CodeGenModule.cpp revision b37a73d5c6a0c8bb1f6e363d3b53980e4fa0cead
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGCall.h"
18#include "CGDebugInfo.h"
19#include "CGObjCRuntime.h"
20#include "CGOpenCLRuntime.h"
21#include "CodeGenFunction.h"
22#include "CodeGenTBAA.h"
23#include "TargetInfo.h"
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/CharUnits.h"
26#include "clang/AST/DeclCXX.h"
27#include "clang/AST/DeclObjC.h"
28#include "clang/AST/DeclTemplate.h"
29#include "clang/AST/Mangle.h"
30#include "clang/AST/RecordLayout.h"
31#include "clang/AST/RecursiveASTVisitor.h"
32#include "clang/Basic/Builtins.h"
33#include "clang/Basic/CharInfo.h"
34#include "clang/Basic/Diagnostic.h"
35#include "clang/Basic/Module.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38#include "clang/Basic/TargetOptions.h"
39#include "clang/Frontend/CodeGenOptions.h"
40#include "llvm/ADT/APSInt.h"
41#include "llvm/ADT/Triple.h"
42#include "llvm/IR/CallingConv.h"
43#include "llvm/IR/DataLayout.h"
44#include "llvm/IR/Intrinsics.h"
45#include "llvm/IR/LLVMContext.h"
46#include "llvm/IR/Module.h"
47#include "llvm/Support/CallSite.h"
48#include "llvm/Support/ConvertUTF.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Target/Mangler.h"
51
52using namespace clang;
53using namespace CodeGen;
54
55static const char AnnotationSection[] = "llvm.metadata";
56
57static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
58  switch (CGM.getContext().getTargetInfo().getCXXABI().getKind()) {
59  case TargetCXXABI::GenericAArch64:
60  case TargetCXXABI::GenericARM:
61  case TargetCXXABI::iOS:
62  case TargetCXXABI::GenericItanium:
63    return *CreateItaniumCXXABI(CGM);
64  case TargetCXXABI::Microsoft:
65    return *CreateMicrosoftCXXABI(CGM);
66  }
67
68  llvm_unreachable("invalid C++ ABI kind");
69}
70
71
72CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
73                             const TargetOptions &TO, llvm::Module &M,
74                             const llvm::DataLayout &TD,
75                             DiagnosticsEngine &diags)
76  : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TargetOpts(TO),
77    TheModule(M), TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags),
78    ABI(createCXXABI(*this)),
79    Types(*this),
80    TBAA(0),
81    VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
82    DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
83    RRData(0), CFConstantStringClassRef(0),
84    ConstantStringClassRef(0), NSConstantStringType(0),
85    VMContext(M.getContext()),
86    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
87    BlockObjectAssign(0), BlockObjectDispose(0),
88    BlockDescriptorType(0), GenericBlockLiteralType(0),
89    LifetimeStartFn(0), LifetimeEndFn(0),
90    SanitizerBlacklist(CGO.SanitizerBlacklistFile),
91    SanOpts(SanitizerBlacklist.isIn(M) ?
92            SanitizerOptions::Disabled : LangOpts.Sanitize) {
93
94  // Initialize the type cache.
95  llvm::LLVMContext &LLVMContext = M.getContext();
96  VoidTy = llvm::Type::getVoidTy(LLVMContext);
97  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
98  Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
99  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
100  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
101  FloatTy = llvm::Type::getFloatTy(LLVMContext);
102  DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
103  PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
104  PointerAlignInBytes =
105  C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
106  IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
107  IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
108  Int8PtrTy = Int8Ty->getPointerTo(0);
109  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
110
111  RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
112
113  if (LangOpts.ObjC1)
114    createObjCRuntime();
115  if (LangOpts.OpenCL)
116    createOpenCLRuntime();
117  if (LangOpts.CUDA)
118    createCUDARuntime();
119
120  // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
121  if (SanOpts.Thread ||
122      (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
123    TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
124                           ABI.getMangleContext());
125
126  // If debug info or coverage generation is enabled, create the CGDebugInfo
127  // object.
128  if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
129      CodeGenOpts.EmitGcovArcs ||
130      CodeGenOpts.EmitGcovNotes)
131    DebugInfo = new CGDebugInfo(*this);
132
133  Block.GlobalUniqueCount = 0;
134
135  if (C.getLangOpts().ObjCAutoRefCount)
136    ARCData = new ARCEntrypoints();
137  RRData = new RREntrypoints();
138}
139
140CodeGenModule::~CodeGenModule() {
141  delete ObjCRuntime;
142  delete OpenCLRuntime;
143  delete CUDARuntime;
144  delete TheTargetCodeGenInfo;
145  delete &ABI;
146  delete TBAA;
147  delete DebugInfo;
148  delete ARCData;
149  delete RRData;
150}
151
152void CodeGenModule::createObjCRuntime() {
153  // This is just isGNUFamily(), but we want to force implementors of
154  // new ABIs to decide how best to do this.
155  switch (LangOpts.ObjCRuntime.getKind()) {
156  case ObjCRuntime::GNUstep:
157  case ObjCRuntime::GCC:
158  case ObjCRuntime::ObjFW:
159    ObjCRuntime = CreateGNUObjCRuntime(*this);
160    return;
161
162  case ObjCRuntime::FragileMacOSX:
163  case ObjCRuntime::MacOSX:
164  case ObjCRuntime::iOS:
165    ObjCRuntime = CreateMacObjCRuntime(*this);
166    return;
167  }
168  llvm_unreachable("bad runtime kind");
169}
170
171void CodeGenModule::createOpenCLRuntime() {
172  OpenCLRuntime = new CGOpenCLRuntime(*this);
173}
174
175void CodeGenModule::createCUDARuntime() {
176  CUDARuntime = CreateNVCUDARuntime(*this);
177}
178
179void CodeGenModule::Release() {
180  EmitDeferred();
181  EmitCXXGlobalInitFunc();
182  EmitCXXGlobalDtorFunc();
183  if (ObjCRuntime)
184    if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
185      AddGlobalCtor(ObjCInitFunction);
186  EmitCtorList(GlobalCtors, "llvm.global_ctors");
187  EmitCtorList(GlobalDtors, "llvm.global_dtors");
188  EmitGlobalAnnotations();
189  EmitLLVMUsed();
190
191  if (CodeGenOpts.ModulesAutolink) {
192    EmitModuleLinkOptions();
193  }
194
195  SimplifyPersonality();
196
197  if (getCodeGenOpts().EmitDeclMetadata)
198    EmitDeclMetadata();
199
200  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
201    EmitCoverageFile();
202
203  if (DebugInfo)
204    DebugInfo->finalize();
205}
206
207void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
208  // Make sure that this type is translated.
209  Types.UpdateCompletedType(TD);
210}
211
212llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
213  if (!TBAA)
214    return 0;
215  return TBAA->getTBAAInfo(QTy);
216}
217
218llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
219  if (!TBAA)
220    return 0;
221  return TBAA->getTBAAInfoForVTablePtr();
222}
223
224llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
225  if (!TBAA)
226    return 0;
227  return TBAA->getTBAAStructInfo(QTy);
228}
229
230llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
231  if (!TBAA)
232    return 0;
233  return TBAA->getTBAAStructTypeInfo(QTy);
234}
235
236llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
237                                                  llvm::MDNode *AccessN,
238                                                  uint64_t O) {
239  if (!TBAA)
240    return 0;
241  return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
242}
243
244void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
245                                        llvm::MDNode *TBAAInfo) {
246  Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
247}
248
249bool CodeGenModule::isTargetDarwin() const {
250  return getContext().getTargetInfo().getTriple().isOSDarwin();
251}
252
253void CodeGenModule::Error(SourceLocation loc, StringRef error) {
254  unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
255  getDiags().Report(Context.getFullLoc(loc), diagID);
256}
257
258/// ErrorUnsupported - Print out an error that codegen doesn't support the
259/// specified stmt yet.
260void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
261                                     bool OmitOnError) {
262  if (OmitOnError && getDiags().hasErrorOccurred())
263    return;
264  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
265                                               "cannot compile this %0 yet");
266  std::string Msg = Type;
267  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
268    << Msg << S->getSourceRange();
269}
270
271/// ErrorUnsupported - Print out an error that codegen doesn't support the
272/// specified decl yet.
273void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
274                                     bool OmitOnError) {
275  if (OmitOnError && getDiags().hasErrorOccurred())
276    return;
277  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
278                                               "cannot compile this %0 yet");
279  std::string Msg = Type;
280  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
281}
282
283llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
284  return llvm::ConstantInt::get(SizeTy, size.getQuantity());
285}
286
287void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
288                                        const NamedDecl *D) const {
289  // Internal definitions always have default visibility.
290  if (GV->hasLocalLinkage()) {
291    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
292    return;
293  }
294
295  // Set visibility for definitions.
296  LinkageInfo LV = D->getLinkageAndVisibility();
297  if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
298    GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
299}
300
301static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
302  return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
303      .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
304      .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
305      .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
306      .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
307}
308
309static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
310    CodeGenOptions::TLSModel M) {
311  switch (M) {
312  case CodeGenOptions::GeneralDynamicTLSModel:
313    return llvm::GlobalVariable::GeneralDynamicTLSModel;
314  case CodeGenOptions::LocalDynamicTLSModel:
315    return llvm::GlobalVariable::LocalDynamicTLSModel;
316  case CodeGenOptions::InitialExecTLSModel:
317    return llvm::GlobalVariable::InitialExecTLSModel;
318  case CodeGenOptions::LocalExecTLSModel:
319    return llvm::GlobalVariable::LocalExecTLSModel;
320  }
321  llvm_unreachable("Invalid TLS model!");
322}
323
324void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
325                               const VarDecl &D) const {
326  assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
327
328  llvm::GlobalVariable::ThreadLocalMode TLM;
329  TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
330
331  // Override the TLS model if it is explicitly specified.
332  if (D.hasAttr<TLSModelAttr>()) {
333    const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
334    TLM = GetLLVMTLSModel(Attr->getModel());
335  }
336
337  GV->setThreadLocalMode(TLM);
338}
339
340/// Set the symbol visibility of type information (vtable and RTTI)
341/// associated with the given type.
342void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
343                                      const CXXRecordDecl *RD,
344                                      TypeVisibilityKind TVK) const {
345  setGlobalVisibility(GV, RD);
346
347  if (!CodeGenOpts.HiddenWeakVTables)
348    return;
349
350  // We never want to drop the visibility for RTTI names.
351  if (TVK == TVK_ForRTTIName)
352    return;
353
354  // We want to drop the visibility to hidden for weak type symbols.
355  // This isn't possible if there might be unresolved references
356  // elsewhere that rely on this symbol being visible.
357
358  // This should be kept roughly in sync with setThunkVisibility
359  // in CGVTables.cpp.
360
361  // Preconditions.
362  if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
363      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
364    return;
365
366  // Don't override an explicit visibility attribute.
367  if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
368    return;
369
370  switch (RD->getTemplateSpecializationKind()) {
371  // We have to disable the optimization if this is an EI definition
372  // because there might be EI declarations in other shared objects.
373  case TSK_ExplicitInstantiationDefinition:
374  case TSK_ExplicitInstantiationDeclaration:
375    return;
376
377  // Every use of a non-template class's type information has to emit it.
378  case TSK_Undeclared:
379    break;
380
381  // In theory, implicit instantiations can ignore the possibility of
382  // an explicit instantiation declaration because there necessarily
383  // must be an EI definition somewhere with default visibility.  In
384  // practice, it's possible to have an explicit instantiation for
385  // an arbitrary template class, and linkers aren't necessarily able
386  // to deal with mixed-visibility symbols.
387  case TSK_ExplicitSpecialization:
388  case TSK_ImplicitInstantiation:
389    return;
390  }
391
392  // If there's a key function, there may be translation units
393  // that don't have the key function's definition.  But ignore
394  // this if we're emitting RTTI under -fno-rtti.
395  if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
396    // FIXME: what should we do if we "lose" the key function during
397    // the emission of the file?
