CodeGenModule.cpp revision c1868e533e63a1b7dad7a22714fc593c045382ae
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CodeGenTBAA.h"
18#include "CGCall.h"
19#include "CGCUDARuntime.h"
20#include "CGCXXABI.h"
21#include "CGObjCRuntime.h"
22#include "CGOpenCLRuntime.h"
23#include "TargetInfo.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "clang/AST/ASTContext.h"
26#include "clang/AST/CharUnits.h"
27#include "clang/AST/DeclObjC.h"
28#include "clang/AST/DeclCXX.h"
29#include "clang/AST/DeclTemplate.h"
30#include "clang/AST/Mangle.h"
31#include "clang/AST/RecordLayout.h"
32#include "clang/AST/RecursiveASTVisitor.h"
33#include "clang/Basic/Builtins.h"
34#include "clang/Basic/Diagnostic.h"
35#include "clang/Basic/SourceManager.h"
36#include "clang/Basic/TargetInfo.h"
37#include "clang/Basic/ConvertUTF.h"
38#include "llvm/CallingConv.h"
39#include "llvm/Module.h"
40#include "llvm/Intrinsics.h"
41#include "llvm/LLVMContext.h"
42#include "llvm/ADT/APSInt.h"
43#include "llvm/ADT/Triple.h"
44#include "llvm/Target/Mangler.h"
45#include "llvm/DataLayout.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/ErrorHandling.h"
48using namespace clang;
49using namespace CodeGen;
50
51static const char AnnotationSection[] = "llvm.metadata";
52
53static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
54  switch (CGM.getContext().getTargetInfo().getCXXABI()) {
55  case CXXABI_ARM: return *CreateARMCXXABI(CGM);
56  case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
57  case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
58  }
59
60  llvm_unreachable("invalid C++ ABI kind");
61}
62
63
64CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
65                             llvm::Module &M, const llvm::DataLayout &TD,
66                             DiagnosticsEngine &diags)
67  : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
68    TheDataLayout(TD), TheTargetCodeGenInfo(0), Diags(diags),
69    ABI(createCXXABI(*this)),
70    Types(*this),
71    TBAA(0),
72    VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
73    DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
74    RRData(0), CFConstantStringClassRef(0),
75    ConstantStringClassRef(0), NSConstantStringType(0),
76    VMContext(M.getContext()),
77    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
78    BlockObjectAssign(0), BlockObjectDispose(0),
79    BlockDescriptorType(0), GenericBlockLiteralType(0) {
80
81  // Initialize the type cache.
82  llvm::LLVMContext &LLVMContext = M.getContext();
83  VoidTy = llvm::Type::getVoidTy(LLVMContext);
84  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
85  Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
86  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
87  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
88  FloatTy = llvm::Type::getFloatTy(LLVMContext);
89  DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
90  PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
91  PointerAlignInBytes =
92  C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
93  IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
94  IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
95  Int8PtrTy = Int8Ty->getPointerTo(0);
96  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
97
98  if (LangOpts.ObjC1)
99    createObjCRuntime();
100  if (LangOpts.OpenCL)
101    createOpenCLRuntime();
102  if (LangOpts.CUDA)
103    createCUDARuntime();
104
105  // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
106  if (LangOpts.ThreadSanitizer ||
107      (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
108    TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
109                           ABI.getMangleContext());
110
111  // If debug info or coverage generation is enabled, create the CGDebugInfo
112  // object.
113  if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
114      CodeGenOpts.EmitGcovArcs ||
115      CodeGenOpts.EmitGcovNotes)
116    DebugInfo = new CGDebugInfo(*this);
117
118  Block.GlobalUniqueCount = 0;
119
120  if (C.getLangOpts().ObjCAutoRefCount)
121    ARCData = new ARCEntrypoints();
122  RRData = new RREntrypoints();
123}
124
125CodeGenModule::~CodeGenModule() {
126  delete ObjCRuntime;
127  delete OpenCLRuntime;
128  delete CUDARuntime;
129  delete TheTargetCodeGenInfo;
130  delete &ABI;
131  delete TBAA;
132  delete DebugInfo;
133  delete ARCData;
134  delete RRData;
135}
136
137void CodeGenModule::createObjCRuntime() {
138  // This is just isGNUFamily(), but we want to force implementors of
139  // new ABIs to decide how best to do this.
140  switch (LangOpts.ObjCRuntime.getKind()) {
141  case ObjCRuntime::GNUstep:
142  case ObjCRuntime::GCC:
143  case ObjCRuntime::ObjFW:
144    ObjCRuntime = CreateGNUObjCRuntime(*this);
145    return;
146
147  case ObjCRuntime::FragileMacOSX:
148  case ObjCRuntime::MacOSX:
149  case ObjCRuntime::iOS:
150    ObjCRuntime = CreateMacObjCRuntime(*this);
151    return;
152  }
153  llvm_unreachable("bad runtime kind");
154}
155
156void CodeGenModule::createOpenCLRuntime() {
157  OpenCLRuntime = new CGOpenCLRuntime(*this);
158}
159
160void CodeGenModule::createCUDARuntime() {
161  CUDARuntime = CreateNVCUDARuntime(*this);
162}
163
164void CodeGenModule::Release() {
165  EmitDeferred();
166  EmitCXXGlobalInitFunc();
167  EmitCXXGlobalDtorFunc();
168  if (ObjCRuntime)
169    if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
170      AddGlobalCtor(ObjCInitFunction);
171  EmitCtorList(GlobalCtors, "llvm.global_ctors");
172  EmitCtorList(GlobalDtors, "llvm.global_dtors");
173  EmitGlobalAnnotations();
174  EmitLLVMUsed();
175
176  SimplifyPersonality();
177
178  if (getCodeGenOpts().EmitDeclMetadata)
179    EmitDeclMetadata();
180
181  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
182    EmitCoverageFile();
183
184  if (DebugInfo)
185    DebugInfo->finalize();
186}
187
188void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
189  // Make sure that this type is translated.
190  Types.UpdateCompletedType(TD);
191}
192
193llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
194  if (!TBAA)
195    return 0;
196  return TBAA->getTBAAInfo(QTy);
197}
198
199llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
200  if (!TBAA)
201    return 0;
202  return TBAA->getTBAAInfoForVTablePtr();
203}
204
205llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
206  if (!TBAA)
207    return 0;
208  return TBAA->getTBAAStructInfo(QTy);
209}
210
211void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
212                                        llvm::MDNode *TBAAInfo) {
213  Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
214}
215
216bool CodeGenModule::isTargetDarwin() const {
217  return getContext().getTargetInfo().getTriple().isOSDarwin();
218}
219
220void CodeGenModule::Error(SourceLocation loc, StringRef error) {
221  unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
222  getDiags().Report(Context.getFullLoc(loc), diagID);
223}
224
225/// ErrorUnsupported - Print out an error that codegen doesn't support the
226/// specified stmt yet.
227void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
228                                     bool OmitOnError) {
229  if (OmitOnError && getDiags().hasErrorOccurred())
230    return;
231  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
232                                               "cannot compile this %0 yet");
233  std::string Msg = Type;
234  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
235    << Msg << S->getSourceRange();
236}
237
238/// ErrorUnsupported - Print out an error that codegen doesn't support the
239/// specified decl yet.
240void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
241                                     bool OmitOnError) {
242  if (OmitOnError && getDiags().hasErrorOccurred())
243    return;
244  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
245                                               "cannot compile this %0 yet");
246  std::string Msg = Type;
247  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
248}
249
250llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
251  return llvm::ConstantInt::get(SizeTy, size.getQuantity());
252}
253
254void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
255                                        const NamedDecl *D) const {
256  // Internal definitions always have default visibility.
257  if (GV->hasLocalLinkage()) {
258    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
259    return;
260  }
261
262  // Set visibility for definitions.
263  NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
264  if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
265    GV->setVisibility(GetLLVMVisibility(LV.visibility()));
266}
267
268static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
269  return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
270      .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
271      .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
272      .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
273      .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
274}
275
276static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
277    CodeGenOptions::TLSModel M) {
278  switch (M) {
279  case CodeGenOptions::GeneralDynamicTLSModel:
280    return llvm::GlobalVariable::GeneralDynamicTLSModel;
281  case CodeGenOptions::LocalDynamicTLSModel:
282    return llvm::GlobalVariable::LocalDynamicTLSModel;
283  case CodeGenOptions::InitialExecTLSModel:
284    return llvm::GlobalVariable::InitialExecTLSModel;
285  case CodeGenOptions::LocalExecTLSModel:
286    return llvm::GlobalVariable::LocalExecTLSModel;
287  }
288  llvm_unreachable("Invalid TLS model!");
289}
290
291void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
292                               const VarDecl &D) const {
293  assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
294
295  llvm::GlobalVariable::ThreadLocalMode TLM;
296  TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
297
298  // Override the TLS model if it is explicitly specified.
299  if (D.hasAttr<TLSModelAttr>()) {
300    const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
301    TLM = GetLLVMTLSModel(Attr->getModel());
302  }
303
304  GV->setThreadLocalMode(TLM);
305}
306
307/// Set the symbol visibility of type information (vtable and RTTI)
308/// associated with the given type.
309void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
310                                      const CXXRecordDecl *RD,
311                                      TypeVisibilityKind TVK) const {
312  setGlobalVisibility(GV, RD);
313
314  if (!CodeGenOpts.HiddenWeakVTables)
315    return;
316
317  // We never want to drop the visibility for RTTI names.
318  if (TVK == TVK_ForRTTIName)
319    return;
320
321  // We want to drop the visibility to hidden for weak type symbols.
322  // This isn't possible if there might be unresolved references
323  // elsewhere that rely on this symbol being visible.
324
325  // This should be kept roughly in sync with setThunkVisibility
326  // in CGVTables.cpp.
327
328  // Preconditions.
329  if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
330      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
331    return;
332
333  // Don't override an explicit visibility attribute.
334  if (RD->getExplicitVisibility())
335    return;
336
337  switch (RD->getTemplateSpecializationKind()) {
338  // We have to disable the optimization if this is an EI definition
339  // because there might be EI declarations in other shared objects.
340  case TSK_ExplicitInstantiationDefinition:
341  case TSK_ExplicitInstantiationDeclaration:
342    return;
343
344  // Every use of a non-template class's type information has to emit it.
345  case TSK_Undeclared:
346    break;
347
348  // In theory, implicit instantiations can ignore the possibility of
349  // an explicit instantiation declaration because there necessarily
350  // must be an EI definition somewhere with default visibility.  In
351  // practice, it's possible to have an explicit instantiation for
352  // an arbitrary template class, and linkers aren't necessarily able
353  // to deal with mixed-visibility symbols.
354  case TSK_ExplicitSpecialization:
355  case TSK_ImplicitInstantiation:
356    return;
357  }
358
359  // If there's a key function, there may be translation units
360  // that don't have the key function's definition.  But ignore
361  // this if we're emitting RTTI under -fno-rtti.
362  if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
363    if (Context.getKeyFunction(RD))
364      return;
365  }
366
367  // Otherwise, drop the visibility to hidden.
368  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
369  GV->setUnnamedAddr(true);
370}
371
372StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
373  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
374
375  StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
376  if (!Str.empty())
377    return Str;
378
379  if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
380    IdentifierInfo *II = ND->getIdentifier();
381    assert(II && "Attempt to mangle unnamed decl.");
382
383    Str = II->getName();
384    return Str;
385  }
386
387  SmallString<256> Buffer;
388  llvm::raw_svector_ostream Out(Buffer);
389  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
390    getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
391  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
392    getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
393  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
394    getCXXABI().getMangleContext().mangleBlock(BD, Out,
395      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
396  else
397    getCXXABI().getMangleContext().mangleName(ND, Out);
398
399  // Allocate space for the mangled name.
