        llvm::MDNode *TBAAInfo) {
135  Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
136}
137
138bool CodeGenModule::isTargetDarwin() const {
139  return getContext().Target.getTriple().getOS() == llvm::Triple::Darwin;
140}
141
142/// ErrorUnsupported - Print out an error that codegen doesn't support the
143/// specified stmt yet.
144void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
145                                     bool OmitOnError) {
146  if (OmitOnError && getDiags().hasErrorOccurred())
147    return;
148  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
149                                               "cannot compile this %0 yet");
150  std::string Msg = Type;
151  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
152    << Msg << S->getSourceRange();
153}
154
155/// ErrorUnsupported - Print out an error that codegen doesn't support the
156/// specified decl yet.
157void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
158                                     bool OmitOnError) {
159  if (OmitOnError && getDiags().hasErrorOccurred())
160    return;
161  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
162                                               "cannot compile this %0 yet");
163  std::string Msg = Type;
164  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
165}
166
167static llvm::GlobalValue::VisibilityTypes GetLLVMVisibility(Visibility V) {
168  switch (V) {
169  case DefaultVisibility:   return llvm::GlobalValue::DefaultVisibility;
170  case HiddenVisibility:    return llvm::GlobalValue::HiddenVisibility;
171  case ProtectedVisibility: return llvm::GlobalValue::ProtectedVisibility;
172  }
173  llvm_unreachable("unknown visibility!");
174  return llvm::GlobalValue::DefaultVisibility;
175}
176
177
178void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
179                                        const NamedDecl *D) const {
180  // Internal definitions always have default visibility.
181  if (GV->hasLocalLinkage()) {
182    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
183    return;
184  }
185
186  GV->setVisibility(GetLLVMVisibility(D->getVisibility()));
187}
188
189/// Set the symbol visibility of type information (vtable and RTTI)
190/// associated with the given type.
191void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
192                                      const CXXRecordDecl *RD,
193                                      bool IsForRTTI) const {
194  setGlobalVisibility(GV, RD);
195
196  if (!CodeGenOpts.HiddenWeakVTables)
197    return;
198
199  // We want to drop the visibility to hidden for weak type symbols.
200  // This isn't possible if there might be unresolved references
201  // elsewhere that rely on this symbol being visible.
202
203  // This should be kept roughly in sync with setThunkVisibility
204  // in CGVTables.cpp.
205
206  // Preconditions.
207  if (GV->getLinkage() != llvm::GlobalVariable::WeakODRLinkage ||
208      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
209    return;
210
211  // Don't override an explicit visibility attribute.
212  if (RD->hasAttr<VisibilityAttr>())
213    return;
214
215  switch (RD->getTemplateSpecializationKind()) {
216  // We have to disable the optimization if this is an EI definition
217  // because there might be EI declarations in other shared objects.
218  case TSK_ExplicitInstantiationDefinition:
219  case TSK_ExplicitInstantiationDeclaration:
220    return;
221
222  // Every use of a non-template class's type information has to emit it.
223  case TSK_Undeclared:
224    break;
225
226  // In theory, implicit instantiations can ignore the possibility of
227  // an explicit instantiation declaration because there necessarily
228  // must be an EI definition somewhere with default visibility.  In
229  // practice, it's possible to have an explicit instantiation for
230  // an arbitrary template class, and linkers aren't necessarily able
231  // to deal with mixed-visibility symbols.
232  case TSK_ExplicitSpecialization:
233  case TSK_ImplicitInstantiation:
234    if (!CodeGenOpts.HiddenWeakTemplateVTables)
235      return;
236    break;
237  }
238
239  // If there's a key function, there may be translation units
240  // that don't have the key function's definition.  But ignore
241  // this if we're emitting RTTI under -fno-rtti.
242  if (!IsForRTTI || Features.RTTI)
243    if (Context.getKeyFunction(RD))
244      return;
245
246  // Otherwise, drop the visibility to hidden.
247  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
248}
249
250llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
251  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
252
253  llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
254  if (!Str.empty())
255    return Str;
256
257  if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
258    IdentifierInfo *II = ND->getIdentifier();
259    assert(II && "Attempt to mangle unnamed decl.");
260
261    Str = II->getName();
262    return Str;
263  }
264
265  llvm::SmallString<256> Buffer;
266  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
267    getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Buffer);
268  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
269    getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Buffer);
270  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
271    getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer);
272  else
273    getCXXABI().getMangleContext().mangleName(ND, Buffer);
274
275  // Allocate space for the mangled name.
276  size_t Length = Buffer.size();
277  char *Name = MangledNamesAllocator.Allocate<char>(Length);
278  std::copy(Buffer.begin(), Buffer.end(), Name);
279
280  Str = llvm::StringRef(Name, Length);
281
282  return Str;
283}
284
285void CodeGenModule::getMangledName(GlobalDecl GD, MangleBuffer &Buffer,
286                                   const BlockDecl *BD) {
287  getCXXABI().getMangleContext().mangleBlock(GD, BD, Buffer.getBuffer());
288}
289
290llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
291  return getModule().getNamedValue(Name);
292}
293
294/// AddGlobalCtor - Add a function to the list that will be called before
295/// main() runs.
296void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
297  // FIXME: Type coercion of void()* types.
298  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
299}
300
301/// AddGlobalDtor - Add a function to the list that will be called
302/// when the module is unloaded.
303void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
304  // FIXME: Type coercion of void()* types.
305  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
306}
307
308void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
309  // Ctor function type is void()*.
310  llvm::FunctionType* CtorFTy =
311    llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
312                            std::vector<const llvm::Type*>(),
313                            false);
314  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
315
316  // Get the type of a ctor entry, { i32, void ()* }.
317  llvm::StructType* CtorStructTy =
318    llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
319                          llvm::PointerType::getUnqual(CtorFTy), NULL);
320
321  // Construct the constructor and destructor arrays.
322  std::vector<llvm::Constant*> Ctors;
323  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
324    std::vector<llvm::Constant*> S;
325    S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
326                I->second, false));
327    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
328    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
329  }
330
331  if (!Ctors.empty()) {
332    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
333    new llvm::GlobalVariable(TheModule, AT, false,
334                             llvm::GlobalValue::AppendingLinkage,
335                             llvm::ConstantArray::get(AT, Ctors),
336                             GlobalName);
337  }
338}
339
340void CodeGenModule::EmitAnnotations() {
341  if (Annotations.empty())
342    return;
343
344  // Create a new global variable for the ConstantStruct in the Module.
345  llvm::Constant *Array =
346  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
347                                                Annotations.size()),
348                           Annotations);
349  llvm::GlobalValue *gv =
350  new llvm::GlobalVariable(TheModule, Array->getType(), false,
351                           llvm::GlobalValue::AppendingLinkage, Array,
352                           "llvm.global.annotations");
353  gv->setSection("llvm.metadata");
354}
355
356llvm::GlobalValue::LinkageTypes
357CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
358  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
359
360  if (Linkage == GVA_Internal)
361    return llvm::Function::InternalLinkage;
362
363  if (D->hasAttr<DLLExportAttr>())
364    return llvm::Function::DLLExportLinkage;
365
366  if (D->hasAttr<WeakAttr>())
367    return llvm::Function::WeakAnyLinkage;
368
369  // In C99 mode, 'inline' functions are guaranteed to have a strong
370  // definition somewhere else, so we can use available_externally linkage.
371  if (Linkage == GVA_C99Inline)
372    return llvm::Function::AvailableExternallyLinkage;
373
374  // In C++, the compiler has to emit a definition in every translation unit
375  // that references the function.  We should use linkonce_odr because
376  // a) if all references in this translation unit are optimized away, we
377  // don't need to codegen it.  b) if the function persists, it needs to be
378  // merged with other definitions. c) C++ has the ODR, so we know the
379  // definition is dependable.
380  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
381    return llvm::Function::LinkOnceODRLinkage;
382
383  // An explicit instantiation of a template has weak linkage, since
384  // explicit instantiations can occur in multiple translation units
385  // and must all be equivalent. However, we are not allowed to
386  // throw away these explicit instantiations.
387  if (Linkage == GVA_ExplicitTemplateInstantiation)
388    return llvm::Function::WeakODRLinkage;
389
390  // Otherwise, we have strong external linkage.