398    if (Context.getCurrentKeyFunction(RD))
399      return;
400  }
401
402  // Otherwise, drop the visibility to hidden.
403  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
404  GV->setUnnamedAddr(true);
405}
406
407StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
408  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
409
410  StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
411  if (!Str.empty())
412    return Str;
413
414  if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
415    IdentifierInfo *II = ND->getIdentifier();
416    assert(II && "Attempt to mangle unnamed decl.");
417
418    Str = II->getName();
419    return Str;
420  }
421
422  SmallString<256> Buffer;
423  llvm::raw_svector_ostream Out(Buffer);
424  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
425    getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
426  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
427    getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
428  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
429    getCXXABI().getMangleContext().mangleBlock(BD, Out,
430      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
431  else
432    getCXXABI().getMangleContext().mangleName(ND, Out);
433
434  // Allocate space for the mangled name.
435  Out.flush();
436  size_t Length = Buffer.size();
437  char *Name = MangledNamesAllocator.Allocate<char>(Length);
438  std::copy(Buffer.begin(), Buffer.end(), Name);
439
440  Str = StringRef(Name, Length);
441
442  return Str;
443}
444
445void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
446                                        const BlockDecl *BD) {
447  MangleContext &MangleCtx = getCXXABI().getMangleContext();
448  const Decl *D = GD.getDecl();
449  llvm::raw_svector_ostream Out(Buffer.getBuffer());
450  if (D == 0)
451    MangleCtx.mangleGlobalBlock(BD,
452      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
453  else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
454    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
455  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
456    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
457  else
458    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
459}
460
461llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
462  return getModule().getNamedValue(Name);
463}
464
465/// AddGlobalCtor - Add a function to the list that will be called before
466/// main() runs.
467void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
468  // FIXME: Type coercion of void()* types.
469  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
470}
471
472/// AddGlobalDtor - Add a function to the list that will be called
473/// when the module is unloaded.
474void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
475  // FIXME: Type coercion of void()* types.
476  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
477}
478
479void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
480  // Ctor function type is void()*.
481  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
482  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
483
484  // Get the type of a ctor entry, { i32, void ()* }.
485  llvm::StructType *CtorStructTy =
486    llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
487
488  // Construct the constructor and destructor arrays.
489  SmallVector<llvm::Constant*, 8> Ctors;
490  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
491    llvm::Constant *S[] = {
492      llvm::ConstantInt::get(Int32Ty, I->second, false),
493      llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
494    };
495    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
496  }
497
498  if (!Ctors.empty()) {
499    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
500    new llvm::GlobalVariable(TheModule, AT, false,
501                             llvm::GlobalValue::AppendingLinkage,
502                             llvm::ConstantArray::get(AT, Ctors),
503                             GlobalName);
504  }
505}
506
507llvm::GlobalValue::LinkageTypes
508CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
509  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
510
511  if (Linkage == GVA_Internal)
512    return llvm::Function::InternalLinkage;
513
514  if (D->hasAttr<DLLExportAttr>())
515    return llvm::Function::DLLExportLinkage;
516
517  if (D->hasAttr<WeakAttr>())
518    return llvm::Function::WeakAnyLinkage;
519
520  // In C99 mode, 'inline' functions are guaranteed to have a strong
521  // definition somewhere else, so we can use available_externally linkage.
522  if (Linkage == GVA_C99Inline)
523    return llvm::Function::AvailableExternallyLinkage;
524
525  // Note that Apple's kernel linker doesn't support symbol
526  // coalescing, so we need to avoid linkonce and weak linkages there.
527  // Normally, this means we just map to internal, but for explicit
528  // instantiations we'll map to external.
529
530  // In C++, the compiler has to emit a definition in every translation unit
531  // that references the function.  We should use linkonce_odr because
532  // a) if all references in this translation unit are optimized away, we
533  // don't need to codegen it.  b) if the function persists, it needs to be
534  // merged with other definitions. c) C++ has the ODR, so we know the
535  // definition is dependable.
536  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
537    return !Context.getLangOpts().AppleKext
538             ? llvm::Function::LinkOnceODRLinkage
539             : llvm::Function::InternalLinkage;
540
541  // An explicit instantiation of a template has weak linkage, since
542  // explicit instantiations can occur in multiple translation units
543  // and must all be equivalent. However, we are not allowed to
544  // throw away these explicit instantiations.
545  if (Linkage == GVA_ExplicitTemplateInstantiation)
546    return !Context.getLangOpts().AppleKext
547             ? llvm::Function::WeakODRLinkage
548             : llvm::Function::ExternalLinkage;
549
550  // Otherwise, we have strong external linkage.
551  assert(Linkage == GVA_StrongExternal);
552  return llvm::Function::ExternalLinkage;
553}
554
555
556/// SetFunctionDefinitionAttributes - Set attributes for a global.
557///
558/// FIXME: This is currently only done for aliases and functions, but not for
559/// variables (these details are set in EmitGlobalVarDefinition for variables).
560void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
561                                                    llvm::GlobalValue *GV) {
562  SetCommonAttributes(D, GV);
563}
564
565void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
566                                              const CGFunctionInfo &Info,
567                                              llvm::Function *F) {
568  unsigned CallingConv;
569  AttributeListType AttributeList;
570  ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
571  F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
572  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
573}
574
575/// Determines whether the language options require us to model
576/// unwind exceptions.  We treat -fexceptions as mandating this
577/// except under the fragile ObjC ABI with only ObjC exceptions
578/// enabled.  This means, for example, that C with -fexceptions
579/// enables this.
580static bool hasUnwindExceptions(const LangOptions &LangOpts) {
581  // If exceptions are completely disabled, obviously this is false.
582  if (!LangOpts.Exceptions) return false;
583
584  // If C++ exceptions are enabled, this is true.
585  if (LangOpts.CXXExceptions) return true;
586
587  // If ObjC exceptions are enabled, this depends on the ABI.
588  if (LangOpts.ObjCExceptions) {
589    return LangOpts.ObjCRuntime.hasUnwindExceptions();
590  }
591
592  return true;
593}
594
595void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
596                                                           llvm::Function *F) {
597  if (CodeGenOpts.UnwindTables)
598    F->setHasUWTable();
599
600  if (!hasUnwindExceptions(LangOpts))
601    F->addFnAttr(llvm::Attribute::NoUnwind);
602
603  if (D->hasAttr<NakedAttr>()) {
604    // Naked implies noinline: we should not be inlining such functions.
605    F->addFnAttr(llvm::Attribute::Naked);
606    F->addFnAttr(llvm::Attribute::NoInline);
607  }
608
609  if (D->hasAttr<NoInlineAttr>())
610    F->addFnAttr(llvm::Attribute::NoInline);
611
612  // (noinline wins over always_inline, and we can't specify both in IR)
613  if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
614      !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
615                                       llvm::Attribute::NoInline))
616    F->addFnAttr(llvm::Attribute::AlwaysInline);
617
618  // FIXME: Communicate hot and cold attributes to LLVM more directly.
619  if (D->hasAttr<ColdAttr>())
620    F->addFnAttr(llvm::Attribute::OptimizeForSize);
621
622  if (D->hasAttr<MinSizeAttr>())
623    F->addFnAttr(llvm::Attribute::MinSize);
624
625  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
626    F->setUnnamedAddr(true);
627
628  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
629    if (MD->isVirtual())
630      F->setUnnamedAddr(true);
631
632  if (LangOpts.getStackProtector() == LangOptions::SSPOn)
633    F->addFnAttr(llvm::Attribute::StackProtect);
634  else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
635    F->addFnAttr(llvm::Attribute::StackProtectReq);
636
637  // Add sanitizer attributes if function is not blacklisted.
638  if (!SanitizerBlacklist.isIn(*F)) {
639    // When AddressSanitizer is enabled, set SanitizeAddress attribute
640    // unless __attribute__((no_sanitize_address)) is used.
641    if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
642      F->addFnAttr(llvm::Attribute::SanitizeAddress);
643    // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
644    if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
645      F->addFnAttr(llvm::Attribute::SanitizeThread);
646    }
647    // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
648    if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
649      F->addFnAttr(llvm::Attribute::SanitizeMemory);
650  }
651
652  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
653  if (alignment)
654    F->setAlignment(alignment);
655
656  // C++ ABI requires 2-byte alignment for member functions.
657  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
658    F->setAlignment(2);
659}
660
661void CodeGenModule::SetCommonAttributes(const Decl *D,
662                                        llvm::GlobalValue *GV) {
663  if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
664    setGlobalVisibility(GV, ND);
665  else
666    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
667
668  if (D->hasAttr<UsedAttr>())
669    AddUsedGlobal(GV);
670
671  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
672    GV->setSection(SA->getName());
673
674  // Alias cannot have attributes. Filter them here.
675  if (!isa<llvm::GlobalAlias>(GV))
676    getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
677}
678
679void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
680                                                  llvm::Function *F,
681                                                  const CGFunctionInfo &FI) {
682  SetLLVMFunctionAttributes(D, FI, F);
683  SetLLVMFunctionAttributesForDefinition(D, F);
684
685  F->setLinkage(llvm::Function::InternalLinkage);
686
687  SetCommonAttributes(D, F);
688}
689
690void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
691                                          llvm::Function *F,
692                                          bool IsIncompleteFunction) {
693  if (unsigned IID = F->getIntrinsicID()) {
694    // If this is an intrinsic function, set the function's attributes
695    // to the intrinsic's attributes.
696    F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
697                                                    (llvm::Intrinsic::ID)IID));
698    return;
699  }
700
701  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
702
703  if (!IsIncompleteFunction)
704    SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
705
706  // Only a few attributes are set on declarations; these may later be
707  // overridden by a definition.
708
709  if (FD->hasAttr<DLLImportAttr>()) {
710    F->setLinkage(llvm::Function::DLLImportLinkage);
711  } else if (FD->hasAttr<WeakAttr>() ||
712             FD->isWeakImported()) {
713    // "extern_weak" is overloaded in LLVM; we probably should have
714    // separate linkage types for this.
715    F->setLinkage(llvm::Function::ExternalWeakLinkage);
716  } else {
717    F->setLinkage(llvm::Function::ExternalLinkage);
718
719    LinkageInfo LV = FD->getLinkageAndVisibility();
720    if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
721      F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
722    }
723  }
724
725  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
726    F->setSection(SA->getName());
727}
728
729void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
730  assert(!GV->isDeclaration() &&
731         "Only globals with definition can force usage.");
732  LLVMUsed.push_back(GV);
733}
734
735void CodeGenModule::EmitLLVMUsed() {
736  // Don't create llvm.used if there is no need.
737  if (LLVMUsed.empty())
738    return;
739
740  // Convert LLVMUsed to what ConstantArray needs.
741  SmallVector<llvm::Constant*, 8> UsedArray;
742  UsedArray.resize(LLVMUsed.size());
743  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
744    UsedArray[i] =
745     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
746                                    Int8PtrTy);
747  }
748
749  if (UsedArray.empty())
750    return;
751  llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
752
753  llvm::GlobalVariable *GV =
754    new llvm::GlobalVariable(getModule(), ATy, false,
755                             llvm::GlobalValue::AppendingLinkage,
756                             llvm::ConstantArray::get(ATy, UsedArray),
757                             "llvm.used");
758
759  GV->setSection("llvm.metadata");
760}
761
762/// \brief Add link options implied by the given module, including modules
763/// it depends on, using a postorder walk.
764static void addLinkOptionsPostorder(llvm::LLVMContext &Context,
765                                    Module *Mod,
766                                    SmallVectorImpl<llvm::Value *> &Metadata,
767                                    llvm::SmallPtrSet<Module *, 16> &Visited) {
768  // Import this module's parent.
769  if (Mod->Parent && Visited.insert(Mod->Parent)) {
770    addLinkOptionsPostorder(Context, Mod->Parent, Metadata, Visited);
771  }
772
773  // Import this module's dependencies.
774  for (unsigned I = Mod->Imports.size(); I > 0; --I) {
775    if (Visited.insert(Mod->Imports[I-1]))
776      addLinkOptionsPostorder(Context, Mod->Imports[I-1], Metadata, Visited);
777  }
778
779  // Add linker options to link against the libraries/frameworks
780  // described by this module.