400  Out.flush();
401  size_t Length = Buffer.size();
402  char *Name = MangledNamesAllocator.Allocate<char>(Length);
403  std::copy(Buffer.begin(), Buffer.end(), Name);
404
405  Str = StringRef(Name, Length);
406
407  return Str;
408}
409
410void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
411                                        const BlockDecl *BD) {
412  MangleContext &MangleCtx = getCXXABI().getMangleContext();
413  const Decl *D = GD.getDecl();
414  llvm::raw_svector_ostream Out(Buffer.getBuffer());
415  if (D == 0)
416    MangleCtx.mangleGlobalBlock(BD,
417      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
418  else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
419    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
420  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
421    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
422  else
423    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
424}
425
426llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
427  return getModule().getNamedValue(Name);
428}
429
430/// AddGlobalCtor - Add a function to the list that will be called before
431/// main() runs.
432void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
433  // FIXME: Type coercion of void()* types.
434  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
435}
436
437/// AddGlobalDtor - Add a function to the list that will be called
438/// when the module is unloaded.
439void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
440  // FIXME: Type coercion of void()* types.
441  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
442}
443
444void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
445  // Ctor function type is void()*.
446  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
447  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
448
449  // Get the type of a ctor entry, { i32, void ()* }.
450  llvm::StructType *CtorStructTy =
451    llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
452
453  // Construct the constructor and destructor arrays.
454  SmallVector<llvm::Constant*, 8> Ctors;
455  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
456    llvm::Constant *S[] = {
457      llvm::ConstantInt::get(Int32Ty, I->second, false),
458      llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
459    };
460    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
461  }
462
463  if (!Ctors.empty()) {
464    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
465    new llvm::GlobalVariable(TheModule, AT, false,
466                             llvm::GlobalValue::AppendingLinkage,
467                             llvm::ConstantArray::get(AT, Ctors),
468                             GlobalName);
469  }
470}
471
472llvm::GlobalValue::LinkageTypes
473CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
474  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
475
476  if (Linkage == GVA_Internal)
477    return llvm::Function::InternalLinkage;
478
479  if (D->hasAttr<DLLExportAttr>())
480    return llvm::Function::DLLExportLinkage;
481
482  if (D->hasAttr<WeakAttr>())
483    return llvm::Function::WeakAnyLinkage;
484
485  // In C99 mode, 'inline' functions are guaranteed to have a strong
486  // definition somewhere else, so we can use available_externally linkage.
487  if (Linkage == GVA_C99Inline)
488    return llvm::Function::AvailableExternallyLinkage;
489
490  // Note that Apple's kernel linker doesn't support symbol
491  // coalescing, so we need to avoid linkonce and weak linkages there.
492  // Normally, this means we just map to internal, but for explicit
493  // instantiations we'll map to external.
494
495  // In C++, the compiler has to emit a definition in every translation unit
496  // that references the function.  We should use linkonce_odr because
497  // a) if all references in this translation unit are optimized away, we
498  // don't need to codegen it.  b) if the function persists, it needs to be
499  // merged with other definitions. c) C++ has the ODR, so we know the
500  // definition is dependable.
501  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
502    return !Context.getLangOpts().AppleKext
503             ? llvm::Function::LinkOnceODRLinkage
504             : llvm::Function::InternalLinkage;
505
506  // An explicit instantiation of a template has weak linkage, since
507  // explicit instantiations can occur in multiple translation units
508  // and must all be equivalent. However, we are not allowed to
509  // throw away these explicit instantiations.
510  if (Linkage == GVA_ExplicitTemplateInstantiation)
511    return !Context.getLangOpts().AppleKext
512             ? llvm::Function::WeakODRLinkage
513             : llvm::Function::ExternalLinkage;
514
515  // Otherwise, we have strong external linkage.
516  assert(Linkage == GVA_StrongExternal);
517  return llvm::Function::ExternalLinkage;
518}
519
520
521/// SetFunctionDefinitionAttributes - Set attributes for a global.
522///
523/// FIXME: This is currently only done for aliases and functions, but not for
524/// variables (these details are set in EmitGlobalVarDefinition for variables).
525void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
526                                                    llvm::GlobalValue *GV) {
527  SetCommonAttributes(D, GV);
528}
529
530void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
531                                              const CGFunctionInfo &Info,
532                                              llvm::Function *F) {
533  unsigned CallingConv;
534  AttributeListType AttributeList;
535  ConstructAttributeList(Info, D, AttributeList, CallingConv);
536  F->setAttributes(llvm::AttrListPtr::get(AttributeList));
537  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
538}
539
540/// Determines whether the language options require us to model
541/// unwind exceptions.  We treat -fexceptions as mandating this
542/// except under the fragile ObjC ABI with only ObjC exceptions
543/// enabled.  This means, for example, that C with -fexceptions
544/// enables this.
545static bool hasUnwindExceptions(const LangOptions &LangOpts) {
546  // If exceptions are completely disabled, obviously this is false.
547  if (!LangOpts.Exceptions) return false;
548
549  // If C++ exceptions are enabled, this is true.
550  if (LangOpts.CXXExceptions) return true;
551
552  // If ObjC exceptions are enabled, this depends on the ABI.
553  if (LangOpts.ObjCExceptions) {
554    return LangOpts.ObjCRuntime.hasUnwindExceptions();
555  }
556
557  return true;
558}
559
560void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
561                                                           llvm::Function *F) {
562  if (CodeGenOpts.UnwindTables)
563    F->setHasUWTable();
564
565  if (!hasUnwindExceptions(LangOpts))
566    F->addFnAttr(llvm::Attributes::NoUnwind);
567
568  if (D->hasAttr<NakedAttr>()) {
569    // Naked implies noinline: we should not be inlining such functions.
570    F->addFnAttr(llvm::Attributes::Naked);
571    F->addFnAttr(llvm::Attributes::NoInline);
572  }
573
574  if (D->hasAttr<NoInlineAttr>())
575    F->addFnAttr(llvm::Attributes::NoInline);
576
577  // (noinline wins over always_inline, and we can't specify both in IR)
578  if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
579      !F->getFnAttributes().hasAttribute(llvm::Attributes::NoInline))
580    F->addFnAttr(llvm::Attributes::AlwaysInline);
581
582  // FIXME: Communicate hot and cold attributes to LLVM more directly.
583  if (D->hasAttr<ColdAttr>())
584    F->addFnAttr(llvm::Attributes::OptimizeForSize);
585
586  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
587    F->setUnnamedAddr(true);
588
589  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
590    if (MD->isVirtual())
591      F->setUnnamedAddr(true);
592
593  if (LangOpts.getStackProtector() == LangOptions::SSPOn)
594    F->addFnAttr(llvm::Attributes::StackProtect);
595  else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
596    F->addFnAttr(llvm::Attributes::StackProtectReq);
597
598  if (LangOpts.AddressSanitizer) {
599    // When AddressSanitizer is enabled, set AddressSafety attribute
600    // unless __attribute__((no_address_safety_analysis)) is used.
601    if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
602      F->addFnAttr(llvm::Attributes::AddressSafety);
603  }
604
605  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
606  if (alignment)
607    F->setAlignment(alignment);
608
609  // C++ ABI requires 2-byte alignment for member functions.
610  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
611    F->setAlignment(2);
612}
613
614void CodeGenModule::SetCommonAttributes(const Decl *D,
615                                        llvm::GlobalValue *GV) {
616  if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
617    setGlobalVisibility(GV, ND);
618  else
619    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
620
621  if (D->hasAttr<UsedAttr>())
622    AddUsedGlobal(GV);
623
624  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
625    GV->setSection(SA->getName());
626
627  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
628}
629
630void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
631                                                  llvm::Function *F,
632                                                  const CGFunctionInfo &FI) {
633  SetLLVMFunctionAttributes(D, FI, F);
634  SetLLVMFunctionAttributesForDefinition(D, F);
635
636  F->setLinkage(llvm::Function::InternalLinkage);
637
638  SetCommonAttributes(D, F);
639}
640
641void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
642                                          llvm::Function *F,
643                                          bool IsIncompleteFunction) {
644  if (unsigned IID = F->getIntrinsicID()) {
645    // If this is an intrinsic function, set the function's attributes
646    // to the intrinsic's attributes.
647    F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
648                                                    (llvm::Intrinsic::ID)IID));
649    return;
650  }
651
652  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
653
654  if (!IsIncompleteFunction)
655    SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
656
657  // Only a few attributes are set on declarations; these may later be
658  // overridden by a definition.
659
660  if (FD->hasAttr<DLLImportAttr>()) {
661    F->setLinkage(llvm::Function::DLLImportLinkage);
662  } else if (FD->hasAttr<WeakAttr>() ||
663             FD->isWeakImported()) {
664    // "extern_weak" is overloaded in LLVM; we probably should have
665    // separate linkage types for this.
666    F->setLinkage(llvm::Function::ExternalWeakLinkage);
667  } else {
668    F->setLinkage(llvm::Function::ExternalLinkage);
669
670    NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
671    if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
672      F->setVisibility(GetLLVMVisibility(LV.visibility()));
673    }
674  }
675
676  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
677    F->setSection(SA->getName());
678}
679
680void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
681  assert(!GV->isDeclaration() &&
682         "Only globals with definition can force usage.");
683  LLVMUsed.push_back(GV);
684}
685
686void CodeGenModule::EmitLLVMUsed() {
687  // Don't create llvm.used if there is no need.
688  if (LLVMUsed.empty())
689    return;
690
691  // Convert LLVMUsed to what ConstantArray needs.
692  SmallVector<llvm::Constant*, 8> UsedArray;
693  UsedArray.resize(LLVMUsed.size());
694  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
695    UsedArray[i] =
696     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
697                                    Int8PtrTy);
698  }
699
700  if (UsedArray.empty())
701    return;
702  llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
703
704  llvm::GlobalVariable *GV =
705    new llvm::GlobalVariable(getModule(), ATy, false,
706                             llvm::GlobalValue::AppendingLinkage,
707                             llvm::ConstantArray::get(ATy, UsedArray),
708                             "llvm.used");
709
710  GV->setSection("llvm.metadata");
711}
712
713void CodeGenModule::EmitDeferred() {
714  // Emit code for any potentially referenced deferred decls.  Since a
715  // previously unused static decl may become used during the generation of code
716  // for a static function, iterate until no changes are made.
717
718  while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
719    if (!DeferredVTables.empty()) {
720      const CXXRecordDecl *RD = DeferredVTables.back();
721      DeferredVTables.pop_back();
722      getCXXABI().EmitVTables(RD);
723      continue;
724    }
725
726    GlobalDecl D = DeferredDeclsToEmit.back();
727    DeferredDeclsToEmit.pop_back();
728
729    // Check to see if we've already emitted this.  This is necessary
730    // for a couple of reasons: first, decls can end up in the
731    // deferred-decls queue multiple times, and second, decls can end
732    // up with definitions in unusual ways (e.g. by an extern inline
733    // function acquiring a strong function redefinition).  Just
734    // ignore these cases.
735    //
736    // TODO: That said, looking this up multiple times is very wasteful.
