CodeGenModule.cpp revision a9b21d22bb9337649723a8477b5cb15f83451e7d
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CodeGenTBAA.h"
18#include "CGCall.h"
19#include "CGCUDARuntime.h"
20#include "CGCXXABI.h"
21#include "CGObjCRuntime.h"
22#include "CGOpenCLRuntime.h"
23#include "TargetInfo.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "clang/AST/ASTContext.h"
26#include "clang/AST/CharUnits.h"
27#include "clang/AST/DeclObjC.h"
28#include "clang/AST/DeclCXX.h"
29#include "clang/AST/DeclTemplate.h"
30#include "clang/AST/Mangle.h"
31#include "clang/AST/RecordLayout.h"
32#include "clang/AST/RecursiveASTVisitor.h"
33#include "clang/Basic/Builtins.h"
34#include "clang/Basic/Diagnostic.h"
35#include "clang/Basic/SourceManager.h"
36#include "clang/Basic/TargetInfo.h"
37#include "clang/Basic/ConvertUTF.h"
38#include "llvm/CallingConv.h"
39#include "llvm/Module.h"
40#include "llvm/Intrinsics.h"
41#include "llvm/LLVMContext.h"
42#include "llvm/ADT/Triple.h"
43#include "llvm/Target/Mangler.h"
44#include "llvm/Target/TargetData.h"
45#include "llvm/Support/CallSite.h"
46#include "llvm/Support/ErrorHandling.h"
47using namespace clang;
48using namespace CodeGen;
49
50static const char AnnotationSection[] = "llvm.metadata";
51
52static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
53  switch (CGM.getContext().getTargetInfo().getCXXABI()) {
54  case CXXABI_ARM: return *CreateARMCXXABI(CGM);
55  case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
56  case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
57  }
58
59  llvm_unreachable("invalid C++ ABI kind");
60}
61
62
63CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
64                             llvm::Module &M, const llvm::TargetData &TD,
65                             DiagnosticsEngine &diags)
66  : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
67    TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
68    ABI(createCXXABI(*this)),
69    Types(*this),
70    TBAA(0),
71    VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
72    DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
73    RRData(0), CFConstantStringClassRef(0),
74    ConstantStringClassRef(0), NSConstantStringType(0),
75    VMContext(M.getContext()),
76    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
77    BlockObjectAssign(0), BlockObjectDispose(0),
78    BlockDescriptorType(0), GenericBlockLiteralType(0) {
79
80  // Initialize the type cache.
81  llvm::LLVMContext &LLVMContext = M.getContext();
82  VoidTy = llvm::Type::getVoidTy(LLVMContext);
83  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
84  Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
85  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
86  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
87  FloatTy = llvm::Type::getFloatTy(LLVMContext);
88  DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
89  PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
90  PointerAlignInBytes =
91  C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
92  IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
93  IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
94  Int8PtrTy = Int8Ty->getPointerTo(0);
95  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
96
97  if (Features.ObjC1)
98    createObjCRuntime();
99  if (Features.OpenCL)
100    createOpenCLRuntime();
101  if (Features.CUDA)
102    createCUDARuntime();
103
104  // Enable TBAA unless it's suppressed.
105  if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
106    TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
107                           ABI.getMangleContext());
108
109  // If debug info or coverage generation is enabled, create the CGDebugInfo
110  // object.
111  if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
112      CodeGenOpts.EmitGcovNotes)
113    DebugInfo = new CGDebugInfo(*this);
114
115  Block.GlobalUniqueCount = 0;
116
117  if (C.getLangOptions().ObjCAutoRefCount)
118    ARCData = new ARCEntrypoints();
119  RRData = new RREntrypoints();
120}
121
122CodeGenModule::~CodeGenModule() {
123  delete ObjCRuntime;
124  delete OpenCLRuntime;
125  delete CUDARuntime;
126  delete TheTargetCodeGenInfo;
127  delete &ABI;
128  delete TBAA;
129  delete DebugInfo;
130  delete ARCData;
131  delete RRData;
132}
133
134void CodeGenModule::createObjCRuntime() {
135  if (!Features.NeXTRuntime)
136    ObjCRuntime = CreateGNUObjCRuntime(*this);
137  else
138    ObjCRuntime = CreateMacObjCRuntime(*this);
139}
140
141void CodeGenModule::createOpenCLRuntime() {
142  OpenCLRuntime = new CGOpenCLRuntime(*this);
143}
144
145void CodeGenModule::createCUDARuntime() {
146  CUDARuntime = CreateNVCUDARuntime(*this);
147}
148
149void CodeGenModule::Release() {
150  EmitDeferred();
151  EmitCXXGlobalInitFunc();
152  EmitCXXGlobalDtorFunc();
153  if (ObjCRuntime)
154    if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
155      AddGlobalCtor(ObjCInitFunction);
156  EmitCtorList(GlobalCtors, "llvm.global_ctors");
157  EmitCtorList(GlobalDtors, "llvm.global_dtors");
158  EmitGlobalAnnotations();
159  EmitLLVMUsed();
160
161  SimplifyPersonality();
162
163  if (getCodeGenOpts().EmitDeclMetadata)
164    EmitDeclMetadata();
165
166  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
167    EmitCoverageFile();
168
169  if (DebugInfo)
170    DebugInfo->finalize();
171}
172
173void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
174  // Make sure that this type is translated.
175  Types.UpdateCompletedType(TD);
176  if (DebugInfo)
177    DebugInfo->UpdateCompletedType(TD);
178}
179
180llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
181  if (!TBAA)
182    return 0;
183  return TBAA->getTBAAInfo(QTy);
184}
185
186void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
187                                        llvm::MDNode *TBAAInfo) {
188  Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
189}
190
191bool CodeGenModule::isTargetDarwin() const {
192  return getContext().getTargetInfo().getTriple().isOSDarwin();
193}
194
195void CodeGenModule::Error(SourceLocation loc, StringRef error) {
196  unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
197  getDiags().Report(Context.getFullLoc(loc), diagID);
198}
199
200/// ErrorUnsupported - Print out an error that codegen doesn't support the
201/// specified stmt yet.
202void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
203                                     bool OmitOnError) {
204  if (OmitOnError && getDiags().hasErrorOccurred())
205    return;
206  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
207                                               "cannot compile this %0 yet");
208  std::string Msg = Type;
209  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
210    << Msg << S->getSourceRange();
211}
212
213/// ErrorUnsupported - Print out an error that codegen doesn't support the
214/// specified decl yet.
215void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
216                                     bool OmitOnError) {
217  if (OmitOnError && getDiags().hasErrorOccurred())
218    return;
219  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
220                                               "cannot compile this %0 yet");
221  std::string Msg = Type;
222  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
223}
224
225llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
226  return llvm::ConstantInt::get(SizeTy, size.getQuantity());
227}
228
229void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
230                                        const NamedDecl *D) const {
231  // Internal definitions always have default visibility.
232  if (GV->hasLocalLinkage()) {
233    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
234    return;
235  }
236
237  // Set visibility for definitions.
238  NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
239  if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
240    GV->setVisibility(GetLLVMVisibility(LV.visibility()));
241}
242
243/// Set the symbol visibility of type information (vtable and RTTI)
244/// associated with the given type.
245void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
246                                      const CXXRecordDecl *RD,
247                                      TypeVisibilityKind TVK) const {
248  setGlobalVisibility(GV, RD);
249
250  if (!CodeGenOpts.HiddenWeakVTables)
251    return;
252
253  // We never want to drop the visibility for RTTI names.
254  if (TVK == TVK_ForRTTIName)
255    return;
256
257  // We want to drop the visibility to hidden for weak type symbols.
258  // This isn't possible if there might be unresolved references
259  // elsewhere that rely on this symbol being visible.
260
261  // This should be kept roughly in sync with setThunkVisibility
262  // in CGVTables.cpp.
263
264  // Preconditions.
265  if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
266      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
267    return;
268
269  // Don't override an explicit visibility attribute.
270  if (RD->getExplicitVisibility())
271    return;
272
273  switch (RD->getTemplateSpecializationKind()) {
274  // We have to disable the optimization if this is an EI definition
275  // because there might be EI declarations in other shared objects.
276  case TSK_ExplicitInstantiationDefinition:
277  case TSK_ExplicitInstantiationDeclaration:
278    return;
279
280  // Every use of a non-template class's type information has to emit it.
281  case TSK_Undeclared:
282    break;
283
284  // In theory, implicit instantiations can ignore the possibility of
285  // an explicit instantiation declaration because there necessarily
286  // must be an EI definition somewhere with default visibility.  In
287  // practice, it's possible to have an explicit instantiation for
288  // an arbitrary template class, and linkers aren't necessarily able
289  // to deal with mixed-visibility symbols.
290  case TSK_ExplicitSpecialization:
291  case TSK_ImplicitInstantiation:
292    if (!CodeGenOpts.HiddenWeakTemplateVTables)
293      return;
294    break;
295  }
296
297  // If there's a key function, there may be translation units
298  // that don't have the key function's definition.  But ignore
299  // this if we're emitting RTTI under -fno-rtti.
300  if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
301    if (Context.getKeyFunction(RD))
302      return;
303  }
304
305  // Otherwise, drop the visibility to hidden.
306  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
307  GV->setUnnamedAddr(true);
308}
309
310StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
311  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
312
313  StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
314  if (!Str.empty())
315    return Str;
316
317  if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
318    IdentifierInfo *II = ND->getIdentifier();
319    assert(II && "Attempt to mangle unnamed decl.");
320
321    Str = II->getName();
322    return Str;
323  }
324
325  SmallString<256> Buffer;
326  llvm::raw_svector_ostream Out(Buffer);
327  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
328    getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
329  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
330    getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
331  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
332    getCXXABI().getMangleContext().mangleBlock(BD, Out);
333  else
334    getCXXABI().getMangleContext().mangleName(ND, Out);
335
336  // Allocate space for the mangled name.