391  assert(Linkage == GVA_StrongExternal);
392  return llvm::Function::ExternalLinkage;
393}
394
395
396/// SetFunctionDefinitionAttributes - Set attributes for a global.
397///
398/// FIXME: This is currently only done for aliases and functions, but not for
399/// variables (these details are set in EmitGlobalVarDefinition for variables).
400void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
401                                                    llvm::GlobalValue *GV) {
402  SetCommonAttributes(D, GV);
403}
404
405void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
406                                              const CGFunctionInfo &Info,
407                                              llvm::Function *F) {
408  unsigned CallingConv;
409  AttributeListType AttributeList;
410  ConstructAttributeList(Info, D, AttributeList, CallingConv);
411  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
412                                          AttributeList.size()));
413  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
414}
415
416void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
417                                                           llvm::Function *F) {
418  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
419    F->addFnAttr(llvm::Attribute::NoUnwind);
420
421  if (D->hasAttr<AlwaysInlineAttr>())
422    F->addFnAttr(llvm::Attribute::AlwaysInline);
423
424  if (D->hasAttr<NakedAttr>())
425    F->addFnAttr(llvm::Attribute::Naked);
426
427  if (D->hasAttr<NoInlineAttr>())
428    F->addFnAttr(llvm::Attribute::NoInline);
429
430  if (Features.getStackProtectorMode() == LangOptions::SSPOn)
431    F->addFnAttr(llvm::Attribute::StackProtect);
432  else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
433    F->addFnAttr(llvm::Attribute::StackProtectReq);
434
435  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
436  if (alignment)
437    F->setAlignment(alignment);
438
439  // C++ ABI requires 2-byte alignment for member functions.
440  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
441    F->setAlignment(2);
442}
443
444void CodeGenModule::SetCommonAttributes(const Decl *D,
445                                        llvm::GlobalValue *GV) {
446  if (isa<NamedDecl>(D))
447    setGlobalVisibility(GV, cast<NamedDecl>(D));
448  else
449    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
450
451  if (D->hasAttr<UsedAttr>())
452    AddUsedGlobal(GV);
453
454  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
455    GV->setSection(SA->getName());
456
457  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
458}
459
460void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
461                                                  llvm::Function *F,
462                                                  const CGFunctionInfo &FI) {
463  SetLLVMFunctionAttributes(D, FI, F);
464  SetLLVMFunctionAttributesForDefinition(D, F);
465
466  F->setLinkage(llvm::Function::InternalLinkage);
467
468  SetCommonAttributes(D, F);
469}
470
471void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
472                                          llvm::Function *F,
473                                          bool IsIncompleteFunction) {
474  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
475
476  if (!IsIncompleteFunction)
477    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
478
479  // Only a few attributes are set on declarations; these may later be
480  // overridden by a definition.
481
482  if (FD->hasAttr<DLLImportAttr>()) {
483    F->setLinkage(llvm::Function::DLLImportLinkage);
484  } else if (FD->hasAttr<WeakAttr>() ||
485             FD->hasAttr<WeakImportAttr>()) {
486    // "extern_weak" is overloaded in LLVM; we probably should have
487    // separate linkage types for this.
488    F->setLinkage(llvm::Function::ExternalWeakLinkage);
489  } else {
490    F->setLinkage(llvm::Function::ExternalLinkage);
491  }
492
493  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
494    F->setSection(SA->getName());
495}
496
497void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
498  assert(!GV->isDeclaration() &&
499         "Only globals with definition can force usage.");
500  LLVMUsed.push_back(GV);
501}
502
503void CodeGenModule::EmitLLVMUsed() {
504  // Don't create llvm.used if there is no need.
505  if (LLVMUsed.empty())
506    return;
507
508  const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
509
510  // Convert LLVMUsed to what ConstantArray needs.
511  std::vector<llvm::Constant*> UsedArray;
512  UsedArray.resize(LLVMUsed.size());
513  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
514    UsedArray[i] =
515     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
516                                      i8PTy);
517  }
518
519  if (UsedArray.empty())
520    return;
521  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
522
523  llvm::GlobalVariable *GV =
524    new llvm::GlobalVariable(getModule(), ATy, false,
525                             llvm::GlobalValue::AppendingLinkage,
526                             llvm::ConstantArray::get(ATy, UsedArray),
527                             "llvm.used");
528
529  GV->setSection("llvm.metadata");
530}
531
532void CodeGenModule::EmitDeferred() {
533  // Emit code for any potentially referenced deferred decls.  Since a
534  // previously unused static decl may become used during the generation of code
535  // for a static function, iterate until no  changes are made.
536
537  while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
538    if (!DeferredVTables.empty()) {
539      const CXXRecordDecl *RD = DeferredVTables.back();
540      DeferredVTables.pop_back();
541      getVTables().GenerateClassData(getVTableLinkage(RD), RD);
542      continue;
543    }
544
545    GlobalDecl D = DeferredDeclsToEmit.back();
546    DeferredDeclsToEmit.pop_back();
547
548    // Check to see if we've already emitted this.  This is necessary
549    // for a couple of reasons: first, decls can end up in the
550    // deferred-decls queue multiple times, and second, decls can end
551    // up with definitions in unusual ways (e.g. by an extern inline
552    // function acquiring a strong function redefinition).  Just
553    // ignore these cases.
554    //
555    // TODO: That said, looking this up multiple times is very wasteful.
556    llvm::StringRef Name = getMangledName(D);
557    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
558    assert(CGRef && "Deferred decl wasn't referenced?");
559
560    if (!CGRef->isDeclaration())
561      continue;
562
563    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
564    // purposes an alias counts as a definition.
565    if (isa<llvm::GlobalAlias>(CGRef))
566      continue;
567
568    // Otherwise, emit the definition and move on to the next one.
569    EmitGlobalDefinition(D);
570  }
571}
572
573/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
574/// annotation information for a given GlobalValue.  The annotation struct is
575/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
576/// GlobalValue being annotated.  The second field is the constant string
577/// created from the AnnotateAttr's annotation.  The third field is a constant
578/// string containing the name of the translation unit.  The fourth field is
579/// the line number in the file of the annotated value declaration.
580///
581/// FIXME: this does not unique the annotation string constants, as llvm-gcc
582///        appears to.
583///
584llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
585                                                const AnnotateAttr *AA,
586                                                unsigned LineNo) {
587  llvm::Module *M = &getModule();
588
589  // get [N x i8] constants for the annotation string, and the filename string
590  // which are the 2nd and 3rd elements of the global annotation structure.
591  const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
592  llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
593                                                  AA->getAnnotation(), true);
594  llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
595                                                  M->getModuleIdentifier(),
596                                                  true);
597
598  // Get the two global values corresponding to the ConstantArrays we just
599  // created to hold the bytes of the strings.
600  llvm::GlobalValue *annoGV =
601    new llvm::GlobalVariable(*M, anno->getType(), false,
602                             llvm::GlobalValue::PrivateLinkage, anno,
603                             GV->getName());
604  // translation unit name string, emitted into the llvm.metadata section.
605  llvm::GlobalValue *unitGV =
606    new llvm::GlobalVariable(*M, unit->getType(), false,
607                             llvm::GlobalValue::PrivateLinkage, unit,
608                             ".str");
609
610  // Create the ConstantStruct for the global annotation.
611  llvm::Constant *Fields[4] = {
612    llvm::ConstantExpr::getBitCast(GV, SBP),
613    llvm::ConstantExpr::getBitCast(annoGV, SBP),
614    llvm::ConstantExpr::getBitCast(unitGV, SBP),
615    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
616  };
617  return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
618}
619
620bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
621  // Never defer when EmitAllDecls is specified.
622  if (Features.EmitAllDecls)
623    return false;
624
625  return !getContext().DeclMustBeEmitted(Global);
626}
627
628llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
629  const AliasAttr *AA = VD->getAttr<AliasAttr>();
630  assert(AA && "No alias?");
631
632  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
633
634  // See if there is already something with the target's name in the module.
635  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
636
637  llvm::Constant *Aliasee;
638  if (isa<llvm::FunctionType>(DeclTy))
639    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
640  else
641    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
642                                    llvm::PointerType::getUnqual(DeclTy), 0);
643  if (!Entry) {
644    llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
645    F->setLinkage(llvm::Function::ExternalWeakLinkage);
646    WeakRefReferences.insert(F);
647  }
648
649  return Aliasee;
650}
651
652void CodeGenModule::EmitGlobal(GlobalDecl GD) {
653  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
654
655  // Weak references don't produce any output by themselves.