737    StringRef Name = getMangledName(D);
738    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
739    assert(CGRef && "Deferred decl wasn't referenced?");
740
741    if (!CGRef->isDeclaration())
742      continue;
743
744    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
745    // purposes an alias counts as a definition.
746    if (isa<llvm::GlobalAlias>(CGRef))
747      continue;
748
749    // Otherwise, emit the definition and move on to the next one.
750    EmitGlobalDefinition(D);
751  }
752}
753
754void CodeGenModule::EmitGlobalAnnotations() {
755  if (Annotations.empty())
756    return;
757
758  // Create a new global variable for the ConstantStruct in the Module.
759  llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
760    Annotations[0]->getType(), Annotations.size()), Annotations);
761  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
762    Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
763    "llvm.global.annotations");
764  gv->setSection(AnnotationSection);
765}
766
767llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
768  llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
769  if (i != AnnotationStrings.end())
770    return i->second;
771
772  // Not found yet, create a new global.
773  llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
774  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
775    true, llvm::GlobalValue::PrivateLinkage, s, ".str");
776  gv->setSection(AnnotationSection);
777  gv->setUnnamedAddr(true);
778  AnnotationStrings[Str] = gv;
779  return gv;
780}
781
782llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
783  SourceManager &SM = getContext().getSourceManager();
784  PresumedLoc PLoc = SM.getPresumedLoc(Loc);
785  if (PLoc.isValid())
786    return EmitAnnotationString(PLoc.getFilename());
787  return EmitAnnotationString(SM.getBufferName(Loc));
788}
789
790llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
791  SourceManager &SM = getContext().getSourceManager();
792  PresumedLoc PLoc = SM.getPresumedLoc(L);
793  unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
794    SM.getExpansionLineNumber(L);
795  return llvm::ConstantInt::get(Int32Ty, LineNo);
796}
797
798llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
799                                                const AnnotateAttr *AA,
800                                                SourceLocation L) {
801  // Get the globals for file name, annotation, and the line number.
802  llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
803                 *UnitGV = EmitAnnotationUnit(L),
804                 *LineNoCst = EmitAnnotationLineNo(L);
805
806  // Create the ConstantStruct for the global annotation.
807  llvm::Constant *Fields[4] = {
808    llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
809    llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
810    llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
811    LineNoCst
812  };
813  return llvm::ConstantStruct::getAnon(Fields);
814}
815
816void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
817                                         llvm::GlobalValue *GV) {
818  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
819  // Get the struct elements for these annotations.
820  for (specific_attr_iterator<AnnotateAttr>
821       ai = D->specific_attr_begin<AnnotateAttr>(),
822       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
823    Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
824}
825
826bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
827  // Never defer when EmitAllDecls is specified.
828  if (LangOpts.EmitAllDecls)
829    return false;
830
831  return !getContext().DeclMustBeEmitted(Global);
832}
833
834llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
835    const CXXUuidofExpr* E) {
836  // Sema has verified that IIDSource has a __declspec(uuid()), and that its
837  // well-formed.
838  StringRef Uuid;
839  if (E->isTypeOperand())
840    Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
841  else {
842    // Special case: __uuidof(0) means an all-zero GUID.
843    Expr *Op = E->getExprOperand();
844    if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
845      Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
846    else
847      Uuid = "00000000-0000-0000-0000-000000000000";
848  }
849  std::string Name = "__uuid_" + Uuid.str();
850
851  // Look for an existing global.
852  if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
853    return GV;
854
855  llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
856  assert(Init && "failed to initialize as constant");
857
858  // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
859  // first field is declared as "long", which for many targets is 8 bytes.
860  // Those architectures are not supported. (With the MS abi, long is always 4
861  // bytes.)
862  llvm::Type *GuidType = getTypes().ConvertType(E->getType());
863  if (Init->getType() != GuidType) {
864    DiagnosticsEngine &Diags = getDiags();
865    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
866        "__uuidof codegen is not supported on this architecture");
867    Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
868    Init = llvm::UndefValue::get(GuidType);
869  }
870
871  llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
872      /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
873  GV->setUnnamedAddr(true);
874  return GV;
875}
876
877llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
878  const AliasAttr *AA = VD->getAttr<AliasAttr>();
879  assert(AA && "No alias?");
880
881  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
882
883  // See if there is already something with the target's name in the module.
884  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
885  if (Entry) {
886    unsigned AS = getContext().getTargetAddressSpace(VD->getType());
887    return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
888  }
889
890  llvm::Constant *Aliasee;
891  if (isa<llvm::FunctionType>(DeclTy))
892    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
893                                      GlobalDecl(cast<FunctionDecl>(VD)),
894                                      /*ForVTable=*/false);
895  else
896    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
897                                    llvm::PointerType::getUnqual(DeclTy), 0);
898
899  llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
900  F->setLinkage(llvm::Function::ExternalWeakLinkage);
901  WeakRefReferences.insert(F);
902
903  return Aliasee;
904}
905
906void CodeGenModule::EmitGlobal(GlobalDecl GD) {
907  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
908
909  // Weak references don't produce any output by themselves.
910  if (Global->hasAttr<WeakRefAttr>())
911    return;
912
913  // If this is an alias definition (which otherwise looks like a declaration)
914  // emit it now.
915  if (Global->hasAttr<AliasAttr>())
916    return EmitAliasDefinition(GD);
917
918  // If this is CUDA, be selective about which declarations we emit.
919  if (LangOpts.CUDA) {
920    if (CodeGenOpts.CUDAIsDevice) {
921      if (!Global->hasAttr<CUDADeviceAttr>() &&
922          !Global->hasAttr<CUDAGlobalAttr>() &&
923          !Global->hasAttr<CUDAConstantAttr>() &&
924          !Global->hasAttr<CUDASharedAttr>())
925        return;
926    } else {
927      if (!Global->hasAttr<CUDAHostAttr>() && (
928            Global->hasAttr<CUDADeviceAttr>() ||
929            Global->hasAttr<CUDAConstantAttr>() ||
930            Global->hasAttr<CUDASharedAttr>()))
931        return;
932    }
933  }
934
935  // Ignore declarations, they will be emitted on their first use.
936  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
937    // Forward declarations are emitted lazily on first use.
938    if (!FD->doesThisDeclarationHaveABody()) {
939      if (!FD->doesDeclarationForceExternallyVisibleDefinition())
940        return;
941
942      const FunctionDecl *InlineDefinition = 0;
943      FD->getBody(InlineDefinition);
944
945      StringRef MangledName = getMangledName(GD);
946      DeferredDecls.erase(MangledName);
947      EmitGlobalDefinition(InlineDefinition);
948      return;
949    }
950  } else {
951    const VarDecl *VD = cast<VarDecl>(Global);
952    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
953
954    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
955      return;
956  }
957
958  // Defer code generation when possible if this is a static definition, inline
959  // function etc.  These we only want to emit if they are used.
960  if (!MayDeferGeneration(Global)) {
961    // Emit the definition if it can't be deferred.
962    EmitGlobalDefinition(GD);
963    return;
964  }
965
966  // If we're deferring emission of a C++ variable with an
967  // initializer, remember the order in which it appeared in the file.
968  if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
969      cast<VarDecl>(Global)->hasInit()) {
970    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
971    CXXGlobalInits.push_back(0);
972  }
973
974  // If the value has already been used, add it directly to the
975  // DeferredDeclsToEmit list.
976  StringRef MangledName = getMangledName(GD);
977  if (GetGlobalValue(MangledName))
978    DeferredDeclsToEmit.push_back(GD);
979  else {
980    // Otherwise, remember that we saw a deferred decl with this name.  The
981    // first use of the mangled name will cause it to move into
982    // DeferredDeclsToEmit.
983    DeferredDecls[MangledName] = GD;
984  }
985}
986
987namespace {
988  struct FunctionIsDirectlyRecursive :
989    public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
990    const StringRef Name;
991    const Builtin::Context &BI;
992    bool Result;
993    FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
994      Name(N), BI(C), Result(false) {
995    }
996    typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
997
998    bool TraverseCallExpr(CallExpr *E) {
999      const FunctionDecl *FD = E->getDirectCallee();
1000      if (!FD)
1001        return true;
1002      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1003      if (Attr && Name == Attr->getLabel()) {
1004        Result = true;
1005        return false;
1006      }
1007      unsigned BuiltinID = FD->getBuiltinID();
1008      if (!BuiltinID)
1009        return true;
1010      StringRef BuiltinName = BI.GetName(BuiltinID);
1011      if (BuiltinName.startswith("__builtin_") &&
1012          Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1013        Result = true;
1014        return false;
1015      }
1016      return true;
1017    }
1018  };
1019}
1020
1021// isTriviallyRecursive - Check if this function calls another
1022// decl that, because of the asm attribute or the other decl being a builtin,
1023// ends up pointing to itself.
1024bool
1025CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1026  StringRef Name;
1027  if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1028    // asm labels are a special kind of mangling we have to support.
1029    AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1030    if (!Attr)
1031      return false;
1032    Name = Attr->getLabel();
1033  } else {
1034    Name = FD->getName();
1035  }
1036
1037  FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1038  Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1039  return Walker.Result;
1040}
1041
1042bool
1043CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1044  if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1045    return true;
1046  if (CodeGenOpts.OptimizationLevel == 0 &&
1047      !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1048    return false;
1049  // PR9614. Avoid cases where the source code is lying to us. An available
1050  // externally function should have an equivalent function somewhere else,
1051  // but a function that calls itself is clearly not equivalent to the real
1052  // implementation.
1053  // This happens in glibc's btowc and in some configure checks.
1054  return !isTriviallyRecursive(F);
1055}
1056
1057void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1058  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1059
1060  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1061                                 Context.getSourceManager(),
1062                                 "Generating code for declaration");
1063
1064  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1065    // At -O0, don't generate IR for functions with available_externally
1066    // linkage.
1067    if (!shouldEmitFunction(Function))
1068      return;
1069
1070    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1071      // Make sure to emit the definition(s) before we emit the thunks.
1072      // This is necessary for the generation of certain thunks.
1073      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1074        EmitCXXConstructor(CD, GD.getCtorType());
1075      else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1076        EmitCXXDestructor(DD, GD.getDtorType());
1077      else
1078        EmitGlobalFunctionDefinition(GD);
1079
1080      if (Method->isVirtual())
1081        getVTables().EmitThunks(GD);
1082
1083      return;
1084    }
1085
1086    return EmitGlobalFunctionDefinition(GD);
1087  }
1088
1089  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1090    return EmitGlobalVarDefinition(VD);
1091
1092  llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1093}
1094
1095/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1096/// module, create and return an llvm Function with the specified type. If there
1097/// is something in the module with the specified name, return it potentially
1098/// bitcasted to the right type.
1099///
1100/// If D is non-null, it specifies a decl that correspond to this.  This is used
1101/// to set the attributes on the function when it is first created.
1102llvm::Constant *
1103CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1104                                       llvm::Type *Ty,
1105                                       GlobalDecl D, bool ForVTable,
1106                                       llvm::Attributes ExtraAttrs) {
1107  // Lookup the entry, lazily creating it if necessary.
1108  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1109  if (Entry) {
1110    if (WeakRefReferences.erase(Entry)) {
1111      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1112      if (FD && !FD->hasAttr<WeakAttr>())
1113        Entry->setLinkage(llvm::Function::ExternalLinkage);
1114    }
1115
1116    if (Entry->getType()->getElementType() == Ty)
1117      return Entry;
1118
1119    // Make sure the result is of the correct type.