337  Out.flush();
338  size_t Length = Buffer.size();
339  char *Name = MangledNamesAllocator.Allocate<char>(Length);
340  std::copy(Buffer.begin(), Buffer.end(), Name);
341
342  Str = StringRef(Name, Length);
343
344  return Str;
345}
346
347void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
348                                        const BlockDecl *BD) {
349  MangleContext &MangleCtx = getCXXABI().getMangleContext();
350  const Decl *D = GD.getDecl();
351  llvm::raw_svector_ostream Out(Buffer.getBuffer());
352  if (D == 0)
353    MangleCtx.mangleGlobalBlock(BD, Out);
354  else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
355    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
356  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
357    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
358  else
359    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
360}
361
362llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
363  return getModule().getNamedValue(Name);
364}
365
366/// AddGlobalCtor - Add a function to the list that will be called before
367/// main() runs.
368void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
369  // FIXME: Type coercion of void()* types.
370  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
371}
372
373/// AddGlobalDtor - Add a function to the list that will be called
374/// when the module is unloaded.
375void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
376  // FIXME: Type coercion of void()* types.
377  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
378}
379
380void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
381  // Ctor function type is void()*.
382  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
383  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
384
385  // Get the type of a ctor entry, { i32, void ()* }.
386  llvm::StructType *CtorStructTy =
387    llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
388
389  // Construct the constructor and destructor arrays.
390  SmallVector<llvm::Constant*, 8> Ctors;
391  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
392    llvm::Constant *S[] = {
393      llvm::ConstantInt::get(Int32Ty, I->second, false),
394      llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
395    };
396    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
397  }
398
399  if (!Ctors.empty()) {
400    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
401    new llvm::GlobalVariable(TheModule, AT, false,
402                             llvm::GlobalValue::AppendingLinkage,
403                             llvm::ConstantArray::get(AT, Ctors),
404                             GlobalName);
405  }
406}
407
408llvm::GlobalValue::LinkageTypes
409CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
410  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
411
412  if (Linkage == GVA_Internal)
413    return llvm::Function::InternalLinkage;
414
415  if (D->hasAttr<DLLExportAttr>())
416    return llvm::Function::DLLExportLinkage;
417
418  if (D->hasAttr<WeakAttr>())
419    return llvm::Function::WeakAnyLinkage;
420
421  // In C99 mode, 'inline' functions are guaranteed to have a strong
422  // definition somewhere else, so we can use available_externally linkage.
423  if (Linkage == GVA_C99Inline)
424    return llvm::Function::AvailableExternallyLinkage;
425
426  // Note that Apple's kernel linker doesn't support symbol
427  // coalescing, so we need to avoid linkonce and weak linkages there.
428  // Normally, this means we just map to internal, but for explicit
429  // instantiations we'll map to external.
430
431  // In C++, the compiler has to emit a definition in every translation unit
432  // that references the function.  We should use linkonce_odr because
433  // a) if all references in this translation unit are optimized away, we
434  // don't need to codegen it.  b) if the function persists, it needs to be
435  // merged with other definitions. c) C++ has the ODR, so we know the
436  // definition is dependable.
437  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
438    return !Context.getLangOptions().AppleKext
439             ? llvm::Function::LinkOnceODRLinkage
440             : llvm::Function::InternalLinkage;
441
442  // An explicit instantiation of a template has weak linkage, since
443  // explicit instantiations can occur in multiple translation units
444  // and must all be equivalent. However, we are not allowed to
445  // throw away these explicit instantiations.
446  if (Linkage == GVA_ExplicitTemplateInstantiation)
447    return !Context.getLangOptions().AppleKext
448             ? llvm::Function::WeakODRLinkage
449             : llvm::Function::ExternalLinkage;
450
451  // Otherwise, we have strong external linkage.
452  assert(Linkage == GVA_StrongExternal);
453  return llvm::Function::ExternalLinkage;
454}
455
456
457/// SetFunctionDefinitionAttributes - Set attributes for a global.
458///
459/// FIXME: This is currently only done for aliases and functions, but not for
460/// variables (these details are set in EmitGlobalVarDefinition for variables).
461void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
462                                                    llvm::GlobalValue *GV) {
463  SetCommonAttributes(D, GV);
464}
465
466void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
467                                              const CGFunctionInfo &Info,
468                                              llvm::Function *F) {
469  unsigned CallingConv;
470  AttributeListType AttributeList;
471  ConstructAttributeList(Info, D, AttributeList, CallingConv);
472  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
473                                          AttributeList.size()));
474  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
475}
476
477/// Determines whether the language options require us to model
478/// unwind exceptions.  We treat -fexceptions as mandating this
479/// except under the fragile ObjC ABI with only ObjC exceptions
480/// enabled.  This means, for example, that C with -fexceptions
481/// enables this.
482static bool hasUnwindExceptions(const LangOptions &Features) {
483  // If exceptions are completely disabled, obviously this is false.
484  if (!Features.Exceptions) return false;
485
486  // If C++ exceptions are enabled, this is true.
487  if (Features.CXXExceptions) return true;
488
489  // If ObjC exceptions are enabled, this depends on the ABI.
490  if (Features.ObjCExceptions) {
491    if (!Features.ObjCNonFragileABI) return false;
492  }
493
494  return true;
495}
496
497void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
498                                                           llvm::Function *F) {
499  if (CodeGenOpts.UnwindTables)
500    F->setHasUWTable();
501
502  if (!hasUnwindExceptions(Features))
503    F->addFnAttr(llvm::Attribute::NoUnwind);
504
505  if (D->hasAttr<NakedAttr>()) {
506    // Naked implies noinline: we should not be inlining such functions.
507    F->addFnAttr(llvm::Attribute::Naked);
508    F->addFnAttr(llvm::Attribute::NoInline);
509  }
510
511  if (D->hasAttr<NoInlineAttr>())
512    F->addFnAttr(llvm::Attribute::NoInline);
513
514  // (noinline wins over always_inline, and we can't specify both in IR)
515  if (D->hasAttr<AlwaysInlineAttr>() &&
516      !F->hasFnAttr(llvm::Attribute::NoInline))
517    F->addFnAttr(llvm::Attribute::AlwaysInline);
518
519  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
520    F->setUnnamedAddr(true);
521
522  if (Features.getStackProtector() == LangOptions::SSPOn)
523    F->addFnAttr(llvm::Attribute::StackProtect);
524  else if (Features.getStackProtector() == LangOptions::SSPReq)
525    F->addFnAttr(llvm::Attribute::StackProtectReq);
526
527  if (Features.AddressSanitizer) {
528    // When AddressSanitizer is enabled, set AddressSafety attribute
529    // unless __attribute__((no_address_safety_analysis)) is used.
530    if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
531      F->addFnAttr(llvm::Attribute::AddressSafety);
532  }
533
534  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
535  if (alignment)
536    F->setAlignment(alignment);
537
538  // C++ ABI requires 2-byte alignment for member functions.
539  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
540    F->setAlignment(2);
541}
542
543void CodeGenModule::SetCommonAttributes(const Decl *D,
544                                        llvm::GlobalValue *GV) {
545  if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
546    setGlobalVisibility(GV, ND);
547  else
548    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
549
550  if (D->hasAttr<UsedAttr>())
551    AddUsedGlobal(GV);
552
553  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
554    GV->setSection(SA->getName());
555
556  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
557}
558
559void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
560                                                  llvm::Function *F,
561                                                  const CGFunctionInfo &FI) {
562  SetLLVMFunctionAttributes(D, FI, F);
563  SetLLVMFunctionAttributesForDefinition(D, F);
564
565  F->setLinkage(llvm::Function::InternalLinkage);
566
567  SetCommonAttributes(D, F);
568}
569
570void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
571                                          llvm::Function *F,
572                                          bool IsIncompleteFunction) {
573  if (unsigned IID = F->getIntrinsicID()) {
574    // If this is an intrinsic function, set the function's attributes
575    // to the intrinsic's attributes.
576    F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
577    return;
578  }
579
580  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
581
582  if (!IsIncompleteFunction)
583    SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
584
585  // Only a few attributes are set on declarations; these may later be
586  // overridden by a definition.
587
588  if (FD->hasAttr<DLLImportAttr>()) {
589    F->setLinkage(llvm::Function::DLLImportLinkage);
590  } else if (FD->hasAttr<WeakAttr>() ||
591             FD->isWeakImported()) {
592    // "extern_weak" is overloaded in LLVM; we probably should have
593    // separate linkage types for this.
594    F->setLinkage(llvm::Function::ExternalWeakLinkage);
595  } else {
596    F->setLinkage(llvm::Function::ExternalLinkage);
597
598    NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
599    if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
600      F->setVisibility(GetLLVMVisibility(LV.visibility()));
601    }
602  }
603
604  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
605    F->setSection(SA->getName());
606}
607
608void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
609  assert(!GV->isDeclaration() &&
610         "Only globals with definition can force usage.");
611  LLVMUsed.push_back(GV);
612}
613
614void CodeGenModule::EmitLLVMUsed() {
615  // Don't create llvm.used if there is no need.
616  if (LLVMUsed.empty())
617    return;
618
619  // Convert LLVMUsed to what ConstantArray needs.
620  SmallVector<llvm::Constant*, 8> UsedArray;
621  UsedArray.resize(LLVMUsed.size());
622  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
623    UsedArray[i] =
624     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
625                                    Int8PtrTy);
626  }
627
628  if (UsedArray.empty())
629    return;
630  llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
631
632  llvm::GlobalVariable *GV =
633    new llvm::GlobalVariable(getModule(), ATy, false,
634                             llvm::GlobalValue::AppendingLinkage,
635                             llvm::ConstantArray::get(ATy, UsedArray),
636                             "llvm.used");
637
638  GV->setSection("llvm.metadata");
639}
640
641void CodeGenModule::EmitDeferred() {
642  // Emit code for any potentially referenced deferred decls.  Since a
643  // previously unused static decl may become used during the generation of code
644  // for a static function, iterate until no changes are made.
645
646  while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
647    if (!DeferredVTables.empty()) {
648      const CXXRecordDecl *RD = DeferredVTables.back();
649      DeferredVTables.pop_back();
650      getVTables().GenerateClassData(getVTableLinkage(RD), RD);
651      continue;
652    }
653
654    GlobalDecl D = DeferredDeclsToEmit.back();
655    DeferredDeclsToEmit.pop_back();
656
657    // Check to see if we've already emitted this.  This is necessary
658    // for a couple of reasons: first, decls can end up in the
659    // deferred-decls queue multiple times, and second, decls can end
660    // up with definitions in unusual ways (e.g. by an extern inline
661    // function acquiring a strong function redefinition).  Just
662    // ignore these cases.