656  if (Global->hasAttr<WeakRefAttr>())
657    return;
658
659  // If this is an alias definition (which otherwise looks like a declaration)
660  // emit it now.
661  if (Global->hasAttr<AliasAttr>())
662    return EmitAliasDefinition(GD);
663
664  // Ignore declarations, they will be emitted on their first use.
665  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
666    if (FD->getIdentifier()) {
667      llvm::StringRef Name = FD->getName();
668      if (Name == "_Block_object_assign") {
669        BlockObjectAssignDecl = FD;
670      } else if (Name == "_Block_object_dispose") {
671        BlockObjectDisposeDecl = FD;
672      }
673    }
674
675    // Forward declarations are emitted lazily on first use.
676    if (!FD->isThisDeclarationADefinition())
677      return;
678  } else {
679    const VarDecl *VD = cast<VarDecl>(Global);
680    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
681
682    if (VD->getIdentifier()) {
683      llvm::StringRef Name = VD->getName();
684      if (Name == "_NSConcreteGlobalBlock") {
685        NSConcreteGlobalBlockDecl = VD;
686      } else if (Name == "_NSConcreteStackBlock") {
687        NSConcreteStackBlockDecl = VD;
688      }
689    }
690
691
692    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
693      return;
694  }
695
696  // Defer code generation when possible if this is a static definition, inline
697  // function etc.  These we only want to emit if they are used.
698  if (!MayDeferGeneration(Global)) {
699    // Emit the definition if it can't be deferred.
700    EmitGlobalDefinition(GD);
701    return;
702  }
703
704  // If we're deferring emission of a C++ variable with an
705  // initializer, remember the order in which it appeared in the file.
706  if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
707      cast<VarDecl>(Global)->hasInit()) {
708    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
709    CXXGlobalInits.push_back(0);
710  }
711
712  // If the value has already been used, add it directly to the
713  // DeferredDeclsToEmit list.
714  llvm::StringRef MangledName = getMangledName(GD);
715  if (GetGlobalValue(MangledName))
716    DeferredDeclsToEmit.push_back(GD);
717  else {
718    // Otherwise, remember that we saw a deferred decl with this name.  The
719    // first use of the mangled name will cause it to move into
720    // DeferredDeclsToEmit.
721    DeferredDecls[MangledName] = GD;
722  }
723}
724
725void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
726  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
727
728  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
729                                 Context.getSourceManager(),
730                                 "Generating code for declaration");
731
732  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
733    // At -O0, don't generate IR for functions with available_externally
734    // linkage.
735    if (CodeGenOpts.OptimizationLevel == 0 &&
736        !Function->hasAttr<AlwaysInlineAttr>() &&
737        getFunctionLinkage(Function)
738                                  == llvm::Function::AvailableExternallyLinkage)
739      return;
740
741    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
742      if (Method->isVirtual())
743        getVTables().EmitThunks(GD);
744
745      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
746        return EmitCXXConstructor(CD, GD.getCtorType());
747
748      if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(Method))
749        return EmitCXXDestructor(DD, GD.getDtorType());
750    }
751
752    return EmitGlobalFunctionDefinition(GD);
753  }
754
755  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
756    return EmitGlobalVarDefinition(VD);
757
758  assert(0 && "Invalid argument to EmitGlobalDefinition()");
759}
760
761/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
762/// module, create and return an llvm Function with the specified type. If there
763/// is something in the module with the specified name, return it potentially
764/// bitcasted to the right type.
765///
766/// If D is non-null, it specifies a decl that correspond to this.  This is used
767/// to set the attributes on the function when it is first created.
768llvm::Constant *
769CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
770                                       const llvm::Type *Ty,
771                                       GlobalDecl D) {
772  // Lookup the entry, lazily creating it if necessary.
773  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
774  if (Entry) {
775    if (WeakRefReferences.count(Entry)) {
776      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
777      if (FD && !FD->hasAttr<WeakAttr>())
778        Entry->setLinkage(llvm::Function::ExternalLinkage);
779
780      WeakRefReferences.erase(Entry);
781    }
782
783    if (Entry->getType()->getElementType() == Ty)
784      return Entry;
785
786    // Make sure the result is of the correct type.
787    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
788    return llvm::ConstantExpr::getBitCast(Entry, PTy);
789  }
790
791  // This function doesn't have a complete type (for example, the return
792  // type is an incomplete struct). Use a fake type instead, and make
793  // sure not to try to set attributes.
794  bool IsIncompleteFunction = false;
795
796  const llvm::FunctionType *FTy;
797  if (isa<llvm::FunctionType>(Ty)) {
798    FTy = cast<llvm::FunctionType>(Ty);
799  } else {
800    FTy = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
801                                  std::vector<const llvm::Type*>(), false);
802    IsIncompleteFunction = true;
803  }
804
805  llvm::Function *F = llvm::Function::Create(FTy,
806                                             llvm::Function::ExternalLinkage,
807                                             MangledName, &getModule());
808  assert(F->getName() == MangledName && "name was uniqued!");
809  if (D.getDecl())
810    SetFunctionAttributes(D, F, IsIncompleteFunction);
811
812  // This is the first use or definition of a mangled name.  If there is a
813  // deferred decl with this name, remember that we need to emit it at the end
814  // of the file.
815  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
816  if (DDI != DeferredDecls.end()) {
817    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
818    // list, and remove it from DeferredDecls (since we don't need it anymore).
819    DeferredDeclsToEmit.push_back(DDI->second);
820    DeferredDecls.erase(DDI);
821  } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
822    // If this the first reference to a C++ inline function in a class, queue up
823    // the deferred function body for emission.  These are not seen as
824    // top-level declarations.
825    if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
826      DeferredDeclsToEmit.push_back(D);
827    // A called constructor which has no definition or declaration need be
828    // synthesized.
829    else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
830      if (CD->isImplicit()) {
831        assert(CD->isUsed() && "Sema doesn't consider constructor as used.");
832        DeferredDeclsToEmit.push_back(D);
833      }
834    } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
835      if (DD->isImplicit()) {
836        assert(DD->isUsed() && "Sema doesn't consider destructor as used.");
837        DeferredDeclsToEmit.push_back(D);
838      }
839    } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
840      if (MD->isImplicit() && MD->isCopyAssignmentOperator()) {
841        assert(MD->isUsed() && "Sema doesn't consider CopyAssignment as used.");
842        DeferredDeclsToEmit.push_back(D);
843      }
844    }
845  }
846
847  // Make sure the result is of the requested type.
848  if (!IsIncompleteFunction) {
849    assert(F->getType()->getElementType() == Ty);
850    return F;
851  }
852
853  const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
854  return llvm::ConstantExpr::getBitCast(F, PTy);
855}
856
857/// GetAddrOfFunction - Return the address of the given function.  If Ty is
858/// non-null, then this function will use the specified type if it has to
859/// create it (this occurs when we see a definition of the function).
860llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
861                                                 const llvm::Type *Ty) {
862  // If there was no specific requested type, just convert it now.
863  if (!Ty)
864    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
865
866  llvm::StringRef MangledName = getMangledName(GD);
867  return GetOrCreateLLVMFunction(MangledName, Ty, GD);
868}
869
870/// CreateRuntimeFunction - Create a new runtime function with the specified
871/// type and name.
872llvm::Constant *
873CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
874                                     llvm::StringRef Name) {
875  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
876}
877
878static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
879  if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
880    return false;
881  if (Context.getLangOptions().CPlusPlus &&
882      Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
883    // FIXME: We should do something fancier here!
884    return false;
885  }
886  return true;
887}
888
889/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
890/// create and return an llvm GlobalVariable with the specified type.  If there
891/// is something in the module with the specified name, return it potentially
892/// bitcasted to the right type.
893///
894/// If D is non-null, it specifies a decl that correspond to this.  This is used
895/// to set the attributes on the global when it is first created.
896llvm::Constant *
897CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
898                                     const llvm::PointerType *Ty,
899                                     const VarDecl *D) {
900  // Lookup the entry, lazily creating it if necessary.