1120    return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1121  }
1122
1123  // This function doesn't have a complete type (for example, the return
1124  // type is an incomplete struct). Use a fake type instead, and make
1125  // sure not to try to set attributes.
1126  bool IsIncompleteFunction = false;
1127
1128  llvm::FunctionType *FTy;
1129  if (isa<llvm::FunctionType>(Ty)) {
1130    FTy = cast<llvm::FunctionType>(Ty);
1131  } else {
1132    FTy = llvm::FunctionType::get(VoidTy, false);
1133    IsIncompleteFunction = true;
1134  }
1135
1136  llvm::Function *F = llvm::Function::Create(FTy,
1137                                             llvm::Function::ExternalLinkage,
1138                                             MangledName, &getModule());
1139  assert(F->getName() == MangledName && "name was uniqued!");
1140  if (D.getDecl())
1141    SetFunctionAttributes(D, F, IsIncompleteFunction);
1142  if (ExtraAttrs.hasAttributes())
1143    F->addAttribute(llvm::AttrListPtr::FunctionIndex, ExtraAttrs);
1144
1145  // This is the first use or definition of a mangled name.  If there is a
1146  // deferred decl with this name, remember that we need to emit it at the end
1147  // of the file.
1148  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1149  if (DDI != DeferredDecls.end()) {
1150    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1151    // list, and remove it from DeferredDecls (since we don't need it anymore).
1152    DeferredDeclsToEmit.push_back(DDI->second);
1153    DeferredDecls.erase(DDI);
1154
1155  // Otherwise, there are cases we have to worry about where we're
1156  // using a declaration for which we must emit a definition but where
1157  // we might not find a top-level definition:
1158  //   - member functions defined inline in their classes
1159  //   - friend functions defined inline in some class
1160  //   - special member functions with implicit definitions
1161  // If we ever change our AST traversal to walk into class methods,
1162  // this will be unnecessary.
1163  //
1164  // We also don't emit a definition for a function if it's going to be an entry
1165  // in a vtable, unless it's already marked as used.
1166  } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1167    // Look for a declaration that's lexically in a record.
1168    const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1169    FD = FD->getMostRecentDecl();
1170    do {
1171      if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1172        if (FD->isImplicit() && !ForVTable) {
1173          assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1174          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1175          break;
1176        } else if (FD->doesThisDeclarationHaveABody()) {
1177          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1178          break;
1179        }
1180      }
1181      FD = FD->getPreviousDecl();
1182    } while (FD);
1183  }
1184
1185  // Make sure the result is of the requested type.
1186  if (!IsIncompleteFunction) {
1187    assert(F->getType()->getElementType() == Ty);
1188    return F;
1189  }
1190
1191  llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1192  return llvm::ConstantExpr::getBitCast(F, PTy);
1193}
1194
1195/// GetAddrOfFunction - Return the address of the given function.  If Ty is
1196/// non-null, then this function will use the specified type if it has to
1197/// create it (this occurs when we see a definition of the function).
1198llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1199                                                 llvm::Type *Ty,
1200                                                 bool ForVTable) {
1201  // If there was no specific requested type, just convert it now.
1202  if (!Ty)
1203    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1204
1205  StringRef MangledName = getMangledName(GD);
1206  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1207}
1208
1209/// CreateRuntimeFunction - Create a new runtime function with the specified
1210/// type and name.
1211llvm::Constant *
1212CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1213                                     StringRef Name,
1214                                     llvm::Attributes ExtraAttrs) {
1215  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1216                                 ExtraAttrs);
1217}
1218
1219/// isTypeConstant - Determine whether an object of this type can be emitted
1220/// as a constant.
1221///
1222/// If ExcludeCtor is true, the duration when the object's constructor runs
1223/// will not be considered. The caller will need to verify that the object is
1224/// not written to during its construction.
1225bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1226  if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1227    return false;
1228
1229  if (Context.getLangOpts().CPlusPlus) {
1230    if (const CXXRecordDecl *Record
1231          = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1232      return ExcludeCtor && !Record->hasMutableFields() &&
1233             Record->hasTrivialDestructor();
1234  }
1235
1236  return true;
1237}
1238
1239/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1240/// create and return an llvm GlobalVariable with the specified type.  If there
1241/// is something in the module with the specified name, return it potentially
1242/// bitcasted to the right type.
1243///
1244/// If D is non-null, it specifies a decl that correspond to this.  This is used
1245/// to set the attributes on the global when it is first created.
1246llvm::Constant *
1247CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1248                                     llvm::PointerType *Ty,
1249                                     const VarDecl *D,
1250                                     bool UnnamedAddr) {
1251  // Lookup the entry, lazily creating it if necessary.
1252  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1253  if (Entry) {
1254    if (WeakRefReferences.erase(Entry)) {
1255      if (D && !D->hasAttr<WeakAttr>())
1256        Entry->setLinkage(llvm::Function::ExternalLinkage);
1257    }
1258
1259    if (UnnamedAddr)
1260      Entry->setUnnamedAddr(true);
1261
1262    if (Entry->getType() == Ty)
1263      return Entry;
1264
1265    // Make sure the result is of the correct type.
1266    return llvm::ConstantExpr::getBitCast(Entry, Ty);
1267  }
1268
1269  // This is the first use or definition of a mangled name.  If there is a
1270  // deferred decl with this name, remember that we need to emit it at the end
1271  // of the file.
1272  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1273  if (DDI != DeferredDecls.end()) {
1274    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1275    // list, and remove it from DeferredDecls (since we don't need it anymore).
1276    DeferredDeclsToEmit.push_back(DDI->second);
1277    DeferredDecls.erase(DDI);
1278  }
1279
1280  unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1281  llvm::GlobalVariable *GV =
1282    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1283                             llvm::GlobalValue::ExternalLinkage,
1284                             0, MangledName, 0,
1285                             llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1286
1287  // Handle things which are present even on external declarations.
1288  if (D) {
1289    // FIXME: This code is overly simple and should be merged with other global
1290    // handling.
1291    GV->setConstant(isTypeConstant(D->getType(), false));
1292
1293    // Set linkage and visibility in case we never see a definition.
1294    NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1295    if (LV.linkage() != ExternalLinkage) {
1296      // Don't set internal linkage on declarations.
1297    } else {
1298      if (D->hasAttr<DLLImportAttr>())
1299        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1300      else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1301        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1302
1303      // Set visibility on a declaration only if it's explicit.
1304      if (LV.visibilityExplicit())
1305        GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1306    }
1307
1308    if (D->isThreadSpecified())
1309      setTLSMode(GV, *D);
1310  }
1311
1312  if (AddrSpace != Ty->getAddressSpace())
1313    return llvm::ConstantExpr::getBitCast(GV, Ty);
1314  else
1315    return GV;
1316}
1317
1318
1319llvm::GlobalVariable *
1320CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1321                                      llvm::Type *Ty,
1322                                      llvm::GlobalValue::LinkageTypes Linkage) {
1323  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1324  llvm::GlobalVariable *OldGV = 0;
1325
1326
1327  if (GV) {
1328    // Check if the variable has the right type.
1329    if (GV->getType()->getElementType() == Ty)
1330      return GV;
1331
1332    // Because C++ name mangling, the only way we can end up with an already
1333    // existing global with the same name is if it has been declared extern "C".
1334    assert(GV->isDeclaration() && "Declaration has wrong type!");
1335    OldGV = GV;
1336  }
1337
1338  // Create a new variable.
1339  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1340                                Linkage, 0, Name);
1341
1342  if (OldGV) {
1343    // Replace occurrences of the old variable if needed.
1344    GV->takeName(OldGV);
1345
1346    if (!OldGV->use_empty()) {
1347      llvm::Constant *NewPtrForOldDecl =
1348      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1349      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1350    }
1351
1352    OldGV->eraseFromParent();
1353  }
1354
1355  return GV;
1356}
1357
1358/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1359/// given global variable.  If Ty is non-null and if the global doesn't exist,
1360/// then it will be created with the specified type instead of whatever the
1361/// normal requested type would be.
1362llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1363                                                  llvm::Type *Ty) {
1364  assert(D->hasGlobalStorage() && "Not a global variable");
1365  QualType ASTTy = D->getType();
1366  if (Ty == 0)
1367    Ty = getTypes().ConvertTypeForMem(ASTTy);
1368
1369  llvm::PointerType *PTy =
1370    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1371
1372  StringRef MangledName = getMangledName(D);
1373  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1374}
1375
1376/// CreateRuntimeVariable - Create a new runtime global variable with the
1377/// specified type and name.
1378llvm::Constant *
1379CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1380                                     StringRef Name) {
1381  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1382                               true);
1383}
1384
1385void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1386  assert(!D->getInit() && "Cannot emit definite definitions here!");
1387
1388  if (MayDeferGeneration(D)) {
1389    // If we have not seen a reference to this variable yet, place it
1390    // into the deferred declarations table to be emitted if needed
1391    // later.
1392    StringRef MangledName = getMangledName(D);
1393    if (!GetGlobalValue(MangledName)) {
1394      DeferredDecls[MangledName] = D;
1395      return;
1396    }
1397  }
1398
1399  // The tentative definition is the only definition.
1400  EmitGlobalVarDefinition(D);
1401}
1402
1403void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1404  if (DefinitionRequired)
1405    getCXXABI().EmitVTables(Class);
1406}
1407
1408llvm::GlobalVariable::LinkageTypes
1409CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1410  if (RD->getLinkage() != ExternalLinkage)
1411    return llvm::GlobalVariable::InternalLinkage;
1412
1413  if (const CXXMethodDecl *KeyFunction
1414                                    = RD->getASTContext().getKeyFunction(RD)) {
1415    // If this class has a key function, use that to determine the linkage of
1416    // the vtable.
1417    const FunctionDecl *Def = 0;
1418    if (KeyFunction->hasBody(Def))
1419      KeyFunction = cast<CXXMethodDecl>(Def);
1420
1421    switch (KeyFunction->getTemplateSpecializationKind()) {
1422      case TSK_Undeclared:
1423      case TSK_ExplicitSpecialization:
1424        // When compiling with optimizations turned on, we emit all vtables,
1425        // even if the key function is not defined in the current translation
1426        // unit. If this is the case, use available_externally linkage.
1427        if (!Def && CodeGenOpts.OptimizationLevel)
1428          return llvm::GlobalVariable::AvailableExternallyLinkage;
1429
1430        if (KeyFunction->isInlined())
1431          return !Context.getLangOpts().AppleKext ?
1432                   llvm::GlobalVariable::LinkOnceODRLinkage :
1433                   llvm::Function::InternalLinkage;
1434
1435        return llvm::GlobalVariable::ExternalLinkage;
1436
1437      case TSK_ImplicitInstantiation:
1438        return !Context.getLangOpts().AppleKext ?
1439                 llvm::GlobalVariable::LinkOnceODRLinkage :
1440                 llvm::Function::InternalLinkage;
1441
1442      case TSK_ExplicitInstantiationDefinition:
1443        return !Context.getLangOpts().AppleKext ?
1444                 llvm::GlobalVariable::WeakODRLinkage :
1445                 llvm::Function::InternalLinkage;
1446
1447      case TSK_ExplicitInstantiationDeclaration:
1448        // FIXME: Use available_externally linkage. However, this currently
1449        // breaks LLVM's build due to undefined symbols.
1450        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1451        return !Context.getLangOpts().AppleKext ?