663    //
664    // TODO: That said, looking this up multiple times is very wasteful.
665    StringRef Name = getMangledName(D);
666    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
667    assert(CGRef && "Deferred decl wasn't referenced?");
668
669    if (!CGRef->isDeclaration())
670      continue;
671
672    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
673    // purposes an alias counts as a definition.
674    if (isa<llvm::GlobalAlias>(CGRef))
675      continue;
676
677    // Otherwise, emit the definition and move on to the next one.
678    EmitGlobalDefinition(D);
679  }
680}
681
682void CodeGenModule::EmitGlobalAnnotations() {
683  if (Annotations.empty())
684    return;
685
686  // Create a new global variable for the ConstantStruct in the Module.
687  llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
688    Annotations[0]->getType(), Annotations.size()), Annotations);
689  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
690    Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
691    "llvm.global.annotations");
692  gv->setSection(AnnotationSection);
693}
694
695llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
696  llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
697  if (i != AnnotationStrings.end())
698    return i->second;
699
700  // Not found yet, create a new global.
701  llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
702  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
703    true, llvm::GlobalValue::PrivateLinkage, s, ".str");
704  gv->setSection(AnnotationSection);
705  gv->setUnnamedAddr(true);
706  AnnotationStrings[Str] = gv;
707  return gv;
708}
709
710llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
711  SourceManager &SM = getContext().getSourceManager();
712  PresumedLoc PLoc = SM.getPresumedLoc(Loc);
713  if (PLoc.isValid())
714    return EmitAnnotationString(PLoc.getFilename());
715  return EmitAnnotationString(SM.getBufferName(Loc));
716}
717
718llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
719  SourceManager &SM = getContext().getSourceManager();
720  PresumedLoc PLoc = SM.getPresumedLoc(L);
721  unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
722    SM.getExpansionLineNumber(L);
723  return llvm::ConstantInt::get(Int32Ty, LineNo);
724}
725
726llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
727                                                const AnnotateAttr *AA,
728                                                SourceLocation L) {
729  // Get the globals for file name, annotation, and the line number.
730  llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
731                 *UnitGV = EmitAnnotationUnit(L),
732                 *LineNoCst = EmitAnnotationLineNo(L);
733
734  // Create the ConstantStruct for the global annotation.
735  llvm::Constant *Fields[4] = {
736    llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
737    llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
738    llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
739    LineNoCst
740  };
741  return llvm::ConstantStruct::getAnon(Fields);
742}
743
744void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
745                                         llvm::GlobalValue *GV) {
746  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
747  // Get the struct elements for these annotations.
748  for (specific_attr_iterator<AnnotateAttr>
749       ai = D->specific_attr_begin<AnnotateAttr>(),
750       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
751    Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
752}
753
754bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
755  // Never defer when EmitAllDecls is specified.
756  if (Features.EmitAllDecls)
757    return false;
758
759  return !getContext().DeclMustBeEmitted(Global);
760}
761
762llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
763  const AliasAttr *AA = VD->getAttr<AliasAttr>();
764  assert(AA && "No alias?");
765
766  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
767
768  // See if there is already something with the target's name in the module.
769  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
770
771  llvm::Constant *Aliasee;
772  if (isa<llvm::FunctionType>(DeclTy))
773    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
774                                      /*ForVTable=*/false);
775  else
776    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
777                                    llvm::PointerType::getUnqual(DeclTy), 0);
778  if (!Entry) {
779    llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
780    F->setLinkage(llvm::Function::ExternalWeakLinkage);
781    WeakRefReferences.insert(F);
782  }
783
784  return Aliasee;
785}
786
787void CodeGenModule::EmitGlobal(GlobalDecl GD) {
788  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
789
790  // Weak references don't produce any output by themselves.
791  if (Global->hasAttr<WeakRefAttr>())
792    return;
793
794  // If this is an alias definition (which otherwise looks like a declaration)
795  // emit it now.
796  if (Global->hasAttr<AliasAttr>())
797    return EmitAliasDefinition(GD);
798
799  // If this is CUDA, be selective about which declarations we emit.
800  if (Features.CUDA) {
801    if (CodeGenOpts.CUDAIsDevice) {
802      if (!Global->hasAttr<CUDADeviceAttr>() &&
803          !Global->hasAttr<CUDAGlobalAttr>() &&
804          !Global->hasAttr<CUDAConstantAttr>() &&
805          !Global->hasAttr<CUDASharedAttr>())
806        return;
807    } else {
808      if (!Global->hasAttr<CUDAHostAttr>() && (
809            Global->hasAttr<CUDADeviceAttr>() ||
810            Global->hasAttr<CUDAConstantAttr>() ||
811            Global->hasAttr<CUDASharedAttr>()))
812        return;
813    }
814  }
815
816  // Ignore declarations, they will be emitted on their first use.
817  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
818    // Forward declarations are emitted lazily on first use.
819    if (!FD->doesThisDeclarationHaveABody()) {
820      if (!FD->doesDeclarationForceExternallyVisibleDefinition())
821        return;
822
823      const FunctionDecl *InlineDefinition = 0;
824      FD->getBody(InlineDefinition);
825
826      StringRef MangledName = getMangledName(GD);
827      llvm::StringMap<GlobalDecl>::iterator DDI =
828          DeferredDecls.find(MangledName);
829      if (DDI != DeferredDecls.end())
830        DeferredDecls.erase(DDI);
831      EmitGlobalDefinition(InlineDefinition);
832      return;
833    }
834  } else {
835    const VarDecl *VD = cast<VarDecl>(Global);
836    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
837
838    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
839      return;
840  }
841
842  // Defer code generation when possible if this is a static definition, inline
843  // function etc.  These we only want to emit if they are used.
844  if (!MayDeferGeneration(Global)) {
845    // Emit the definition if it can't be deferred.
846    EmitGlobalDefinition(GD);
847    return;
848  }
849
850  // If we're deferring emission of a C++ variable with an
851  // initializer, remember the order in which it appeared in the file.
852  if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
853      cast<VarDecl>(Global)->hasInit()) {
854    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
855    CXXGlobalInits.push_back(0);
856  }
857
858  // If the value has already been used, add it directly to the
859  // DeferredDeclsToEmit list.
860  StringRef MangledName = getMangledName(GD);
861  if (GetGlobalValue(MangledName))
862    DeferredDeclsToEmit.push_back(GD);
863  else {
864    // Otherwise, remember that we saw a deferred decl with this name.  The
865    // first use of the mangled name will cause it to move into
866    // DeferredDeclsToEmit.
867    DeferredDecls[MangledName] = GD;
868  }
869}
870
871namespace {
872  struct FunctionIsDirectlyRecursive :
873    public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
874    const StringRef Name;
875    const Builtin::Context &BI;
876    bool Result;
877    FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
878      Name(N), BI(C), Result(false) {
879    }
880    typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
881
882    bool TraverseCallExpr(CallExpr *E) {
883      const FunctionDecl *FD = E->getDirectCallee();
884      if (!FD)
885        return true;
886      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
887      if (Attr && Name == Attr->getLabel()) {
888        Result = true;
889        return false;
890      }
891      unsigned BuiltinID = FD->getBuiltinID();
892      if (!BuiltinID)
893        return true;
894      StringRef BuiltinName = BI.GetName(BuiltinID);
895      if (BuiltinName.startswith("__builtin_") &&
896          Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
897        Result = true;
898        return false;
899      }
900      return true;
901    }
902  };
903}
904
905// isTriviallyRecursive - Check if this function calls another
906// decl that, because of the asm attribute or the other decl being a builtin,
907// ends up pointing to itself.
908bool
909CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
910  StringRef Name;
911  if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
912    // asm labels are a special kind of mangling we have to support.
913    AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
914    if (!Attr)
915      return false;
916    Name = Attr->getLabel();
917  } else {
918    Name = FD->getName();
919  }
920
921  FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
922  Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
923  return Walker.Result;
924}
925
926bool
927CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
928  if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
929    return true;
930  if (CodeGenOpts.OptimizationLevel == 0 &&
931      !F->hasAttr<AlwaysInlineAttr>())
932    return false;
933  // PR9614. Avoid cases where the source code is lying to us. An available
934  // externally function should have an equivalent function somewhere else,
935  // but a function that calls itself is clearly not equivalent to the real
936  // implementation.
937  // This happens in glibc's btowc and in some configure checks.
938  return !isTriviallyRecursive(F);
939}
940
941void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
942  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
943
944  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
945                                 Context.getSourceManager(),
946                                 "Generating code for declaration");
947
948  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
949    // At -O0, don't generate IR for functions with available_externally
950    // linkage.
951    if (!shouldEmitFunction(Function))
952      return;
953
954    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
955      // Make sure to emit the definition(s) before we emit the thunks.
956      // This is necessary for the generation of certain thunks.
957      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
958        EmitCXXConstructor(CD, GD.getCtorType());
959      else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
960        EmitCXXDestructor(DD, GD.getDtorType());
961      else
962        EmitGlobalFunctionDefinition(GD);
963
964      if (Method->isVirtual())
965        getVTables().EmitThunks(GD);
966
967      return;
968    }
969
970    return EmitGlobalFunctionDefinition(GD);
971  }
972
973  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
974    return EmitGlobalVarDefinition(VD);
975
976  llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
977}
978
979/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
980/// module, create and return an llvm Function with the specified type. If there
981/// is something in the module with the specified name, return it potentially
982/// bitcasted to the right type.
983///
984/// If D is non-null, it specifies a decl that correspond to this.  This is used
985/// to set the attributes on the function when it is first created.
986llvm::Constant *
987CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
988                                       llvm::Type *Ty,
989                                       GlobalDecl D, bool ForVTable,
990                                       llvm::Attributes ExtraAttrs) {
991  // Lookup the entry, lazily creating it if necessary.