901  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
902  if (Entry) {
903    if (WeakRefReferences.count(Entry)) {
904      if (D && !D->hasAttr<WeakAttr>())
905        Entry->setLinkage(llvm::Function::ExternalLinkage);
906
907      WeakRefReferences.erase(Entry);
908    }
909
910    if (Entry->getType() == Ty)
911      return Entry;
912
913    // Make sure the result is of the correct type.
914    return llvm::ConstantExpr::getBitCast(Entry, Ty);
915  }
916
917  // This is the first use or definition of a mangled name.  If there is a
918  // deferred decl with this name, remember that we need to emit it at the end
919  // of the file.
920  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
921  if (DDI != DeferredDecls.end()) {
922    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
923    // list, and remove it from DeferredDecls (since we don't need it anymore).
924    DeferredDeclsToEmit.push_back(DDI->second);
925    DeferredDecls.erase(DDI);
926  }
927
928  llvm::GlobalVariable *GV =
929    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
930                             llvm::GlobalValue::ExternalLinkage,
931                             0, MangledName, 0,
932                             false, Ty->getAddressSpace());
933
934  // Handle things which are present even on external declarations.
935  if (D) {
936    // FIXME: This code is overly simple and should be merged with other global
937    // handling.
938    GV->setConstant(DeclIsConstantGlobal(Context, D));
939
940    // Set linkage and visibility in case we never see a definition.
941    std::pair<Linkage,Visibility> LV = D->getLinkageAndVisibility();
942    if (LV.first != ExternalLinkage) {
943      GV->setLinkage(llvm::GlobalValue::InternalLinkage);
944    } else {
945      if (D->hasAttr<DLLImportAttr>())
946        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
947      else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
948        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
949
950      GV->setVisibility(GetLLVMVisibility(LV.second));
951    }
952
953    GV->setThreadLocal(D->isThreadSpecified());
954  }
955
956  return GV;
957}
958
959
960/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
961/// given global variable.  If Ty is non-null and if the global doesn't exist,
962/// then it will be greated with the specified type instead of whatever the
963/// normal requested type would be.
964llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
965                                                  const llvm::Type *Ty) {
966  assert(D->hasGlobalStorage() && "Not a global variable");
967  QualType ASTTy = D->getType();
968  if (Ty == 0)
969    Ty = getTypes().ConvertTypeForMem(ASTTy);
970
971  const llvm::PointerType *PTy =
972    llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
973
974  llvm::StringRef MangledName = getMangledName(D);
975  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
976}
977
978/// CreateRuntimeVariable - Create a new runtime global variable with the
979/// specified type and name.
980llvm::Constant *
981CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
982                                     llvm::StringRef Name) {
983  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
984}
985
986void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
987  assert(!D->getInit() && "Cannot emit definite definitions here!");
988
989  if (MayDeferGeneration(D)) {
990    // If we have not seen a reference to this variable yet, place it
991    // into the deferred declarations table to be emitted if needed
992    // later.
993    llvm::StringRef MangledName = getMangledName(D);
994    if (!GetGlobalValue(MangledName)) {
995      DeferredDecls[MangledName] = D;
996      return;
997    }
998  }
999
1000  // The tentative definition is the only definition.
1001  EmitGlobalVarDefinition(D);
1002}
1003
1004void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1005  if (DefinitionRequired)
1006    getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1007}
1008
1009llvm::GlobalVariable::LinkageTypes
1010CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1011  if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
1012    return llvm::GlobalVariable::InternalLinkage;
1013
1014  if (const CXXMethodDecl *KeyFunction
1015                                    = RD->getASTContext().getKeyFunction(RD)) {
1016    // If this class has a key function, use that to determine the linkage of
1017    // the vtable.
1018    const FunctionDecl *Def = 0;
1019    if (KeyFunction->hasBody(Def))
1020      KeyFunction = cast<CXXMethodDecl>(Def);
1021
1022    switch (KeyFunction->getTemplateSpecializationKind()) {
1023      case TSK_Undeclared:
1024      case TSK_ExplicitSpecialization:
1025        if (KeyFunction->isInlined())
1026          return llvm::GlobalVariable::WeakODRLinkage;
1027
1028        return llvm::GlobalVariable::ExternalLinkage;
1029
1030      case TSK_ImplicitInstantiation:
1031      case TSK_ExplicitInstantiationDefinition:
1032        return llvm::GlobalVariable::WeakODRLinkage;
1033
1034      case TSK_ExplicitInstantiationDeclaration:
1035        // FIXME: Use available_externally linkage. However, this currently
1036        // breaks LLVM's build due to undefined symbols.
1037        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1038        return llvm::GlobalVariable::WeakODRLinkage;
1039    }
1040  }
1041
1042  switch (RD->getTemplateSpecializationKind()) {
1043  case TSK_Undeclared:
1044  case TSK_ExplicitSpecialization:
1045  case TSK_ImplicitInstantiation:
1046  case TSK_ExplicitInstantiationDefinition:
1047    return llvm::GlobalVariable::WeakODRLinkage;
1048
1049  case TSK_ExplicitInstantiationDeclaration:
1050    // FIXME: Use available_externally linkage. However, this currently
1051    // breaks LLVM's build due to undefined symbols.
1052    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1053    return llvm::GlobalVariable::WeakODRLinkage;
1054  }
1055
1056  // Silence GCC warning.
1057  return llvm::GlobalVariable::WeakODRLinkage;
1058}
1059
1060CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1061    return CharUnits::fromQuantity(
1062      TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1063}
1064
1065void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1066  llvm::Constant *Init = 0;
1067  QualType ASTTy = D->getType();
1068  bool NonConstInit = false;
1069
1070  const Expr *InitExpr = D->getAnyInitializer();
1071
1072  if (!InitExpr) {
1073    // This is a tentative definition; tentative definitions are
1074    // implicitly initialized with { 0 }.
1075    //
1076    // Note that tentative definitions are only emitted at the end of
1077    // a translation unit, so they should never have incomplete
1078    // type. In addition, EmitTentativeDefinition makes sure that we
1079    // never attempt to emit a tentative definition if a real one
1080    // exists. A use may still exists, however, so we still may need
1081    // to do a RAUW.
1082    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1083    Init = EmitNullConstant(D->getType());
1084  } else {
1085    Init = EmitConstantExpr(InitExpr, D->getType());
1086    if (!Init) {
1087      QualType T = InitExpr->getType();
1088      if (D->getType()->isReferenceType())
1089        T = D->getType();
1090
1091      if (getLangOptions().CPlusPlus) {
1092        EmitCXXGlobalVarDeclInitFunc(D);
1093        Init = EmitNullConstant(T);
1094        NonConstInit = true;
1095      } else {
1096        ErrorUnsupported(D, "static initializer");
1097        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1098      }
1099    } else {
1100      // We don't need an initializer, so remove the entry for the delayed
1101      // initializer position (just in case this entry was delayed).
1102      if (getLangOptions().CPlusPlus)
1103        DelayedCXXInitPosition.erase(D);
1104    }
1105  }
1106
1107  const llvm::Type* InitType = Init->getType();
1108  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1109
1110  // Strip off a bitcast if we got one back.
1111  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1112    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1113           // all zero index gep.
1114           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1115    Entry = CE->getOperand(0);
1116  }
1117
1118  // Entry is now either a Function or GlobalVariable.
1119  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1120
1121  // We have a definition after a declaration with the wrong type.
1122  // We must make a new GlobalVariable* and update everything that used OldGV
1123  // (a declaration or tentative definition) with the new GlobalVariable*
1124  // (which will be a definition).
1125  //
1126  // This happens if there is a prototype for a global (e.g.
1127  // "extern int x[];") and then a definition of a different type (e.g.
1128  // "int x[10];"). This also happens when an initializer has a different type
1129  // from the type of the global (this happens with unions).
1130  if (GV == 0 ||
1131      GV->getType()->getElementType() != InitType ||
1132      GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1133
1134    // Move the old entry aside so that we'll create a new one.
1135    Entry->setName(llvm::StringRef());
1136
1137    // Make a new global with the correct type, this is now guaranteed to work.
1138    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1139
1140    // Replace all uses of the old global with the new global
1141    llvm::Constant *NewPtrForOldDecl =
1142        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1143    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1144
1145    // Erase the old global, since it is no longer used.