1452                 llvm::GlobalVariable::LinkOnceODRLinkage :
1453                 llvm::Function::InternalLinkage;
1454    }
1455  }
1456
1457  if (Context.getLangOpts().AppleKext)
1458    return llvm::Function::InternalLinkage;
1459
1460  switch (RD->getTemplateSpecializationKind()) {
1461  case TSK_Undeclared:
1462  case TSK_ExplicitSpecialization:
1463  case TSK_ImplicitInstantiation:
1464    // FIXME: Use available_externally linkage. However, this currently
1465    // breaks LLVM's build due to undefined symbols.
1466    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1467  case TSK_ExplicitInstantiationDeclaration:
1468    return llvm::GlobalVariable::LinkOnceODRLinkage;
1469
1470  case TSK_ExplicitInstantiationDefinition:
1471      return llvm::GlobalVariable::WeakODRLinkage;
1472  }
1473
1474  llvm_unreachable("Invalid TemplateSpecializationKind!");
1475}
1476
1477CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1478    return Context.toCharUnitsFromBits(
1479      TheDataLayout.getTypeStoreSizeInBits(Ty));
1480}
1481
1482llvm::Constant *
1483CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1484                                                       const Expr *rawInit) {
1485  ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1486  if (const ExprWithCleanups *withCleanups =
1487          dyn_cast<ExprWithCleanups>(rawInit)) {
1488    cleanups = withCleanups->getObjects();
1489    rawInit = withCleanups->getSubExpr();
1490  }
1491
1492  const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1493  if (!init || !init->initializesStdInitializerList() ||
1494      init->getNumInits() == 0)
1495    return 0;
1496
1497  ASTContext &ctx = getContext();
1498  unsigned numInits = init->getNumInits();
1499  // FIXME: This check is here because we would otherwise silently miscompile
1500  // nested global std::initializer_lists. Better would be to have a real
1501  // implementation.
1502  for (unsigned i = 0; i < numInits; ++i) {
1503    const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1504    if (inner && inner->initializesStdInitializerList()) {
1505      ErrorUnsupported(inner, "nested global std::initializer_list");
1506      return 0;
1507    }
1508  }
1509
1510  // Synthesize a fake VarDecl for the array and initialize that.
1511  QualType elementType = init->getInit(0)->getType();
1512  llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1513  QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1514                                                ArrayType::Normal, 0);
1515
1516  IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1517  TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1518                                              arrayType, D->getLocation());
1519  VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1520                                                          D->getDeclContext()),
1521                                          D->getLocStart(), D->getLocation(),
1522                                          name, arrayType, sourceInfo,
1523                                          SC_Static, SC_Static);
1524
1525  // Now clone the InitListExpr to initialize the array instead.
1526  // Incredible hack: we want to use the existing InitListExpr here, so we need
1527  // to tell it that it no longer initializes a std::initializer_list.
1528  ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1529                        init->getNumInits());
1530  Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1531                                           init->getRBraceLoc());
1532  arrayInit->setType(arrayType);
1533
1534  if (!cleanups.empty())
1535    arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1536
1537  backingArray->setInit(arrayInit);
1538
1539  // Emit the definition of the array.
1540  EmitGlobalVarDefinition(backingArray);
1541
1542  // Inspect the initializer list to validate it and determine its type.
1543  // FIXME: doing this every time is probably inefficient; caching would be nice
1544  RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1545  RecordDecl::field_iterator field = record->field_begin();
1546  if (field == record->field_end()) {
1547    ErrorUnsupported(D, "weird std::initializer_list");
1548    return 0;
1549  }
1550  QualType elementPtr = ctx.getPointerType(elementType.withConst());
1551  // Start pointer.
1552  if (!ctx.hasSameType(field->getType(), elementPtr)) {
1553    ErrorUnsupported(D, "weird std::initializer_list");
1554    return 0;
1555  }
1556  ++field;
1557  if (field == record->field_end()) {
1558    ErrorUnsupported(D, "weird std::initializer_list");
1559    return 0;
1560  }
1561  bool isStartEnd = false;
1562  if (ctx.hasSameType(field->getType(), elementPtr)) {
1563    // End pointer.
1564    isStartEnd = true;
1565  } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1566    ErrorUnsupported(D, "weird std::initializer_list");
1567    return 0;
1568  }
1569
1570  // Now build an APValue representing the std::initializer_list.
1571  APValue initListValue(APValue::UninitStruct(), 0, 2);
1572  APValue &startField = initListValue.getStructField(0);
1573  APValue::LValuePathEntry startOffsetPathEntry;
1574  startOffsetPathEntry.ArrayIndex = 0;
1575  startField = APValue(APValue::LValueBase(backingArray),
1576                       CharUnits::fromQuantity(0),
1577                       llvm::makeArrayRef(startOffsetPathEntry),
1578                       /*IsOnePastTheEnd=*/false, 0);
1579
1580  if (isStartEnd) {
1581    APValue &endField = initListValue.getStructField(1);
1582    APValue::LValuePathEntry endOffsetPathEntry;
1583    endOffsetPathEntry.ArrayIndex = numInits;
1584    endField = APValue(APValue::LValueBase(backingArray),
1585                       ctx.getTypeSizeInChars(elementType) * numInits,
1586                       llvm::makeArrayRef(endOffsetPathEntry),
1587                       /*IsOnePastTheEnd=*/true, 0);
1588  } else {
1589    APValue &sizeField = initListValue.getStructField(1);
1590    sizeField = APValue(llvm::APSInt(numElements));
1591  }
1592
1593  // Emit the constant for the initializer_list.
1594  llvm::Constant *llvmInit =
1595      EmitConstantValueForMemory(initListValue, D->getType());
1596  assert(llvmInit && "failed to initialize as constant");
1597  return llvmInit;
1598}
1599
1600unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1601                                                 unsigned AddrSpace) {
1602  if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1603    if (D->hasAttr<CUDAConstantAttr>())
1604      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1605    else if (D->hasAttr<CUDASharedAttr>())
1606      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1607    else
1608      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1609  }
1610
1611  return AddrSpace;
1612}
1613
1614void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1615  llvm::Constant *Init = 0;
1616  QualType ASTTy = D->getType();
1617  CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1618  bool NeedsGlobalCtor = false;
1619  bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1620
1621  const VarDecl *InitDecl;
1622  const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1623
1624  if (!InitExpr) {
1625    // This is a tentative definition; tentative definitions are
1626    // implicitly initialized with { 0 }.
1627    //
1628    // Note that tentative definitions are only emitted at the end of
1629    // a translation unit, so they should never have incomplete
1630    // type. In addition, EmitTentativeDefinition makes sure that we
1631    // never attempt to emit a tentative definition if a real one
1632    // exists. A use may still exists, however, so we still may need
1633    // to do a RAUW.
1634    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1635    Init = EmitNullConstant(D->getType());
1636  } else {
1637    // If this is a std::initializer_list, emit the special initializer.
1638    Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1639    // An empty init list will perform zero-initialization, which happens
1640    // to be exactly what we want.
1641    // FIXME: It does so in a global constructor, which is *not* what we
1642    // want.
1643
1644    if (!Init) {
1645      initializedGlobalDecl = GlobalDecl(D);
1646      Init = EmitConstantInit(*InitDecl);
1647    }
1648    if (!Init) {
1649      QualType T = InitExpr->getType();
1650      if (D->getType()->isReferenceType())
1651        T = D->getType();
1652
1653      if (getLangOpts().CPlusPlus) {
1654        Init = EmitNullConstant(T);
1655        NeedsGlobalCtor = true;
1656      } else {
1657        ErrorUnsupported(D, "static initializer");
1658        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1659      }
1660    } else {
1661      // We don't need an initializer, so remove the entry for the delayed
1662      // initializer position (just in case this entry was delayed) if we
1663      // also don't need to register a destructor.
1664      if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1665        DelayedCXXInitPosition.erase(D);
1666    }
1667  }
1668
1669  llvm::Type* InitType = Init->getType();
1670  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1671
1672  // Strip off a bitcast if we got one back.
1673  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1674    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1675           // all zero index gep.
1676           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1677    Entry = CE->getOperand(0);
1678  }
1679
1680  // Entry is now either a Function or GlobalVariable.
1681  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1682
1683  // We have a definition after a declaration with the wrong type.
1684  // We must make a new GlobalVariable* and update everything that used OldGV
1685  // (a declaration or tentative definition) with the new GlobalVariable*
1686  // (which will be a definition).
1687  //
1688  // This happens if there is a prototype for a global (e.g.
1689  // "extern int x[];") and then a definition of a different type (e.g.
1690  // "int x[10];"). This also happens when an initializer has a different type
1691  // from the type of the global (this happens with unions).
1692  if (GV == 0 ||
1693      GV->getType()->getElementType() != InitType ||
1694      GV->getType()->getAddressSpace() !=
1695       GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1696
1697    // Move the old entry aside so that we'll create a new one.
1698    Entry->setName(StringRef());
1699
1700    // Make a new global with the correct type, this is now guaranteed to work.
1701    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1702
1703    // Replace all uses of the old global with the new global
1704    llvm::Constant *NewPtrForOldDecl =
1705        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1706    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1707
1708    // Erase the old global, since it is no longer used.
1709    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1710  }
1711
1712  if (D->hasAttr<AnnotateAttr>())
1713    AddGlobalAnnotations(D, GV);
1714
1715  GV->setInitializer(Init);
1716
1717  // If it is safe to mark the global 'constant', do so now.
1718  GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1719                  isTypeConstant(D->getType(), true));
1720
1721  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1722
1723  // Set the llvm linkage type as appropriate.
1724  llvm::GlobalValue::LinkageTypes Linkage =
1725    GetLLVMLinkageVarDefinition(D, GV);
1726  GV->setLinkage(Linkage);
1727  if (Linkage == llvm::GlobalVariable::CommonLinkage)
1728    // common vars aren't constant even if declared const.
1729    GV->setConstant(false);
1730
1731  SetCommonAttributes(D, GV);
1732
1733  // Emit the initializer function if necessary.
1734  if (NeedsGlobalCtor || NeedsGlobalDtor)
1735    EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1736
1737  // If we are compiling with ASan, add metadata indicating dynamically
1738  // initialized globals.
1739  if (LangOpts.AddressSanitizer && NeedsGlobalCtor) {
1740    llvm::Module &M = getModule();
1741
1742    llvm::NamedMDNode *DynamicInitializers =
1743        M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1744    llvm::Value *GlobalToAdd[] = { GV };
1745    llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1746    DynamicInitializers->addOperand(ThisGlobal);
1747  }
1748
1749  // Emit global variable debug information.
1750  if (CGDebugInfo *DI = getModuleDebugInfo())
1751    if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1752      DI->EmitGlobalVariable(GV, D);
1753}
1754
1755llvm::GlobalValue::LinkageTypes
1756CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1757                                           llvm::GlobalVariable *GV) {
1758  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1759  if (Linkage == GVA_Internal)
1760    return llvm::Function::InternalLinkage;
1761  else if (D->hasAttr<DLLImportAttr>())
1762    return llvm::Function::DLLImportLinkage;
1763  else if (D->hasAttr<DLLExportAttr>())
1764    return llvm::Function::DLLExportLinkage;
1765  else if (D->hasAttr<WeakAttr>()) {
1766    if (GV->isConstant())
1767      return llvm::GlobalVariable::WeakODRLinkage;
1768    else
1769      return llvm::GlobalVariable::WeakAnyLinkage;
1770  } else if (Linkage == GVA_TemplateInstantiation ||
1771             Linkage == GVA_ExplicitTemplateInstantiation)
1772    return llvm::GlobalVariable::WeakODRLinkage;
1773  else if (!getLangOpts().CPlusPlus &&
1774           ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1775             D->getAttr<CommonAttr>()) &&
1776           !D->hasExternalStorage() && !D->getInit() &&
1777           !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1778           !D->getAttr<WeakImportAttr>()) {
1779    // Thread local vars aren't considered common linkage.