992  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
993  if (Entry) {
994    if (WeakRefReferences.count(Entry)) {
995      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
996      if (FD && !FD->hasAttr<WeakAttr>())
997        Entry->setLinkage(llvm::Function::ExternalLinkage);
998
999      WeakRefReferences.erase(Entry);
1000    }
1001
1002    if (Entry->getType()->getElementType() == Ty)
1003      return Entry;
1004
1005    // Make sure the result is of the correct type.
1006    return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1007  }
1008
1009  // This function doesn't have a complete type (for example, the return
1010  // type is an incomplete struct). Use a fake type instead, and make
1011  // sure not to try to set attributes.
1012  bool IsIncompleteFunction = false;
1013
1014  llvm::FunctionType *FTy;
1015  if (isa<llvm::FunctionType>(Ty)) {
1016    FTy = cast<llvm::FunctionType>(Ty);
1017  } else {
1018    FTy = llvm::FunctionType::get(VoidTy, false);
1019    IsIncompleteFunction = true;
1020  }
1021
1022  llvm::Function *F = llvm::Function::Create(FTy,
1023                                             llvm::Function::ExternalLinkage,
1024                                             MangledName, &getModule());
1025  assert(F->getName() == MangledName && "name was uniqued!");
1026  if (D.getDecl())
1027    SetFunctionAttributes(D, F, IsIncompleteFunction);
1028  if (ExtraAttrs != llvm::Attribute::None)
1029    F->addFnAttr(ExtraAttrs);
1030
1031  // This is the first use or definition of a mangled name.  If there is a
1032  // deferred decl with this name, remember that we need to emit it at the end
1033  // of the file.
1034  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1035  if (DDI != DeferredDecls.end()) {
1036    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1037    // list, and remove it from DeferredDecls (since we don't need it anymore).
1038    DeferredDeclsToEmit.push_back(DDI->second);
1039    DeferredDecls.erase(DDI);
1040
1041  // Otherwise, there are cases we have to worry about where we're
1042  // using a declaration for which we must emit a definition but where
1043  // we might not find a top-level definition:
1044  //   - member functions defined inline in their classes
1045  //   - friend functions defined inline in some class
1046  //   - special member functions with implicit definitions
1047  // If we ever change our AST traversal to walk into class methods,
1048  // this will be unnecessary.
1049  //
1050  // We also don't emit a definition for a function if it's going to be an entry
1051  // in a vtable, unless it's already marked as used.
1052  } else if (getLangOptions().CPlusPlus && D.getDecl()) {
1053    // Look for a declaration that's lexically in a record.
1054    const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1055    do {
1056      if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1057        if (FD->isImplicit() && !ForVTable) {
1058          assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1059          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1060          break;
1061        } else if (FD->doesThisDeclarationHaveABody()) {
1062          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1063          break;
1064        }
1065      }
1066      FD = FD->getPreviousDecl();
1067    } while (FD);
1068  }
1069
1070  // Make sure the result is of the requested type.
1071  if (!IsIncompleteFunction) {
1072    assert(F->getType()->getElementType() == Ty);
1073    return F;
1074  }
1075
1076  llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1077  return llvm::ConstantExpr::getBitCast(F, PTy);
1078}
1079
1080/// GetAddrOfFunction - Return the address of the given function.  If Ty is
1081/// non-null, then this function will use the specified type if it has to
1082/// create it (this occurs when we see a definition of the function).
1083llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1084                                                 llvm::Type *Ty,
1085                                                 bool ForVTable) {
1086  // If there was no specific requested type, just convert it now.
1087  if (!Ty)
1088    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1089
1090  StringRef MangledName = getMangledName(GD);
1091  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1092}
1093
1094/// CreateRuntimeFunction - Create a new runtime function with the specified
1095/// type and name.
1096llvm::Constant *
1097CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1098                                     StringRef Name,
1099                                     llvm::Attributes ExtraAttrs) {
1100  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1101                                 ExtraAttrs);
1102}
1103
1104/// isTypeConstant - Determine whether an object of this type can be emitted
1105/// as a constant.
1106///
1107/// If ExcludeCtor is true, the duration when the object's constructor runs
1108/// will not be considered. The caller will need to verify that the object is
1109/// not written to during its construction.
1110bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1111  if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1112    return false;
1113
1114  if (Context.getLangOptions().CPlusPlus) {
1115    if (const CXXRecordDecl *Record
1116          = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1117      return ExcludeCtor && !Record->hasMutableFields() &&
1118             Record->hasTrivialDestructor();
1119  }
1120
1121  return true;
1122}
1123
1124/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1125/// create and return an llvm GlobalVariable with the specified type.  If there
1126/// is something in the module with the specified name, return it potentially
1127/// bitcasted to the right type.
1128///
1129/// If D is non-null, it specifies a decl that correspond to this.  This is used
1130/// to set the attributes on the global when it is first created.
1131llvm::Constant *
1132CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1133                                     llvm::PointerType *Ty,
1134                                     const VarDecl *D,
1135                                     bool UnnamedAddr) {
1136  // Lookup the entry, lazily creating it if necessary.
1137  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1138  if (Entry) {
1139    if (WeakRefReferences.count(Entry)) {
1140      if (D && !D->hasAttr<WeakAttr>())
1141        Entry->setLinkage(llvm::Function::ExternalLinkage);
1142
1143      WeakRefReferences.erase(Entry);
1144    }
1145
1146    if (UnnamedAddr)
1147      Entry->setUnnamedAddr(true);
1148
1149    if (Entry->getType() == Ty)
1150      return Entry;
1151
1152    // Make sure the result is of the correct type.
1153    return llvm::ConstantExpr::getBitCast(Entry, Ty);
1154  }
1155
1156  // This is the first use or definition of a mangled name.  If there is a
1157  // deferred decl with this name, remember that we need to emit it at the end
1158  // of the file.
1159  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1160  if (DDI != DeferredDecls.end()) {
1161    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1162    // list, and remove it from DeferredDecls (since we don't need it anymore).
1163    DeferredDeclsToEmit.push_back(DDI->second);
1164    DeferredDecls.erase(DDI);
1165  }
1166
1167  llvm::GlobalVariable *GV =
1168    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1169                             llvm::GlobalValue::ExternalLinkage,
1170                             0, MangledName, 0,
1171                             false, Ty->getAddressSpace());
1172
1173  // Handle things which are present even on external declarations.
1174  if (D) {
1175    // FIXME: This code is overly simple and should be merged with other global
1176    // handling.
1177    GV->setConstant(isTypeConstant(D->getType(), false));
1178
1179    // Set linkage and visibility in case we never see a definition.
1180    NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1181    if (LV.linkage() != ExternalLinkage) {
1182      // Don't set internal linkage on declarations.
1183    } else {
1184      if (D->hasAttr<DLLImportAttr>())
1185        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1186      else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1187        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1188
1189      // Set visibility on a declaration only if it's explicit.
1190      if (LV.visibilityExplicit())
1191        GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1192    }
1193
1194    GV->setThreadLocal(D->isThreadSpecified());
1195  }
1196
1197  return GV;
1198}
1199
1200
1201llvm::GlobalVariable *
1202CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1203                                      llvm::Type *Ty,
1204                                      llvm::GlobalValue::LinkageTypes Linkage) {
1205  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1206  llvm::GlobalVariable *OldGV = 0;
1207
1208
1209  if (GV) {
1210    // Check if the variable has the right type.
1211    if (GV->getType()->getElementType() == Ty)
1212      return GV;
1213
1214    // Because C++ name mangling, the only way we can end up with an already
1215    // existing global with the same name is if it has been declared extern "C".
1216      assert(GV->isDeclaration() && "Declaration has wrong type!");
1217    OldGV = GV;
1218  }
1219
1220  // Create a new variable.
1221  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1222                                Linkage, 0, Name);
1223
1224  if (OldGV) {
1225    // Replace occurrences of the old variable if needed.
1226    GV->takeName(OldGV);
1227
1228    if (!OldGV->use_empty()) {
1229      llvm::Constant *NewPtrForOldDecl =
1230      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1231      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1232    }
1233
1234    OldGV->eraseFromParent();
1235  }
1236
1237  return GV;
1238}
1239
1240/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1241/// given global variable.  If Ty is non-null and if the global doesn't exist,
1242/// then it will be greated with the specified type instead of whatever the
1243/// normal requested type would be.
1244llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1245                                                  llvm::Type *Ty) {
1246  assert(D->hasGlobalStorage() && "Not a global variable");
1247  QualType ASTTy = D->getType();
1248  if (Ty == 0)
1249    Ty = getTypes().ConvertTypeForMem(ASTTy);
1250
1251  llvm::PointerType *PTy =
1252    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1253
1254  StringRef MangledName = getMangledName(D);
1255  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1256}
1257
1258/// CreateRuntimeVariable - Create a new runtime global variable with the
1259/// specified type and name.
1260llvm::Constant *
1261CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1262                                     StringRef Name) {
1263  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1264                               true);
1265}
1266
1267void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1268  assert(!D->getInit() && "Cannot emit definite definitions here!");
1269
1270  if (MayDeferGeneration(D)) {
1271    // If we have not seen a reference to this variable yet, place it
1272    // into the deferred declarations table to be emitted if needed
1273    // later.
1274    StringRef MangledName = getMangledName(D);
1275    if (!GetGlobalValue(MangledName)) {
1276      DeferredDecls[MangledName] = D;
1277      return;
1278    }
1279  }
1280
1281  // The tentative definition is the only definition.
1282  EmitGlobalVarDefinition(D);
1283}
1284
1285void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1286  if (DefinitionRequired)
1287    getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1288}
1289
1290llvm::GlobalVariable::LinkageTypes
1291CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1292  if (RD->getLinkage() != ExternalLinkage)
1293    return llvm::GlobalVariable::InternalLinkage;
1294
1295  if (const CXXMethodDecl *KeyFunction
1296                                    = RD->getASTContext().getKeyFunction(RD)) {
1297    // If this class has a key function, use that to determine the linkage of
1298    // the vtable.
