CodeGenModule.cpp revision b2bcf1c176b200b36f371e189ce22f93c86cdf45
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CGCall.h"
18#include "CGObjCRuntime.h"
19#include "Mangle.h"
20#include "TargetInfo.h"
21#include "clang/CodeGen/CodeGenOptions.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/RecordLayout.h"
27#include "clang/Basic/Builtins.h"
28#include "clang/Basic/Diagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Basic/ConvertUTF.h"
32#include "llvm/CallingConv.h"
33#include "llvm/Module.h"
34#include "llvm/Intrinsics.h"
35#include "llvm/LLVMContext.h"
36#include "llvm/Target/TargetData.h"
37#include "llvm/Support/ErrorHandling.h"
38using namespace clang;
39using namespace CodeGen;
40
41
42CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
43                             llvm::Module &M, const llvm::TargetData &TD,
44                             Diagnostic &diags)
45  : BlockModule(C, M, TD, Types, *this), Context(C),
46    Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
47    TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
48    Types(C, M, TD, getTargetCodeGenInfo().getABIInfo()),
49    MangleCtx(C), VtableInfo(*this), Runtime(0),
50    MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0),
51    VMContext(M.getContext()) {
52
53  if (!Features.ObjC1)
54    Runtime = 0;
55  else if (!Features.NeXTRuntime)
56    Runtime = CreateGNUObjCRuntime(*this);
57  else if (Features.ObjCNonFragileABI)
58    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
59  else
60    Runtime = CreateMacObjCRuntime(*this);
61
62  // If debug info generation is enabled, create the CGDebugInfo object.
63  DebugInfo = CodeGenOpts.DebugInfo ? new CGDebugInfo(*this) : 0;
64}
65
66CodeGenModule::~CodeGenModule() {
67  delete Runtime;
68  delete DebugInfo;
69}
70
71void CodeGenModule::createObjCRuntime() {
72  if (!Features.NeXTRuntime)
73    Runtime = CreateGNUObjCRuntime(*this);
74  else if (Features.ObjCNonFragileABI)
75    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
76  else
77    Runtime = CreateMacObjCRuntime(*this);
78}
79
80void CodeGenModule::Release() {
81  EmitDeferred();
82  EmitCXXGlobalInitFunc();
83  if (Runtime)
84    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
85      AddGlobalCtor(ObjCInitFunction);
86  EmitCtorList(GlobalCtors, "llvm.global_ctors");
87  EmitCtorList(GlobalDtors, "llvm.global_dtors");
88  EmitAnnotations();
89  EmitLLVMUsed();
90}
91
92/// ErrorUnsupported - Print out an error that codegen doesn't support the
93/// specified stmt yet.
94void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
95                                     bool OmitOnError) {
96  if (OmitOnError && getDiags().hasErrorOccurred())
97    return;
98  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
99                                               "cannot compile this %0 yet");
100  std::string Msg = Type;
101  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
102    << Msg << S->getSourceRange();
103}
104
105/// ErrorUnsupported - Print out an error that codegen doesn't support the
106/// specified decl yet.
107void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
108                                     bool OmitOnError) {
109  if (OmitOnError && getDiags().hasErrorOccurred())
110    return;
111  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
112                                               "cannot compile this %0 yet");
113  std::string Msg = Type;
114  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
115}
116
117LangOptions::VisibilityMode
118CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
119  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
120    if (VD->getStorageClass() == VarDecl::PrivateExtern)
121      return LangOptions::Hidden;
122
123  if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
124    switch (attr->getVisibility()) {
125    default: assert(0 && "Unknown visibility!");
126    case VisibilityAttr::DefaultVisibility:
127      return LangOptions::Default;
128    case VisibilityAttr::HiddenVisibility:
129      return LangOptions::Hidden;
130    case VisibilityAttr::ProtectedVisibility:
131      return LangOptions::Protected;
132    }
133  }
134
135  return getLangOptions().getVisibilityMode();
136}
137
138void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
139                                        const Decl *D) const {
140  // Internal definitions always have default visibility.
141  if (GV->hasLocalLinkage()) {
142    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
143    return;
144  }
145
146  switch (getDeclVisibilityMode(D)) {
147  default: assert(0 && "Unknown visibility!");
148  case LangOptions::Default:
149    return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
150  case LangOptions::Hidden:
151    return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
152  case LangOptions::Protected:
153    return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
154  }
155}
156
157const char *CodeGenModule::getMangledName(const GlobalDecl &GD) {
158  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
159
160  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
161    return getMangledCXXCtorName(D, GD.getCtorType());
162  if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
163    return getMangledCXXDtorName(D, GD.getDtorType());
164
165  return getMangledName(ND);
166}
167
168/// \brief Retrieves the mangled name for the given declaration.
169///
170/// If the given declaration requires a mangled name, returns an
171/// const char* containing the mangled name.  Otherwise, returns
172/// the unmangled name.
173///
174const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
175  if (!getMangleContext().shouldMangleDeclName(ND)) {
176    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
177    return ND->getNameAsCString();
178  }
179
180  llvm::SmallString<256> Name;
181  getMangleContext().mangleName(ND, Name);
182  Name += '\0';
183  return UniqueMangledName(Name.begin(), Name.end());
184}
185
186const char *CodeGenModule::UniqueMangledName(const char *NameStart,
187                                             const char *NameEnd) {
188  assert(*(NameEnd - 1) == '\0' && "Mangled name must be null terminated!");
189
190  return MangledNames.GetOrCreateValue(NameStart, NameEnd).getKeyData();
191}
192
193/// AddGlobalCtor - Add a function to the list that will be called before
194/// main() runs.
195void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
196  // FIXME: Type coercion of void()* types.
197  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
198}
199
200/// AddGlobalDtor - Add a function to the list that will be called
201/// when the module is unloaded.
202void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
203  // FIXME: Type coercion of void()* types.
204  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
205}
206
207void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
208  // Ctor function type is void()*.
209  llvm::FunctionType* CtorFTy =
210    llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
211                            std::vector<const llvm::Type*>(),
212                            false);
213  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
214
215  // Get the type of a ctor entry, { i32, void ()* }.
216  llvm::StructType* CtorStructTy =
217    llvm::StructType::get(VMContext, llvm::Type::getInt32Ty(VMContext),
218                          llvm::PointerType::getUnqual(CtorFTy), NULL);
219
220  // Construct the constructor and destructor arrays.
221  std::vector<llvm::Constant*> Ctors;
222  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
223    std::vector<llvm::Constant*> S;
224    S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
225                I->second, false));
226    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
227    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
228  }
229
230  if (!Ctors.empty()) {
231    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
232    new llvm::GlobalVariable(TheModule, AT, false,
233                             llvm::GlobalValue::AppendingLinkage,
234                             llvm::ConstantArray::get(AT, Ctors),
235                             GlobalName);
236  }
237}
238
239void CodeGenModule::EmitAnnotations() {
240  if (Annotations.empty())
241    return;
242
243  // Create a new global variable for the ConstantStruct in the Module.