781  for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
782    // FIXME: -lfoo is Unix-centric and -framework Foo is Darwin-centric.
783    // We need to know more about the linker to know how to encode these
784    // options propertly.
785
786    // Link against a framework.
787    if (Mod->LinkLibraries[I-1].IsFramework) {
788      llvm::Value *Args[2] = {
789        llvm::MDString::get(Context, "-framework"),
790        llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
791      };
792
793      Metadata.push_back(llvm::MDNode::get(Context, Args));
794      continue;
795    }
796
797    // Link against a library.
798    llvm::Value *OptString
799    = llvm::MDString::get(Context,
800                          "-l" + Mod->LinkLibraries[I-1].Library);
801    Metadata.push_back(llvm::MDNode::get(Context, OptString));
802  }
803}
804
805void CodeGenModule::EmitModuleLinkOptions() {
806  // Collect the set of all of the modules we want to visit to emit link
807  // options, which is essentially the imported modules and all of their
808  // non-explicit child modules.
809  llvm::SetVector<clang::Module *> LinkModules;
810  llvm::SmallPtrSet<clang::Module *, 16> Visited;
811  SmallVector<clang::Module *, 16> Stack;
812
813  // Seed the stack with imported modules.
814  for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
815                                               MEnd = ImportedModules.end();
816       M != MEnd; ++M) {
817    if (Visited.insert(*M))
818      Stack.push_back(*M);
819  }
820
821  // Find all of the modules to import, making a little effort to prune
822  // non-leaf modules.
823  while (!Stack.empty()) {
824    clang::Module *Mod = Stack.back();
825    Stack.pop_back();
826
827    bool AnyChildren = false;
828
829    // Visit the submodules of this module.
830    for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
831                                        SubEnd = Mod->submodule_end();
832         Sub != SubEnd; ++Sub) {
833      // Skip explicit children; they need to be explicitly imported to be
834      // linked against.
835      if ((*Sub)->IsExplicit)
836        continue;
837
838      if (Visited.insert(*Sub)) {
839        Stack.push_back(*Sub);
840        AnyChildren = true;
841      }
842    }
843
844    // We didn't find any children, so add this module to the list of
845    // modules to link against.
846    if (!AnyChildren) {
847      LinkModules.insert(Mod);
848    }
849  }
850
851  // Add link options for all of the imported modules in reverse topological
852  // order.
853  SmallVector<llvm::Value *, 16> MetadataArgs;
854  Visited.clear();
855  for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
856                                               MEnd = LinkModules.end();
857       M != MEnd; ++M) {
858    if (Visited.insert(*M))
859      addLinkOptionsPostorder(getLLVMContext(), *M, MetadataArgs, Visited);
860  }
861  std::reverse(MetadataArgs.begin(), MetadataArgs.end());
862
863  // Add the linker options metadata flag.
864  getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
865                            llvm::MDNode::get(getLLVMContext(), MetadataArgs));
866}
867
868void CodeGenModule::EmitDeferred() {
869  // Emit code for any potentially referenced deferred decls.  Since a
870  // previously unused static decl may become used during the generation of code
871  // for a static function, iterate until no changes are made.
872
873  while (true) {
874    if (!DeferredVTables.empty()) {
875      EmitDeferredVTables();
876
877      // Emitting a v-table doesn't directly cause more v-tables to
878      // become deferred, although it can cause functions to be
879      // emitted that then need those v-tables.
880      assert(DeferredVTables.empty());
881    }
882
883    // Stop if we're out of both deferred v-tables and deferred declarations.
884    if (DeferredDeclsToEmit.empty()) break;
885
886    GlobalDecl D = DeferredDeclsToEmit.back();
887    DeferredDeclsToEmit.pop_back();
888
889    // Check to see if we've already emitted this.  This is necessary
890    // for a couple of reasons: first, decls can end up in the
891    // deferred-decls queue multiple times, and second, decls can end
892    // up with definitions in unusual ways (e.g. by an extern inline
893    // function acquiring a strong function redefinition).  Just
894    // ignore these cases.
895    //
896    // TODO: That said, looking this up multiple times is very wasteful.
897    StringRef Name = getMangledName(D);
898    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
899    assert(CGRef && "Deferred decl wasn't referenced?");
900
901    if (!CGRef->isDeclaration())
902      continue;
903
904    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
905    // purposes an alias counts as a definition.
906    if (isa<llvm::GlobalAlias>(CGRef))
907      continue;
908
909    // Otherwise, emit the definition and move on to the next one.
910    EmitGlobalDefinition(D);
911  }
912}
913
914void CodeGenModule::EmitGlobalAnnotations() {
915  if (Annotations.empty())
916    return;
917
918  // Create a new global variable for the ConstantStruct in the Module.
919  llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
920    Annotations[0]->getType(), Annotations.size()), Annotations);
921  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
922    Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
923    "llvm.global.annotations");
924  gv->setSection(AnnotationSection);
925}
926
927llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
928  llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
929  if (i != AnnotationStrings.end())
930    return i->second;
931
932  // Not found yet, create a new global.
933  llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
934  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
935    true, llvm::GlobalValue::PrivateLinkage, s, ".str");
936  gv->setSection(AnnotationSection);
937  gv->setUnnamedAddr(true);
938  AnnotationStrings[Str] = gv;
939  return gv;
940}
941
942llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
943  SourceManager &SM = getContext().getSourceManager();
944  PresumedLoc PLoc = SM.getPresumedLoc(Loc);
945  if (PLoc.isValid())
946    return EmitAnnotationString(PLoc.getFilename());
947  return EmitAnnotationString(SM.getBufferName(Loc));
948}
949
950llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
951  SourceManager &SM = getContext().getSourceManager();
952  PresumedLoc PLoc = SM.getPresumedLoc(L);
953  unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
954    SM.getExpansionLineNumber(L);
955  return llvm::ConstantInt::get(Int32Ty, LineNo);
956}
957
958llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
959                                                const AnnotateAttr *AA,
960                                                SourceLocation L) {
961  // Get the globals for file name, annotation, and the line number.
962  llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
963                 *UnitGV = EmitAnnotationUnit(L),
964                 *LineNoCst = EmitAnnotationLineNo(L);
965
966  // Create the ConstantStruct for the global annotation.
967  llvm::Constant *Fields[4] = {
968    llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
969    llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
970    llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
971    LineNoCst
972  };
973  return llvm::ConstantStruct::getAnon(Fields);
974}
975
976void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
977                                         llvm::GlobalValue *GV) {
978  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
979  // Get the struct elements for these annotations.
980  for (specific_attr_iterator<AnnotateAttr>
981       ai = D->specific_attr_begin<AnnotateAttr>(),
982       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
983    Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
984}
985
986bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
987  // Never defer when EmitAllDecls is specified.
988  if (LangOpts.EmitAllDecls)
989    return false;
990
991  return !getContext().DeclMustBeEmitted(Global);
992}
993
994llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
995    const CXXUuidofExpr* E) {
996  // Sema has verified that IIDSource has a __declspec(uuid()), and that its
997  // well-formed.
998  StringRef Uuid;
999  if (E->isTypeOperand())
1000    Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
1001  else {
1002    // Special case: __uuidof(0) means an all-zero GUID.
1003    Expr *Op = E->getExprOperand();
1004    if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
1005      Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
1006    else
1007      Uuid = "00000000-0000-0000-0000-000000000000";
1008  }
1009  std::string Name = "__uuid_" + Uuid.str();
1010
1011  // Look for an existing global.
1012  if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1013    return GV;
1014
1015  llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1016  assert(Init && "failed to initialize as constant");
1017
1018  // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
1019  // first field is declared as "long", which for many targets is 8 bytes.
1020  // Those architectures are not supported. (With the MS abi, long is always 4
1021  // bytes.)
1022  llvm::Type *GuidType = getTypes().ConvertType(E->getType());
1023  if (Init->getType() != GuidType) {
1024    DiagnosticsEngine &Diags = getDiags();
1025    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1026        "__uuidof codegen is not supported on this architecture");
1027    Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
1028    Init = llvm::UndefValue::get(GuidType);
1029  }
1030
1031  llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1032      /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
1033  GV->setUnnamedAddr(true);
1034  return GV;
1035}
1036
1037llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1038  const AliasAttr *AA = VD->getAttr<AliasAttr>();
1039  assert(AA && "No alias?");
1040
1041  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1042
1043  // See if there is already something with the target's name in the module.
1044  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1045  if (Entry) {
1046    unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1047    return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1048  }
1049
1050  llvm::Constant *Aliasee;
1051  if (isa<llvm::FunctionType>(DeclTy))
1052    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1053                                      GlobalDecl(cast<FunctionDecl>(VD)),
1054                                      /*ForVTable=*/false);
1055  else
1056    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1057                                    llvm::PointerType::getUnqual(DeclTy), 0);
1058
1059  llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1060  F->setLinkage(llvm::Function::ExternalWeakLinkage);
1061  WeakRefReferences.insert(F);
1062
1063  return Aliasee;
1064}
1065
1066void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1067  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1068
1069  // Weak references don't produce any output by themselves.
1070  if (Global->hasAttr<WeakRefAttr>())
1071    return;
1072
1073  // If this is an alias definition (which otherwise looks like a declaration)
1074  // emit it now.
1075  if (Global->hasAttr<AliasAttr>())
1076    return EmitAliasDefinition(GD);
1077
1078  // If this is CUDA, be selective about which declarations we emit.
1079  if (LangOpts.CUDA) {
1080    if (CodeGenOpts.CUDAIsDevice) {
1081      if (!Global->hasAttr<CUDADeviceAttr>() &&
1082          !Global->hasAttr<CUDAGlobalAttr>() &&
1083          !Global->hasAttr<CUDAConstantAttr>() &&
1084          !Global->hasAttr<CUDASharedAttr>())
1085        return;
1086    } else {
1087      if (!Global->hasAttr<CUDAHostAttr>() && (
1088            Global->hasAttr<CUDADeviceAttr>() ||
1089            Global->hasAttr<CUDAConstantAttr>() ||
1090            Global->hasAttr<CUDASharedAttr>()))
1091        return;
1092    }
1093  }
1094
1095  // Ignore declarations, they will be emitted on their first use.
1096  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1097    // Forward declarations are emitted lazily on first use.
1098    if (!FD->doesThisDeclarationHaveABody()) {
1099      if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1100        return;
1101
1102      const FunctionDecl *InlineDefinition = 0;
1103      FD->getBody(InlineDefinition);
1104
1105      StringRef MangledName = getMangledName(GD);
1106      DeferredDecls.erase(MangledName);
1107      EmitGlobalDefinition(InlineDefinition);
1108      return;
1109    }
1110  } else {
1111    const VarDecl *VD = cast<VarDecl>(Global);
1112    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1113
1114    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1115      return;
1116  }
1117
1118  // Defer code generation when possible if this is a static definition, inline
1119  // function etc.  These we only want to emit if they are used.
1120  if (!MayDeferGeneration(Global)) {
1121    // Emit the definition if it can't be deferred.
1122    EmitGlobalDefinition(GD);
1123    return;
1124  }
1125
1126  // If we're deferring emission of a C++ variable with an
1127  // initializer, remember the order in which it appeared in the file.
1128  if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1129      cast<VarDecl>(Global)->hasInit()) {
1130    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1131    CXXGlobalInits.push_back(0);
1132  }
1133
1134  // If the value has already been used, add it directly to the
1135  // DeferredDeclsToEmit list.
1136  StringRef MangledName = getMangledName(GD);
1137  if (GetGlobalValue(MangledName))
1138    DeferredDeclsToEmit.push_back(GD);
1139  else {
1140    // Otherwise, remember that we saw a deferred decl with this name.  The
1141    // first use of the mangled name will cause it to move into
1142    // DeferredDeclsToEmit.