1299    const FunctionDecl *Def = 0;
1300    if (KeyFunction->hasBody(Def))
1301      KeyFunction = cast<CXXMethodDecl>(Def);
1302
1303    switch (KeyFunction->getTemplateSpecializationKind()) {
1304      case TSK_Undeclared:
1305      case TSK_ExplicitSpecialization:
1306        // When compiling with optimizations turned on, we emit all vtables,
1307        // even if the key function is not defined in the current translation
1308        // unit. If this is the case, use available_externally linkage.
1309        if (!Def && CodeGenOpts.OptimizationLevel)
1310          return llvm::GlobalVariable::AvailableExternallyLinkage;
1311
1312        if (KeyFunction->isInlined())
1313          return !Context.getLangOptions().AppleKext ?
1314                   llvm::GlobalVariable::LinkOnceODRLinkage :
1315                   llvm::Function::InternalLinkage;
1316
1317        return llvm::GlobalVariable::ExternalLinkage;
1318
1319      case TSK_ImplicitInstantiation:
1320        return !Context.getLangOptions().AppleKext ?
1321                 llvm::GlobalVariable::LinkOnceODRLinkage :
1322                 llvm::Function::InternalLinkage;
1323
1324      case TSK_ExplicitInstantiationDefinition:
1325        return !Context.getLangOptions().AppleKext ?
1326                 llvm::GlobalVariable::WeakODRLinkage :
1327                 llvm::Function::InternalLinkage;
1328
1329      case TSK_ExplicitInstantiationDeclaration:
1330        // FIXME: Use available_externally linkage. However, this currently
1331        // breaks LLVM's build due to undefined symbols.
1332        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1333        return !Context.getLangOptions().AppleKext ?
1334                 llvm::GlobalVariable::LinkOnceODRLinkage :
1335                 llvm::Function::InternalLinkage;
1336    }
1337  }
1338
1339  if (Context.getLangOptions().AppleKext)
1340    return llvm::Function::InternalLinkage;
1341
1342  switch (RD->getTemplateSpecializationKind()) {
1343  case TSK_Undeclared:
1344  case TSK_ExplicitSpecialization:
1345  case TSK_ImplicitInstantiation:
1346    // FIXME: Use available_externally linkage. However, this currently
1347    // breaks LLVM's build due to undefined symbols.
1348    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1349  case TSK_ExplicitInstantiationDeclaration:
1350    return llvm::GlobalVariable::LinkOnceODRLinkage;
1351
1352  case TSK_ExplicitInstantiationDefinition:
1353      return llvm::GlobalVariable::WeakODRLinkage;
1354  }
1355
1356  llvm_unreachable("Invalid TemplateSpecializationKind!");
1357}
1358
1359CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1360    return Context.toCharUnitsFromBits(
1361      TheTargetData.getTypeStoreSizeInBits(Ty));
1362}
1363
1364void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1365  llvm::Constant *Init = 0;
1366  QualType ASTTy = D->getType();
1367  CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1368  bool NeedsGlobalCtor = false;
1369  bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1370
1371  const VarDecl *InitDecl;
1372  const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1373
1374  if (!InitExpr) {
1375    // This is a tentative definition; tentative definitions are
1376    // implicitly initialized with { 0 }.
1377    //
1378    // Note that tentative definitions are only emitted at the end of
1379    // a translation unit, so they should never have incomplete
1380    // type. In addition, EmitTentativeDefinition makes sure that we
1381    // never attempt to emit a tentative definition if a real one
1382    // exists. A use may still exists, however, so we still may need
1383    // to do a RAUW.
1384    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1385    Init = EmitNullConstant(D->getType());
1386  } else {
1387    Init = EmitConstantInit(*InitDecl);
1388    if (!Init) {
1389      QualType T = InitExpr->getType();
1390      if (D->getType()->isReferenceType())
1391        T = D->getType();
1392
1393      if (getLangOptions().CPlusPlus) {
1394        Init = EmitNullConstant(T);
1395        NeedsGlobalCtor = true;
1396      } else {
1397        ErrorUnsupported(D, "static initializer");
1398        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1399      }
1400    } else {
1401      // We don't need an initializer, so remove the entry for the delayed
1402      // initializer position (just in case this entry was delayed) if we
1403      // also don't need to register a destructor.
1404      if (getLangOptions().CPlusPlus && !NeedsGlobalDtor)
1405        DelayedCXXInitPosition.erase(D);
1406    }
1407  }
1408
1409  llvm::Type* InitType = Init->getType();
1410  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1411
1412  // Strip off a bitcast if we got one back.
1413  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1414    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1415           // all zero index gep.
1416           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1417    Entry = CE->getOperand(0);
1418  }
1419
1420  // Entry is now either a Function or GlobalVariable.
1421  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1422
1423  // We have a definition after a declaration with the wrong type.
1424  // We must make a new GlobalVariable* and update everything that used OldGV
1425  // (a declaration or tentative definition) with the new GlobalVariable*
1426  // (which will be a definition).
1427  //
1428  // This happens if there is a prototype for a global (e.g.
1429  // "extern int x[];") and then a definition of a different type (e.g.
1430  // "int x[10];"). This also happens when an initializer has a different type
1431  // from the type of the global (this happens with unions).
1432  if (GV == 0 ||
1433      GV->getType()->getElementType() != InitType ||
1434      GV->getType()->getAddressSpace() !=
1435        getContext().getTargetAddressSpace(ASTTy)) {
1436
1437    // Move the old entry aside so that we'll create a new one.
1438    Entry->setName(StringRef());
1439
1440    // Make a new global with the correct type, this is now guaranteed to work.
1441    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1442
1443    // Replace all uses of the old global with the new global
1444    llvm::Constant *NewPtrForOldDecl =
1445        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1446    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1447
1448    // Erase the old global, since it is no longer used.
1449    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1450  }
1451
1452  if (D->hasAttr<AnnotateAttr>())
1453    AddGlobalAnnotations(D, GV);
1454
1455  GV->setInitializer(Init);
1456
1457  // If it is safe to mark the global 'constant', do so now.
1458  GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1459                  isTypeConstant(D->getType(), true));
1460
1461  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1462
1463  // Set the llvm linkage type as appropriate.
1464  llvm::GlobalValue::LinkageTypes Linkage =
1465    GetLLVMLinkageVarDefinition(D, GV);
1466  GV->setLinkage(Linkage);
1467  if (Linkage == llvm::GlobalVariable::CommonLinkage)
1468    // common vars aren't constant even if declared const.
1469    GV->setConstant(false);
1470
1471  SetCommonAttributes(D, GV);
1472
1473  // Emit the initializer function if necessary.
1474  if (NeedsGlobalCtor || NeedsGlobalDtor)
1475    EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1476
1477  // Emit global variable debug information.
1478  if (CGDebugInfo *DI = getModuleDebugInfo())
1479    DI->EmitGlobalVariable(GV, D);
1480}
1481
1482llvm::GlobalValue::LinkageTypes
1483CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1484                                           llvm::GlobalVariable *GV) {
1485  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1486  if (Linkage == GVA_Internal)
1487    return llvm::Function::InternalLinkage;
1488  else if (D->hasAttr<DLLImportAttr>())
1489    return llvm::Function::DLLImportLinkage;
1490  else if (D->hasAttr<DLLExportAttr>())
1491    return llvm::Function::DLLExportLinkage;
1492  else if (D->hasAttr<WeakAttr>()) {
1493    if (GV->isConstant())
1494      return llvm::GlobalVariable::WeakODRLinkage;
1495    else
1496      return llvm::GlobalVariable::WeakAnyLinkage;
1497  } else if (Linkage == GVA_TemplateInstantiation ||
1498             Linkage == GVA_ExplicitTemplateInstantiation)
1499    return llvm::GlobalVariable::WeakODRLinkage;
1500  else if (!getLangOptions().CPlusPlus &&
1501           ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1502             D->getAttr<CommonAttr>()) &&
1503           !D->hasExternalStorage() && !D->getInit() &&
1504           !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1505           !D->getAttr<WeakImportAttr>()) {
1506    // Thread local vars aren't considered common linkage.
1507    return llvm::GlobalVariable::CommonLinkage;
1508  }
1509  return llvm::GlobalVariable::ExternalLinkage;
1510}
1511
1512/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1513/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1514/// existing call uses of the old function in the module, this adjusts them to
1515/// call the new function directly.
1516///
1517/// This is not just a cleanup: the always_inline pass requires direct calls to
1518/// functions to be able to inline them.  If there is a bitcast in the way, it
1519/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1520/// run at -O0.
1521static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1522                                                      llvm::Function *NewFn) {
1523  // If we're redefining a global as a function, don't transform it.
1524  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1525  if (OldFn == 0) return;
1526
1527  llvm::Type *NewRetTy = NewFn->getReturnType();
1528  SmallVector<llvm::Value*, 4> ArgList;
1529
1530  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1531       UI != E; ) {
1532    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1533    llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1534    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1535    if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1536    llvm::CallSite CS(CI);
1537    if (!CI || !CS.isCallee(I)) continue;
1538
1539    // If the return types don't match exactly, and if the call isn't dead, then
1540    // we can't transform this call.
1541    if (CI->getType() != NewRetTy && !CI->use_empty())
1542      continue;
1543
1544    // Get the attribute list.
1545    llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1546    llvm::AttrListPtr AttrList = CI->getAttributes();
1547
1548    // Get any return attributes.
1549    llvm::Attributes RAttrs = AttrList.getRetAttributes();
1550
1551    // Add the return attributes.
1552    if (RAttrs)
1553      AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1554
1555    // If the function was passed too few arguments, don't transform.  If extra
1556    // arguments were passed, we silently drop them.  If any of the types
1557    // mismatch, we don't transform.
1558    unsigned ArgNo = 0;
1559    bool DontTransform = false;
1560    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1561         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1562      if (CS.arg_size() == ArgNo ||
1563          CS.getArgument(ArgNo)->getType() != AI->getType()) {
1564        DontTransform = true;
1565        break;
1566      }
1567
1568      // Add any parameter attributes.
1569      if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1570        AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1571    }
1572    if (DontTransform)
1573      continue;
1574
1575    if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
1576      AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1577
1578    // Okay, we can transform this.  Create the new call instruction and copy
1579    // over the required information.