1780    return llvm::GlobalVariable::CommonLinkage;
1781  }
1782  return llvm::GlobalVariable::ExternalLinkage;
1783}
1784
1785/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1786/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1787/// existing call uses of the old function in the module, this adjusts them to
1788/// call the new function directly.
1789///
1790/// This is not just a cleanup: the always_inline pass requires direct calls to
1791/// functions to be able to inline them.  If there is a bitcast in the way, it
1792/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1793/// run at -O0.
1794static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1795                                                      llvm::Function *NewFn) {
1796  // If we're redefining a global as a function, don't transform it.
1797  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1798  if (OldFn == 0) return;
1799
1800  llvm::Type *NewRetTy = NewFn->getReturnType();
1801  SmallVector<llvm::Value*, 4> ArgList;
1802
1803  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1804       UI != E; ) {
1805    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1806    llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1807    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1808    if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1809    llvm::CallSite CS(CI);
1810    if (!CI || !CS.isCallee(I)) continue;
1811
1812    // If the return types don't match exactly, and if the call isn't dead, then
1813    // we can't transform this call.
1814    if (CI->getType() != NewRetTy && !CI->use_empty())
1815      continue;
1816
1817    // Get the attribute list.
1818    llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1819    llvm::AttrListPtr AttrList = CI->getAttributes();
1820
1821    // Get any return attributes.
1822    llvm::Attributes RAttrs = AttrList.getRetAttributes();
1823
1824    // Add the return attributes.
1825    if (RAttrs.hasAttributes())
1826      AttrVec.push_back(llvm::
1827                        AttributeWithIndex::get(llvm::AttrListPtr::ReturnIndex,
1828                                                RAttrs));
1829
1830    // If the function was passed too few arguments, don't transform.  If extra
1831    // arguments were passed, we silently drop them.  If any of the types
1832    // mismatch, we don't transform.
1833    unsigned ArgNo = 0;
1834    bool DontTransform = false;
1835    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1836         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1837      if (CS.arg_size() == ArgNo ||
1838          CS.getArgument(ArgNo)->getType() != AI->getType()) {
1839        DontTransform = true;
1840        break;
1841      }
1842
1843      // Add any parameter attributes.
1844      llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1);
1845      if (PAttrs.hasAttributes())
1846        AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1847    }
1848    if (DontTransform)
1849      continue;
1850
1851    llvm::Attributes FnAttrs =  AttrList.getFnAttributes();
1852    if (FnAttrs.hasAttributes())
1853      AttrVec.push_back(llvm::
1854                       AttributeWithIndex::get(llvm::AttrListPtr::FunctionIndex,
1855                                               FnAttrs));
1856
1857    // Okay, we can transform this.  Create the new call instruction and copy
1858    // over the required information.
1859    ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1860    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1861    ArgList.clear();
1862    if (!NewCall->getType()->isVoidTy())
1863      NewCall->takeName(CI);
1864    NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec));
1865    NewCall->setCallingConv(CI->getCallingConv());
1866
1867    // Finally, remove the old call, replacing any uses with the new one.
1868    if (!CI->use_empty())
1869      CI->replaceAllUsesWith(NewCall);
1870
1871    // Copy debug location attached to CI.
1872    if (!CI->getDebugLoc().isUnknown())
1873      NewCall->setDebugLoc(CI->getDebugLoc());
1874    CI->eraseFromParent();
1875  }
1876}
1877
1878void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1879  TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1880  // If we have a definition, this might be a deferred decl. If the
1881  // instantiation is explicit, make sure we emit it at the end.
1882  if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1883    GetAddrOfGlobalVar(VD);
1884}
1885
1886void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1887  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1888
1889  // Compute the function info and LLVM type.
1890  const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1891  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
1892
1893  // Get or create the prototype for the function.
1894  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1895
1896  // Strip off a bitcast if we got one back.
1897  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1898    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1899    Entry = CE->getOperand(0);
1900  }
1901
1902
1903  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1904    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1905
1906    // If the types mismatch then we have to rewrite the definition.
1907    assert(OldFn->isDeclaration() &&
1908           "Shouldn't replace non-declaration");
1909
1910    // F is the Function* for the one with the wrong type, we must make a new
1911    // Function* and update everything that used F (a declaration) with the new
1912    // Function* (which will be a definition).
1913    //
1914    // This happens if there is a prototype for a function
1915    // (e.g. "int f()") and then a definition of a different type
1916    // (e.g. "int f(int x)").  Move the old function aside so that it
1917    // doesn't interfere with GetAddrOfFunction.
1918    OldFn->setName(StringRef());
1919    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1920
1921    // If this is an implementation of a function without a prototype, try to
1922    // replace any existing uses of the function (which may be calls) with uses
1923    // of the new function
1924    if (D->getType()->isFunctionNoProtoType()) {
1925      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1926      OldFn->removeDeadConstantUsers();
1927    }
1928
1929    // Replace uses of F with the Function we will endow with a body.
1930    if (!Entry->use_empty()) {
1931      llvm::Constant *NewPtrForOldDecl =
1932        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1933      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1934    }
1935
1936    // Ok, delete the old function now, which is dead.
1937    OldFn->eraseFromParent();
1938
1939    Entry = NewFn;
1940  }
1941
1942  // We need to set linkage and visibility on the function before
1943  // generating code for it because various parts of IR generation
1944  // want to propagate this information down (e.g. to local static
1945  // declarations).
1946  llvm::Function *Fn = cast<llvm::Function>(Entry);
1947  setFunctionLinkage(D, Fn);
1948
1949  // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1950  setGlobalVisibility(Fn, D);
1951
1952  CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1953
1954  SetFunctionDefinitionAttributes(D, Fn);
1955  SetLLVMFunctionAttributesForDefinition(D, Fn);
1956
1957  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1958    AddGlobalCtor(Fn, CA->getPriority());
1959  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1960    AddGlobalDtor(Fn, DA->getPriority());
1961  if (D->hasAttr<AnnotateAttr>())
1962    AddGlobalAnnotations(D, Fn);
1963}
1964
1965void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1966  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1967  const AliasAttr *AA = D->getAttr<AliasAttr>();
1968  assert(AA && "Not an alias?");
1969
1970  StringRef MangledName = getMangledName(GD);
1971
1972  // If there is a definition in the module, then it wins over the alias.
1973  // This is dubious, but allow it to be safe.  Just ignore the alias.
1974  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1975  if (Entry && !Entry->isDeclaration())
1976    return;
1977
1978  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1979
1980  // Create a reference to the named value.  This ensures that it is emitted
1981  // if a deferred decl.
1982  llvm::Constant *Aliasee;
1983  if (isa<llvm::FunctionType>(DeclTy))
1984    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
1985                                      /*ForVTable=*/false);
1986  else
1987    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1988                                    llvm::PointerType::getUnqual(DeclTy), 0);
1989
1990  // Create the new alias itself, but don't set a name yet.
1991  llvm::GlobalValue *GA =
1992    new llvm::GlobalAlias(Aliasee->getType(),
1993                          llvm::Function::ExternalLinkage,
1994                          "", Aliasee, &getModule());
1995
1996  if (Entry) {
1997    assert(Entry->isDeclaration());
1998
1999    // If there is a declaration in the module, then we had an extern followed
2000    // by the alias, as in:
2001    //   extern int test6();
2002    //   ...
2003    //   int test6() __attribute__((alias("test7")));
2004    //
2005    // Remove it and replace uses of it with the alias.
2006    GA->takeName(Entry);
2007
2008    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2009                                                          Entry->getType()));
2010    Entry->eraseFromParent();
2011  } else {
2012    GA->setName(MangledName);
2013  }
2014
2015  // Set attributes which are particular to an alias; this is a
2016  // specialization of the attributes which may be set on a global
2017  // variable/function.
2018  if (D->hasAttr<DLLExportAttr>()) {
2019    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2020      // The dllexport attribute is ignored for undefined symbols.
2021      if (FD->hasBody())
2022        GA->setLinkage(llvm::Function::DLLExportLinkage);
2023    } else {
2024      GA->setLinkage(llvm::Function::DLLExportLinkage);
2025    }
2026  } else if (D->hasAttr<WeakAttr>() ||
2027             D->hasAttr<WeakRefAttr>() ||
2028             D->isWeakImported()) {
2029    GA->setLinkage(llvm::Function::WeakAnyLinkage);
2030  }
2031
2032  SetCommonAttributes(D, GA);
2033}
2034
2035llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2036                                            ArrayRef<llvm::Type*> Tys) {
2037  return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2038                                         Tys);
2039}
2040
2041static llvm::StringMapEntry<llvm::Constant*> &
2042GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2043                         const StringLiteral *Literal,
2044                         bool TargetIsLSB,
2045                         bool &IsUTF16,
2046                         unsigned &StringLength) {
2047  StringRef String = Literal->getString();
2048  unsigned NumBytes = String.size();
2049
2050  // Check for simple case.
2051  if (!Literal->containsNonAsciiOrNull()) {
2052    StringLength = NumBytes;
2053    return Map.GetOrCreateValue(String);
2054  }
2055
2056  // Otherwise, convert the UTF8 literals into a string of shorts.
2057  IsUTF16 = true;
2058
2059  SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2060  const UTF8 *FromPtr = (const UTF8 *)String.data();
2061  UTF16 *ToPtr = &ToBuf[0];
2062
2063  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2064                           &ToPtr, ToPtr + NumBytes,
2065                           strictConversion);
2066
2067  // ConvertUTF8toUTF16 returns the length in ToPtr.
2068  StringLength = ToPtr - &ToBuf[0];
2069
2070  // Add an explicit null.
2071  *ToPtr = 0;
2072  return Map.
2073    GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2074                               (StringLength + 1) * 2));
2075}
2076
2077static llvm::StringMapEntry<llvm::Constant*> &
2078GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2079                       const StringLiteral *Literal,
2080                       unsigned &StringLength) {
2081  StringRef String = Literal->getString();
2082  StringLength = String.size();
2083  return Map.GetOrCreateValue(String);
2084}
2085
2086llvm::Constant *
2087CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2088  unsigned StringLength = 0;
2089  bool isUTF16 = false;
2090  llvm::StringMapEntry<llvm::Constant*> &Entry =
2091    GetConstantCFStringEntry(CFConstantStringMap, Literal,
2092                             getDataLayout().isLittleEndian(),
2093                             isUTF16, StringLength);
2094
2095  if (llvm::Constant *C = Entry.getValue())
2096    return C;
2097
2098  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2099  llvm::Constant *Zeros[] = { Zero, Zero };
2100
2101  // If we don't already have it, get __CFConstantStringClassReference.
2102  if (!CFConstantStringClassRef) {
2103    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2104    Ty = llvm::ArrayType::get(Ty, 0);
2105    llvm::Constant *GV = CreateRuntimeVariable(Ty,
2106                                           "__CFConstantStringClassReference");
2107    // Decay array -> ptr
2108    CFConstantStringClassRef =
2109      llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2110  }
2111
2112  QualType CFTy = getContext().getCFConstantStringType();
2113
2114  llvm::StructType *STy =
2115    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2116
2117  llvm::Constant *Fields[4];
2118
2119  // Class pointer.