1146    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1147  }
1148
1149  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1150    SourceManager &SM = Context.getSourceManager();
1151    AddAnnotation(EmitAnnotateAttr(GV, AA,
1152                              SM.getInstantiationLineNumber(D->getLocation())));
1153  }
1154
1155  GV->setInitializer(Init);
1156
1157  // If it is safe to mark the global 'constant', do so now.
1158  GV->setConstant(false);
1159  if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1160    GV->setConstant(true);
1161
1162  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1163
1164  // Set the llvm linkage type as appropriate.
1165  llvm::GlobalValue::LinkageTypes Linkage =
1166    GetLLVMLinkageVarDefinition(D, GV);
1167  GV->setLinkage(Linkage);
1168  if (Linkage == llvm::GlobalVariable::CommonLinkage)
1169    // common vars aren't constant even if declared const.
1170    GV->setConstant(false);
1171
1172  SetCommonAttributes(D, GV);
1173
1174  // Emit global variable debug information.
1175  if (CGDebugInfo *DI = getDebugInfo()) {
1176    DI->setLocation(D->getLocation());
1177    DI->EmitGlobalVariable(GV, D);
1178  }
1179}
1180
1181llvm::GlobalValue::LinkageTypes
1182CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1183                                           llvm::GlobalVariable *GV) {
1184  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1185  if (Linkage == GVA_Internal)
1186    return llvm::Function::InternalLinkage;
1187  else if (D->hasAttr<DLLImportAttr>())
1188    return llvm::Function::DLLImportLinkage;
1189  else if (D->hasAttr<DLLExportAttr>())
1190    return llvm::Function::DLLExportLinkage;
1191  else if (D->hasAttr<WeakAttr>()) {
1192    if (GV->isConstant())
1193      return llvm::GlobalVariable::WeakODRLinkage;
1194    else
1195      return llvm::GlobalVariable::WeakAnyLinkage;
1196  } else if (Linkage == GVA_TemplateInstantiation ||
1197             Linkage == GVA_ExplicitTemplateInstantiation)
1198    // FIXME: It seems like we can provide more specific linkage here
1199    // (LinkOnceODR, WeakODR).
1200    return llvm::GlobalVariable::WeakAnyLinkage;
1201  else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1202           !D->hasExternalStorage() && !D->getInit() &&
1203           !D->getAttr<SectionAttr>() && !D->isThreadSpecified()) {
1204    // Thread local vars aren't considered common linkage.
1205    return llvm::GlobalVariable::CommonLinkage;
1206  }
1207  return llvm::GlobalVariable::ExternalLinkage;
1208}
1209
1210/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1211/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1212/// existing call uses of the old function in the module, this adjusts them to
1213/// call the new function directly.
1214///
1215/// This is not just a cleanup: the always_inline pass requires direct calls to
1216/// functions to be able to inline them.  If there is a bitcast in the way, it
1217/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1218/// run at -O0.
1219static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1220                                                      llvm::Function *NewFn) {
1221  // If we're redefining a global as a function, don't transform it.
1222  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1223  if (OldFn == 0) return;
1224
1225  const llvm::Type *NewRetTy = NewFn->getReturnType();
1226  llvm::SmallVector<llvm::Value*, 4> ArgList;
1227
1228  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1229       UI != E; ) {
1230    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1231    llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1232    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1233    if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1234    llvm::CallSite CS(CI);
1235    if (!CI || !CS.isCallee(I)) continue;
1236
1237    // If the return types don't match exactly, and if the call isn't dead, then
1238    // we can't transform this call.
1239    if (CI->getType() != NewRetTy && !CI->use_empty())
1240      continue;
1241
1242    // If the function was passed too few arguments, don't transform.  If extra
1243    // arguments were passed, we silently drop them.  If any of the types
1244    // mismatch, we don't transform.
1245    unsigned ArgNo = 0;
1246    bool DontTransform = false;
1247    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1248         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1249      if (CS.arg_size() == ArgNo ||
1250          CS.getArgument(ArgNo)->getType() != AI->getType()) {
1251        DontTransform = true;
1252        break;
1253      }
1254    }
1255    if (DontTransform)
1256      continue;
1257
1258    // Okay, we can transform this.  Create the new call instruction and copy
1259    // over the required information.
1260    ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1261    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1262                                                     ArgList.end(), "", CI);
1263    ArgList.clear();
1264    if (!NewCall->getType()->isVoidTy())
1265      NewCall->takeName(CI);
1266    NewCall->setAttributes(CI->getAttributes());
1267    NewCall->setCallingConv(CI->getCallingConv());
1268
1269    // Finally, remove the old call, replacing any uses with the new one.
1270    if (!CI->use_empty())
1271      CI->replaceAllUsesWith(NewCall);
1272
1273    // Copy debug location attached to CI.
1274    if (!CI->getDebugLoc().isUnknown())
1275      NewCall->setDebugLoc(CI->getDebugLoc());
1276    CI->eraseFromParent();
1277  }
1278}
1279
1280
1281void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1282  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1283  const llvm::FunctionType *Ty = getTypes().GetFunctionType(GD);
1284  getCXXABI().getMangleContext().mangleInitDiscriminator();
1285  // Get or create the prototype for the function.
1286  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1287
1288  // Strip off a bitcast if we got one back.
1289  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1290    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1291    Entry = CE->getOperand(0);
1292  }
1293
1294
1295  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1296    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1297
1298    // If the types mismatch then we have to rewrite the definition.
1299    assert(OldFn->isDeclaration() &&
1300           "Shouldn't replace non-declaration");
1301
1302    // F is the Function* for the one with the wrong type, we must make a new
1303    // Function* and update everything that used F (a declaration) with the new
1304    // Function* (which will be a definition).
1305    //
1306    // This happens if there is a prototype for a function
1307    // (e.g. "int f()") and then a definition of a different type
1308    // (e.g. "int f(int x)").  Move the old function aside so that it
1309    // doesn't interfere with GetAddrOfFunction.
1310    OldFn->setName(llvm::StringRef());
1311    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1312
1313    // If this is an implementation of a function without a prototype, try to
1314    // replace any existing uses of the function (which may be calls) with uses
1315    // of the new function
1316    if (D->getType()->isFunctionNoProtoType()) {
1317      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1318      OldFn->removeDeadConstantUsers();
1319    }
1320
1321    // Replace uses of F with the Function we will endow with a body.
1322    if (!Entry->use_empty()) {
1323      llvm::Constant *NewPtrForOldDecl =
1324        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1325      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1326    }
1327
1328    // Ok, delete the old function now, which is dead.
1329    OldFn->eraseFromParent();
1330
1331    Entry = NewFn;
1332  }
1333
1334  llvm::Function *Fn = cast<llvm::Function>(Entry);
1335  setFunctionLinkage(D, Fn);
1336
1337  CodeGenFunction(*this).GenerateCode(D, Fn);
1338
1339  SetFunctionDefinitionAttributes(D, Fn);
1340  SetLLVMFunctionAttributesForDefinition(D, Fn);
1341
1342  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1343    AddGlobalCtor(Fn, CA->getPriority());
1344  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1345    AddGlobalDtor(Fn, DA->getPriority());
1346}
1347
1348void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1349  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1350  const AliasAttr *AA = D->getAttr<AliasAttr>();
1351  assert(AA && "Not an alias?");
1352
1353  llvm::StringRef MangledName = getMangledName(GD);
1354
1355  // If there is a definition in the module, then it wins over the alias.
1356  // This is dubious, but allow it to be safe.  Just ignore the alias.
1357  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1358  if (Entry && !Entry->isDeclaration())
1359    return;
1360
1361  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1362
1363  // Create a reference to the named value.  This ensures that it is emitted
1364  // if a deferred decl.
1365  llvm::Constant *Aliasee;
1366  if (isa<llvm::FunctionType>(DeclTy))
1367    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl());
1368  else
1369    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1370                                    llvm::PointerType::getUnqual(DeclTy), 0);
1371
1372  // Create the new alias itself, but don't set a name yet.
1373  llvm::GlobalValue *GA =
1374    new llvm::GlobalAlias(Aliasee->getType(),
1375                          llvm::Function::ExternalLinkage,
1376                          "", Aliasee, &getModule());
1377
1378  if (Entry) {
1379    assert(Entry->isDeclaration());
1380
1381    // If there is a declaration in the module, then we had an extern followed
1382    // by the alias, as in:
1383    //   extern int test6();
1384    //   ...