244  llvm::Constant *Array =
245  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
246                                                Annotations.size()),
247                           Annotations);
248  llvm::GlobalValue *gv =
249  new llvm::GlobalVariable(TheModule, Array->getType(), false,
250                           llvm::GlobalValue::AppendingLinkage, Array,
251                           "llvm.global.annotations");
252  gv->setSection("llvm.metadata");
253}
254
255static CodeGenModule::GVALinkage
256GetLinkageForFunction(ASTContext &Context, const FunctionDecl *FD,
257                      const LangOptions &Features) {
258  CodeGenModule::GVALinkage External = CodeGenModule::GVA_StrongExternal;
259
260  Linkage L = FD->getLinkage();
261  if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
262      FD->getType()->getLinkage() == UniqueExternalLinkage)
263    L = UniqueExternalLinkage;
264
265  switch (L) {
266  case NoLinkage:
267  case InternalLinkage:
268  case UniqueExternalLinkage:
269    return CodeGenModule::GVA_Internal;
270
271  case ExternalLinkage:
272    switch (FD->getTemplateSpecializationKind()) {
273    case TSK_Undeclared:
274    case TSK_ExplicitSpecialization:
275      External = CodeGenModule::GVA_StrongExternal;
276      break;
277
278    case TSK_ExplicitInstantiationDefinition:
279      // FIXME: explicit instantiation definitions should use weak linkage
280      return CodeGenModule::GVA_StrongExternal;
281
282    case TSK_ExplicitInstantiationDeclaration:
283    case TSK_ImplicitInstantiation:
284      External = CodeGenModule::GVA_TemplateInstantiation;
285      break;
286    }
287  }
288
289  if (!FD->isInlined())
290    return External;
291
292  if (!Features.CPlusPlus || FD->hasAttr<GNUInlineAttr>()) {
293    // GNU or C99 inline semantics. Determine whether this symbol should be
294    // externally visible.
295    if (FD->isInlineDefinitionExternallyVisible())
296      return External;
297
298    // C99 inline semantics, where the symbol is not externally visible.
299    return CodeGenModule::GVA_C99Inline;
300  }
301
302  // C++0x [temp.explicit]p9:
303  //   [ Note: The intent is that an inline function that is the subject of
304  //   an explicit instantiation declaration will still be implicitly
305  //   instantiated when used so that the body can be considered for
306  //   inlining, but that no out-of-line copy of the inline function would be
307  //   generated in the translation unit. -- end note ]
308  if (FD->getTemplateSpecializationKind()
309                                       == TSK_ExplicitInstantiationDeclaration)
310    return CodeGenModule::GVA_C99Inline;
311
312  return CodeGenModule::GVA_CXXInline;
313}
314
315/// SetFunctionDefinitionAttributes - Set attributes for a global.
316///
317/// FIXME: This is currently only done for aliases and functions, but not for
318/// variables (these details are set in EmitGlobalVarDefinition for variables).
319void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
320                                                    llvm::GlobalValue *GV) {
321  GVALinkage Linkage = GetLinkageForFunction(getContext(), D, Features);
322
323  if (Linkage == GVA_Internal) {
324    GV->setLinkage(llvm::Function::InternalLinkage);
325  } else if (D->hasAttr<DLLExportAttr>()) {
326    GV->setLinkage(llvm::Function::DLLExportLinkage);
327  } else if (D->hasAttr<WeakAttr>()) {
328    GV->setLinkage(llvm::Function::WeakAnyLinkage);
329  } else if (Linkage == GVA_C99Inline) {
330    // In C99 mode, 'inline' functions are guaranteed to have a strong
331    // definition somewhere else, so we can use available_externally linkage.
332    GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
333  } else if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation) {
334    // In C++, the compiler has to emit a definition in every translation unit
335    // that references the function.  We should use linkonce_odr because
336    // a) if all references in this translation unit are optimized away, we
337    // don't need to codegen it.  b) if the function persists, it needs to be
338    // merged with other definitions. c) C++ has the ODR, so we know the
339    // definition is dependable.
340    GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
341  } else {
342    assert(Linkage == GVA_StrongExternal);
343    // Otherwise, we have strong external linkage.
344    GV->setLinkage(llvm::Function::ExternalLinkage);
345  }
346
347  SetCommonAttributes(D, GV);
348}
349
350void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
351                                              const CGFunctionInfo &Info,
352                                              llvm::Function *F) {
353  unsigned CallingConv;
354  AttributeListType AttributeList;
355  ConstructAttributeList(Info, D, AttributeList, CallingConv);
356  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
357                                          AttributeList.size()));
358  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
359}
360
361void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
362                                                           llvm::Function *F) {
363  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
364    F->addFnAttr(llvm::Attribute::NoUnwind);
365
366  if (D->hasAttr<AlwaysInlineAttr>())
367    F->addFnAttr(llvm::Attribute::AlwaysInline);
368
369  if (D->hasAttr<NoInlineAttr>())
370    F->addFnAttr(llvm::Attribute::NoInline);
371
372  if (Features.getStackProtectorMode() == LangOptions::SSPOn)
373    F->addFnAttr(llvm::Attribute::StackProtect);
374  else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
375    F->addFnAttr(llvm::Attribute::StackProtectReq);
376
377  if (const AlignedAttr *AA = D->getAttr<AlignedAttr>()) {
378    unsigned width = Context.Target.getCharWidth();
379    F->setAlignment(AA->getAlignment() / width);
380    while ((AA = AA->getNext<AlignedAttr>()))
381      F->setAlignment(std::max(F->getAlignment(), AA->getAlignment() / width));
382  }
383  // C++ ABI requires 2-byte alignment for member functions.
384  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
385    F->setAlignment(2);
386}
387
388void CodeGenModule::SetCommonAttributes(const Decl *D,
389                                        llvm::GlobalValue *GV) {
390  setGlobalVisibility(GV, D);
391
392  if (D->hasAttr<UsedAttr>())
393    AddUsedGlobal(GV);
394
395  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
396    GV->setSection(SA->getName());
397
398  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
399}
400
401void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
402                                                  llvm::Function *F,
403                                                  const CGFunctionInfo &FI) {
404  SetLLVMFunctionAttributes(D, FI, F);
405  SetLLVMFunctionAttributesForDefinition(D, F);
406
407  F->setLinkage(llvm::Function::InternalLinkage);
408
409  SetCommonAttributes(D, F);
410}
411
412void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
413                                          llvm::Function *F,
414                                          bool IsIncompleteFunction) {
415  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
416
417  if (!IsIncompleteFunction)
418    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
419
420  // Only a few attributes are set on declarations; these may later be
421  // overridden by a definition.
422
423  if (FD->hasAttr<DLLImportAttr>()) {
424    F->setLinkage(llvm::Function::DLLImportLinkage);
425  } else if (FD->hasAttr<WeakAttr>() ||
426             FD->hasAttr<WeakImportAttr>()) {
427    // "extern_weak" is overloaded in LLVM; we probably should have
428    // separate linkage types for this.
429    F->setLinkage(llvm::Function::ExternalWeakLinkage);
430  } else {
431    F->setLinkage(llvm::Function::ExternalLinkage);
432  }
433
434  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
435    F->setSection(SA->getName());
436}
437
438void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
439  assert(!GV->isDeclaration() &&
440         "Only globals with definition can force usage.");
441  LLVMUsed.push_back(GV);
442}
443
444void CodeGenModule::EmitLLVMUsed() {
445  // Don't create llvm.used if there is no need.
446  if (LLVMUsed.empty())
447    return;
448
449  const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
450
451  // Convert LLVMUsed to what ConstantArray needs.
452  std::vector<llvm::Constant*> UsedArray;
453  UsedArray.resize(LLVMUsed.size());
454  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
455    UsedArray[i] =
456     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
457                                      i8PTy);
458  }
459
460  if (UsedArray.empty())
461    return;
462  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
463
464  llvm::GlobalVariable *GV =
465    new llvm::GlobalVariable(getModule(), ATy, false,
466                             llvm::GlobalValue::AppendingLinkage,
467                             llvm::ConstantArray::get(ATy, UsedArray),
468                             "llvm.used");
469
470  GV->setSection("llvm.metadata");
471}
472
473void CodeGenModule::EmitDeferred() {
474  // Emit code for any potentially referenced deferred decls.  Since a
475  // previously unused static decl may become used during the generation of code
476  // for a static function, iterate until no  changes are made.