2120  Fields[0] = CFConstantStringClassRef;
2121
2122  // Flags.
2123  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2124  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2125    llvm::ConstantInt::get(Ty, 0x07C8);
2126
2127  // String pointer.
2128  llvm::Constant *C = 0;
2129  if (isUTF16) {
2130    ArrayRef<uint16_t> Arr =
2131      llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(),
2132                                   Entry.getKey().size() / 2);
2133    C = llvm::ConstantDataArray::get(VMContext, Arr);
2134  } else {
2135    C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2136  }
2137
2138  llvm::GlobalValue::LinkageTypes Linkage;
2139  if (isUTF16)
2140    // FIXME: why do utf strings get "_" labels instead of "L" labels?
2141    Linkage = llvm::GlobalValue::InternalLinkage;
2142  else
2143    // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2144    // when using private linkage. It is not clear if this is a bug in ld
2145    // or a reasonable new restriction.
2146    Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2147
2148  // Note: -fwritable-strings doesn't make the backing store strings of
2149  // CFStrings writable. (See <rdar://problem/10657500>)
2150  llvm::GlobalVariable *GV =
2151    new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2152                             Linkage, C, ".str");
2153  GV->setUnnamedAddr(true);
2154  if (isUTF16) {
2155    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2156    GV->setAlignment(Align.getQuantity());
2157  } else {
2158    CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2159    GV->setAlignment(Align.getQuantity());
2160  }
2161
2162  // String.
2163  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2164
2165  if (isUTF16)
2166    // Cast the UTF16 string to the correct type.
2167    Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2168
2169  // String length.
2170  Ty = getTypes().ConvertType(getContext().LongTy);
2171  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2172
2173  // The struct.
2174  C = llvm::ConstantStruct::get(STy, Fields);
2175  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2176                                llvm::GlobalVariable::PrivateLinkage, C,
2177                                "_unnamed_cfstring_");
2178  if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2179    GV->setSection(Sect);
2180  Entry.setValue(GV);
2181
2182  return GV;
2183}
2184
2185static RecordDecl *
2186CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2187                 DeclContext *DC, IdentifierInfo *Id) {
2188  SourceLocation Loc;
2189  if (Ctx.getLangOpts().CPlusPlus)
2190    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2191  else
2192    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2193}
2194
2195llvm::Constant *
2196CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2197  unsigned StringLength = 0;
2198  llvm::StringMapEntry<llvm::Constant*> &Entry =
2199    GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2200
2201  if (llvm::Constant *C = Entry.getValue())
2202    return C;
2203
2204  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2205  llvm::Constant *Zeros[] = { Zero, Zero };
2206
2207  // If we don't already have it, get _NSConstantStringClassReference.
2208  if (!ConstantStringClassRef) {
2209    std::string StringClass(getLangOpts().ObjCConstantStringClass);
2210    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2211    llvm::Constant *GV;
2212    if (LangOpts.ObjCRuntime.isNonFragile()) {
2213      std::string str =
2214        StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2215                            : "OBJC_CLASS_$_" + StringClass;
2216      GV = getObjCRuntime().GetClassGlobal(str);
2217      // Make sure the result is of the correct type.
2218      llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2219      ConstantStringClassRef =
2220        llvm::ConstantExpr::getBitCast(GV, PTy);
2221    } else {
2222      std::string str =
2223        StringClass.empty() ? "_NSConstantStringClassReference"
2224                            : "_" + StringClass + "ClassReference";
2225      llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2226      GV = CreateRuntimeVariable(PTy, str);
2227      // Decay array -> ptr
2228      ConstantStringClassRef =
2229        llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2230    }
2231  }
2232
2233  if (!NSConstantStringType) {
2234    // Construct the type for a constant NSString.
2235    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2236                                     Context.getTranslationUnitDecl(),
2237                                   &Context.Idents.get("__builtin_NSString"));
2238    D->startDefinition();
2239
2240    QualType FieldTypes[3];
2241
2242    // const int *isa;
2243    FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2244    // const char *str;
2245    FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2246    // unsigned int length;
2247    FieldTypes[2] = Context.UnsignedIntTy;
2248
2249    // Create fields
2250    for (unsigned i = 0; i < 3; ++i) {
2251      FieldDecl *Field = FieldDecl::Create(Context, D,
2252                                           SourceLocation(),
2253                                           SourceLocation(), 0,
2254                                           FieldTypes[i], /*TInfo=*/0,
2255                                           /*BitWidth=*/0,
2256                                           /*Mutable=*/false,
2257                                           ICIS_NoInit);
2258      Field->setAccess(AS_public);
2259      D->addDecl(Field);
2260    }
2261
2262    D->completeDefinition();
2263    QualType NSTy = Context.getTagDeclType(D);
2264    NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2265  }
2266
2267  llvm::Constant *Fields[3];
2268
2269  // Class pointer.
2270  Fields[0] = ConstantStringClassRef;
2271
2272  // String pointer.
2273  llvm::Constant *C =
2274    llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2275
2276  llvm::GlobalValue::LinkageTypes Linkage;
2277  bool isConstant;
2278  Linkage = llvm::GlobalValue::PrivateLinkage;
2279  isConstant = !LangOpts.WritableStrings;
2280
2281  llvm::GlobalVariable *GV =
2282  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2283                           ".str");
2284  GV->setUnnamedAddr(true);
2285  CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2286  GV->setAlignment(Align.getQuantity());
2287  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2288
2289  // String length.
2290  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2291  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2292
2293  // The struct.
2294  C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2295  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2296                                llvm::GlobalVariable::PrivateLinkage, C,
2297                                "_unnamed_nsstring_");
2298  // FIXME. Fix section.
2299  if (const char *Sect =
2300        LangOpts.ObjCRuntime.isNonFragile()
2301          ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2302          : getContext().getTargetInfo().getNSStringSection())
2303    GV->setSection(Sect);
2304  Entry.setValue(GV);
2305
2306  return GV;
2307}
2308
2309QualType CodeGenModule::getObjCFastEnumerationStateType() {
2310  if (ObjCFastEnumerationStateType.isNull()) {
2311    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2312                                     Context.getTranslationUnitDecl(),
2313                      &Context.Idents.get("__objcFastEnumerationState"));
2314    D->startDefinition();
2315
2316    QualType FieldTypes[] = {
2317      Context.UnsignedLongTy,
2318      Context.getPointerType(Context.getObjCIdType()),
2319      Context.getPointerType(Context.UnsignedLongTy),
2320      Context.getConstantArrayType(Context.UnsignedLongTy,
2321                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2322    };
2323
2324    for (size_t i = 0; i < 4; ++i) {
2325      FieldDecl *Field = FieldDecl::Create(Context,
2326                                           D,
2327                                           SourceLocation(),
2328                                           SourceLocation(), 0,
2329                                           FieldTypes[i], /*TInfo=*/0,
2330                                           /*BitWidth=*/0,
2331                                           /*Mutable=*/false,
2332                                           ICIS_NoInit);
2333      Field->setAccess(AS_public);
2334      D->addDecl(Field);
2335    }
2336
2337    D->completeDefinition();
2338    ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2339  }
2340
2341  return ObjCFastEnumerationStateType;
2342}
2343
2344llvm::Constant *
2345CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2346  assert(!E->getType()->isPointerType() && "Strings are always arrays");
2347
2348  // Don't emit it as the address of the string, emit the string data itself
2349  // as an inline array.
2350  if (E->getCharByteWidth() == 1) {
2351    SmallString<64> Str(E->getString());
2352
2353    // Resize the string to the right size, which is indicated by its type.
2354    const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2355    Str.resize(CAT->getSize().getZExtValue());
2356    return llvm::ConstantDataArray::getString(VMContext, Str, false);
2357  }
2358
2359  llvm::ArrayType *AType =
2360    cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2361  llvm::Type *ElemTy = AType->getElementType();
2362  unsigned NumElements = AType->getNumElements();
2363
2364  // Wide strings have either 2-byte or 4-byte elements.
2365  if (ElemTy->getPrimitiveSizeInBits() == 16) {
2366    SmallVector<uint16_t, 32> Elements;
2367    Elements.reserve(NumElements);
2368
2369    for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2370      Elements.push_back(E->getCodeUnit(i));
2371    Elements.resize(NumElements);
2372    return llvm::ConstantDataArray::get(VMContext, Elements);
2373  }
2374
2375  assert(ElemTy->getPrimitiveSizeInBits() == 32);
2376  SmallVector<uint32_t, 32> Elements;
2377  Elements.reserve(NumElements);
2378
2379  for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2380    Elements.push_back(E->getCodeUnit(i));
2381  Elements.resize(NumElements);
2382  return llvm::ConstantDataArray::get(VMContext, Elements);
2383}
2384
2385/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2386/// constant array for the given string literal.
2387llvm::Constant *
2388CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2389  CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2390  if (S->isAscii() || S->isUTF8()) {
2391    SmallString<64> Str(S->getString());
2392
2393    // Resize the string to the right size, which is indicated by its type.
2394    const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2395    Str.resize(CAT->getSize().getZExtValue());
2396    return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2397  }
2398
2399  // FIXME: the following does not memoize wide strings.
2400  llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2401  llvm::GlobalVariable *GV =
2402    new llvm::GlobalVariable(getModule(),C->getType(),
2403                             !LangOpts.WritableStrings,
2404                             llvm::GlobalValue::PrivateLinkage,
2405                             C,".str");
2406
2407  GV->setAlignment(Align.getQuantity());
2408  GV->setUnnamedAddr(true);
2409  return GV;
2410}
2411
2412/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2413/// array for the given ObjCEncodeExpr node.
2414llvm::Constant *
2415CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2416  std::string Str;
2417  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2418
2419  return GetAddrOfConstantCString(Str);
2420}
2421
2422
2423/// GenerateWritableString -- Creates storage for a string literal.
2424static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2425                                             bool constant,
2426                                             CodeGenModule &CGM,
2427                                             const char *GlobalName,
2428                                             unsigned Alignment) {
2429  // Create Constant for this string literal. Don't add a '\0'.
2430  llvm::Constant *C =
2431      llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2432
2433  // Create a global variable for this string
2434  llvm::GlobalVariable *GV =
2435    new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2436                             llvm::GlobalValue::PrivateLinkage,
2437                             C, GlobalName);
2438  GV->setAlignment(Alignment);
2439  GV->setUnnamedAddr(true);
2440  return GV;
2441}
2442
2443/// GetAddrOfConstantString - Returns a pointer to a character array
2444/// containing the literal. This contents are exactly that of the
2445/// given string, i.e. it will not be null terminated automatically;
2446/// see GetAddrOfConstantCString. Note that whether the result is
2447/// actually a pointer to an LLVM constant depends on
2448/// Feature.WriteableStrings.
2449///
2450/// The result has pointer to array type.
2451llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2452                                                       const char *GlobalName,
2453                                                       unsigned Alignment) {
2454  // Get the default prefix if a name wasn't specified.
2455  if (!GlobalName)
2456    GlobalName = ".str";
2457
2458  // Don't share any string literals if strings aren't constant.
2459  if (LangOpts.WritableStrings)
2460    return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2461
2462  llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2463    ConstantStringMap.GetOrCreateValue(Str);
2464
2465  if (llvm::GlobalVariable *GV = Entry.getValue()) {
2466    if (Alignment > GV->getAlignment()) {
2467      GV->setAlignment(Alignment);
2468    }
2469    return GV;
2470  }
2471
2472  // Create a global variable for this.