1143    DeferredDecls[MangledName] = GD;
1144  }
1145}
1146
1147namespace {
1148  struct FunctionIsDirectlyRecursive :
1149    public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1150    const StringRef Name;
1151    const Builtin::Context &BI;
1152    bool Result;
1153    FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1154      Name(N), BI(C), Result(false) {
1155    }
1156    typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1157
1158    bool TraverseCallExpr(CallExpr *E) {
1159      const FunctionDecl *FD = E->getDirectCallee();
1160      if (!FD)
1161        return true;
1162      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1163      if (Attr && Name == Attr->getLabel()) {
1164        Result = true;
1165        return false;
1166      }
1167      unsigned BuiltinID = FD->getBuiltinID();
1168      if (!BuiltinID)
1169        return true;
1170      StringRef BuiltinName = BI.GetName(BuiltinID);
1171      if (BuiltinName.startswith("__builtin_") &&
1172          Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1173        Result = true;
1174        return false;
1175      }
1176      return true;
1177    }
1178  };
1179}
1180
1181// isTriviallyRecursive - Check if this function calls another
1182// decl that, because of the asm attribute or the other decl being a builtin,
1183// ends up pointing to itself.
1184bool
1185CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1186  StringRef Name;
1187  if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1188    // asm labels are a special kind of mangling we have to support.
1189    AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1190    if (!Attr)
1191      return false;
1192    Name = Attr->getLabel();
1193  } else {
1194    Name = FD->getName();
1195  }
1196
1197  FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1198  Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1199  return Walker.Result;
1200}
1201
1202bool
1203CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1204  if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1205    return true;
1206  if (CodeGenOpts.OptimizationLevel == 0 &&
1207      !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1208    return false;
1209  // PR9614. Avoid cases where the source code is lying to us. An available
1210  // externally function should have an equivalent function somewhere else,
1211  // but a function that calls itself is clearly not equivalent to the real
1212  // implementation.
1213  // This happens in glibc's btowc and in some configure checks.
1214  return !isTriviallyRecursive(F);
1215}
1216
1217void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1218  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1219
1220  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1221                                 Context.getSourceManager(),
1222                                 "Generating code for declaration");
1223
1224  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1225    // At -O0, don't generate IR for functions with available_externally
1226    // linkage.
1227    if (!shouldEmitFunction(Function))
1228      return;
1229
1230    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1231      // Make sure to emit the definition(s) before we emit the thunks.
1232      // This is necessary for the generation of certain thunks.
1233      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1234        EmitCXXConstructor(CD, GD.getCtorType());
1235      else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1236        EmitCXXDestructor(DD, GD.getDtorType());
1237      else
1238        EmitGlobalFunctionDefinition(GD);
1239
1240      if (Method->isVirtual())
1241        getVTables().EmitThunks(GD);
1242
1243      return;
1244    }
1245
1246    return EmitGlobalFunctionDefinition(GD);
1247  }
1248
1249  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1250    return EmitGlobalVarDefinition(VD);
1251
1252  llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1253}
1254
1255/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1256/// module, create and return an llvm Function with the specified type. If there
1257/// is something in the module with the specified name, return it potentially
1258/// bitcasted to the right type.
1259///
1260/// If D is non-null, it specifies a decl that correspond to this.  This is used
1261/// to set the attributes on the function when it is first created.
1262llvm::Constant *
1263CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1264                                       llvm::Type *Ty,
1265                                       GlobalDecl D, bool ForVTable,
1266                                       llvm::AttributeSet ExtraAttrs) {
1267  // Lookup the entry, lazily creating it if necessary.
1268  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1269  if (Entry) {
1270    if (WeakRefReferences.erase(Entry)) {
1271      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1272      if (FD && !FD->hasAttr<WeakAttr>())
1273        Entry->setLinkage(llvm::Function::ExternalLinkage);
1274    }
1275
1276    if (Entry->getType()->getElementType() == Ty)
1277      return Entry;
1278
1279    // Make sure the result is of the correct type.
1280    return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1281  }
1282
1283  // This function doesn't have a complete type (for example, the return
1284  // type is an incomplete struct). Use a fake type instead, and make
1285  // sure not to try to set attributes.
1286  bool IsIncompleteFunction = false;
1287
1288  llvm::FunctionType *FTy;
1289  if (isa<llvm::FunctionType>(Ty)) {
1290    FTy = cast<llvm::FunctionType>(Ty);
1291  } else {
1292    FTy = llvm::FunctionType::get(VoidTy, false);
1293    IsIncompleteFunction = true;
1294  }
1295
1296  llvm::Function *F = llvm::Function::Create(FTy,
1297                                             llvm::Function::ExternalLinkage,
1298                                             MangledName, &getModule());
1299  assert(F->getName() == MangledName && "name was uniqued!");
1300  if (D.getDecl())
1301    SetFunctionAttributes(D, F, IsIncompleteFunction);
1302  if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1303    llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1304    F->addAttributes(llvm::AttributeSet::FunctionIndex,
1305                     llvm::AttributeSet::get(VMContext,
1306                                             llvm::AttributeSet::FunctionIndex,
1307                                             B));
1308  }
1309
1310  // This is the first use or definition of a mangled name.  If there is a
1311  // deferred decl with this name, remember that we need to emit it at the end
1312  // of the file.
1313  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1314  if (DDI != DeferredDecls.end()) {
1315    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1316    // list, and remove it from DeferredDecls (since we don't need it anymore).
1317    DeferredDeclsToEmit.push_back(DDI->second);
1318    DeferredDecls.erase(DDI);
1319
1320  // Otherwise, there are cases we have to worry about where we're
1321  // using a declaration for which we must emit a definition but where
1322  // we might not find a top-level definition:
1323  //   - member functions defined inline in their classes
1324  //   - friend functions defined inline in some class
1325  //   - special member functions with implicit definitions
1326  // If we ever change our AST traversal to walk into class methods,
1327  // this will be unnecessary.
1328  //
1329  // We also don't emit a definition for a function if it's going to be an entry
1330  // in a vtable, unless it's already marked as used.
1331  } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1332    // Look for a declaration that's lexically in a record.
1333    const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1334    FD = FD->getMostRecentDecl();
1335    do {
1336      if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1337        if (FD->isImplicit() && !ForVTable) {
1338          assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1339          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1340          break;
1341        } else if (FD->doesThisDeclarationHaveABody()) {
1342          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1343          break;
1344        }
1345      }
1346      FD = FD->getPreviousDecl();
1347    } while (FD);
1348  }
1349
1350  // Make sure the result is of the requested type.
1351  if (!IsIncompleteFunction) {
1352    assert(F->getType()->getElementType() == Ty);
1353    return F;
1354  }
1355
1356  llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1357  return llvm::ConstantExpr::getBitCast(F, PTy);
1358}
1359
1360/// GetAddrOfFunction - Return the address of the given function.  If Ty is
1361/// non-null, then this function will use the specified type if it has to
1362/// create it (this occurs when we see a definition of the function).
1363llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1364                                                 llvm::Type *Ty,
1365                                                 bool ForVTable) {
1366  // If there was no specific requested type, just convert it now.
1367  if (!Ty)
1368    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1369
1370  StringRef MangledName = getMangledName(GD);
1371  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1372}
1373
1374/// CreateRuntimeFunction - Create a new runtime function with the specified
1375/// type and name.
1376llvm::Constant *
1377CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1378                                     StringRef Name,
1379                                     llvm::AttributeSet ExtraAttrs) {
1380  llvm::Constant *C
1381    = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1382                              ExtraAttrs);
1383  if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1384    if (F->empty())
1385      F->setCallingConv(getRuntimeCC());
1386  return C;
1387}
1388
1389/// isTypeConstant - Determine whether an object of this type can be emitted
1390/// as a constant.
1391///
1392/// If ExcludeCtor is true, the duration when the object's constructor runs
1393/// will not be considered. The caller will need to verify that the object is
1394/// not written to during its construction.
1395bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1396  if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1397    return false;
1398
1399  if (Context.getLangOpts().CPlusPlus) {
1400    if (const CXXRecordDecl *Record
1401          = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1402      return ExcludeCtor && !Record->hasMutableFields() &&
1403             Record->hasTrivialDestructor();
1404  }
1405
1406  return true;
1407}
1408
1409/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1410/// create and return an llvm GlobalVariable with the specified type.  If there
1411/// is something in the module with the specified name, return it potentially
1412/// bitcasted to the right type.
1413///
1414/// If D is non-null, it specifies a decl that correspond to this.  This is used
1415/// to set the attributes on the global when it is first created.
1416llvm::Constant *
1417CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1418                                     llvm::PointerType *Ty,
1419                                     const VarDecl *D,
1420                                     bool UnnamedAddr) {
1421  // Lookup the entry, lazily creating it if necessary.
1422  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1423  if (Entry) {
1424    if (WeakRefReferences.erase(Entry)) {
1425      if (D && !D->hasAttr<WeakAttr>())
1426        Entry->setLinkage(llvm::Function::ExternalLinkage);
1427    }
1428
1429    if (UnnamedAddr)
1430      Entry->setUnnamedAddr(true);
1431
1432    if (Entry->getType() == Ty)
1433      return Entry;
1434
1435    // Make sure the result is of the correct type.
1436    return llvm::ConstantExpr::getBitCast(Entry, Ty);
1437  }
1438
1439  // This is the first use or definition of a mangled name.  If there is a
1440  // deferred decl with this name, remember that we need to emit it at the end
1441  // of the file.
1442  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1443  if (DDI != DeferredDecls.end()) {
1444    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1445    // list, and remove it from DeferredDecls (since we don't need it anymore).
1446    DeferredDeclsToEmit.push_back(DDI->second);
1447    DeferredDecls.erase(DDI);
1448  }
1449
1450  unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1451  llvm::GlobalVariable *GV =
1452    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1453                             llvm::GlobalValue::ExternalLinkage,
1454                             0, MangledName, 0,
1455                             llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1456
1457  // Handle things which are present even on external declarations.
1458  if (D) {
1459    // FIXME: This code is overly simple and should be merged with other global
1460    // handling.
1461    GV->setConstant(isTypeConstant(D->getType(), false));
1462
1463    // Set linkage and visibility in case we never see a definition.
1464    LinkageInfo LV = D->getLinkageAndVisibility();
1465    if (LV.getLinkage() != ExternalLinkage) {
1466      // Don't set internal linkage on declarations.
1467    } else {
1468      if (D->hasAttr<DLLImportAttr>())
1469        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1470      else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1471        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1472
1473      // Set visibility on a declaration only if it's explicit.
1474      if (LV.isVisibilityExplicit())
1475        GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1476    }
1477
1478    if (D->isThreadSpecified())
1479      setTLSMode(GV, *D);
1480  }
1481
1482  if (AddrSpace != Ty->getAddressSpace())
1483    return llvm::ConstantExpr::getBitCast(GV, Ty);
1484  else
1485    return GV;
1486}
1487
1488
1489llvm::GlobalVariable *
1490CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1491                                      llvm::Type *Ty,
1492                                      llvm::GlobalValue::LinkageTypes Linkage) {
1493  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1494  llvm::GlobalVariable *OldGV = 0;
1495
1496
1497  if (GV) {
1498    // Check if the variable has the right type.
1499    if (GV->getType()->getElementType() == Ty)
1500      return GV;
1501
1502    // Because C++ name mangling, the only way we can end up with an already
1503    // existing global with the same name is if it has been declared extern "C".
1504    assert(GV->isDeclaration() && "Declaration has wrong type!");
1505    OldGV = GV;
1506  }
1507
1508  // Create a new variable.
1509  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1510                                Linkage, 0, Name);
1511
1512  if (OldGV) {
1513    // Replace occurrences of the old variable if needed.
1514    GV->takeName(OldGV);
1515
1516    if (!OldGV->use_empty()) {
1517      llvm::Constant *NewPtrForOldDecl =
1518      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1519      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1520    }
1521
1522    OldGV->eraseFromParent();
1523  }
1524
1525  return GV;
1526}
1527
1528/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1529/// given global variable.  If Ty is non-null and if the global doesn't exist,
1530/// then it will be created with the specified type instead of whatever the
1531/// normal requested type would be.