477  while (!DeferredDeclsToEmit.empty()) {
478    GlobalDecl D = DeferredDeclsToEmit.back();
479    DeferredDeclsToEmit.pop_back();
480
481    // The mangled name for the decl must have been emitted in GlobalDeclMap.
482    // Look it up to see if it was defined with a stronger definition (e.g. an
483    // extern inline function with a strong function redefinition).  If so,
484    // just ignore the deferred decl.
485    llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
486    assert(CGRef && "Deferred decl wasn't referenced?");
487
488    if (!CGRef->isDeclaration())
489      continue;
490
491    // Otherwise, emit the definition and move on to the next one.
492    EmitGlobalDefinition(D);
493  }
494}
495
496/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
497/// annotation information for a given GlobalValue.  The annotation struct is
498/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
499/// GlobalValue being annotated.  The second field is the constant string
500/// created from the AnnotateAttr's annotation.  The third field is a constant
501/// string containing the name of the translation unit.  The fourth field is
502/// the line number in the file of the annotated value declaration.
503///
504/// FIXME: this does not unique the annotation string constants, as llvm-gcc
505///        appears to.
506///
507llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
508                                                const AnnotateAttr *AA,
509                                                unsigned LineNo) {
510  llvm::Module *M = &getModule();
511
512  // get [N x i8] constants for the annotation string, and the filename string
513  // which are the 2nd and 3rd elements of the global annotation structure.
514  const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
515  llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
516                                                  AA->getAnnotation(), true);
517  llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
518                                                  M->getModuleIdentifier(),
519                                                  true);
520
521  // Get the two global values corresponding to the ConstantArrays we just
522  // created to hold the bytes of the strings.
523  llvm::GlobalValue *annoGV =
524    new llvm::GlobalVariable(*M, anno->getType(), false,
525                             llvm::GlobalValue::PrivateLinkage, anno,
526                             GV->getName());
527  // translation unit name string, emitted into the llvm.metadata section.
528  llvm::GlobalValue *unitGV =
529    new llvm::GlobalVariable(*M, unit->getType(), false,
530                             llvm::GlobalValue::PrivateLinkage, unit,
531                             ".str");
532
533  // Create the ConstantStruct for the global annotation.
534  llvm::Constant *Fields[4] = {
535    llvm::ConstantExpr::getBitCast(GV, SBP),
536    llvm::ConstantExpr::getBitCast(annoGV, SBP),
537    llvm::ConstantExpr::getBitCast(unitGV, SBP),
538    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
539  };
540  return llvm::ConstantStruct::get(VMContext, Fields, 4, false);
541}
542
543bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
544  // Never defer when EmitAllDecls is specified or the decl has
545  // attribute used.
546  if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
547    return false;
548
549  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
550    // Constructors and destructors should never be deferred.
551    if (FD->hasAttr<ConstructorAttr>() ||
552        FD->hasAttr<DestructorAttr>())
553      return false;
554
555    // The key function for a class must never be deferred.
556    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Global)) {
557      const CXXRecordDecl *RD = MD->getParent();
558      if (MD->isOutOfLine() && RD->isDynamicClass()) {
559        const CXXMethodDecl *KeyFunction = getContext().getKeyFunction(RD);
560        if (KeyFunction &&
561            KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
562          return false;
563      }
564    }
565
566    GVALinkage Linkage = GetLinkageForFunction(getContext(), FD, Features);
567
568    // static, static inline, always_inline, and extern inline functions can
569    // always be deferred.  Normal inline functions can be deferred in C99/C++.
570    if (Linkage == GVA_Internal || Linkage == GVA_C99Inline ||
571        Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
572      return true;
573    return false;
574  }
575
576  const VarDecl *VD = cast<VarDecl>(Global);
577  assert(VD->isFileVarDecl() && "Invalid decl");
578
579  // We never want to defer structs that have non-trivial constructors or
580  // destructors.
581
582  // FIXME: Handle references.
583  if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
584    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
585      if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
586        return false;
587    }
588  }
589
590  // Static data may be deferred, but out-of-line static data members
591  // cannot be.
592  Linkage L = VD->getLinkage();
593  if (L == ExternalLinkage && getContext().getLangOptions().CPlusPlus &&
594      VD->getType()->getLinkage() == UniqueExternalLinkage)
595    L = UniqueExternalLinkage;
596
597  switch (L) {
598  case NoLinkage:
599  case InternalLinkage:
600  case UniqueExternalLinkage:
601    // Initializer has side effects?
602    if (VD->getInit() && VD->getInit()->HasSideEffects(Context))
603      return false;
604    return !(VD->isStaticDataMember() && VD->isOutOfLine());
605
606  case ExternalLinkage:
607    break;
608  }
609
610  return false;
611}
612
613void CodeGenModule::EmitGlobal(GlobalDecl GD) {
614  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
615
616  // If this is an alias definition (which otherwise looks like a declaration)
617  // emit it now.
618  if (Global->hasAttr<AliasAttr>())
619    return EmitAliasDefinition(Global);
620
621  // Ignore declarations, they will be emitted on their first use.
622  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
623    // Forward declarations are emitted lazily on first use.
624    if (!FD->isThisDeclarationADefinition())
625      return;
626  } else {
627    const VarDecl *VD = cast<VarDecl>(Global);
628    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
629
630    if (getLangOptions().CPlusPlus && !VD->getInit()) {
631      // In C++, if this is marked "extern", defer code generation.
632      if (VD->getStorageClass() == VarDecl::Extern || VD->isExternC())
633        return;
634
635      // If this is a declaration of an explicit specialization of a static
636      // data member in a class template, don't emit it.
637      if (VD->isStaticDataMember() &&
638          VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
639        return;
640    }
641
642    // In C, if this isn't a definition, defer code generation.
643    if (!getLangOptions().CPlusPlus && !VD->getInit())
644      return;
645  }
646
647  // Defer code generation when possible if this is a static definition, inline
648  // function etc.  These we only want to emit if they are used.
649  if (MayDeferGeneration(Global)) {
650    // If the value has already been used, add it directly to the
651    // DeferredDeclsToEmit list.
652    const char *MangledName = getMangledName(GD);
653    if (GlobalDeclMap.count(MangledName))
654      DeferredDeclsToEmit.push_back(GD);
655    else {
656      // Otherwise, remember that we saw a deferred decl with this name.  The
657      // first use of the mangled name will cause it to move into
658      // DeferredDeclsToEmit.
659      DeferredDecls[MangledName] = GD;
660    }
661    return;
662  }
663
664  // Otherwise emit the definition.
665  EmitGlobalDefinition(GD);
666}
667
668void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
669  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
670
671  PrettyStackTraceDecl CrashInfo((ValueDecl *)D, D->getLocation(),
672                                 Context.getSourceManager(),
673                                 "Generating code for declaration");
674
675  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
676    getVtableInfo().MaybeEmitVtable(GD);
677    if (MD->isVirtual() && MD->isOutOfLine() &&
678        (!isa<CXXDestructorDecl>(D) || GD.getDtorType() != Dtor_Base)) {
679      if (isa<CXXDestructorDecl>(D)) {
680        GlobalDecl CanonGD(cast<CXXDestructorDecl>(D->getCanonicalDecl()),
681                           GD.getDtorType());
682        BuildThunksForVirtual(CanonGD);
683      } else {
684        BuildThunksForVirtual(MD->getCanonicalDecl());
685      }
686    }
687  }
688
689  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
690    EmitCXXConstructor(CD, GD.getCtorType());
691  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
692    EmitCXXDestructor(DD, GD.getDtorType());
693  else if (isa<FunctionDecl>(D))
694    EmitGlobalFunctionDefinition(GD);
695  else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
696    EmitGlobalVarDefinition(VD);
697  else {
698    assert(0 && "Invalid argument to EmitGlobalDefinition()");
699  }
700}
701
702/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
703/// module, create and return an llvm Function with the specified type. If there
704/// is something in the module with the specified name, return it potentially
705/// bitcasted to the right type.