1580    ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1581    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1582    ArgList.clear();
1583    if (!NewCall->getType()->isVoidTy())
1584      NewCall->takeName(CI);
1585    NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec.begin(),
1586                                                  AttrVec.end()));
1587    NewCall->setCallingConv(CI->getCallingConv());
1588
1589    // Finally, remove the old call, replacing any uses with the new one.
1590    if (!CI->use_empty())
1591      CI->replaceAllUsesWith(NewCall);
1592
1593    // Copy debug location attached to CI.
1594    if (!CI->getDebugLoc().isUnknown())
1595      NewCall->setDebugLoc(CI->getDebugLoc());
1596    CI->eraseFromParent();
1597  }
1598}
1599
1600
1601void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1602  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1603
1604  // Compute the function info and LLVM type.
1605  const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1606  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
1607
1608  // Get or create the prototype for the function.
1609  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1610
1611  // Strip off a bitcast if we got one back.
1612  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1613    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1614    Entry = CE->getOperand(0);
1615  }
1616
1617
1618  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1619    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1620
1621    // If the types mismatch then we have to rewrite the definition.
1622    assert(OldFn->isDeclaration() &&
1623           "Shouldn't replace non-declaration");
1624
1625    // F is the Function* for the one with the wrong type, we must make a new
1626    // Function* and update everything that used F (a declaration) with the new
1627    // Function* (which will be a definition).
1628    //
1629    // This happens if there is a prototype for a function
1630    // (e.g. "int f()") and then a definition of a different type
1631    // (e.g. "int f(int x)").  Move the old function aside so that it
1632    // doesn't interfere with GetAddrOfFunction.
1633    OldFn->setName(StringRef());
1634    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1635
1636    // If this is an implementation of a function without a prototype, try to
1637    // replace any existing uses of the function (which may be calls) with uses
1638    // of the new function
1639    if (D->getType()->isFunctionNoProtoType()) {
1640      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1641      OldFn->removeDeadConstantUsers();
1642    }
1643
1644    // Replace uses of F with the Function we will endow with a body.
1645    if (!Entry->use_empty()) {
1646      llvm::Constant *NewPtrForOldDecl =
1647        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1648      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1649    }
1650
1651    // Ok, delete the old function now, which is dead.
1652    OldFn->eraseFromParent();
1653
1654    Entry = NewFn;
1655  }
1656
1657  // We need to set linkage and visibility on the function before
1658  // generating code for it because various parts of IR generation
1659  // want to propagate this information down (e.g. to local static
1660  // declarations).
1661  llvm::Function *Fn = cast<llvm::Function>(Entry);
1662  setFunctionLinkage(D, Fn);
1663
1664  // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1665  setGlobalVisibility(Fn, D);
1666
1667  CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1668
1669  SetFunctionDefinitionAttributes(D, Fn);
1670  SetLLVMFunctionAttributesForDefinition(D, Fn);
1671
1672  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1673    AddGlobalCtor(Fn, CA->getPriority());
1674  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1675    AddGlobalDtor(Fn, DA->getPriority());
1676  if (D->hasAttr<AnnotateAttr>())
1677    AddGlobalAnnotations(D, Fn);
1678}
1679
1680void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1681  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1682  const AliasAttr *AA = D->getAttr<AliasAttr>();
1683  assert(AA && "Not an alias?");
1684
1685  StringRef MangledName = getMangledName(GD);
1686
1687  // If there is a definition in the module, then it wins over the alias.
1688  // This is dubious, but allow it to be safe.  Just ignore the alias.
1689  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1690  if (Entry && !Entry->isDeclaration())
1691    return;
1692
1693  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1694
1695  // Create a reference to the named value.  This ensures that it is emitted
1696  // if a deferred decl.
1697  llvm::Constant *Aliasee;
1698  if (isa<llvm::FunctionType>(DeclTy))
1699    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1700                                      /*ForVTable=*/false);
1701  else
1702    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1703                                    llvm::PointerType::getUnqual(DeclTy), 0);
1704
1705  // Create the new alias itself, but don't set a name yet.
1706  llvm::GlobalValue *GA =
1707    new llvm::GlobalAlias(Aliasee->getType(),
1708                          llvm::Function::ExternalLinkage,
1709                          "", Aliasee, &getModule());
1710
1711  if (Entry) {
1712    assert(Entry->isDeclaration());
1713
1714    // If there is a declaration in the module, then we had an extern followed
1715    // by the alias, as in:
1716    //   extern int test6();
1717    //   ...
1718    //   int test6() __attribute__((alias("test7")));
1719    //
1720    // Remove it and replace uses of it with the alias.
1721    GA->takeName(Entry);
1722
1723    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1724                                                          Entry->getType()));
1725    Entry->eraseFromParent();
1726  } else {
1727    GA->setName(MangledName);
1728  }
1729
1730  // Set attributes which are particular to an alias; this is a
1731  // specialization of the attributes which may be set on a global
1732  // variable/function.
1733  if (D->hasAttr<DLLExportAttr>()) {
1734    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1735      // The dllexport attribute is ignored for undefined symbols.
1736      if (FD->hasBody())
1737        GA->setLinkage(llvm::Function::DLLExportLinkage);
1738    } else {
1739      GA->setLinkage(llvm::Function::DLLExportLinkage);
1740    }
1741  } else if (D->hasAttr<WeakAttr>() ||
1742             D->hasAttr<WeakRefAttr>() ||
1743             D->isWeakImported()) {
1744    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1745  }
1746
1747  SetCommonAttributes(D, GA);
1748}
1749
1750llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1751                                            ArrayRef<llvm::Type*> Tys) {
1752  return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1753                                         Tys);
1754}
1755
1756static llvm::StringMapEntry<llvm::Constant*> &
1757GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1758                         const StringLiteral *Literal,
1759                         bool TargetIsLSB,
1760                         bool &IsUTF16,
1761                         unsigned &StringLength) {
1762  StringRef String = Literal->getString();
1763  unsigned NumBytes = String.size();
1764
1765  // Check for simple case.
1766  if (!Literal->containsNonAsciiOrNull()) {
1767    StringLength = NumBytes;
1768    return Map.GetOrCreateValue(String);
1769  }
1770
1771  // Otherwise, convert the UTF8 literals into a byte string.
1772  SmallVector<UTF16, 128> ToBuf(NumBytes);
1773  const UTF8 *FromPtr = (UTF8 *)String.data();
1774  UTF16 *ToPtr = &ToBuf[0];
1775
1776  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1777                           &ToPtr, ToPtr + NumBytes,
1778                           strictConversion);
1779
1780  // ConvertUTF8toUTF16 returns the length in ToPtr.
1781  StringLength = ToPtr - &ToBuf[0];
1782
1783  // Render the UTF-16 string into a byte array and convert to the target byte
1784  // order.
1785  //
1786  // FIXME: This isn't something we should need to do here.
1787  SmallString<128> AsBytes;
1788  AsBytes.reserve(StringLength * 2);
1789  for (unsigned i = 0; i != StringLength; ++i) {
1790    unsigned short Val = ToBuf[i];
1791    if (TargetIsLSB) {
1792      AsBytes.push_back(Val & 0xFF);
1793      AsBytes.push_back(Val >> 8);
1794    } else {
1795      AsBytes.push_back(Val >> 8);
1796      AsBytes.push_back(Val & 0xFF);
1797    }
1798  }
1799  // Append one extra null character, the second is automatically added by our
1800  // caller.
1801  AsBytes.push_back(0);
1802
1803  IsUTF16 = true;
1804  return Map.GetOrCreateValue(StringRef(AsBytes.data(), AsBytes.size()));
1805}
1806
1807static llvm::StringMapEntry<llvm::Constant*> &
1808GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1809		       const StringLiteral *Literal,
1810		       unsigned &StringLength)
1811{
1812	StringRef String = Literal->getString();
1813	StringLength = String.size();
1814	return Map.GetOrCreateValue(String);
1815}
1816
1817llvm::Constant *
1818CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1819  unsigned StringLength = 0;
1820  bool isUTF16 = false;
1821  llvm::StringMapEntry<llvm::Constant*> &Entry =
1822    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1823                             getTargetData().isLittleEndian(),
1824                             isUTF16, StringLength);
1825
1826  if (llvm::Constant *C = Entry.getValue())
1827    return C;
1828
1829  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
1830  llvm::Constant *Zeros[] = { Zero, Zero };
1831
1832  // If we don't already have it, get __CFConstantStringClassReference.
1833  if (!CFConstantStringClassRef) {
1834    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1835    Ty = llvm::ArrayType::get(Ty, 0);
1836    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1837                                           "__CFConstantStringClassReference");
1838    // Decay array -> ptr
1839    CFConstantStringClassRef =
1840      llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1841  }
1842
1843  QualType CFTy = getContext().getCFConstantStringType();
1844
1845  llvm::StructType *STy =
1846    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1847
1848  llvm::Constant *Fields[4];
1849
1850  // Class pointer.
1851  Fields[0] = CFConstantStringClassRef;
1852
1853  // Flags.
1854  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1855  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1856    llvm::ConstantInt::get(Ty, 0x07C8);
1857
1858  // String pointer.
1859  llvm::Constant *C = llvm::ConstantDataArray::getString(VMContext,
1860                                                         Entry.getKey());
1861
1862  llvm::GlobalValue::LinkageTypes Linkage;
1863  if (isUTF16)
1864    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1865    Linkage = llvm::GlobalValue::InternalLinkage;
1866  else
1867    // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1868    // when using private linkage. It is not clear if this is a bug in ld
1869    // or a reasonable new restriction.
1870    Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1871
1872  // Note: -fwritable-strings doesn't make the backing store strings of
1873  // CFStrings writable. (See <rdar://problem/10657500>)
1874  llvm::GlobalVariable *GV =
1875    new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
1876                             Linkage, C, ".str");
1877  GV->setUnnamedAddr(true);
1878  if (isUTF16) {
1879    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1880    GV->setAlignment(Align.getQuantity());
1881  } else {
1882    CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1883    GV->setAlignment(Align.getQuantity());
1884  }
1885  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1886
1887  // String length.