1532llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1533                                                  llvm::Type *Ty) {
1534  assert(D->hasGlobalStorage() && "Not a global variable");
1535  QualType ASTTy = D->getType();
1536  if (Ty == 0)
1537    Ty = getTypes().ConvertTypeForMem(ASTTy);
1538
1539  llvm::PointerType *PTy =
1540    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1541
1542  StringRef MangledName = getMangledName(D);
1543  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1544}
1545
1546/// CreateRuntimeVariable - Create a new runtime global variable with the
1547/// specified type and name.
1548llvm::Constant *
1549CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1550                                     StringRef Name) {
1551  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1552                               true);
1553}
1554
1555void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1556  assert(!D->getInit() && "Cannot emit definite definitions here!");
1557
1558  if (MayDeferGeneration(D)) {
1559    // If we have not seen a reference to this variable yet, place it
1560    // into the deferred declarations table to be emitted if needed
1561    // later.
1562    StringRef MangledName = getMangledName(D);
1563    if (!GetGlobalValue(MangledName)) {
1564      DeferredDecls[MangledName] = D;
1565      return;
1566    }
1567  }
1568
1569  // The tentative definition is the only definition.
1570  EmitGlobalVarDefinition(D);
1571}
1572
1573CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1574    return Context.toCharUnitsFromBits(
1575      TheDataLayout.getTypeStoreSizeInBits(Ty));
1576}
1577
1578llvm::Constant *
1579CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1580                                                       const Expr *rawInit) {
1581  ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1582  if (const ExprWithCleanups *withCleanups =
1583          dyn_cast<ExprWithCleanups>(rawInit)) {
1584    cleanups = withCleanups->getObjects();
1585    rawInit = withCleanups->getSubExpr();
1586  }
1587
1588  const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1589  if (!init || !init->initializesStdInitializerList() ||
1590      init->getNumInits() == 0)
1591    return 0;
1592
1593  ASTContext &ctx = getContext();
1594  unsigned numInits = init->getNumInits();
1595  // FIXME: This check is here because we would otherwise silently miscompile
1596  // nested global std::initializer_lists. Better would be to have a real
1597  // implementation.
1598  for (unsigned i = 0; i < numInits; ++i) {
1599    const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1600    if (inner && inner->initializesStdInitializerList()) {
1601      ErrorUnsupported(inner, "nested global std::initializer_list");
1602      return 0;
1603    }
1604  }
1605
1606  // Synthesize a fake VarDecl for the array and initialize that.
1607  QualType elementType = init->getInit(0)->getType();
1608  llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1609  QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1610                                                ArrayType::Normal, 0);
1611
1612  IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1613  TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1614                                              arrayType, D->getLocation());
1615  VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1616                                                          D->getDeclContext()),
1617                                          D->getLocStart(), D->getLocation(),
1618                                          name, arrayType, sourceInfo,
1619                                          SC_Static);
1620
1621  // Now clone the InitListExpr to initialize the array instead.
1622  // Incredible hack: we want to use the existing InitListExpr here, so we need
1623  // to tell it that it no longer initializes a std::initializer_list.
1624  ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1625                        init->getNumInits());
1626  Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1627                                           init->getRBraceLoc());
1628  arrayInit->setType(arrayType);
1629
1630  if (!cleanups.empty())
1631    arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1632
1633  backingArray->setInit(arrayInit);
1634
1635  // Emit the definition of the array.
1636  EmitGlobalVarDefinition(backingArray);
1637
1638  // Inspect the initializer list to validate it and determine its type.
1639  // FIXME: doing this every time is probably inefficient; caching would be nice
1640  RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1641  RecordDecl::field_iterator field = record->field_begin();
1642  if (field == record->field_end()) {
1643    ErrorUnsupported(D, "weird std::initializer_list");
1644    return 0;
1645  }
1646  QualType elementPtr = ctx.getPointerType(elementType.withConst());
1647  // Start pointer.
1648  if (!ctx.hasSameType(field->getType(), elementPtr)) {
1649    ErrorUnsupported(D, "weird std::initializer_list");
1650    return 0;
1651  }
1652  ++field;
1653  if (field == record->field_end()) {
1654    ErrorUnsupported(D, "weird std::initializer_list");
1655    return 0;
1656  }
1657  bool isStartEnd = false;
1658  if (ctx.hasSameType(field->getType(), elementPtr)) {
1659    // End pointer.
1660    isStartEnd = true;
1661  } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1662    ErrorUnsupported(D, "weird std::initializer_list");
1663    return 0;
1664  }
1665
1666  // Now build an APValue representing the std::initializer_list.
1667  APValue initListValue(APValue::UninitStruct(), 0, 2);
1668  APValue &startField = initListValue.getStructField(0);
1669  APValue::LValuePathEntry startOffsetPathEntry;
1670  startOffsetPathEntry.ArrayIndex = 0;
1671  startField = APValue(APValue::LValueBase(backingArray),
1672                       CharUnits::fromQuantity(0),
1673                       llvm::makeArrayRef(startOffsetPathEntry),
1674                       /*IsOnePastTheEnd=*/false, 0);
1675
1676  if (isStartEnd) {
1677    APValue &endField = initListValue.getStructField(1);
1678    APValue::LValuePathEntry endOffsetPathEntry;
1679    endOffsetPathEntry.ArrayIndex = numInits;
1680    endField = APValue(APValue::LValueBase(backingArray),
1681                       ctx.getTypeSizeInChars(elementType) * numInits,
1682                       llvm::makeArrayRef(endOffsetPathEntry),
1683                       /*IsOnePastTheEnd=*/true, 0);
1684  } else {
1685    APValue &sizeField = initListValue.getStructField(1);
1686    sizeField = APValue(llvm::APSInt(numElements));
1687  }
1688
1689  // Emit the constant for the initializer_list.
1690  llvm::Constant *llvmInit =
1691      EmitConstantValueForMemory(initListValue, D->getType());
1692  assert(llvmInit && "failed to initialize as constant");
1693  return llvmInit;
1694}
1695
1696unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1697                                                 unsigned AddrSpace) {
1698  if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1699    if (D->hasAttr<CUDAConstantAttr>())
1700      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1701    else if (D->hasAttr<CUDASharedAttr>())
1702      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1703    else
1704      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1705  }
1706
1707  return AddrSpace;
1708}
1709
1710void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1711  llvm::Constant *Init = 0;
1712  QualType ASTTy = D->getType();
1713  CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1714  bool NeedsGlobalCtor = false;
1715  bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1716
1717  const VarDecl *InitDecl;
1718  const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1719
1720  if (!InitExpr) {
1721    // This is a tentative definition; tentative definitions are
1722    // implicitly initialized with { 0 }.
1723    //
1724    // Note that tentative definitions are only emitted at the end of
1725    // a translation unit, so they should never have incomplete
1726    // type. In addition, EmitTentativeDefinition makes sure that we
1727    // never attempt to emit a tentative definition if a real one
1728    // exists. A use may still exists, however, so we still may need
1729    // to do a RAUW.
1730    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1731    Init = EmitNullConstant(D->getType());
1732  } else {
1733    // If this is a std::initializer_list, emit the special initializer.
1734    Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1735    // An empty init list will perform zero-initialization, which happens
1736    // to be exactly what we want.
1737    // FIXME: It does so in a global constructor, which is *not* what we
1738    // want.
1739
1740    if (!Init) {
1741      initializedGlobalDecl = GlobalDecl(D);
1742      Init = EmitConstantInit(*InitDecl);
1743    }
1744    if (!Init) {
1745      QualType T = InitExpr->getType();
1746      if (D->getType()->isReferenceType())
1747        T = D->getType();
1748
1749      if (getLangOpts().CPlusPlus) {
1750        Init = EmitNullConstant(T);
1751        NeedsGlobalCtor = true;
1752      } else {
1753        ErrorUnsupported(D, "static initializer");
1754        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1755      }
1756    } else {
1757      // We don't need an initializer, so remove the entry for the delayed
1758      // initializer position (just in case this entry was delayed) if we
1759      // also don't need to register a destructor.
1760      if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1761        DelayedCXXInitPosition.erase(D);
1762    }
1763  }
1764
1765  llvm::Type* InitType = Init->getType();
1766  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1767
1768  // Strip off a bitcast if we got one back.
1769  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1770    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1771           // all zero index gep.
1772           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1773    Entry = CE->getOperand(0);
1774  }
1775
1776  // Entry is now either a Function or GlobalVariable.
1777  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1778
1779  // We have a definition after a declaration with the wrong type.
1780  // We must make a new GlobalVariable* and update everything that used OldGV
1781  // (a declaration or tentative definition) with the new GlobalVariable*
1782  // (which will be a definition).
1783  //
1784  // This happens if there is a prototype for a global (e.g.
1785  // "extern int x[];") and then a definition of a different type (e.g.
1786  // "int x[10];"). This also happens when an initializer has a different type
1787  // from the type of the global (this happens with unions).
1788  if (GV == 0 ||
1789      GV->getType()->getElementType() != InitType ||
1790      GV->getType()->getAddressSpace() !=
1791       GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1792
1793    // Move the old entry aside so that we'll create a new one.
1794    Entry->setName(StringRef());
1795
1796    // Make a new global with the correct type, this is now guaranteed to work.
1797    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1798
1799    // Replace all uses of the old global with the new global
1800    llvm::Constant *NewPtrForOldDecl =
1801        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1802    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1803
1804    // Erase the old global, since it is no longer used.
1805    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1806  }
1807
1808  if (D->hasAttr<AnnotateAttr>())
1809    AddGlobalAnnotations(D, GV);
1810
1811  GV->setInitializer(Init);
1812
1813  // If it is safe to mark the global 'constant', do so now.
1814  GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1815                  isTypeConstant(D->getType(), true));
1816
1817  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1818
1819  // Set the llvm linkage type as appropriate.
1820  llvm::GlobalValue::LinkageTypes Linkage =
1821    GetLLVMLinkageVarDefinition(D, GV);
1822  GV->setLinkage(Linkage);
1823  if (Linkage == llvm::GlobalVariable::CommonLinkage)
1824    // common vars aren't constant even if declared const.
1825    GV->setConstant(false);
1826
1827  SetCommonAttributes(D, GV);
1828
1829  // Emit the initializer function if necessary.
1830  if (NeedsGlobalCtor || NeedsGlobalDtor)
1831    EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1832
1833  // If we are compiling with ASan, add metadata indicating dynamically
1834  // initialized globals.
1835  if (SanOpts.Address && NeedsGlobalCtor) {
1836    llvm::Module &M = getModule();
1837
1838    llvm::NamedMDNode *DynamicInitializers =
1839        M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1840    llvm::Value *GlobalToAdd[] = { GV };
1841    llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1842    DynamicInitializers->addOperand(ThisGlobal);
1843  }
1844
1845  // Emit global variable debug information.
1846  if (CGDebugInfo *DI = getModuleDebugInfo())
1847    if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1848      DI->EmitGlobalVariable(GV, D);
1849}
1850
1851llvm::GlobalValue::LinkageTypes
1852CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1853                                           llvm::GlobalVariable *GV) {
1854  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1855  if (Linkage == GVA_Internal)
1856    return llvm::Function::InternalLinkage;
1857  else if (D->hasAttr<DLLImportAttr>())
1858    return llvm::Function::DLLImportLinkage;
1859  else if (D->hasAttr<DLLExportAttr>())
1860    return llvm::Function::DLLExportLinkage;
1861  else if (D->hasAttr<WeakAttr>()) {
1862    if (GV->isConstant())
1863      return llvm::GlobalVariable::WeakODRLinkage;
1864    else
1865      return llvm::GlobalVariable::WeakAnyLinkage;
1866  } else if (Linkage == GVA_TemplateInstantiation ||
1867             Linkage == GVA_ExplicitTemplateInstantiation)
1868    return llvm::GlobalVariable::WeakODRLinkage;
1869  else if (!getLangOpts().CPlusPlus &&
1870           ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1871             D->getAttr<CommonAttr>()) &&
1872           !D->hasExternalStorage() && !D->getInit() &&
1873           !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1874           !D->getAttr<WeakImportAttr>()) {
1875    // Thread local vars aren't considered common linkage.