706///
707/// If D is non-null, it specifies a decl that correspond to this.  This is used
708/// to set the attributes on the function when it is first created.
709llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
710                                                       const llvm::Type *Ty,
711                                                       GlobalDecl D) {
712  // Lookup the entry, lazily creating it if necessary.
713  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
714  if (Entry) {
715    if (Entry->getType()->getElementType() == Ty)
716      return Entry;
717
718    // Make sure the result is of the correct type.
719    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
720    return llvm::ConstantExpr::getBitCast(Entry, PTy);
721  }
722
723  // This function doesn't have a complete type (for example, the return
724  // type is an incomplete struct). Use a fake type instead, and make
725  // sure not to try to set attributes.
726  bool IsIncompleteFunction = false;
727  if (!isa<llvm::FunctionType>(Ty)) {
728    Ty = llvm::FunctionType::get(llvm::Type::getVoidTy(VMContext),
729                                 std::vector<const llvm::Type*>(), false);
730    IsIncompleteFunction = true;
731  }
732  llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
733                                             llvm::Function::ExternalLinkage,
734                                             "", &getModule());
735  F->setName(MangledName);
736  if (D.getDecl())
737    SetFunctionAttributes(D, F, IsIncompleteFunction);
738  Entry = F;
739
740  // This is the first use or definition of a mangled name.  If there is a
741  // deferred decl with this name, remember that we need to emit it at the end
742  // of the file.
743  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
744    DeferredDecls.find(MangledName);
745  if (DDI != DeferredDecls.end()) {
746    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
747    // list, and remove it from DeferredDecls (since we don't need it anymore).
748    DeferredDeclsToEmit.push_back(DDI->second);
749    DeferredDecls.erase(DDI);
750  } else if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl())) {
751    // If this the first reference to a C++ inline function in a class, queue up
752    // the deferred function body for emission.  These are not seen as
753    // top-level declarations.
754    if (FD->isThisDeclarationADefinition() && MayDeferGeneration(FD))
755      DeferredDeclsToEmit.push_back(D);
756    // A called constructor which has no definition or declaration need be
757    // synthesized.
758    else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
759      if (CD->isImplicit())
760        DeferredDeclsToEmit.push_back(D);
761    } else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) {
762      if (DD->isImplicit())
763        DeferredDeclsToEmit.push_back(D);
764    } else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
765      if (MD->isCopyAssignment() && MD->isImplicit())
766        DeferredDeclsToEmit.push_back(D);
767    }
768  }
769
770  return F;
771}
772
773/// GetAddrOfFunction - Return the address of the given function.  If Ty is
774/// non-null, then this function will use the specified type if it has to
775/// create it (this occurs when we see a definition of the function).
776llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
777                                                 const llvm::Type *Ty) {
778  // If there was no specific requested type, just convert it now.
779  if (!Ty)
780    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
781  return GetOrCreateLLVMFunction(getMangledName(GD), Ty, GD);
782}
783
784/// CreateRuntimeFunction - Create a new runtime function with the specified
785/// type and name.
786llvm::Constant *
787CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
788                                     const char *Name) {
789  // Convert Name to be a uniqued string from the IdentifierInfo table.
790  Name = getContext().Idents.get(Name).getNameStart();
791  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl());
792}
793
794static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D) {
795  if (!D->getType().isConstant(Context))
796    return false;
797  if (Context.getLangOptions().CPlusPlus &&
798      Context.getBaseElementType(D->getType())->getAs<RecordType>()) {
799    // FIXME: We should do something fancier here!
800    return false;
801  }
802  return true;
803}
804
805/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
806/// create and return an llvm GlobalVariable with the specified type.  If there
807/// is something in the module with the specified name, return it potentially
808/// bitcasted to the right type.
809///
810/// If D is non-null, it specifies a decl that correspond to this.  This is used
811/// to set the attributes on the global when it is first created.
812llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
813                                                     const llvm::PointerType*Ty,
814                                                     const VarDecl *D) {
815  // Lookup the entry, lazily creating it if necessary.
816  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
817  if (Entry) {
818    if (Entry->getType() == Ty)
819      return Entry;
820
821    // Make sure the result is of the correct type.
822    return llvm::ConstantExpr::getBitCast(Entry, Ty);
823  }
824
825  // This is the first use or definition of a mangled name.  If there is a
826  // deferred decl with this name, remember that we need to emit it at the end
827  // of the file.
828  llvm::DenseMap<const char*, GlobalDecl>::iterator DDI =
829    DeferredDecls.find(MangledName);
830  if (DDI != DeferredDecls.end()) {
831    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
832    // list, and remove it from DeferredDecls (since we don't need it anymore).
833    DeferredDeclsToEmit.push_back(DDI->second);
834    DeferredDecls.erase(DDI);
835  }
836
837  llvm::GlobalVariable *GV =
838    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
839                             llvm::GlobalValue::ExternalLinkage,
840                             0, "", 0,
841                             false, Ty->getAddressSpace());
842  GV->setName(MangledName);
843
844  // Handle things which are present even on external declarations.
845  if (D) {
846    // FIXME: This code is overly simple and should be merged with other global
847    // handling.
848    GV->setConstant(DeclIsConstantGlobal(Context, D));
849
850    // FIXME: Merge with other attribute handling code.
851    if (D->getStorageClass() == VarDecl::PrivateExtern)
852      GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
853
854    if (D->hasAttr<WeakAttr>() ||
855        D->hasAttr<WeakImportAttr>())
856      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
857
858    GV->setThreadLocal(D->isThreadSpecified());
859  }
860
861  return Entry = GV;
862}
863
864
865/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
866/// given global variable.  If Ty is non-null and if the global doesn't exist,
867/// then it will be greated with the specified type instead of whatever the
868/// normal requested type would be.
869llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
870                                                  const llvm::Type *Ty) {
871  assert(D->hasGlobalStorage() && "Not a global variable");
872  QualType ASTTy = D->getType();
873  if (Ty == 0)
874    Ty = getTypes().ConvertTypeForMem(ASTTy);
875
876  const llvm::PointerType *PTy =
877    llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
878  return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
879}
880
881/// CreateRuntimeVariable - Create a new runtime global variable with the
882/// specified type and name.
883llvm::Constant *
884CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
885                                     const char *Name) {
886  // Convert Name to be a uniqued string from the IdentifierInfo table.
887  Name = getContext().Idents.get(Name).getNameStart();
888  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
889}
890
891void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
892  assert(!D->getInit() && "Cannot emit definite definitions here!");
893
894  if (MayDeferGeneration(D)) {
895    // If we have not seen a reference to this variable yet, place it
896    // into the deferred declarations table to be emitted if needed
897    // later.
898    const char *MangledName = getMangledName(D);
899    if (GlobalDeclMap.count(MangledName) == 0) {
900      DeferredDecls[MangledName] = D;
901      return;
902    }
903  }
904
905  // The tentative definition is the only definition.