1385    //   int test6() __attribute__((alias("test7")));
1386    //
1387    // Remove it and replace uses of it with the alias.
1388    GA->takeName(Entry);
1389
1390    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1391                                                          Entry->getType()));
1392    Entry->eraseFromParent();
1393  } else {
1394    GA->setName(MangledName);
1395  }
1396
1397  // Set attributes which are particular to an alias; this is a
1398  // specialization of the attributes which may be set on a global
1399  // variable/function.
1400  if (D->hasAttr<DLLExportAttr>()) {
1401    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1402      // The dllexport attribute is ignored for undefined symbols.
1403      if (FD->hasBody())
1404        GA->setLinkage(llvm::Function::DLLExportLinkage);
1405    } else {
1406      GA->setLinkage(llvm::Function::DLLExportLinkage);
1407    }
1408  } else if (D->hasAttr<WeakAttr>() ||
1409             D->hasAttr<WeakRefAttr>() ||
1410             D->hasAttr<WeakImportAttr>()) {
1411    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1412  }
1413
1414  SetCommonAttributes(D, GA);
1415}
1416
1417/// getBuiltinLibFunction - Given a builtin id for a function like
1418/// "__builtin_fabsf", return a Function* for "fabsf".
1419llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1420                                                  unsigned BuiltinID) {
1421  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1422          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1423         "isn't a lib fn");
1424
1425  // Get the name, skip over the __builtin_ prefix (if necessary).
1426  const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1427  if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1428    Name += 10;
1429
1430  const llvm::FunctionType *Ty =
1431    cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1432
1433  return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1434}
1435
1436llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1437                                            unsigned NumTys) {
1438  return llvm::Intrinsic::getDeclaration(&getModule(),
1439                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1440}
1441
1442
1443llvm::Function *CodeGenModule::getMemCpyFn(const llvm::Type *DestType,
1444                                           const llvm::Type *SrcType,
1445                                           const llvm::Type *SizeType) {
1446  const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1447  return getIntrinsic(llvm::Intrinsic::memcpy, ArgTypes, 3);
1448}
1449
1450llvm::Function *CodeGenModule::getMemMoveFn(const llvm::Type *DestType,
1451                                            const llvm::Type *SrcType,
1452                                            const llvm::Type *SizeType) {
1453  const llvm::Type *ArgTypes[3] = {DestType, SrcType, SizeType };
1454  return getIntrinsic(llvm::Intrinsic::memmove, ArgTypes, 3);
1455}
1456
1457llvm::Function *CodeGenModule::getMemSetFn(const llvm::Type *DestType,
1458                                           const llvm::Type *SizeType) {
1459  const llvm::Type *ArgTypes[2] = { DestType, SizeType };
1460  return getIntrinsic(llvm::Intrinsic::memset, ArgTypes, 2);
1461}
1462
1463static llvm::StringMapEntry<llvm::Constant*> &
1464GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1465                         const StringLiteral *Literal,
1466                         bool TargetIsLSB,
1467                         bool &IsUTF16,
1468                         unsigned &StringLength) {
1469  llvm::StringRef String = Literal->getString();
1470  unsigned NumBytes = String.size();
1471
1472  // Check for simple case.
1473  if (!Literal->containsNonAsciiOrNull()) {
1474    StringLength = NumBytes;
1475    return Map.GetOrCreateValue(String);
1476  }
1477
1478  // Otherwise, convert the UTF8 literals into a byte string.
1479  llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1480  const UTF8 *FromPtr = (UTF8 *)String.data();
1481  UTF16 *ToPtr = &ToBuf[0];
1482
1483  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1484                           &ToPtr, ToPtr + NumBytes,
1485                           strictConversion);
1486
1487  // ConvertUTF8toUTF16 returns the length in ToPtr.
1488  StringLength = ToPtr - &ToBuf[0];
1489
1490  // Render the UTF-16 string into a byte array and convert to the target byte
1491  // order.
1492  //
1493  // FIXME: This isn't something we should need to do here.
1494  llvm::SmallString<128> AsBytes;
1495  AsBytes.reserve(StringLength * 2);
1496  for (unsigned i = 0; i != StringLength; ++i) {
1497    unsigned short Val = ToBuf[i];
1498    if (TargetIsLSB) {
1499      AsBytes.push_back(Val & 0xFF);
1500      AsBytes.push_back(Val >> 8);
1501    } else {
1502      AsBytes.push_back(Val >> 8);
1503      AsBytes.push_back(Val & 0xFF);
1504    }
1505  }
1506  // Append one extra null character, the second is automatically added by our
1507  // caller.
1508  AsBytes.push_back(0);
1509
1510  IsUTF16 = true;
1511  return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1512}
1513
1514llvm::Constant *
1515CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1516  unsigned StringLength = 0;
1517  bool isUTF16 = false;
1518  llvm::StringMapEntry<llvm::Constant*> &Entry =
1519    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1520                             getTargetData().isLittleEndian(),
1521                             isUTF16, StringLength);
1522
1523  if (llvm::Constant *C = Entry.getValue())
1524    return C;
1525
1526  llvm::Constant *Zero =
1527      llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1528  llvm::Constant *Zeros[] = { Zero, Zero };
1529
1530  // If we don't already have it, get __CFConstantStringClassReference.
1531  if (!CFConstantStringClassRef) {
1532    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1533    Ty = llvm::ArrayType::get(Ty, 0);
1534    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1535                                           "__CFConstantStringClassReference");
1536    // Decay array -> ptr
1537    CFConstantStringClassRef =
1538      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1539  }
1540
1541  QualType CFTy = getContext().getCFConstantStringType();
1542
1543  const llvm::StructType *STy =
1544    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1545
1546  std::vector<llvm::Constant*> Fields(4);
1547
1548  // Class pointer.
1549  Fields[0] = CFConstantStringClassRef;
1550
1551  // Flags.
1552  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1553  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1554    llvm::ConstantInt::get(Ty, 0x07C8);
1555
1556  // String pointer.
1557  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1558
1559  llvm::GlobalValue::LinkageTypes Linkage;
1560  bool isConstant;
1561  if (isUTF16) {
1562    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1563    Linkage = llvm::GlobalValue::InternalLinkage;
1564    // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1565    // does make plain ascii ones writable.
1566    isConstant = true;
1567  } else {
1568    Linkage = llvm::GlobalValue::PrivateLinkage;
1569    isConstant = !Features.WritableStrings;
1570  }
1571
1572  llvm::GlobalVariable *GV =
1573    new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1574                             ".str");
1575  if (isUTF16) {
1576    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1577    GV->setAlignment(Align.getQuantity());
1578  }
1579  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1580
1581  // String length.
1582  Ty = getTypes().ConvertType(getContext().LongTy);
1583  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1584
1585  // The struct.
1586  C = llvm::ConstantStruct::get(STy, Fields);
1587  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1588                                llvm::GlobalVariable::PrivateLinkage, C,
1589                                "_unnamed_cfstring_");
1590  if (const char *Sect = getContext().Target.getCFStringSection())
1591    GV->setSection(Sect);
1592  Entry.setValue(GV);
1593
1594  return GV;
1595}
1596
1597llvm::Constant *
1598CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1599  unsigned StringLength = 0;
1600  bool isUTF16 = false;
1601  llvm::StringMapEntry<llvm::Constant*> &Entry =
1602    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1603                             getTargetData().isLittleEndian(),
1604                             isUTF16, StringLength);
1605
1606  if (llvm::Constant *C = Entry.getValue())
1607    return C;
1608
1609  llvm::Constant *Zero =
1610  llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1611  llvm::Constant *Zeros[] = { Zero, Zero };
1612
1613  // If we don't already have it, get _NSConstantStringClassReference.
1614  if (!ConstantStringClassRef) {
1615    std::string StringClass(getLangOptions().ObjCConstantStringClass);
1616    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1617    Ty = llvm::ArrayType::get(Ty, 0);
1618    llvm::Constant *GV;
1619    if (StringClass.empty())
1620      GV = CreateRuntimeVariable(Ty,
1621                                 Features.ObjCNonFragileABI ?
1622                                 "OBJC_CLASS_$_NSConstantString" :
1623                                 "_NSConstantStringClassReference");
1624    else {
1625      std::string str;
1626      if (Features.ObjCNonFragileABI)
1627        str = "OBJC_CLASS_$_" + StringClass;
1628      else
1629        str = "_" + StringClass + "ClassReference";
1630      GV = CreateRuntimeVariable(Ty, str);
1631    }
1632    // Decay array -> ptr
1633    ConstantStringClassRef =
1634    llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1635  }
1636
1637  QualType NSTy = getContext().getNSConstantStringType();
1638
1639  const llvm::StructType *STy =
1640  cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1641
1642  std::vector<llvm::Constant*> Fields(3);
1643
1644  // Class pointer.