2473  llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2474                                                   Alignment);
2475  Entry.setValue(GV);
2476  return GV;
2477}
2478
2479/// GetAddrOfConstantCString - Returns a pointer to a character
2480/// array containing the literal and a terminating '\0'
2481/// character. The result has pointer to array type.
2482llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2483                                                        const char *GlobalName,
2484                                                        unsigned Alignment) {
2485  StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2486  return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2487}
2488
2489/// EmitObjCPropertyImplementations - Emit information for synthesized
2490/// properties for an implementation.
2491void CodeGenModule::EmitObjCPropertyImplementations(const
2492                                                    ObjCImplementationDecl *D) {
2493  for (ObjCImplementationDecl::propimpl_iterator
2494         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2495    ObjCPropertyImplDecl *PID = *i;
2496
2497    // Dynamic is just for type-checking.
2498    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2499      ObjCPropertyDecl *PD = PID->getPropertyDecl();
2500
2501      // Determine which methods need to be implemented, some may have
2502      // been overridden. Note that ::isPropertyAccessor is not the method
2503      // we want, that just indicates if the decl came from a
2504      // property. What we want to know is if the method is defined in
2505      // this implementation.
2506      if (!D->getInstanceMethod(PD->getGetterName()))
2507        CodeGenFunction(*this).GenerateObjCGetter(
2508                                 const_cast<ObjCImplementationDecl *>(D), PID);
2509      if (!PD->isReadOnly() &&
2510          !D->getInstanceMethod(PD->getSetterName()))
2511        CodeGenFunction(*this).GenerateObjCSetter(
2512                                 const_cast<ObjCImplementationDecl *>(D), PID);
2513    }
2514  }
2515}
2516
2517static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2518  const ObjCInterfaceDecl *iface = impl->getClassInterface();
2519  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2520       ivar; ivar = ivar->getNextIvar())
2521    if (ivar->getType().isDestructedType())
2522      return true;
2523
2524  return false;
2525}
2526
2527/// EmitObjCIvarInitializations - Emit information for ivar initialization
2528/// for an implementation.
2529void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2530  // We might need a .cxx_destruct even if we don't have any ivar initializers.
2531  if (needsDestructMethod(D)) {
2532    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2533    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2534    ObjCMethodDecl *DTORMethod =
2535      ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2536                             cxxSelector, getContext().VoidTy, 0, D,
2537                             /*isInstance=*/true, /*isVariadic=*/false,
2538                          /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2539                             /*isDefined=*/false, ObjCMethodDecl::Required);
2540    D->addInstanceMethod(DTORMethod);
2541    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2542    D->setHasDestructors(true);
2543  }
2544
2545  // If the implementation doesn't have any ivar initializers, we don't need
2546  // a .cxx_construct.
2547  if (D->getNumIvarInitializers() == 0)
2548    return;
2549
2550  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2551  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2552  // The constructor returns 'self'.
2553  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2554                                                D->getLocation(),
2555                                                D->getLocation(),
2556                                                cxxSelector,
2557                                                getContext().getObjCIdType(), 0,
2558                                                D, /*isInstance=*/true,
2559                                                /*isVariadic=*/false,
2560                                                /*isPropertyAccessor=*/true,
2561                                                /*isImplicitlyDeclared=*/true,
2562                                                /*isDefined=*/false,
2563                                                ObjCMethodDecl::Required);
2564  D->addInstanceMethod(CTORMethod);
2565  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2566  D->setHasNonZeroConstructors(true);
2567}
2568
2569/// EmitNamespace - Emit all declarations in a namespace.
2570void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2571  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2572       I != E; ++I)
2573    EmitTopLevelDecl(*I);
2574}
2575
2576// EmitLinkageSpec - Emit all declarations in a linkage spec.
2577void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2578  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2579      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2580    ErrorUnsupported(LSD, "linkage spec");
2581    return;
2582  }
2583
2584  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2585       I != E; ++I) {
2586    if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2587      for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2588           MEnd = OID->meth_end();
2589           M != MEnd; ++M)
2590        EmitTopLevelDecl(*M);
2591    }
2592    EmitTopLevelDecl(*I);
2593  }
2594}
2595
2596/// EmitTopLevelDecl - Emit code for a single top level declaration.
2597void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2598  // If an error has occurred, stop code generation, but continue
2599  // parsing and semantic analysis (to ensure all warnings and errors
2600  // are emitted).
2601  if (Diags.hasErrorOccurred())
2602    return;
2603
2604  // Ignore dependent declarations.
2605  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2606    return;
2607
2608  switch (D->getKind()) {
2609  case Decl::CXXConversion:
2610  case Decl::CXXMethod:
2611  case Decl::Function:
2612    // Skip function templates
2613    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2614        cast<FunctionDecl>(D)->isLateTemplateParsed())
2615      return;
2616
2617    EmitGlobal(cast<FunctionDecl>(D));
2618    break;
2619
2620  case Decl::Var:
2621    EmitGlobal(cast<VarDecl>(D));
2622    break;
2623
2624  // Indirect fields from global anonymous structs and unions can be
2625  // ignored; only the actual variable requires IR gen support.
2626  case Decl::IndirectField:
2627    break;
2628
2629  // C++ Decls
2630  case Decl::Namespace:
2631    EmitNamespace(cast<NamespaceDecl>(D));
2632    break;
2633    // No code generation needed.
2634  case Decl::UsingShadow:
2635  case Decl::Using:
2636  case Decl::UsingDirective:
2637  case Decl::ClassTemplate:
2638  case Decl::FunctionTemplate:
2639  case Decl::TypeAliasTemplate:
2640  case Decl::NamespaceAlias:
2641  case Decl::Block:
2642  case Decl::Import:
2643    break;
2644  case Decl::CXXConstructor:
2645    // Skip function templates
2646    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2647        cast<FunctionDecl>(D)->isLateTemplateParsed())
2648      return;
2649
2650    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2651    break;
2652  case Decl::CXXDestructor:
2653    if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2654      return;
2655    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2656    break;
2657
2658  case Decl::StaticAssert:
2659    // Nothing to do.
2660    break;
2661
2662  // Objective-C Decls
2663
2664  // Forward declarations, no (immediate) code generation.
2665  case Decl::ObjCInterface:
2666  case Decl::ObjCCategory:
2667    break;
2668
2669  case Decl::ObjCProtocol: {
2670    ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2671    if (Proto->isThisDeclarationADefinition())
2672      ObjCRuntime->GenerateProtocol(Proto);
2673    break;
2674  }
2675
2676  case Decl::ObjCCategoryImpl:
2677    // Categories have properties but don't support synthesize so we
2678    // can ignore them here.
2679    ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2680    break;
2681
2682  case Decl::ObjCImplementation: {
2683    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2684    EmitObjCPropertyImplementations(OMD);
2685    EmitObjCIvarInitializations(OMD);
2686    ObjCRuntime->GenerateClass(OMD);
2687    // Emit global variable debug information.
2688    if (CGDebugInfo *DI = getModuleDebugInfo())
2689      DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()),
2690				   OMD->getLocation());
2691
2692    break;
2693  }
2694  case Decl::ObjCMethod: {
2695    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2696    // If this is not a prototype, emit the body.
2697    if (OMD->getBody())
2698      CodeGenFunction(*this).GenerateObjCMethod(OMD);
2699    break;
2700  }
2701  case Decl::ObjCCompatibleAlias:
2702    ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2703    break;
2704
2705  case Decl::LinkageSpec:
2706    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2707    break;
2708
2709  case Decl::FileScopeAsm: {
2710    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2711    StringRef AsmString = AD->getAsmString()->getString();
2712
2713    const std::string &S = getModule().getModuleInlineAsm();
2714    if (S.empty())
2715      getModule().setModuleInlineAsm(AsmString);
2716    else if (S.end()[-1] == '\n')
2717      getModule().setModuleInlineAsm(S + AsmString.str());
2718    else
2719      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2720    break;
2721  }
2722
2723  default:
2724    // Make sure we handled everything we should, every other kind is a
2725    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2726    // function. Need to recode Decl::Kind to do that easily.
2727    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2728  }
2729}
2730
2731/// Turns the given pointer into a constant.
2732static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2733                                          const void *Ptr) {
2734  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2735  llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2736  return llvm::ConstantInt::get(i64, PtrInt);
2737}
2738
2739static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2740                                   llvm::NamedMDNode *&GlobalMetadata,
2741                                   GlobalDecl D,
2742                                   llvm::GlobalValue *Addr) {
2743  if (!GlobalMetadata)
2744    GlobalMetadata =
2745      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2746
2747  // TODO: should we report variant information for ctors/dtors?
2748  llvm::Value *Ops[] = {
2749    Addr,
2750    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2751  };
2752  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2753}
2754
2755/// Emits metadata nodes associating all the global values in the
2756/// current module with the Decls they came from.  This is useful for
2757/// projects using IR gen as a subroutine.
2758///
2759/// Since there's currently no way to associate an MDNode directly
2760/// with an llvm::GlobalValue, we create a global named metadata
2761/// with the name 'clang.global.decl.ptrs'.
2762void CodeGenModule::EmitDeclMetadata() {
2763  llvm::NamedMDNode *GlobalMetadata = 0;
2764
2765  // StaticLocalDeclMap
2766  for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2767         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2768       I != E; ++I) {
2769    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2770    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2771  }
2772}
2773
2774/// Emits metadata nodes for all the local variables in the current
2775/// function.
2776void CodeGenFunction::EmitDeclMetadata() {
2777  if (LocalDeclMap.empty()) return;
2778
2779  llvm::LLVMContext &Context = getLLVMContext();
2780
2781  // Find the unique metadata ID for this name.
2782  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2783
2784  llvm::NamedMDNode *GlobalMetadata = 0;
2785
2786  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2787         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2788    const Decl *D = I->first;
2789    llvm::Value *Addr = I->second;
2790
2791    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2792      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2793      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2794    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2795      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2796      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2797    }
2798  }
2799}
2800
2801void CodeGenModule::EmitCoverageFile() {
2802  if (!getCodeGenOpts().CoverageFile.empty()) {
2803    if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2804      llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2805      llvm::LLVMContext &Ctx = TheModule.getContext();
2806      llvm::MDString *CoverageFile =
2807          llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2808      for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2809        llvm::MDNode *CU = CUNode->getOperand(i);
2810        llvm::Value *node[] = { CoverageFile, CU };
2811        llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2812        GCov->addOperand(N);
2813      }
2814    }
2815  }
2816}
2817
2818llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
2819                                                     QualType GuidType) {
2820  // Sema has checked that all uuid strings are of the form
2821  // "12345678-1234-1234-1234-1234567890ab".
2822  assert(Uuid.size() == 36);
2823  const char *Uuidstr = Uuid.data();
2824  for (int i = 0; i < 36; ++i) {
2825    if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
2826    else                                         assert(isxdigit(Uuidstr[i]));
2827  }
2828
2829  llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
2830  llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
2831  llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
2832  static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
2833
2834  APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
2835  InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
2836  InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
2837  InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
2838  APValue& Arr = InitStruct.getStructField(3);
2839  Arr = APValue(APValue::UninitArray(), 8, 8);
2840  for (int t = 0; t < 8; ++t)
2841    Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
2842          llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
2843
2844  return EmitConstantValue(InitStruct, GuidType);
2845}
2846