906  EmitGlobalVarDefinition(D);
907}
908
909llvm::GlobalVariable::LinkageTypes
910CodeGenModule::getVtableLinkage(const CXXRecordDecl *RD) {
911  if (RD->isInAnonymousNamespace() || !RD->hasLinkage())
912    return llvm::GlobalVariable::InternalLinkage;
913
914  if (const CXXMethodDecl *KeyFunction
915                                    = RD->getASTContext().getKeyFunction(RD)) {
916    // If this class has a key function, use that to determine the linkage of
917    // the vtable.
918    const FunctionDecl *Def = 0;
919    if (KeyFunction->getBody(Def))
920      KeyFunction = cast<CXXMethodDecl>(Def);
921
922    switch (KeyFunction->getTemplateSpecializationKind()) {
923      case TSK_Undeclared:
924      case TSK_ExplicitSpecialization:
925        if (KeyFunction->isInlined())
926          return llvm::GlobalVariable::WeakODRLinkage;
927
928        return llvm::GlobalVariable::ExternalLinkage;
929
930      case TSK_ImplicitInstantiation:
931      case TSK_ExplicitInstantiationDefinition:
932        return llvm::GlobalVariable::WeakODRLinkage;
933
934      case TSK_ExplicitInstantiationDeclaration:
935        // FIXME: Use available_externally linkage. However, this currently
936        // breaks LLVM's build due to undefined symbols.
937        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
938        return llvm::GlobalVariable::WeakODRLinkage;
939    }
940  }
941
942  switch (RD->getTemplateSpecializationKind()) {
943  case TSK_Undeclared:
944  case TSK_ExplicitSpecialization:
945  case TSK_ImplicitInstantiation:
946  case TSK_ExplicitInstantiationDefinition:
947    return llvm::GlobalVariable::WeakODRLinkage;
948
949  case TSK_ExplicitInstantiationDeclaration:
950    // FIXME: Use available_externally linkage. However, this currently
951    // breaks LLVM's build due to undefined symbols.
952    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
953    return llvm::GlobalVariable::WeakODRLinkage;
954  }
955
956  // Silence GCC warning.
957  return llvm::GlobalVariable::WeakODRLinkage;
958}
959
960static CodeGenModule::GVALinkage
961GetLinkageForVariable(ASTContext &Context, const VarDecl *VD) {
962  // If this is a static data member, compute the kind of template
963  // specialization. Otherwise, this variable is not part of a
964  // template.
965  TemplateSpecializationKind TSK = TSK_Undeclared;
966  if (VD->isStaticDataMember())
967    TSK = VD->getTemplateSpecializationKind();
968
969  Linkage L = VD->getLinkage();
970  if (L == ExternalLinkage && Context.getLangOptions().CPlusPlus &&
971      VD->getType()->getLinkage() == UniqueExternalLinkage)
972    L = UniqueExternalLinkage;
973
974  switch (L) {
975  case NoLinkage:
976  case InternalLinkage:
977  case UniqueExternalLinkage:
978    return CodeGenModule::GVA_Internal;
979
980  case ExternalLinkage:
981    switch (TSK) {
982    case TSK_Undeclared:
983    case TSK_ExplicitSpecialization:
984
985      // FIXME: ExplicitInstantiationDefinition should be weak!
986    case TSK_ExplicitInstantiationDefinition:
987      return CodeGenModule::GVA_StrongExternal;
988
989    case TSK_ExplicitInstantiationDeclaration:
990      llvm_unreachable("Variable should not be instantiated");
991      // Fall through to treat this like any other instantiation.
992
993    case TSK_ImplicitInstantiation:
994      return CodeGenModule::GVA_TemplateInstantiation;
995    }
996  }
997
998  return CodeGenModule::GVA_StrongExternal;
999}
1000
1001CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1002    return CharUnits::fromQuantity(
1003      TheTargetData.getTypeStoreSizeInBits(Ty) / Context.getCharWidth());
1004}
1005
1006void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1007  llvm::Constant *Init = 0;
1008  QualType ASTTy = D->getType();
1009  bool NonConstInit = false;
1010
1011  const Expr *InitExpr = D->getAnyInitializer();
1012
1013  if (!InitExpr) {
1014    // This is a tentative definition; tentative definitions are
1015    // implicitly initialized with { 0 }.
1016    //
1017    // Note that tentative definitions are only emitted at the end of
1018    // a translation unit, so they should never have incomplete
1019    // type. In addition, EmitTentativeDefinition makes sure that we
1020    // never attempt to emit a tentative definition if a real one
1021    // exists. A use may still exists, however, so we still may need
1022    // to do a RAUW.
1023    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1024    Init = EmitNullConstant(D->getType());
1025  } else {
1026    Init = EmitConstantExpr(InitExpr, D->getType());
1027
1028    if (!Init) {
1029      QualType T = InitExpr->getType();
1030      if (getLangOptions().CPlusPlus) {
1031        EmitCXXGlobalVarDeclInitFunc(D);
1032        Init = EmitNullConstant(T);
1033        NonConstInit = true;
1034      } else {
1035        ErrorUnsupported(D, "static initializer");
1036        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1037      }
1038    }
1039  }
1040
1041  const llvm::Type* InitType = Init->getType();
1042  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1043
1044  // Strip off a bitcast if we got one back.
1045  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1046    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1047           // all zero index gep.
1048           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1049    Entry = CE->getOperand(0);
1050  }
1051
1052  // Entry is now either a Function or GlobalVariable.
1053  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1054
1055  // We have a definition after a declaration with the wrong type.
1056  // We must make a new GlobalVariable* and update everything that used OldGV
1057  // (a declaration or tentative definition) with the new GlobalVariable*
1058  // (which will be a definition).
1059  //
1060  // This happens if there is a prototype for a global (e.g.
1061  // "extern int x[];") and then a definition of a different type (e.g.
1062  // "int x[10];"). This also happens when an initializer has a different type
1063  // from the type of the global (this happens with unions).
1064  if (GV == 0 ||
1065      GV->getType()->getElementType() != InitType ||
1066      GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
1067
1068    // Remove the old entry from GlobalDeclMap so that we'll create a new one.
1069    GlobalDeclMap.erase(getMangledName(D));
1070
1071    // Make a new global with the correct type, this is now guaranteed to work.
1072    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1073    GV->takeName(cast<llvm::GlobalValue>(Entry));
1074
1075    // Replace all uses of the old global with the new global
1076    llvm::Constant *NewPtrForOldDecl =
1077        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1078    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1079
1080    // Erase the old global, since it is no longer used.
1081    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1082  }
1083
1084  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1085    SourceManager &SM = Context.getSourceManager();
1086    AddAnnotation(EmitAnnotateAttr(GV, AA,
1087                              SM.getInstantiationLineNumber(D->getLocation())));
1088  }
1089
1090  GV->setInitializer(Init);
1091
1092  // If it is safe to mark the global 'constant', do so now.
1093  GV->setConstant(false);
1094  if (!NonConstInit && DeclIsConstantGlobal(Context, D))
1095    GV->setConstant(true);
1096
1097  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1098
1099  // Set the llvm linkage type as appropriate.
1100  GVALinkage Linkage = GetLinkageForVariable(getContext(), D);
1101  if (Linkage == GVA_Internal)
1102    GV->setLinkage(llvm::Function::InternalLinkage);
1103  else if (D->hasAttr<DLLImportAttr>())
1104    GV->setLinkage(llvm::Function::DLLImportLinkage);
1105  else if (D->hasAttr<DLLExportAttr>())
1106    GV->setLinkage(llvm::Function::DLLExportLinkage);
1107  else if (D->hasAttr<WeakAttr>()) {
1108    if (GV->isConstant())
1109      GV->setLinkage(llvm::GlobalVariable::WeakODRLinkage);
1110    else
1111      GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1112  } else if (Linkage == GVA_TemplateInstantiation)
1113    GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
1114  else if (!getLangOptions().CPlusPlus && !CodeGenOpts.NoCommon &&
1115           !D->hasExternalStorage() && !D->getInit() &&
1116           !D->getAttr<SectionAttr>()) {
1117    GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
1118    // common vars aren't constant even if declared const.