1876    return llvm::GlobalVariable::CommonLinkage;
1877  }
1878  return llvm::GlobalVariable::ExternalLinkage;
1879}
1880
1881/// Replace the uses of a function that was declared with a non-proto type.
1882/// We want to silently drop extra arguments from call sites
1883static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1884                                          llvm::Function *newFn) {
1885  // Fast path.
1886  if (old->use_empty()) return;
1887
1888  llvm::Type *newRetTy = newFn->getReturnType();
1889  SmallVector<llvm::Value*, 4> newArgs;
1890
1891  for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1892         ui != ue; ) {
1893    llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1894    llvm::User *user = *use;
1895
1896    // Recognize and replace uses of bitcasts.  Most calls to
1897    // unprototyped functions will use bitcasts.
1898    if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1899      if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1900        replaceUsesOfNonProtoConstant(bitcast, newFn);
1901      continue;
1902    }
1903
1904    // Recognize calls to the function.
1905    llvm::CallSite callSite(user);
1906    if (!callSite) continue;
1907    if (!callSite.isCallee(use)) continue;
1908
1909    // If the return types don't match exactly, then we can't
1910    // transform this call unless it's dead.
1911    if (callSite->getType() != newRetTy && !callSite->use_empty())
1912      continue;
1913
1914    // Get the call site's attribute list.
1915    SmallVector<llvm::AttributeSet, 8> newAttrs;
1916    llvm::AttributeSet oldAttrs = callSite.getAttributes();
1917
1918    // Collect any return attributes from the call.
1919    if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
1920      newAttrs.push_back(
1921        llvm::AttributeSet::get(newFn->getContext(),
1922                                oldAttrs.getRetAttributes()));
1923
1924    // If the function was passed too few arguments, don't transform.
1925    unsigned newNumArgs = newFn->arg_size();
1926    if (callSite.arg_size() < newNumArgs) continue;
1927
1928    // If extra arguments were passed, we silently drop them.
1929    // If any of the types mismatch, we don't transform.
1930    unsigned argNo = 0;
1931    bool dontTransform = false;
1932    for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
1933           ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
1934      if (callSite.getArgument(argNo)->getType() != ai->getType()) {
1935        dontTransform = true;
1936        break;
1937      }
1938
1939      // Add any parameter attributes.
1940      if (oldAttrs.hasAttributes(argNo + 1))
1941        newAttrs.
1942          push_back(llvm::
1943                    AttributeSet::get(newFn->getContext(),
1944                                      oldAttrs.getParamAttributes(argNo + 1)));
1945    }
1946    if (dontTransform)
1947      continue;
1948
1949    if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
1950      newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
1951                                                 oldAttrs.getFnAttributes()));
1952
1953    // Okay, we can transform this.  Create the new call instruction and copy
1954    // over the required information.
1955    newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
1956
1957    llvm::CallSite newCall;
1958    if (callSite.isCall()) {
1959      newCall = llvm::CallInst::Create(newFn, newArgs, "",
1960                                       callSite.getInstruction());
1961    } else {
1962      llvm::InvokeInst *oldInvoke =
1963        cast<llvm::InvokeInst>(callSite.getInstruction());
1964      newCall = llvm::InvokeInst::Create(newFn,
1965                                         oldInvoke->getNormalDest(),
1966                                         oldInvoke->getUnwindDest(),
1967                                         newArgs, "",
1968                                         callSite.getInstruction());
1969    }
1970    newArgs.clear(); // for the next iteration
1971
1972    if (!newCall->getType()->isVoidTy())
1973      newCall->takeName(callSite.getInstruction());
1974    newCall.setAttributes(
1975                     llvm::AttributeSet::get(newFn->getContext(), newAttrs));
1976    newCall.setCallingConv(callSite.getCallingConv());
1977
1978    // Finally, remove the old call, replacing any uses with the new one.
1979    if (!callSite->use_empty())
1980      callSite->replaceAllUsesWith(newCall.getInstruction());
1981
1982    // Copy debug location attached to CI.
1983    if (!callSite->getDebugLoc().isUnknown())
1984      newCall->setDebugLoc(callSite->getDebugLoc());
1985    callSite->eraseFromParent();
1986  }
1987}
1988
1989/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1990/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1991/// existing call uses of the old function in the module, this adjusts them to
1992/// call the new function directly.
1993///
1994/// This is not just a cleanup: the always_inline pass requires direct calls to
1995/// functions to be able to inline them.  If there is a bitcast in the way, it
1996/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1997/// run at -O0.
1998static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1999                                                      llvm::Function *NewFn) {
2000  // If we're redefining a global as a function, don't transform it.
2001  if (!isa<llvm::Function>(Old)) return;
2002
2003  replaceUsesOfNonProtoConstant(Old, NewFn);
2004}
2005
2006void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2007  TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2008  // If we have a definition, this might be a deferred decl. If the
2009  // instantiation is explicit, make sure we emit it at the end.
2010  if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2011    GetAddrOfGlobalVar(VD);
2012
2013  EmitTopLevelDecl(VD);
2014}
2015
2016void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2017  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2018
2019  // Compute the function info and LLVM type.
2020  const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2021  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2022
2023  // Get or create the prototype for the function.
2024  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2025
2026  // Strip off a bitcast if we got one back.
2027  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2028    assert(CE->getOpcode() == llvm::Instruction::BitCast);
2029    Entry = CE->getOperand(0);
2030  }
2031
2032
2033  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2034    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2035
2036    // If the types mismatch then we have to rewrite the definition.
2037    assert(OldFn->isDeclaration() &&
2038           "Shouldn't replace non-declaration");
2039
2040    // F is the Function* for the one with the wrong type, we must make a new
2041    // Function* and update everything that used F (a declaration) with the new
2042    // Function* (which will be a definition).
2043    //
2044    // This happens if there is a prototype for a function
2045    // (e.g. "int f()") and then a definition of a different type
2046    // (e.g. "int f(int x)").  Move the old function aside so that it
2047    // doesn't interfere with GetAddrOfFunction.
2048    OldFn->setName(StringRef());
2049    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2050
2051    // This might be an implementation of a function without a
2052    // prototype, in which case, try to do special replacement of
2053    // calls which match the new prototype.  The really key thing here
2054    // is that we also potentially drop arguments from the call site
2055    // so as to make a direct call, which makes the inliner happier
2056    // and suppresses a number of optimizer warnings (!) about
2057    // dropping arguments.
2058    if (!OldFn->use_empty()) {
2059      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2060      OldFn->removeDeadConstantUsers();
2061    }
2062
2063    // Replace uses of F with the Function we will endow with a body.
2064    if (!Entry->use_empty()) {
2065      llvm::Constant *NewPtrForOldDecl =
2066        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2067      Entry->replaceAllUsesWith(NewPtrForOldDecl);
2068    }
2069
2070    // Ok, delete the old function now, which is dead.
2071    OldFn->eraseFromParent();
2072
2073    Entry = NewFn;
2074  }
2075
2076  // We need to set linkage and visibility on the function before
2077  // generating code for it because various parts of IR generation
2078  // want to propagate this information down (e.g. to local static
2079  // declarations).
2080  llvm::Function *Fn = cast<llvm::Function>(Entry);
2081  setFunctionLinkage(D, Fn);
2082
2083  // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2084  setGlobalVisibility(Fn, D);
2085
2086  CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2087
2088  SetFunctionDefinitionAttributes(D, Fn);
2089  SetLLVMFunctionAttributesForDefinition(D, Fn);
2090
2091  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2092    AddGlobalCtor(Fn, CA->getPriority());
2093  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2094    AddGlobalDtor(Fn, DA->getPriority());
2095  if (D->hasAttr<AnnotateAttr>())
2096    AddGlobalAnnotations(D, Fn);
2097}
2098
2099void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2100  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2101  const AliasAttr *AA = D->getAttr<AliasAttr>();
2102  assert(AA && "Not an alias?");
2103
2104  StringRef MangledName = getMangledName(GD);
2105
2106  // If there is a definition in the module, then it wins over the alias.
2107  // This is dubious, but allow it to be safe.  Just ignore the alias.
2108  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2109  if (Entry && !Entry->isDeclaration())
2110    return;
2111
2112  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2113
2114  // Create a reference to the named value.  This ensures that it is emitted
2115  // if a deferred decl.
2116  llvm::Constant *Aliasee;
2117  if (isa<llvm::FunctionType>(DeclTy))
2118    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2119                                      /*ForVTable=*/false);
2120  else
2121    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2122                                    llvm::PointerType::getUnqual(DeclTy), 0);
2123
2124  // Create the new alias itself, but don't set a name yet.
2125  llvm::GlobalValue *GA =
2126    new llvm::GlobalAlias(Aliasee->getType(),
2127                          llvm::Function::ExternalLinkage,
2128                          "", Aliasee, &getModule());
2129
2130  if (Entry) {
2131    assert(Entry->isDeclaration());
2132
2133    // If there is a declaration in the module, then we had an extern followed
2134    // by the alias, as in:
2135    //   extern int test6();
2136    //   ...
2137    //   int test6() __attribute__((alias("test7")));
2138    //
2139    // Remove it and replace uses of it with the alias.
2140    GA->takeName(Entry);
2141
2142    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2143                                                          Entry->getType()));
2144    Entry->eraseFromParent();
2145  } else {
2146    GA->setName(MangledName);
2147  }
2148
2149  // Set attributes which are particular to an alias; this is a
2150  // specialization of the attributes which may be set on a global
2151  // variable/function.
2152  if (D->hasAttr<DLLExportAttr>()) {
2153    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2154      // The dllexport attribute is ignored for undefined symbols.
2155      if (FD->hasBody())
2156        GA->setLinkage(llvm::Function::DLLExportLinkage);
2157    } else {
2158      GA->setLinkage(llvm::Function::DLLExportLinkage);
2159    }
2160  } else if (D->hasAttr<WeakAttr>() ||
2161             D->hasAttr<WeakRefAttr>() ||
2162             D->isWeakImported()) {
2163    GA->setLinkage(llvm::Function::WeakAnyLinkage);
2164  }
2165
2166  SetCommonAttributes(D, GA);
2167}
2168
2169llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2170                                            ArrayRef<llvm::Type*> Tys) {
2171  return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2172                                         Tys);
2173}
2174
2175static llvm::StringMapEntry<llvm::Constant*> &
2176GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2177                         const StringLiteral *Literal,
2178                         bool TargetIsLSB,
2179                         bool &IsUTF16,
2180                         unsigned &StringLength) {
2181  StringRef String = Literal->getString();
2182  unsigned NumBytes = String.size();
2183
2184  // Check for simple case.
2185  if (!Literal->containsNonAsciiOrNull()) {
2186    StringLength = NumBytes;
2187    return Map.GetOrCreateValue(String);
2188  }
2189
2190  // Otherwise, convert the UTF8 literals into a string of shorts.
2191  IsUTF16 = true;
2192
2193  SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2194  const UTF8 *FromPtr = (const UTF8 *)String.data();
2195  UTF16 *ToPtr = &ToBuf[0];
2196
2197  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2198                           &ToPtr, ToPtr + NumBytes,
2199                           strictConversion);
2200
2201  // ConvertUTF8toUTF16 returns the length in ToPtr.
2202  StringLength = ToPtr - &ToBuf[0];
2203
2204  // Add an explicit null.
2205  *ToPtr = 0;
2206  return Map.
2207    GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2208                               (StringLength + 1) * 2));
2209}
2210
2211static llvm::StringMapEntry<llvm::Constant*> &
2212GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2213                       const StringLiteral *Literal,
2214                       unsigned &StringLength) {
2215  StringRef String = Literal->getString();
2216  StringLength = String.size();
2217  return Map.GetOrCreateValue(String);
2218}
2219
2220llvm::Constant *
2221CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2222  unsigned StringLength = 0;
2223  bool isUTF16 = false;
2224  llvm::StringMapEntry<llvm::Constant*> &Entry =
2225    GetConstantCFStringEntry(CFConstantStringMap, Literal,
2226                             getDataLayout().isLittleEndian(),
2227                             isUTF16, StringLength);
2228
2229  if (llvm::Constant *C = Entry.getValue())
2230    return C;
2231
2232  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2233  llvm::Constant *Zeros[] = { Zero, Zero };
2234
2235  // If we don't already have it, get __CFConstantStringClassReference.