1888  Ty = getTypes().ConvertType(getContext().LongTy);
1889  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1890
1891  // The struct.
1892  C = llvm::ConstantStruct::get(STy, Fields);
1893  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1894                                llvm::GlobalVariable::PrivateLinkage, C,
1895                                "_unnamed_cfstring_");
1896  if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
1897    GV->setSection(Sect);
1898  Entry.setValue(GV);
1899
1900  return GV;
1901}
1902
1903static RecordDecl *
1904CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
1905                 DeclContext *DC, IdentifierInfo *Id) {
1906  SourceLocation Loc;
1907  if (Ctx.getLangOptions().CPlusPlus)
1908    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
1909  else
1910    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
1911}
1912
1913llvm::Constant *
1914CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1915  unsigned StringLength = 0;
1916  llvm::StringMapEntry<llvm::Constant*> &Entry =
1917    GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
1918
1919  if (llvm::Constant *C = Entry.getValue())
1920    return C;
1921
1922  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
1923  llvm::Constant *Zeros[] = { Zero, Zero };
1924
1925  // If we don't already have it, get _NSConstantStringClassReference.
1926  if (!ConstantStringClassRef) {
1927    std::string StringClass(getLangOptions().ObjCConstantStringClass);
1928    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1929    llvm::Constant *GV;
1930    if (Features.ObjCNonFragileABI) {
1931      std::string str =
1932        StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1933                            : "OBJC_CLASS_$_" + StringClass;
1934      GV = getObjCRuntime().GetClassGlobal(str);
1935      // Make sure the result is of the correct type.
1936      llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1937      ConstantStringClassRef =
1938        llvm::ConstantExpr::getBitCast(GV, PTy);
1939    } else {
1940      std::string str =
1941        StringClass.empty() ? "_NSConstantStringClassReference"
1942                            : "_" + StringClass + "ClassReference";
1943      llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
1944      GV = CreateRuntimeVariable(PTy, str);
1945      // Decay array -> ptr
1946      ConstantStringClassRef =
1947        llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
1948    }
1949  }
1950
1951  if (!NSConstantStringType) {
1952    // Construct the type for a constant NSString.
1953    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
1954                                     Context.getTranslationUnitDecl(),
1955                                   &Context.Idents.get("__builtin_NSString"));
1956    D->startDefinition();
1957
1958    QualType FieldTypes[3];
1959
1960    // const int *isa;
1961    FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
1962    // const char *str;
1963    FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
1964    // unsigned int length;
1965    FieldTypes[2] = Context.UnsignedIntTy;
1966
1967    // Create fields
1968    for (unsigned i = 0; i < 3; ++i) {
1969      FieldDecl *Field = FieldDecl::Create(Context, D,
1970                                           SourceLocation(),
1971                                           SourceLocation(), 0,
1972                                           FieldTypes[i], /*TInfo=*/0,
1973                                           /*BitWidth=*/0,
1974                                           /*Mutable=*/false,
1975                                           /*HasInit=*/false);
1976      Field->setAccess(AS_public);
1977      D->addDecl(Field);
1978    }
1979
1980    D->completeDefinition();
1981    QualType NSTy = Context.getTagDeclType(D);
1982    NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1983  }
1984
1985  llvm::Constant *Fields[3];
1986
1987  // Class pointer.
1988  Fields[0] = ConstantStringClassRef;
1989
1990  // String pointer.
1991  llvm::Constant *C =
1992    llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
1993
1994  llvm::GlobalValue::LinkageTypes Linkage;
1995  bool isConstant;
1996  Linkage = llvm::GlobalValue::PrivateLinkage;
1997  isConstant = !Features.WritableStrings;
1998
1999  llvm::GlobalVariable *GV =
2000  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2001                           ".str");
2002  GV->setUnnamedAddr(true);
2003  CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2004  GV->setAlignment(Align.getQuantity());
2005  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2006
2007  // String length.
2008  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2009  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2010
2011  // The struct.
2012  C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2013  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2014                                llvm::GlobalVariable::PrivateLinkage, C,
2015                                "_unnamed_nsstring_");
2016  // FIXME. Fix section.
2017  if (const char *Sect =
2018        Features.ObjCNonFragileABI
2019          ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2020          : getContext().getTargetInfo().getNSStringSection())
2021    GV->setSection(Sect);
2022  Entry.setValue(GV);
2023
2024  return GV;
2025}
2026
2027QualType CodeGenModule::getObjCFastEnumerationStateType() {
2028  if (ObjCFastEnumerationStateType.isNull()) {
2029    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2030                                     Context.getTranslationUnitDecl(),
2031                      &Context.Idents.get("__objcFastEnumerationState"));
2032    D->startDefinition();
2033
2034    QualType FieldTypes[] = {
2035      Context.UnsignedLongTy,
2036      Context.getPointerType(Context.getObjCIdType()),
2037      Context.getPointerType(Context.UnsignedLongTy),
2038      Context.getConstantArrayType(Context.UnsignedLongTy,
2039                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2040    };
2041
2042    for (size_t i = 0; i < 4; ++i) {
2043      FieldDecl *Field = FieldDecl::Create(Context,
2044                                           D,
2045                                           SourceLocation(),
2046                                           SourceLocation(), 0,
2047                                           FieldTypes[i], /*TInfo=*/0,
2048                                           /*BitWidth=*/0,
2049                                           /*Mutable=*/false,
2050                                           /*HasInit=*/false);
2051      Field->setAccess(AS_public);
2052      D->addDecl(Field);
2053    }
2054
2055    D->completeDefinition();
2056    ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2057  }
2058
2059  return ObjCFastEnumerationStateType;
2060}
2061
2062llvm::Constant *
2063CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2064  assert(!E->getType()->isPointerType() && "Strings are always arrays");
2065
2066  // Don't emit it as the address of the string, emit the string data itself
2067  // as an inline array.
2068  if (E->getCharByteWidth() == 1) {
2069    SmallString<64> Str(E->getString());
2070
2071    // Resize the string to the right size, which is indicated by its type.
2072    const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2073    Str.resize(CAT->getSize().getZExtValue());
2074    return llvm::ConstantDataArray::getString(VMContext, Str, false);
2075  }
2076
2077  llvm::ArrayType *AType =
2078    cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2079  llvm::Type *ElemTy = AType->getElementType();
2080  unsigned NumElements = AType->getNumElements();
2081
2082  // Wide strings have either 2-byte or 4-byte elements.
2083  if (ElemTy->getPrimitiveSizeInBits() == 16) {
2084    SmallVector<uint16_t, 32> Elements;
2085    Elements.reserve(NumElements);
2086
2087    for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2088      Elements.push_back(E->getCodeUnit(i));
2089    Elements.resize(NumElements);
2090    return llvm::ConstantDataArray::get(VMContext, Elements);
2091  }
2092
2093  assert(ElemTy->getPrimitiveSizeInBits() == 32);
2094  SmallVector<uint32_t, 32> Elements;
2095  Elements.reserve(NumElements);
2096
2097  for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2098    Elements.push_back(E->getCodeUnit(i));
2099  Elements.resize(NumElements);
2100  return llvm::ConstantDataArray::get(VMContext, Elements);
2101}
2102
2103/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2104/// constant array for the given string literal.
2105llvm::Constant *
2106CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2107  CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2108  if (S->isAscii() || S->isUTF8()) {
2109    SmallString<64> Str(S->getString());
2110
2111    // Resize the string to the right size, which is indicated by its type.
2112    const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2113    Str.resize(CAT->getSize().getZExtValue());
2114    return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2115  }
2116
2117  // FIXME: the following does not memoize wide strings.
2118  llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2119  llvm::GlobalVariable *GV =
2120    new llvm::GlobalVariable(getModule(),C->getType(),
2121                             !Features.WritableStrings,
2122                             llvm::GlobalValue::PrivateLinkage,
2123                             C,".str");
2124
2125  GV->setAlignment(Align.getQuantity());
2126  GV->setUnnamedAddr(true);
2127  return GV;
2128}
2129
2130/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2131/// array for the given ObjCEncodeExpr node.
2132llvm::Constant *
2133CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2134  std::string Str;
2135  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2136
2137  return GetAddrOfConstantCString(Str);
2138}
2139
2140
2141/// GenerateWritableString -- Creates storage for a string literal.
2142static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2143                                             bool constant,
2144                                             CodeGenModule &CGM,
2145                                             const char *GlobalName,
2146                                             unsigned Alignment) {
2147  // Create Constant for this string literal. Don't add a '\0'.
2148  llvm::Constant *C =
2149      llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2150
2151  // Create a global variable for this string
2152  llvm::GlobalVariable *GV =
2153    new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2154                             llvm::GlobalValue::PrivateLinkage,
2155                             C, GlobalName);
2156  GV->setAlignment(Alignment);
2157  GV->setUnnamedAddr(true);
2158  return GV;
2159}
2160
2161/// GetAddrOfConstantString - Returns a pointer to a character array
2162/// containing the literal. This contents are exactly that of the
2163/// given string, i.e. it will not be null terminated automatically;
2164/// see GetAddrOfConstantCString. Note that whether the result is
2165/// actually a pointer to an LLVM constant depends on
2166/// Feature.WriteableStrings.
2167///
2168/// The result has pointer to array type.
2169llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2170                                                       const char *GlobalName,
2171                                                       unsigned Alignment) {
2172  // Get the default prefix if a name wasn't specified.
2173  if (!GlobalName)
2174    GlobalName = ".str";
2175
2176  // Don't share any string literals if strings aren't constant.
2177  if (Features.WritableStrings)
2178    return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2179
2180  llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2181    ConstantStringMap.GetOrCreateValue(Str);
2182
2183  if (llvm::GlobalVariable *GV = Entry.getValue()) {
2184    if (Alignment > GV->getAlignment()) {
2185      GV->setAlignment(Alignment);
2186    }
2187    return GV;
2188  }
2189
2190  // Create a global variable for this.
2191  llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2192                                                   Alignment);
2193  Entry.setValue(GV);
2194  return GV;
2195}
2196
2197/// GetAddrOfConstantCString - Returns a pointer to a character
2198/// array containing the literal and a terminating '\0'
2199/// character. The result has pointer to array type.