1119    GV->setConstant(false);
1120  } else
1121    GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
1122
1123  SetCommonAttributes(D, GV);
1124
1125  // Emit global variable debug information.
1126  if (CGDebugInfo *DI = getDebugInfo()) {
1127    DI->setLocation(D->getLocation());
1128    DI->EmitGlobalVariable(GV, D);
1129  }
1130}
1131
1132/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1133/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1134/// existing call uses of the old function in the module, this adjusts them to
1135/// call the new function directly.
1136///
1137/// This is not just a cleanup: the always_inline pass requires direct calls to
1138/// functions to be able to inline them.  If there is a bitcast in the way, it
1139/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1140/// run at -O0.
1141static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1142                                                      llvm::Function *NewFn) {
1143  // If we're redefining a global as a function, don't transform it.
1144  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1145  if (OldFn == 0) return;
1146
1147  const llvm::Type *NewRetTy = NewFn->getReturnType();
1148  llvm::SmallVector<llvm::Value*, 4> ArgList;
1149
1150  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1151       UI != E; ) {
1152    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1153    unsigned OpNo = UI.getOperandNo();
1154    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*UI++);
1155    if (!CI || OpNo != 0) continue;
1156
1157    // If the return types don't match exactly, and if the call isn't dead, then
1158    // we can't transform this call.
1159    if (CI->getType() != NewRetTy && !CI->use_empty())
1160      continue;
1161
1162    // If the function was passed too few arguments, don't transform.  If extra
1163    // arguments were passed, we silently drop them.  If any of the types
1164    // mismatch, we don't transform.
1165    unsigned ArgNo = 0;
1166    bool DontTransform = false;
1167    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1168         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1169      if (CI->getNumOperands()-1 == ArgNo ||
1170          CI->getOperand(ArgNo+1)->getType() != AI->getType()) {
1171        DontTransform = true;
1172        break;
1173      }
1174    }
1175    if (DontTransform)
1176      continue;
1177
1178    // Okay, we can transform this.  Create the new call instruction and copy
1179    // over the required information.
1180    ArgList.append(CI->op_begin()+1, CI->op_begin()+1+ArgNo);
1181    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1182                                                     ArgList.end(), "", CI);
1183    ArgList.clear();
1184    if (!NewCall->getType()->isVoidTy())
1185      NewCall->takeName(CI);
1186    NewCall->setAttributes(CI->getAttributes());
1187    NewCall->setCallingConv(CI->getCallingConv());
1188
1189    // Finally, remove the old call, replacing any uses with the new one.
1190    if (!CI->use_empty())
1191      CI->replaceAllUsesWith(NewCall);
1192
1193    // Copy any custom metadata attached with CI.
1194    if (llvm::MDNode *DbgNode = CI->getMetadata("dbg"))
1195      NewCall->setMetadata("dbg", DbgNode);
1196    CI->eraseFromParent();
1197  }
1198}
1199
1200
1201void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1202  const llvm::FunctionType *Ty;
1203  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1204
1205  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
1206    bool isVariadic = D->getType()->getAs<FunctionProtoType>()->isVariadic();
1207
1208    Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
1209  } else {
1210    Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
1211
1212    // As a special case, make sure that definitions of K&R function
1213    // "type foo()" aren't declared as varargs (which forces the backend
1214    // to do unnecessary work).
1215    if (D->getType()->isFunctionNoProtoType()) {
1216      assert(Ty->isVarArg() && "Didn't lower type as expected");
1217      // Due to stret, the lowered function could have arguments.
1218      // Just create the same type as was lowered by ConvertType
1219      // but strip off the varargs bit.
1220      std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
1221      Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
1222    }
1223  }
1224
1225  // Get or create the prototype for the function.
1226  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1227
1228  // Strip off a bitcast if we got one back.
1229  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1230    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1231    Entry = CE->getOperand(0);
1232  }
1233
1234
1235  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1236    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1237
1238    // If the types mismatch then we have to rewrite the definition.
1239    assert(OldFn->isDeclaration() &&
1240           "Shouldn't replace non-declaration");
1241
1242    // F is the Function* for the one with the wrong type, we must make a new
1243    // Function* and update everything that used F (a declaration) with the new
1244    // Function* (which will be a definition).
1245    //
1246    // This happens if there is a prototype for a function
1247    // (e.g. "int f()") and then a definition of a different type
1248    // (e.g. "int f(int x)").  Start by making a new function of the
1249    // correct type, RAUW, then steal the name.
1250    GlobalDeclMap.erase(getMangledName(D));
1251    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1252    NewFn->takeName(OldFn);
1253
1254    // If this is an implementation of a function without a prototype, try to
1255    // replace any existing uses of the function (which may be calls) with uses
1256    // of the new function
1257    if (D->getType()->isFunctionNoProtoType()) {
1258      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1259      OldFn->removeDeadConstantUsers();
1260    }
1261
1262    // Replace uses of F with the Function we will endow with a body.
1263    if (!Entry->use_empty()) {
1264      llvm::Constant *NewPtrForOldDecl =
1265        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1266      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1267    }
1268
1269    // Ok, delete the old function now, which is dead.
1270    OldFn->eraseFromParent();
1271
1272    Entry = NewFn;
1273  }
1274
1275  llvm::Function *Fn = cast<llvm::Function>(Entry);
1276
1277  CodeGenFunction(*this).GenerateCode(D, Fn);
1278
1279  SetFunctionDefinitionAttributes(D, Fn);
1280  SetLLVMFunctionAttributesForDefinition(D, Fn);
1281
1282  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1283    AddGlobalCtor(Fn, CA->getPriority());
1284  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1285    AddGlobalDtor(Fn, DA->getPriority());
1286}
1287
1288void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
1289  const AliasAttr *AA = D->getAttr<AliasAttr>();
1290  assert(AA && "Not an alias?");
1291
1292  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1293
1294  // Unique the name through the identifier table.
1295  const char *AliaseeName = AA->getAliasee().c_str();
1296  AliaseeName = getContext().Idents.get(AliaseeName).getNameStart();
1297
1298  // Create a reference to the named value.  This ensures that it is emitted
1299  // if a deferred decl.
1300  llvm::Constant *Aliasee;
1301  if (isa<llvm::FunctionType>(DeclTy))
1302    Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, GlobalDecl());
1303  else
1304    Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
1305                                    llvm::PointerType::getUnqual(DeclTy), 0);
1306
1307  // Create the new alias itself, but don't set a name yet.
1308  llvm::GlobalValue *GA =
1309    new llvm::GlobalAlias(Aliasee->getType(),
1310                          llvm::Function::ExternalLinkage,
1311                          "", Aliasee, &getModule());
1312
1313  // See if there is already something with the alias' name in the module.
1314  const char *MangledName = getMangledName(D);
1315  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
1316
1317  if (Entry && !Entry->isDeclaration()) {
1318    // If there is a definition in the module, then it wins over the alias.
1319    // This is dubious, but allow it to be safe.  Just ignore the alias.
1320    GA->eraseFromParent();
1321    return;
1322  }
1323
1324  if (Entry) {
1325    // If there is a declaration in the module, then we had an extern followed
1326    // by the alias, as in:
1327    //   extern int test6();
1328    //   ...
1329    //   int test6() __attribute__((alias("test7")));
1330    //
1331    // Remove it and replace uses of it with the alias.