2236  if (!CFConstantStringClassRef) {
2237    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2238    Ty = llvm::ArrayType::get(Ty, 0);
2239    llvm::Constant *GV = CreateRuntimeVariable(Ty,
2240                                           "__CFConstantStringClassReference");
2241    // Decay array -> ptr
2242    CFConstantStringClassRef =
2243      llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2244  }
2245
2246  QualType CFTy = getContext().getCFConstantStringType();
2247
2248  llvm::StructType *STy =
2249    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2250
2251  llvm::Constant *Fields[4];
2252
2253  // Class pointer.
2254  Fields[0] = CFConstantStringClassRef;
2255
2256  // Flags.
2257  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2258  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2259    llvm::ConstantInt::get(Ty, 0x07C8);
2260
2261  // String pointer.
2262  llvm::Constant *C = 0;
2263  if (isUTF16) {
2264    ArrayRef<uint16_t> Arr =
2265      llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2266                                     const_cast<char *>(Entry.getKey().data())),
2267                                   Entry.getKey().size() / 2);
2268    C = llvm::ConstantDataArray::get(VMContext, Arr);
2269  } else {
2270    C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2271  }
2272
2273  llvm::GlobalValue::LinkageTypes Linkage;
2274  if (isUTF16)
2275    // FIXME: why do utf strings get "_" labels instead of "L" labels?
2276    Linkage = llvm::GlobalValue::InternalLinkage;
2277  else
2278    // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2279    // when using private linkage. It is not clear if this is a bug in ld
2280    // or a reasonable new restriction.
2281    Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2282
2283  // Note: -fwritable-strings doesn't make the backing store strings of
2284  // CFStrings writable. (See <rdar://problem/10657500>)
2285  llvm::GlobalVariable *GV =
2286    new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2287                             Linkage, C, ".str");
2288  GV->setUnnamedAddr(true);
2289  if (isUTF16) {
2290    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2291    GV->setAlignment(Align.getQuantity());
2292  } else {
2293    CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2294    GV->setAlignment(Align.getQuantity());
2295  }
2296
2297  // String.
2298  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2299
2300  if (isUTF16)
2301    // Cast the UTF16 string to the correct type.
2302    Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2303
2304  // String length.
2305  Ty = getTypes().ConvertType(getContext().LongTy);
2306  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2307
2308  // The struct.
2309  C = llvm::ConstantStruct::get(STy, Fields);
2310  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2311                                llvm::GlobalVariable::PrivateLinkage, C,
2312                                "_unnamed_cfstring_");
2313  if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2314    GV->setSection(Sect);
2315  Entry.setValue(GV);
2316
2317  return GV;
2318}
2319
2320static RecordDecl *
2321CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2322                 DeclContext *DC, IdentifierInfo *Id) {
2323  SourceLocation Loc;
2324  if (Ctx.getLangOpts().CPlusPlus)
2325    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2326  else
2327    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2328}
2329
2330llvm::Constant *
2331CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2332  unsigned StringLength = 0;
2333  llvm::StringMapEntry<llvm::Constant*> &Entry =
2334    GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2335
2336  if (llvm::Constant *C = Entry.getValue())
2337    return C;
2338
2339  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2340  llvm::Constant *Zeros[] = { Zero, Zero };
2341
2342  // If we don't already have it, get _NSConstantStringClassReference.
2343  if (!ConstantStringClassRef) {
2344    std::string StringClass(getLangOpts().ObjCConstantStringClass);
2345    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2346    llvm::Constant *GV;
2347    if (LangOpts.ObjCRuntime.isNonFragile()) {
2348      std::string str =
2349        StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2350                            : "OBJC_CLASS_$_" + StringClass;
2351      GV = getObjCRuntime().GetClassGlobal(str);
2352      // Make sure the result is of the correct type.
2353      llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2354      ConstantStringClassRef =
2355        llvm::ConstantExpr::getBitCast(GV, PTy);
2356    } else {
2357      std::string str =
2358        StringClass.empty() ? "_NSConstantStringClassReference"
2359                            : "_" + StringClass + "ClassReference";
2360      llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2361      GV = CreateRuntimeVariable(PTy, str);
2362      // Decay array -> ptr
2363      ConstantStringClassRef =
2364        llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2365    }
2366  }
2367
2368  if (!NSConstantStringType) {
2369    // Construct the type for a constant NSString.
2370    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2371                                     Context.getTranslationUnitDecl(),
2372                                   &Context.Idents.get("__builtin_NSString"));
2373    D->startDefinition();
2374
2375    QualType FieldTypes[3];
2376
2377    // const int *isa;
2378    FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2379    // const char *str;
2380    FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2381    // unsigned int length;
2382    FieldTypes[2] = Context.UnsignedIntTy;
2383
2384    // Create fields
2385    for (unsigned i = 0; i < 3; ++i) {
2386      FieldDecl *Field = FieldDecl::Create(Context, D,
2387                                           SourceLocation(),
2388                                           SourceLocation(), 0,
2389                                           FieldTypes[i], /*TInfo=*/0,
2390                                           /*BitWidth=*/0,
2391                                           /*Mutable=*/false,
2392                                           ICIS_NoInit);
2393      Field->setAccess(AS_public);
2394      D->addDecl(Field);
2395    }
2396
2397    D->completeDefinition();
2398    QualType NSTy = Context.getTagDeclType(D);
2399    NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2400  }
2401
2402  llvm::Constant *Fields[3];
2403
2404  // Class pointer.
2405  Fields[0] = ConstantStringClassRef;
2406
2407  // String pointer.
2408  llvm::Constant *C =
2409    llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2410
2411  llvm::GlobalValue::LinkageTypes Linkage;
2412  bool isConstant;
2413  Linkage = llvm::GlobalValue::PrivateLinkage;
2414  isConstant = !LangOpts.WritableStrings;
2415
2416  llvm::GlobalVariable *GV =
2417  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2418                           ".str");
2419  GV->setUnnamedAddr(true);
2420  CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2421  GV->setAlignment(Align.getQuantity());
2422  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2423
2424  // String length.
2425  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2426  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2427
2428  // The struct.
2429  C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2430  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2431                                llvm::GlobalVariable::PrivateLinkage, C,
2432                                "_unnamed_nsstring_");
2433  // FIXME. Fix section.
2434  if (const char *Sect =
2435        LangOpts.ObjCRuntime.isNonFragile()
2436          ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2437          : getContext().getTargetInfo().getNSStringSection())
2438    GV->setSection(Sect);
2439  Entry.setValue(GV);
2440
2441  return GV;
2442}
2443
2444QualType CodeGenModule::getObjCFastEnumerationStateType() {
2445  if (ObjCFastEnumerationStateType.isNull()) {
2446    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2447                                     Context.getTranslationUnitDecl(),
2448                      &Context.Idents.get("__objcFastEnumerationState"));
2449    D->startDefinition();
2450
2451    QualType FieldTypes[] = {
2452      Context.UnsignedLongTy,
2453      Context.getPointerType(Context.getObjCIdType()),
2454      Context.getPointerType(Context.UnsignedLongTy),
2455      Context.getConstantArrayType(Context.UnsignedLongTy,
2456                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2457    };
2458
2459    for (size_t i = 0; i < 4; ++i) {
2460      FieldDecl *Field = FieldDecl::Create(Context,
2461                                           D,
2462                                           SourceLocation(),
2463                                           SourceLocation(), 0,
2464                                           FieldTypes[i], /*TInfo=*/0,
2465                                           /*BitWidth=*/0,
2466                                           /*Mutable=*/false,
2467                                           ICIS_NoInit);
2468      Field->setAccess(AS_public);
2469      D->addDecl(Field);
2470    }
2471
2472    D->completeDefinition();
2473    ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2474  }
2475
2476  return ObjCFastEnumerationStateType;
2477}
2478
2479llvm::Constant *
2480CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2481  assert(!E->getType()->isPointerType() && "Strings are always arrays");
2482
2483  // Don't emit it as the address of the string, emit the string data itself
2484  // as an inline array.
2485  if (E->getCharByteWidth() == 1) {
2486    SmallString<64> Str(E->getString());
2487
2488    // Resize the string to the right size, which is indicated by its type.
2489    const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2490    Str.resize(CAT->getSize().getZExtValue());
2491    return llvm::ConstantDataArray::getString(VMContext, Str, false);
2492  }
2493
2494  llvm::ArrayType *AType =
2495    cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2496  llvm::Type *ElemTy = AType->getElementType();
2497  unsigned NumElements = AType->getNumElements();
2498
2499  // Wide strings have either 2-byte or 4-byte elements.
2500  if (ElemTy->getPrimitiveSizeInBits() == 16) {
2501    SmallVector<uint16_t, 32> Elements;
2502    Elements.reserve(NumElements);
2503
2504    for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2505      Elements.push_back(E->getCodeUnit(i));
2506    Elements.resize(NumElements);
2507    return llvm::ConstantDataArray::get(VMContext, Elements);
2508  }
2509
2510  assert(ElemTy->getPrimitiveSizeInBits() == 32);
2511  SmallVector<uint32_t, 32> Elements;
2512  Elements.reserve(NumElements);
2513
2514  for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2515    Elements.push_back(E->getCodeUnit(i));
2516  Elements.resize(NumElements);
2517  return llvm::ConstantDataArray::get(VMContext, Elements);
2518}
2519
2520/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2521/// constant array for the given string literal.
2522llvm::Constant *
2523CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2524  CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2525  if (S->isAscii() || S->isUTF8()) {
2526    SmallString<64> Str(S->getString());
2527
2528    // Resize the string to the right size, which is indicated by its type.
2529    const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2530    Str.resize(CAT->getSize().getZExtValue());
2531    return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2532  }
2533
2534  // FIXME: the following does not memoize wide strings.
2535  llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2536  llvm::GlobalVariable *GV =
2537    new llvm::GlobalVariable(getModule(),C->getType(),
2538                             !LangOpts.WritableStrings,
2539                             llvm::GlobalValue::PrivateLinkage,
2540                             C,".str");
2541
2542  GV->setAlignment(Align.getQuantity());
2543  GV->setUnnamedAddr(true);
2544  return GV;
2545}
2546
2547/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2548/// array for the given ObjCEncodeExpr node.
2549llvm::Constant *
2550CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2551  std::string Str;
2552  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2553
2554  return GetAddrOfConstantCString(Str);
2555}
2556
2557
2558/// GenerateWritableString -- Creates storage for a string literal.
2559static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2560                                             bool constant,
2561                                             CodeGenModule &CGM,
2562                                             const char *GlobalName,
2563                                             unsigned Alignment) {
2564  // Create Constant for this string literal. Don't add a '\0'.
2565  llvm::Constant *C =
2566      llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2567
2568  // Create a global variable for this string
2569  llvm::GlobalVariable *GV =
2570    new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2571                             llvm::GlobalValue::PrivateLinkage,
2572                             C, GlobalName);
2573  GV->setAlignment(Alignment);
2574  GV->setUnnamedAddr(true);
2575  return GV;
2576}
2577
2578/// GetAddrOfConstantString - Returns a pointer to a character array
2579/// containing the literal. This contents are exactly that of the
2580/// given string, i.e. it will not be null terminated automatically;
2581/// see GetAddrOfConstantCString. Note that whether the result is
2582/// actually a pointer to an LLVM constant depends on
2583/// Feature.WriteableStrings.
2584///
2585/// The result has pointer to array type.
2586llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2587                                                       const char *GlobalName,
2588                                                       unsigned Alignment) {
2589  // Get the default prefix if a name wasn't specified.
2590  if (!GlobalName)
2591    GlobalName = ".str";
2592
2593  // Don't share any string literals if strings aren't constant.