1645  Fields[0] = ConstantStringClassRef;
1646
1647  // String pointer.
1648  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1649
1650  llvm::GlobalValue::LinkageTypes Linkage;
1651  bool isConstant;
1652  if (isUTF16) {
1653    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1654    Linkage = llvm::GlobalValue::InternalLinkage;
1655    // Note: -fwritable-strings doesn't make unicode NSStrings writable, but
1656    // does make plain ascii ones writable.
1657    isConstant = true;
1658  } else {
1659    Linkage = llvm::GlobalValue::PrivateLinkage;
1660    isConstant = !Features.WritableStrings;
1661  }
1662
1663  llvm::GlobalVariable *GV =
1664  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1665                           ".str");
1666  if (isUTF16) {
1667    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1668    GV->setAlignment(Align.getQuantity());
1669  }
1670  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1671
1672  // String length.
1673  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1674  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1675
1676  // The struct.
1677  C = llvm::ConstantStruct::get(STy, Fields);
1678  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1679                                llvm::GlobalVariable::PrivateLinkage, C,
1680                                "_unnamed_nsstring_");
1681  // FIXME. Fix section.
1682  if (const char *Sect =
1683        Features.ObjCNonFragileABI
1684          ? getContext().Target.getNSStringNonFragileABISection()
1685          : getContext().Target.getNSStringSection())
1686    GV->setSection(Sect);
1687  Entry.setValue(GV);
1688
1689  return GV;
1690}
1691
1692/// GetStringForStringLiteral - Return the appropriate bytes for a
1693/// string literal, properly padded to match the literal type.
1694std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1695  const ConstantArrayType *CAT =
1696    getContext().getAsConstantArrayType(E->getType());
1697  assert(CAT && "String isn't pointer or array!");
1698
1699  // Resize the string to the right size.
1700  uint64_t RealLen = CAT->getSize().getZExtValue();
1701
1702  if (E->isWide())
1703    RealLen *= getContext().Target.getWCharWidth()/8;
1704
1705  std::string Str = E->getString().str();
1706  Str.resize(RealLen, '\0');
1707
1708  return Str;
1709}
1710
1711/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1712/// constant array for the given string literal.
1713llvm::Constant *
1714CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1715  // FIXME: This can be more efficient.
1716  // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1717  llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1718  if (S->isWide()) {
1719    llvm::Type *DestTy =
1720        llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1721    C = llvm::ConstantExpr::getBitCast(C, DestTy);
1722  }
1723  return C;
1724}
1725
1726/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1727/// array for the given ObjCEncodeExpr node.
1728llvm::Constant *
1729CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1730  std::string Str;
1731  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1732
1733  return GetAddrOfConstantCString(Str);
1734}
1735
1736
1737/// GenerateWritableString -- Creates storage for a string literal.
1738static llvm::Constant *GenerateStringLiteral(const std::string &str,
1739                                             bool constant,
1740                                             CodeGenModule &CGM,
1741                                             const char *GlobalName) {
1742  // Create Constant for this string literal. Don't add a '\0'.
1743  llvm::Constant *C =
1744      llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1745
1746  // Create a global variable for this string
1747  return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1748                                  llvm::GlobalValue::PrivateLinkage,
1749                                  C, GlobalName);
1750}
1751
1752/// GetAddrOfConstantString - Returns a pointer to a character array
1753/// containing the literal. This contents are exactly that of the
1754/// given string, i.e. it will not be null terminated automatically;
1755/// see GetAddrOfConstantCString. Note that whether the result is
1756/// actually a pointer to an LLVM constant depends on
1757/// Feature.WriteableStrings.
1758///
1759/// The result has pointer to array type.
1760llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1761                                                       const char *GlobalName) {
1762  bool IsConstant = !Features.WritableStrings;
1763
1764  // Get the default prefix if a name wasn't specified.
1765  if (!GlobalName)
1766    GlobalName = ".str";
1767
1768  // Don't share any string literals if strings aren't constant.
1769  if (!IsConstant)
1770    return GenerateStringLiteral(str, false, *this, GlobalName);
1771
1772  llvm::StringMapEntry<llvm::Constant *> &Entry =
1773    ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1774
1775  if (Entry.getValue())
1776    return Entry.getValue();
1777
1778  // Create a global variable for this.
1779  llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1780  Entry.setValue(C);
1781  return C;
1782}
1783
1784/// GetAddrOfConstantCString - Returns a pointer to a character
1785/// array containing the literal and a terminating '\-'
1786/// character. The result has pointer to array type.
1787llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1788                                                        const char *GlobalName){
1789  return GetAddrOfConstantString(str + '\0', GlobalName);
1790}
1791
1792/// EmitObjCPropertyImplementations - Emit information for synthesized
1793/// properties for an implementation.
1794void CodeGenModule::EmitObjCPropertyImplementations(const
1795                                                    ObjCImplementationDecl *D) {
1796  for (ObjCImplementationDecl::propimpl_iterator
1797         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1798    ObjCPropertyImplDecl *PID = *i;
1799
1800    // Dynamic is just for type-checking.
1801    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1802      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1803
1804      // Determine which methods need to be implemented, some may have
1805      // been overridden. Note that ::isSynthesized is not the method
1806      // we want, that just indicates if the decl came from a
1807      // property. What we want to know is if the method is defined in
1808      // this implementation.
1809      if (!D->getInstanceMethod(PD->getGetterName()))
1810        CodeGenFunction(*this).GenerateObjCGetter(
1811                                 const_cast<ObjCImplementationDecl *>(D), PID);
1812      if (!PD->isReadOnly() &&
1813          !D->getInstanceMethod(PD->getSetterName()))
1814        CodeGenFunction(*this).GenerateObjCSetter(
1815                                 const_cast<ObjCImplementationDecl *>(D), PID);
1816    }
1817  }
1818}
1819
1820/// EmitObjCIvarInitializations - Emit information for ivar initialization
1821/// for an implementation.
1822void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
1823  if (!Features.NeXTRuntime || D->getNumIvarInitializers() == 0)
1824    return;
1825  DeclContext* DC = const_cast<DeclContext*>(dyn_cast<DeclContext>(D));
1826  assert(DC && "EmitObjCIvarInitializations - null DeclContext");
1827  IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
1828  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
1829  ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(getContext(),
1830                                                  D->getLocation(),
1831                                                  D->getLocation(), cxxSelector,
1832                                                  getContext().VoidTy, 0,
1833                                                  DC, true, false, true, false,
1834                                                  ObjCMethodDecl::Required);
1835  D->addInstanceMethod(DTORMethod);
1836  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
1837
1838  II = &getContext().Idents.get(".cxx_construct");
1839  cxxSelector = getContext().Selectors.getSelector(0, &II);
1840  // The constructor returns 'self'.
1841  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
1842                                                D->getLocation(),
1843                                                D->getLocation(), cxxSelector,
1844                                                getContext().getObjCIdType(), 0,
1845                                                DC, true, false, true, false,
1846                                                ObjCMethodDecl::Required);
1847  D->addInstanceMethod(CTORMethod);
1848  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
1849
1850
1851}
1852
1853/// EmitNamespace - Emit all declarations in a namespace.
1854void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1855  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1856       I != E; ++I)
1857    EmitTopLevelDecl(*I);
1858}
1859
1860// EmitLinkageSpec - Emit all declarations in a linkage spec.
1861void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1862  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1863      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1864    ErrorUnsupported(LSD, "linkage spec");
1865    return;
1866  }
1867
1868  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1869       I != E; ++I)
1870    EmitTopLevelDecl(*I);
1871}
1872
1873/// EmitTopLevelDecl - Emit code for a single top level declaration.
1874void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1875  // If an error has occurred, stop code generation, but continue
1876  // parsing and semantic analysis (to ensure all warnings and errors
1877  // are emitted).
1878  if (Diags.hasErrorOccurred())
1879    return;
1880
1881  // Ignore dependent declarations.