1332
1333    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1334                                                          Entry->getType()));
1335    Entry->eraseFromParent();
1336  }
1337
1338  // Now we know that there is no conflict, set the name.
1339  Entry = GA;
1340  GA->setName(MangledName);
1341
1342  // Set attributes which are particular to an alias; this is a
1343  // specialization of the attributes which may be set on a global
1344  // variable/function.
1345  if (D->hasAttr<DLLExportAttr>()) {
1346    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1347      // The dllexport attribute is ignored for undefined symbols.
1348      if (FD->getBody())
1349        GA->setLinkage(llvm::Function::DLLExportLinkage);
1350    } else {
1351      GA->setLinkage(llvm::Function::DLLExportLinkage);
1352    }
1353  } else if (D->hasAttr<WeakAttr>() ||
1354             D->hasAttr<WeakImportAttr>()) {
1355    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1356  }
1357
1358  SetCommonAttributes(D, GA);
1359}
1360
1361/// getBuiltinLibFunction - Given a builtin id for a function like
1362/// "__builtin_fabsf", return a Function* for "fabsf".
1363llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1364                                                  unsigned BuiltinID) {
1365  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1366          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1367         "isn't a lib fn");
1368
1369  // Get the name, skip over the __builtin_ prefix (if necessary).
1370  const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
1371  if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1372    Name += 10;
1373
1374  const llvm::FunctionType *Ty =
1375    cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1376
1377  // Unique the name through the identifier table.
1378  Name = getContext().Idents.get(Name).getNameStart();
1379  return GetOrCreateLLVMFunction(Name, Ty, GlobalDecl(FD));
1380}
1381
1382llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1383                                            unsigned NumTys) {
1384  return llvm::Intrinsic::getDeclaration(&getModule(),
1385                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1386}
1387
1388llvm::Function *CodeGenModule::getMemCpyFn() {
1389  if (MemCpyFn) return MemCpyFn;
1390  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1391  return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1392}
1393
1394llvm::Function *CodeGenModule::getMemMoveFn() {
1395  if (MemMoveFn) return MemMoveFn;
1396  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1397  return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1398}
1399
1400llvm::Function *CodeGenModule::getMemSetFn() {
1401  if (MemSetFn) return MemSetFn;
1402  const llvm::Type *IntPtr = TheTargetData.getIntPtrType(VMContext);
1403  return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1404}
1405
1406static llvm::StringMapEntry<llvm::Constant*> &
1407GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1408                         const StringLiteral *Literal,
1409                         bool TargetIsLSB,
1410                         bool &IsUTF16,
1411                         unsigned &StringLength) {
1412  unsigned NumBytes = Literal->getByteLength();
1413
1414  // Check for simple case.
1415  if (!Literal->containsNonAsciiOrNull()) {
1416    StringLength = NumBytes;
1417    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1418                                                StringLength));
1419  }
1420
1421  // Otherwise, convert the UTF8 literals into a byte string.
1422  llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1423  const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1424  UTF16 *ToPtr = &ToBuf[0];
1425
1426  ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1427                                               &ToPtr, ToPtr + NumBytes,
1428                                               strictConversion);
1429
1430  // Check for conversion failure.
1431  if (Result != conversionOK) {
1432    // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string and remove
1433    // this duplicate code.
1434    assert(Result == sourceIllegal && "UTF-8 to UTF-16 conversion failed");
1435    StringLength = NumBytes;
1436    return Map.GetOrCreateValue(llvm::StringRef(Literal->getStrData(),
1437                                                StringLength));
1438  }
1439
1440  // ConvertUTF8toUTF16 returns the length in ToPtr.
1441  StringLength = ToPtr - &ToBuf[0];
1442
1443  // Render the UTF-16 string into a byte array and convert to the target byte
1444  // order.
1445  //
1446  // FIXME: This isn't something we should need to do here.
1447  llvm::SmallString<128> AsBytes;
1448  AsBytes.reserve(StringLength * 2);
1449  for (unsigned i = 0; i != StringLength; ++i) {
1450    unsigned short Val = ToBuf[i];
1451    if (TargetIsLSB) {
1452      AsBytes.push_back(Val & 0xFF);
1453      AsBytes.push_back(Val >> 8);
1454    } else {
1455      AsBytes.push_back(Val >> 8);
1456      AsBytes.push_back(Val & 0xFF);
1457    }
1458  }
1459  // Append one extra null character, the second is automatically added by our
1460  // caller.
1461  AsBytes.push_back(0);
1462
1463  IsUTF16 = true;
1464  return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1465}
1466
1467llvm::Constant *
1468CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1469  unsigned StringLength = 0;
1470  bool isUTF16 = false;
1471  llvm::StringMapEntry<llvm::Constant*> &Entry =
1472    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1473                             getTargetData().isLittleEndian(),
1474                             isUTF16, StringLength);
1475
1476  if (llvm::Constant *C = Entry.getValue())
1477    return C;
1478
1479  llvm::Constant *Zero =
1480      llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1481  llvm::Constant *Zeros[] = { Zero, Zero };
1482
1483  // If we don't already have it, get __CFConstantStringClassReference.
1484  if (!CFConstantStringClassRef) {
1485    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1486    Ty = llvm::ArrayType::get(Ty, 0);
1487    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1488                                           "__CFConstantStringClassReference");
1489    // Decay array -> ptr
1490    CFConstantStringClassRef =
1491      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1492  }
1493
1494  QualType CFTy = getContext().getCFConstantStringType();
1495
1496  const llvm::StructType *STy =
1497    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1498
1499  std::vector<llvm::Constant*> Fields(4);
1500
1501  // Class pointer.
1502  Fields[0] = CFConstantStringClassRef;
1503
1504  // Flags.
1505  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1506  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1507    llvm::ConstantInt::get(Ty, 0x07C8);
1508
1509  // String pointer.
1510  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1511
1512  llvm::GlobalValue::LinkageTypes Linkage;
1513  bool isConstant;
1514  if (isUTF16) {
1515    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1516    Linkage = llvm::GlobalValue::InternalLinkage;
1517    // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1518    // does make plain ascii ones writable.
1519    isConstant = true;
1520  } else {
1521    Linkage = llvm::GlobalValue::PrivateLinkage;
1522    isConstant = !Features.WritableStrings;
1523  }
1524
1525  llvm::GlobalVariable *GV =
1526    new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1527                             ".str");
1528  if (isUTF16) {
1529    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1530    GV->setAlignment(Align.getQuantity());
1531  }
1532  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1533
1534  // String length.
1535  Ty = getTypes().ConvertType(getContext().LongTy);
1536  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1537
1538  // The struct.
1539  C = llvm::ConstantStruct::get(STy, Fields);
1540  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1541                                llvm::GlobalVariable::PrivateLinkage, C,
1542                                "_unnamed_cfstring_");
1543  if (const char *Sect = getContext().Target.getCFStringSection())
1544    GV->setSection(Sect);
1545  Entry.setValue(GV);
1546
1547  return GV;
1548}
1549
1550/// GetStringForStringLiteral - Return the appropriate bytes for a
1551/// string literal, properly padded to match the literal type.
1552std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1553  const char *StrData = E->getStrData();
1554  unsigned Len = E->getByteLength();
1555
1556  const ConstantArrayType *CAT =
1557    getContext().getAsConstantArrayType(E->getType());
1558  assert(CAT && "String isn't pointer or array!");
1559
1560  // Resize the string to the right size.