2594  if (LangOpts.WritableStrings)
2595    return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2596
2597  llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2598    ConstantStringMap.GetOrCreateValue(Str);
2599
2600  if (llvm::GlobalVariable *GV = Entry.getValue()) {
2601    if (Alignment > GV->getAlignment()) {
2602      GV->setAlignment(Alignment);
2603    }
2604    return GV;
2605  }
2606
2607  // Create a global variable for this.
2608  llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2609                                                   Alignment);
2610  Entry.setValue(GV);
2611  return GV;
2612}
2613
2614/// GetAddrOfConstantCString - Returns a pointer to a character
2615/// array containing the literal and a terminating '\0'
2616/// character. The result has pointer to array type.
2617llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2618                                                        const char *GlobalName,
2619                                                        unsigned Alignment) {
2620  StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2621  return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2622}
2623
2624/// EmitObjCPropertyImplementations - Emit information for synthesized
2625/// properties for an implementation.
2626void CodeGenModule::EmitObjCPropertyImplementations(const
2627                                                    ObjCImplementationDecl *D) {
2628  for (ObjCImplementationDecl::propimpl_iterator
2629         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2630    ObjCPropertyImplDecl *PID = *i;
2631
2632    // Dynamic is just for type-checking.
2633    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2634      ObjCPropertyDecl *PD = PID->getPropertyDecl();
2635
2636      // Determine which methods need to be implemented, some may have
2637      // been overridden. Note that ::isPropertyAccessor is not the method
2638      // we want, that just indicates if the decl came from a
2639      // property. What we want to know is if the method is defined in
2640      // this implementation.
2641      if (!D->getInstanceMethod(PD->getGetterName()))
2642        CodeGenFunction(*this).GenerateObjCGetter(
2643                                 const_cast<ObjCImplementationDecl *>(D), PID);
2644      if (!PD->isReadOnly() &&
2645          !D->getInstanceMethod(PD->getSetterName()))
2646        CodeGenFunction(*this).GenerateObjCSetter(
2647                                 const_cast<ObjCImplementationDecl *>(D), PID);
2648    }
2649  }
2650}
2651
2652static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2653  const ObjCInterfaceDecl *iface = impl->getClassInterface();
2654  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2655       ivar; ivar = ivar->getNextIvar())
2656    if (ivar->getType().isDestructedType())
2657      return true;
2658
2659  return false;
2660}
2661
2662/// EmitObjCIvarInitializations - Emit information for ivar initialization
2663/// for an implementation.
2664void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2665  // We might need a .cxx_destruct even if we don't have any ivar initializers.
2666  if (needsDestructMethod(D)) {
2667    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2668    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2669    ObjCMethodDecl *DTORMethod =
2670      ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2671                             cxxSelector, getContext().VoidTy, 0, D,
2672                             /*isInstance=*/true, /*isVariadic=*/false,
2673                          /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2674                             /*isDefined=*/false, ObjCMethodDecl::Required);
2675    D->addInstanceMethod(DTORMethod);
2676    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2677    D->setHasDestructors(true);
2678  }
2679
2680  // If the implementation doesn't have any ivar initializers, we don't need
2681  // a .cxx_construct.
2682  if (D->getNumIvarInitializers() == 0)
2683    return;
2684
2685  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2686  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2687  // The constructor returns 'self'.
2688  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2689                                                D->getLocation(),
2690                                                D->getLocation(),
2691                                                cxxSelector,
2692                                                getContext().getObjCIdType(), 0,
2693                                                D, /*isInstance=*/true,
2694                                                /*isVariadic=*/false,
2695                                                /*isPropertyAccessor=*/true,
2696                                                /*isImplicitlyDeclared=*/true,
2697                                                /*isDefined=*/false,
2698                                                ObjCMethodDecl::Required);
2699  D->addInstanceMethod(CTORMethod);
2700  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2701  D->setHasNonZeroConstructors(true);
2702}
2703
2704/// EmitNamespace - Emit all declarations in a namespace.
2705void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2706  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2707       I != E; ++I)
2708    EmitTopLevelDecl(*I);
2709}
2710
2711// EmitLinkageSpec - Emit all declarations in a linkage spec.
2712void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2713  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2714      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2715    ErrorUnsupported(LSD, "linkage spec");
2716    return;
2717  }
2718
2719  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2720       I != E; ++I) {
2721    // Meta-data for ObjC class includes references to implemented methods.
2722    // Generate class's method definitions first.
2723    if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2724      for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2725           MEnd = OID->meth_end();
2726           M != MEnd; ++M)
2727        EmitTopLevelDecl(*M);
2728    }
2729    EmitTopLevelDecl(*I);
2730  }
2731}
2732
2733/// EmitTopLevelDecl - Emit code for a single top level declaration.
2734void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2735  // If an error has occurred, stop code generation, but continue
2736  // parsing and semantic analysis (to ensure all warnings and errors
2737  // are emitted).
2738  if (Diags.hasErrorOccurred())
2739    return;
2740
2741  // Ignore dependent declarations.
2742  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2743    return;
2744
2745  switch (D->getKind()) {
2746  case Decl::CXXConversion:
2747  case Decl::CXXMethod:
2748  case Decl::Function:
2749    // Skip function templates
2750    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2751        cast<FunctionDecl>(D)->isLateTemplateParsed())
2752      return;
2753
2754    EmitGlobal(cast<FunctionDecl>(D));
2755    break;
2756
2757  case Decl::Var:
2758    EmitGlobal(cast<VarDecl>(D));
2759    break;
2760
2761  // Indirect fields from global anonymous structs and unions can be
2762  // ignored; only the actual variable requires IR gen support.
2763  case Decl::IndirectField:
2764    break;
2765
2766  // C++ Decls
2767  case Decl::Namespace:
2768    EmitNamespace(cast<NamespaceDecl>(D));
2769    break;
2770    // No code generation needed.
2771  case Decl::UsingShadow:
2772  case Decl::Using:
2773  case Decl::UsingDirective:
2774  case Decl::ClassTemplate:
2775  case Decl::FunctionTemplate:
2776  case Decl::TypeAliasTemplate:
2777  case Decl::NamespaceAlias:
2778  case Decl::Block:
2779  case Decl::Empty:
2780    break;
2781  case Decl::CXXConstructor:
2782    // Skip function templates
2783    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2784        cast<FunctionDecl>(D)->isLateTemplateParsed())
2785      return;
2786
2787    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2788    break;
2789  case Decl::CXXDestructor:
2790    if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2791      return;
2792    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2793    break;
2794
2795  case Decl::StaticAssert:
2796    // Nothing to do.
2797    break;
2798
2799  // Objective-C Decls
2800
2801  // Forward declarations, no (immediate) code generation.
2802  case Decl::ObjCInterface:
2803  case Decl::ObjCCategory:
2804    break;
2805
2806  case Decl::ObjCProtocol: {
2807    ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2808    if (Proto->isThisDeclarationADefinition())
2809      ObjCRuntime->GenerateProtocol(Proto);
2810    break;
2811  }
2812
2813  case Decl::ObjCCategoryImpl:
2814    // Categories have properties but don't support synthesize so we
2815    // can ignore them here.
2816    ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2817    break;
2818
2819  case Decl::ObjCImplementation: {
2820    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2821    EmitObjCPropertyImplementations(OMD);
2822    EmitObjCIvarInitializations(OMD);
2823    ObjCRuntime->GenerateClass(OMD);
2824    // Emit global variable debug information.
2825    if (CGDebugInfo *DI = getModuleDebugInfo())
2826      if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2827        DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2828            OMD->getClassInterface()), OMD->getLocation());
2829    break;
2830  }
2831  case Decl::ObjCMethod: {
2832    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2833    // If this is not a prototype, emit the body.
2834    if (OMD->getBody())
2835      CodeGenFunction(*this).GenerateObjCMethod(OMD);
2836    break;
2837  }
2838  case Decl::ObjCCompatibleAlias:
2839    ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2840    break;
2841
2842  case Decl::LinkageSpec:
2843    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2844    break;
2845
2846  case Decl::FileScopeAsm: {
2847    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2848    StringRef AsmString = AD->getAsmString()->getString();
2849
2850    const std::string &S = getModule().getModuleInlineAsm();
2851    if (S.empty())
2852      getModule().setModuleInlineAsm(AsmString);
2853    else if (S.end()[-1] == '\n')
2854      getModule().setModuleInlineAsm(S + AsmString.str());
2855    else
2856      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2857    break;
2858  }
2859
2860  case Decl::Import: {
2861    ImportDecl *Import = cast<ImportDecl>(D);
2862
2863    // Ignore import declarations that come from imported modules.
2864    if (clang::Module *Owner = Import->getOwningModule()) {
2865      if (getLangOpts().CurrentModule.empty() ||
2866          Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2867        break;
2868    }
2869
2870    ImportedModules.insert(Import->getImportedModule());
2871    break;
2872 }
2873
2874  default:
2875    // Make sure we handled everything we should, every other kind is a
2876    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2877    // function. Need to recode Decl::Kind to do that easily.
2878    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2879  }
2880}
2881
2882/// Turns the given pointer into a constant.
2883static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2884                                          const void *Ptr) {
2885  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2886  llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2887  return llvm::ConstantInt::get(i64, PtrInt);
2888}
2889
2890static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2891                                   llvm::NamedMDNode *&GlobalMetadata,
2892                                   GlobalDecl D,
2893                                   llvm::GlobalValue *Addr) {
2894  if (!GlobalMetadata)
2895    GlobalMetadata =
2896      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2897
2898  // TODO: should we report variant information for ctors/dtors?
2899  llvm::Value *Ops[] = {
2900    Addr,
2901    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2902  };
2903  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2904}
2905
2906/// Emits metadata nodes associating all the global values in the
2907/// current module with the Decls they came from.  This is useful for
2908/// projects using IR gen as a subroutine.
2909///
2910/// Since there's currently no way to associate an MDNode directly
2911/// with an llvm::GlobalValue, we create a global named metadata
2912/// with the name 'clang.global.decl.ptrs'.
2913void CodeGenModule::EmitDeclMetadata() {
2914  llvm::NamedMDNode *GlobalMetadata = 0;
2915
2916  // StaticLocalDeclMap
2917  for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2918         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2919       I != E; ++I) {
2920    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2921    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2922  }
2923}
2924
2925/// Emits metadata nodes for all the local variables in the current
2926/// function.
2927void CodeGenFunction::EmitDeclMetadata() {
2928  if (LocalDeclMap.empty()) return;
2929
2930  llvm::LLVMContext &Context = getLLVMContext();
2931
2932  // Find the unique metadata ID for this name.
2933  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2934
2935  llvm::NamedMDNode *GlobalMetadata = 0;
2936
2937  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2938         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2939    const Decl *D = I->first;
2940    llvm::Value *Addr = I->second;
2941
2942    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2943      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2944      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2945    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2946      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2947      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2948    }
2949  }
2950}
2951
2952void CodeGenModule::EmitCoverageFile() {
2953  if (!getCodeGenOpts().CoverageFile.empty()) {
2954    if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2955      llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2956      llvm::LLVMContext &Ctx = TheModule.getContext();
2957      llvm::MDString *CoverageFile =
2958          llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2959      for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2960        llvm::MDNode *CU = CUNode->getOperand(i);
2961        llvm::Value *node[] = { CoverageFile, CU };
2962        llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2963        GCov->addOperand(N);
2964      }
2965    }
2966  }
2967}
2968
2969llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
2970                                                     QualType GuidType) {
2971  // Sema has checked that all uuid strings are of the form
2972  // "12345678-1234-1234-1234-1234567890ab".
2973  assert(Uuid.size() == 36);
2974  const char *Uuidstr = Uuid.data();
2975  for (int i = 0; i < 36; ++i) {
2976    if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
2977    else                                         assert(isHexDigit(Uuidstr[i]));
2978  }
2979
2980  llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
2981  llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
2982  llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
2983  static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
2984
2985  APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
2986  InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
2987  InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
2988  InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
2989  APValue& Arr = InitStruct.getStructField(3);
2990  Arr = APValue(APValue::UninitArray(), 8, 8);
2991  for (int t = 0; t < 8; ++t)
2992    Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
2993          llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
2994
2995  return EmitConstantValue(InitStruct, GuidType);
2996}
2997