1882  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1883    return;
1884
1885  switch (D->getKind()) {
1886  case Decl::CXXConversion:
1887  case Decl::CXXMethod:
1888  case Decl::Function:
1889    // Skip function templates
1890    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1891      return;
1892
1893    EmitGlobal(cast<FunctionDecl>(D));
1894    break;
1895
1896  case Decl::Var:
1897    EmitGlobal(cast<VarDecl>(D));
1898    break;
1899
1900  // C++ Decls
1901  case Decl::Namespace:
1902    EmitNamespace(cast<NamespaceDecl>(D));
1903    break;
1904    // No code generation needed.
1905  case Decl::UsingShadow:
1906  case Decl::Using:
1907  case Decl::UsingDirective:
1908  case Decl::ClassTemplate:
1909  case Decl::FunctionTemplate:
1910  case Decl::NamespaceAlias:
1911    break;
1912  case Decl::CXXConstructor:
1913    // Skip function templates
1914    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1915      return;
1916
1917    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1918    break;
1919  case Decl::CXXDestructor:
1920    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1921    break;
1922
1923  case Decl::StaticAssert:
1924    // Nothing to do.
1925    break;
1926
1927  // Objective-C Decls
1928
1929  // Forward declarations, no (immediate) code generation.
1930  case Decl::ObjCClass:
1931  case Decl::ObjCForwardProtocol:
1932  case Decl::ObjCInterface:
1933    break;
1934
1935    case Decl::ObjCCategory: {
1936      ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
1937      if (CD->IsClassExtension() && CD->hasSynthBitfield())
1938        Context.ResetObjCLayout(CD->getClassInterface());
1939      break;
1940    }
1941
1942
1943  case Decl::ObjCProtocol:
1944    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1945    break;
1946
1947  case Decl::ObjCCategoryImpl:
1948    // Categories have properties but don't support synthesize so we
1949    // can ignore them here.
1950    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1951    break;
1952
1953  case Decl::ObjCImplementation: {
1954    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1955    if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
1956      Context.ResetObjCLayout(OMD->getClassInterface());
1957    EmitObjCPropertyImplementations(OMD);
1958    EmitObjCIvarInitializations(OMD);
1959    Runtime->GenerateClass(OMD);
1960    break;
1961  }
1962  case Decl::ObjCMethod: {
1963    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1964    // If this is not a prototype, emit the body.
1965    if (OMD->getBody())
1966      CodeGenFunction(*this).GenerateObjCMethod(OMD);
1967    break;
1968  }
1969  case Decl::ObjCCompatibleAlias:
1970    // compatibility-alias is a directive and has no code gen.
1971    break;
1972
1973  case Decl::LinkageSpec:
1974    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1975    break;
1976
1977  case Decl::FileScopeAsm: {
1978    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1979    llvm::StringRef AsmString = AD->getAsmString()->getString();
1980
1981    const std::string &S = getModule().getModuleInlineAsm();
1982    if (S.empty())
1983      getModule().setModuleInlineAsm(AsmString);
1984    else
1985      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1986    break;
1987  }
1988
1989  default:
1990    // Make sure we handled everything we should, every other kind is a
1991    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1992    // function. Need to recode Decl::Kind to do that easily.
1993    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1994  }
1995}
1996
1997/// Turns the given pointer into a constant.
1998static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
1999                                          const void *Ptr) {
2000  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2001  const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2002  return llvm::ConstantInt::get(i64, PtrInt);
2003}
2004
2005static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2006                                   llvm::NamedMDNode *&GlobalMetadata,
2007                                   GlobalDecl D,
2008                                   llvm::GlobalValue *Addr) {
2009  if (!GlobalMetadata)
2010    GlobalMetadata =
2011      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2012
2013  // TODO: should we report variant information for ctors/dtors?
2014  llvm::Value *Ops[] = {
2015    Addr,
2016    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2017  };
2018  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops, 2));
2019}
2020
2021/// Emits metadata nodes associating all the global values in the
2022/// current module with the Decls they came from.  This is useful for
2023/// projects using IR gen as a subroutine.
2024///
2025/// Since there's currently no way to associate an MDNode directly
2026/// with an llvm::GlobalValue, we create a global named metadata
2027/// with the name 'clang.global.decl.ptrs'.
2028void CodeGenModule::EmitDeclMetadata() {
2029  llvm::NamedMDNode *GlobalMetadata = 0;
2030
2031  // StaticLocalDeclMap
2032  for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2033         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2034       I != E; ++I) {
2035    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2036    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2037  }
2038}
2039
2040/// Emits metadata nodes for all the local variables in the current
2041/// function.
2042void CodeGenFunction::EmitDeclMetadata() {
2043  if (LocalDeclMap.empty()) return;
2044
2045  llvm::LLVMContext &Context = getLLVMContext();
2046
2047  // Find the unique metadata ID for this name.
2048  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2049
2050  llvm::NamedMDNode *GlobalMetadata = 0;
2051
2052  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2053         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2054    const Decl *D = I->first;
2055    llvm::Value *Addr = I->second;
2056
2057    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2058      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2059      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, &DAddr, 1));
2060    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2061      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2062      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2063    }
2064  }
2065}
2066
2067///@name Custom Runtime Function Interfaces
2068///@{
2069//
2070// FIXME: These can be eliminated once we can have clients just get the required
2071// AST nodes from the builtin tables.
2072
2073llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2074  if (BlockObjectDispose)
2075    return BlockObjectDispose;
2076
2077  // If we saw an explicit decl, use that.
2078  if (BlockObjectDisposeDecl) {
2079    return BlockObjectDispose = GetAddrOfFunction(
2080      BlockObjectDisposeDecl,
2081      getTypes().GetFunctionType(BlockObjectDisposeDecl));
2082  }
2083
2084  // Otherwise construct the function by hand.
2085  const llvm::FunctionType *FTy;
2086  std::vector<const llvm::Type*> ArgTys;
2087  const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2088  ArgTys.push_back(PtrToInt8Ty);
2089  ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2090  FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2091  return BlockObjectDispose =
2092    CreateRuntimeFunction(FTy, "_Block_object_dispose");
2093}
2094
2095llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2096  if (BlockObjectAssign)
2097    return BlockObjectAssign;
2098
2099  // If we saw an explicit decl, use that.
2100  if (BlockObjectAssignDecl) {
2101    return BlockObjectAssign = GetAddrOfFunction(
2102      BlockObjectAssignDecl,
2103      getTypes().GetFunctionType(BlockObjectAssignDecl));
2104  }
2105
2106  // Otherwise construct the function by hand.
2107  const llvm::FunctionType *FTy;
2108  std::vector<const llvm::Type*> ArgTys;
2109  const llvm::Type *ResultType = llvm::Type::getVoidTy(VMContext);
2110  ArgTys.push_back(PtrToInt8Ty);
2111  ArgTys.push_back(PtrToInt8Ty);
2112  ArgTys.push_back(llvm::Type::getInt32Ty(VMContext));
2113  FTy = llvm::FunctionType::get(ResultType, ArgTys, false);
2114  return BlockObjectAssign =
2115    CreateRuntimeFunction(FTy, "_Block_object_assign");
2116}
2117
2118llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2119  if (NSConcreteGlobalBlock)
2120    return NSConcreteGlobalBlock;
2121
2122  // If we saw an explicit decl, use that.
2123  if (NSConcreteGlobalBlockDecl) {
2124    return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2125      NSConcreteGlobalBlockDecl,
2126      getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2127  }
2128
2129  // Otherwise construct the variable by hand.
2130  return NSConcreteGlobalBlock = CreateRuntimeVariable(
2131    PtrToInt8Ty, "_NSConcreteGlobalBlock");
2132}
2133
2134llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2135  if (NSConcreteStackBlock)
2136    return NSConcreteStackBlock;
2137
2138  // If we saw an explicit decl, use that.
2139  if (NSConcreteStackBlockDecl) {
2140    return NSConcreteStackBlock = GetAddrOfGlobalVar(
2141      NSConcreteStackBlockDecl,
2142      getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2143  }
2144
2145  // Otherwise construct the variable by hand.
2146  return NSConcreteStackBlock = CreateRuntimeVariable(
2147    PtrToInt8Ty, "_NSConcreteStackBlock");
2148}
2149
2150///@}
2151