2200llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2201                                                        const char *GlobalName,
2202                                                        unsigned Alignment) {
2203  StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2204  return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2205}
2206
2207/// EmitObjCPropertyImplementations - Emit information for synthesized
2208/// properties for an implementation.
2209void CodeGenModule::EmitObjCPropertyImplementations(const
2210                                                    ObjCImplementationDecl *D) {
2211  for (ObjCImplementationDecl::propimpl_iterator
2212         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2213    ObjCPropertyImplDecl *PID = *i;
2214
2215    // Dynamic is just for type-checking.
2216    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2217      ObjCPropertyDecl *PD = PID->getPropertyDecl();
2218
2219      // Determine which methods need to be implemented, some may have
2220      // been overridden. Note that ::isSynthesized is not the method
2221      // we want, that just indicates if the decl came from a
2222      // property. What we want to know is if the method is defined in
2223      // this implementation.
2224      if (!D->getInstanceMethod(PD->getGetterName()))
2225        CodeGenFunction(*this).GenerateObjCGetter(
2226                                 const_cast<ObjCImplementationDecl *>(D), PID);
2227      if (!PD->isReadOnly() &&
2228          !D->getInstanceMethod(PD->getSetterName()))
2229        CodeGenFunction(*this).GenerateObjCSetter(
2230                                 const_cast<ObjCImplementationDecl *>(D), PID);
2231    }
2232  }
2233}
2234
2235static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2236  const ObjCInterfaceDecl *iface = impl->getClassInterface();
2237  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2238       ivar; ivar = ivar->getNextIvar())
2239    if (ivar->getType().isDestructedType())
2240      return true;
2241
2242  return false;
2243}
2244
2245/// EmitObjCIvarInitializations - Emit information for ivar initialization
2246/// for an implementation.
2247void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2248  // We might need a .cxx_destruct even if we don't have any ivar initializers.
2249  if (needsDestructMethod(D)) {
2250    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2251    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2252    ObjCMethodDecl *DTORMethod =
2253      ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2254                             cxxSelector, getContext().VoidTy, 0, D,
2255                             /*isInstance=*/true, /*isVariadic=*/false,
2256                          /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
2257                             /*isDefined=*/false, ObjCMethodDecl::Required);
2258    D->addInstanceMethod(DTORMethod);
2259    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2260    D->setHasCXXStructors(true);
2261  }
2262
2263  // If the implementation doesn't have any ivar initializers, we don't need
2264  // a .cxx_construct.
2265  if (D->getNumIvarInitializers() == 0)
2266    return;
2267
2268  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2269  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2270  // The constructor returns 'self'.
2271  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2272                                                D->getLocation(),
2273                                                D->getLocation(),
2274                                                cxxSelector,
2275                                                getContext().getObjCIdType(), 0,
2276                                                D, /*isInstance=*/true,
2277                                                /*isVariadic=*/false,
2278                                                /*isSynthesized=*/true,
2279                                                /*isImplicitlyDeclared=*/true,
2280                                                /*isDefined=*/false,
2281                                                ObjCMethodDecl::Required);
2282  D->addInstanceMethod(CTORMethod);
2283  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2284  D->setHasCXXStructors(true);
2285}
2286
2287/// EmitNamespace - Emit all declarations in a namespace.
2288void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2289  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2290       I != E; ++I)
2291    EmitTopLevelDecl(*I);
2292}
2293
2294// EmitLinkageSpec - Emit all declarations in a linkage spec.
2295void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2296  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2297      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2298    ErrorUnsupported(LSD, "linkage spec");
2299    return;
2300  }
2301
2302  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2303       I != E; ++I)
2304    EmitTopLevelDecl(*I);
2305}
2306
2307/// EmitTopLevelDecl - Emit code for a single top level declaration.
2308void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2309  // If an error has occurred, stop code generation, but continue
2310  // parsing and semantic analysis (to ensure all warnings and errors
2311  // are emitted).
2312  if (Diags.hasErrorOccurred())
2313    return;
2314
2315  // Ignore dependent declarations.
2316  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2317    return;
2318
2319  switch (D->getKind()) {
2320  case Decl::CXXConversion:
2321  case Decl::CXXMethod:
2322  case Decl::Function:
2323    // Skip function templates
2324    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2325        cast<FunctionDecl>(D)->isLateTemplateParsed())
2326      return;
2327
2328    EmitGlobal(cast<FunctionDecl>(D));
2329    break;
2330
2331  case Decl::Var:
2332    EmitGlobal(cast<VarDecl>(D));
2333    break;
2334
2335  // Indirect fields from global anonymous structs and unions can be
2336  // ignored; only the actual variable requires IR gen support.
2337  case Decl::IndirectField:
2338    break;
2339
2340  // C++ Decls
2341  case Decl::Namespace:
2342    EmitNamespace(cast<NamespaceDecl>(D));
2343    break;
2344    // No code generation needed.
2345  case Decl::UsingShadow:
2346  case Decl::Using:
2347  case Decl::UsingDirective:
2348  case Decl::ClassTemplate:
2349  case Decl::FunctionTemplate:
2350  case Decl::TypeAliasTemplate:
2351  case Decl::NamespaceAlias:
2352  case Decl::Block:
2353  case Decl::Import:
2354    break;
2355  case Decl::CXXConstructor:
2356    // Skip function templates
2357    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2358        cast<FunctionDecl>(D)->isLateTemplateParsed())
2359      return;
2360
2361    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2362    break;
2363  case Decl::CXXDestructor:
2364    if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2365      return;
2366    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2367    break;
2368
2369  case Decl::StaticAssert:
2370    // Nothing to do.
2371    break;
2372
2373  // Objective-C Decls
2374
2375  // Forward declarations, no (immediate) code generation.
2376  case Decl::ObjCInterface:
2377    break;
2378
2379  case Decl::ObjCCategory: {
2380    ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2381    if (CD->IsClassExtension() && CD->hasSynthBitfield())
2382      Context.ResetObjCLayout(CD->getClassInterface());
2383    break;
2384  }
2385
2386  case Decl::ObjCProtocol: {
2387    ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2388    if (Proto->isThisDeclarationADefinition())
2389      ObjCRuntime->GenerateProtocol(Proto);
2390    break;
2391  }
2392
2393  case Decl::ObjCCategoryImpl:
2394    // Categories have properties but don't support synthesize so we
2395    // can ignore them here.
2396    ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2397    break;
2398
2399  case Decl::ObjCImplementation: {
2400    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2401    if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2402      Context.ResetObjCLayout(OMD->getClassInterface());
2403    EmitObjCPropertyImplementations(OMD);
2404    EmitObjCIvarInitializations(OMD);
2405    ObjCRuntime->GenerateClass(OMD);
2406    break;
2407  }
2408  case Decl::ObjCMethod: {
2409    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2410    // If this is not a prototype, emit the body.
2411    if (OMD->getBody())
2412      CodeGenFunction(*this).GenerateObjCMethod(OMD);
2413    break;
2414  }
2415  case Decl::ObjCCompatibleAlias:
2416    ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2417    break;
2418
2419  case Decl::LinkageSpec:
2420    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2421    break;
2422
2423  case Decl::FileScopeAsm: {
2424    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2425    StringRef AsmString = AD->getAsmString()->getString();
2426
2427    const std::string &S = getModule().getModuleInlineAsm();
2428    if (S.empty())
2429      getModule().setModuleInlineAsm(AsmString);
2430    else if (*--S.end() == '\n')
2431      getModule().setModuleInlineAsm(S + AsmString.str());
2432    else
2433      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2434    break;
2435  }
2436
2437  default:
2438    // Make sure we handled everything we should, every other kind is a
2439    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2440    // function. Need to recode Decl::Kind to do that easily.
2441    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2442  }
2443}
2444
2445/// Turns the given pointer into a constant.
2446static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2447                                          const void *Ptr) {
2448  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2449  llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2450  return llvm::ConstantInt::get(i64, PtrInt);
2451}
2452
2453static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2454                                   llvm::NamedMDNode *&GlobalMetadata,
2455                                   GlobalDecl D,
2456                                   llvm::GlobalValue *Addr) {
2457  if (!GlobalMetadata)
2458    GlobalMetadata =
2459      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2460
2461  // TODO: should we report variant information for ctors/dtors?
2462  llvm::Value *Ops[] = {
2463    Addr,
2464    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2465  };
2466  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2467}
2468
2469/// Emits metadata nodes associating all the global values in the
2470/// current module with the Decls they came from.  This is useful for
2471/// projects using IR gen as a subroutine.
2472///
2473/// Since there's currently no way to associate an MDNode directly
2474/// with an llvm::GlobalValue, we create a global named metadata
2475/// with the name 'clang.global.decl.ptrs'.
2476void CodeGenModule::EmitDeclMetadata() {
2477  llvm::NamedMDNode *GlobalMetadata = 0;
2478
2479  // StaticLocalDeclMap
2480  for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2481         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2482       I != E; ++I) {
2483    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2484    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2485  }
2486}
2487
2488/// Emits metadata nodes for all the local variables in the current
2489/// function.
2490void CodeGenFunction::EmitDeclMetadata() {
2491  if (LocalDeclMap.empty()) return;
2492
2493  llvm::LLVMContext &Context = getLLVMContext();
2494
2495  // Find the unique metadata ID for this name.
2496  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2497
2498  llvm::NamedMDNode *GlobalMetadata = 0;
2499
2500  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2501         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2502    const Decl *D = I->first;
2503    llvm::Value *Addr = I->second;
2504
2505    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2506      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2507      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2508    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2509      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2510      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2511    }
2512  }
2513}
2514
2515void CodeGenModule::EmitCoverageFile() {
2516  if (!getCodeGenOpts().CoverageFile.empty()) {
2517    if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2518      llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2519      llvm::LLVMContext &Ctx = TheModule.getContext();
2520      llvm::MDString *CoverageFile =
2521          llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2522      for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2523        llvm::MDNode *CU = CUNode->getOperand(i);
2524        llvm::Value *node[] = { CoverageFile, CU };
2525        llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2526        GCov->addOperand(N);
2527      }
2528    }
2529  }
2530}
2531