1561  std::string Str(StrData, StrData+Len);
1562  uint64_t RealLen = CAT->getSize().getZExtValue();
1563
1564  if (E->isWide())
1565    RealLen *= getContext().Target.getWCharWidth()/8;
1566
1567  Str.resize(RealLen, '\0');
1568
1569  return Str;
1570}
1571
1572/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1573/// constant array for the given string literal.
1574llvm::Constant *
1575CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1576  // FIXME: This can be more efficient.
1577  // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1578  llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1579  if (S->isWide()) {
1580    llvm::Type *DestTy =
1581        llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1582    C = llvm::ConstantExpr::getBitCast(C, DestTy);
1583  }
1584  return C;
1585}
1586
1587/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1588/// array for the given ObjCEncodeExpr node.
1589llvm::Constant *
1590CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1591  std::string Str;
1592  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1593
1594  return GetAddrOfConstantCString(Str);
1595}
1596
1597
1598/// GenerateWritableString -- Creates storage for a string literal.
1599static llvm::Constant *GenerateStringLiteral(const std::string &str,
1600                                             bool constant,
1601                                             CodeGenModule &CGM,
1602                                             const char *GlobalName) {
1603  // Create Constant for this string literal. Don't add a '\0'.
1604  llvm::Constant *C =
1605      llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1606
1607  // Create a global variable for this string
1608  return new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1609                                  llvm::GlobalValue::PrivateLinkage,
1610                                  C, GlobalName);
1611}
1612
1613/// GetAddrOfConstantString - Returns a pointer to a character array
1614/// containing the literal. This contents are exactly that of the
1615/// given string, i.e. it will not be null terminated automatically;
1616/// see GetAddrOfConstantCString. Note that whether the result is
1617/// actually a pointer to an LLVM constant depends on
1618/// Feature.WriteableStrings.
1619///
1620/// The result has pointer to array type.
1621llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1622                                                       const char *GlobalName) {
1623  bool IsConstant = !Features.WritableStrings;
1624
1625  // Get the default prefix if a name wasn't specified.
1626  if (!GlobalName)
1627    GlobalName = ".str";
1628
1629  // Don't share any string literals if strings aren't constant.
1630  if (!IsConstant)
1631    return GenerateStringLiteral(str, false, *this, GlobalName);
1632
1633  llvm::StringMapEntry<llvm::Constant *> &Entry =
1634    ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1635
1636  if (Entry.getValue())
1637    return Entry.getValue();
1638
1639  // Create a global variable for this.
1640  llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1641  Entry.setValue(C);
1642  return C;
1643}
1644
1645/// GetAddrOfConstantCString - Returns a pointer to a character
1646/// array containing the literal and a terminating '\-'
1647/// character. The result has pointer to array type.
1648llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1649                                                        const char *GlobalName){
1650  return GetAddrOfConstantString(str + '\0', GlobalName);
1651}
1652
1653/// EmitObjCPropertyImplementations - Emit information for synthesized
1654/// properties for an implementation.
1655void CodeGenModule::EmitObjCPropertyImplementations(const
1656                                                    ObjCImplementationDecl *D) {
1657  for (ObjCImplementationDecl::propimpl_iterator
1658         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1659    ObjCPropertyImplDecl *PID = *i;
1660
1661    // Dynamic is just for type-checking.
1662    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1663      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1664
1665      // Determine which methods need to be implemented, some may have
1666      // been overridden. Note that ::isSynthesized is not the method
1667      // we want, that just indicates if the decl came from a
1668      // property. What we want to know is if the method is defined in
1669      // this implementation.
1670      if (!D->getInstanceMethod(PD->getGetterName()))
1671        CodeGenFunction(*this).GenerateObjCGetter(
1672                                 const_cast<ObjCImplementationDecl *>(D), PID);
1673      if (!PD->isReadOnly() &&
1674          !D->getInstanceMethod(PD->getSetterName()))
1675        CodeGenFunction(*this).GenerateObjCSetter(
1676                                 const_cast<ObjCImplementationDecl *>(D), PID);
1677    }
1678  }
1679}
1680
1681/// EmitNamespace - Emit all declarations in a namespace.
1682void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1683  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
1684       I != E; ++I)
1685    EmitTopLevelDecl(*I);
1686}
1687
1688// EmitLinkageSpec - Emit all declarations in a linkage spec.
1689void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1690  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
1691      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
1692    ErrorUnsupported(LSD, "linkage spec");
1693    return;
1694  }
1695
1696  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
1697       I != E; ++I)
1698    EmitTopLevelDecl(*I);
1699}
1700
1701/// EmitTopLevelDecl - Emit code for a single top level declaration.
1702void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1703  // If an error has occurred, stop code generation, but continue
1704  // parsing and semantic analysis (to ensure all warnings and errors
1705  // are emitted).
1706  if (Diags.hasErrorOccurred())
1707    return;
1708
1709  // Ignore dependent declarations.
1710  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
1711    return;
1712
1713  switch (D->getKind()) {
1714  case Decl::CXXConversion:
1715  case Decl::CXXMethod:
1716  case Decl::Function:
1717    // Skip function templates
1718    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1719      return;
1720
1721    EmitGlobal(cast<FunctionDecl>(D));
1722    break;
1723
1724  case Decl::Var:
1725    EmitGlobal(cast<VarDecl>(D));
1726    break;
1727
1728  // C++ Decls
1729  case Decl::Namespace:
1730    EmitNamespace(cast<NamespaceDecl>(D));
1731    break;
1732    // No code generation needed.
1733  case Decl::UsingShadow:
1734  case Decl::Using:
1735  case Decl::UsingDirective:
1736  case Decl::ClassTemplate:
1737  case Decl::FunctionTemplate:
1738  case Decl::NamespaceAlias:
1739    break;
1740  case Decl::CXXConstructor:
1741    // Skip function templates
1742    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate())
1743      return;
1744
1745    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
1746    break;
1747  case Decl::CXXDestructor:
1748    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
1749    break;
1750
1751  case Decl::StaticAssert:
1752    // Nothing to do.
1753    break;
1754
1755  // Objective-C Decls
1756
1757  // Forward declarations, no (immediate) code generation.
1758  case Decl::ObjCClass:
1759  case Decl::ObjCForwardProtocol:
1760  case Decl::ObjCCategory:
1761  case Decl::ObjCInterface:
1762    break;
1763
1764  case Decl::ObjCProtocol:
1765    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1766    break;
1767
1768  case Decl::ObjCCategoryImpl:
1769    // Categories have properties but don't support synthesize so we
1770    // can ignore them here.
1771    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1772    break;
1773
1774  case Decl::ObjCImplementation: {
1775    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1776    EmitObjCPropertyImplementations(OMD);
1777    Runtime->GenerateClass(OMD);
1778    break;
1779  }
1780  case Decl::ObjCMethod: {
1781    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1782    // If this is not a prototype, emit the body.
1783    if (OMD->getBody())
1784      CodeGenFunction(*this).GenerateObjCMethod(OMD);
1785    break;
1786  }
1787  case Decl::ObjCCompatibleAlias:
1788    // compatibility-alias is a directive and has no code gen.
1789    break;
1790
1791  case Decl::LinkageSpec:
1792    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1793    break;
1794
1795  case Decl::FileScopeAsm: {
1796    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1797    llvm::StringRef AsmString = AD->getAsmString()->getString();
1798
1799    const std::string &S = getModule().getModuleInlineAsm();
1800    if (S.empty())
1801      getModule().setModuleInlineAsm(AsmString);
1802    else
1803      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
1804    break;
1805  }
1806
1807  default:
1808    // Make sure we handled everything we should, every other kind is a
1809    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
1810    // function. Need to recode Decl::Kind to do that easily.
1811    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1812  }
1813}
1814