CodeGenModule.cpp revision c857ce8b08397ed778928b8a000732ca90da2a8c
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CodeGenTBAA.h"
18#include "CGCall.h"
19#include "CGCUDARuntime.h"
20#include "CGCXXABI.h"
21#include "CGObjCRuntime.h"
22#include "CGOpenCLRuntime.h"
23#include "TargetInfo.h"
24#include "clang/Frontend/CodeGenOptions.h"
25#include "clang/AST/ASTContext.h"
26#include "clang/AST/CharUnits.h"
27#include "clang/AST/DeclObjC.h"
28#include "clang/AST/DeclCXX.h"
29#include "clang/AST/DeclTemplate.h"
30#include "clang/AST/Mangle.h"
31#include "clang/AST/RecordLayout.h"
32#include "clang/AST/RecursiveASTVisitor.h"
33#include "clang/Basic/Builtins.h"
34#include "clang/Basic/Diagnostic.h"
35#include "clang/Basic/SourceManager.h"
36#include "clang/Basic/TargetInfo.h"
37#include "clang/Basic/ConvertUTF.h"
38#include "llvm/CallingConv.h"
39#include "llvm/Module.h"
40#include "llvm/Intrinsics.h"
41#include "llvm/LLVMContext.h"
42#include "llvm/ADT/APSInt.h"
43#include "llvm/ADT/Triple.h"
44#include "llvm/Target/Mangler.h"
45#include "llvm/Target/TargetData.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/ErrorHandling.h"
48using namespace clang;
49using namespace CodeGen;
50
51static const char AnnotationSection[] = "llvm.metadata";
52
53static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
54  switch (CGM.getContext().getTargetInfo().getCXXABI()) {
55  case CXXABI_ARM: return *CreateARMCXXABI(CGM);
56  case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
57  case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
58  }
59
60  llvm_unreachable("invalid C++ ABI kind");
61}
62
63
64CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
65                             llvm::Module &M, const llvm::TargetData &TD,
66                             DiagnosticsEngine &diags)
67  : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
68    TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
69    ABI(createCXXABI(*this)),
70    Types(*this),
71    TBAA(0),
72    VTables(*this), ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
73    DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
74    RRData(0), CFConstantStringClassRef(0),
75    ConstantStringClassRef(0), NSConstantStringType(0),
76    VMContext(M.getContext()),
77    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
78    BlockObjectAssign(0), BlockObjectDispose(0),
79    BlockDescriptorType(0), GenericBlockLiteralType(0) {
80
81  // Initialize the type cache.
82  llvm::LLVMContext &LLVMContext = M.getContext();
83  VoidTy = llvm::Type::getVoidTy(LLVMContext);
84  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
85  Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
86  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
87  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
88  FloatTy = llvm::Type::getFloatTy(LLVMContext);
89  DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
90  PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
91  PointerAlignInBytes =
92  C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
93  IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
94  IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
95  Int8PtrTy = Int8Ty->getPointerTo(0);
96  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
97
98  if (LangOpts.ObjC1)
99    createObjCRuntime();
100  if (LangOpts.OpenCL)
101    createOpenCLRuntime();
102  if (LangOpts.CUDA)
103    createCUDARuntime();
104
105  // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
106  if (LangOpts.ThreadSanitizer ||
107      (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
108    TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
109                           ABI.getMangleContext());
110
111  // If debug info or coverage generation is enabled, create the CGDebugInfo
112  // object.
113  if (CodeGenOpts.DebugInfo != CodeGenOptions::NoDebugInfo ||
114      CodeGenOpts.EmitGcovArcs ||
115      CodeGenOpts.EmitGcovNotes)
116    DebugInfo = new CGDebugInfo(*this);
117
118  Block.GlobalUniqueCount = 0;
119
120  if (C.getLangOpts().ObjCAutoRefCount)
121    ARCData = new ARCEntrypoints();
122  RRData = new RREntrypoints();
123}
124
125CodeGenModule::~CodeGenModule() {
126  delete ObjCRuntime;
127  delete OpenCLRuntime;
128  delete CUDARuntime;
129  delete TheTargetCodeGenInfo;
130  delete &ABI;
131  delete TBAA;
132  delete DebugInfo;
133  delete ARCData;
134  delete RRData;
135}
136
137void CodeGenModule::createObjCRuntime() {
138  // This is just isGNUFamily(), but we want to force implementors of
139  // new ABIs to decide how best to do this.
140  switch (LangOpts.ObjCRuntime.getKind()) {
141  case ObjCRuntime::GNUstep:
142  case ObjCRuntime::GCC:
143  case ObjCRuntime::ObjFW:
144    ObjCRuntime = CreateGNUObjCRuntime(*this);
145    return;
146
147  case ObjCRuntime::FragileMacOSX:
148  case ObjCRuntime::MacOSX:
149  case ObjCRuntime::iOS:
150    ObjCRuntime = CreateMacObjCRuntime(*this);
151    return;
152  }
153  llvm_unreachable("bad runtime kind");
154}
155
156void CodeGenModule::createOpenCLRuntime() {
157  OpenCLRuntime = new CGOpenCLRuntime(*this);
158}
159
160void CodeGenModule::createCUDARuntime() {
161  CUDARuntime = CreateNVCUDARuntime(*this);
162}
163
164void CodeGenModule::Release() {
165  EmitDeferred();
166  EmitCXXGlobalInitFunc();
167  EmitCXXGlobalDtorFunc();
168  if (ObjCRuntime)
169    if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
170      AddGlobalCtor(ObjCInitFunction);
171  EmitCtorList(GlobalCtors, "llvm.global_ctors");
172  EmitCtorList(GlobalDtors, "llvm.global_dtors");
173  EmitGlobalAnnotations();
174  EmitLLVMUsed();
175
176  SimplifyPersonality();
177
178  if (getCodeGenOpts().EmitDeclMetadata)
179    EmitDeclMetadata();
180
181  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
182    EmitCoverageFile();
183
184  if (DebugInfo)
185    DebugInfo->finalize();
186}
187
188void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
189  // Make sure that this type is translated.
190  Types.UpdateCompletedType(TD);
191}
192
193llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
194  if (!TBAA)
195    return 0;
196  return TBAA->getTBAAInfo(QTy);
197}
198
199llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
200  if (!TBAA)
201    return 0;
202  return TBAA->getTBAAInfoForVTablePtr();
203}
204
205llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
206  if (!TBAA)
207    return 0;
208  return TBAA->getTBAAStructInfo(QTy);
209}
210
211void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
212                                        llvm::MDNode *TBAAInfo) {
213  Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
214}
215
216bool CodeGenModule::isTargetDarwin() const {
217  return getContext().getTargetInfo().getTriple().isOSDarwin();
218}
219
220void CodeGenModule::Error(SourceLocation loc, StringRef error) {
221  unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
222  getDiags().Report(Context.getFullLoc(loc), diagID);
223}
224
225/// ErrorUnsupported - Print out an error that codegen doesn't support the
226/// specified stmt yet.
227void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
228                                     bool OmitOnError) {
229  if (OmitOnError && getDiags().hasErrorOccurred())
230    return;
231  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
232                                               "cannot compile this %0 yet");
233  std::string Msg = Type;
234  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
235    << Msg << S->getSourceRange();
236}
237
238/// ErrorUnsupported - Print out an error that codegen doesn't support the
239/// specified decl yet.
240void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
241                                     bool OmitOnError) {
242  if (OmitOnError && getDiags().hasErrorOccurred())
243    return;
244  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
245                                               "cannot compile this %0 yet");
246  std::string Msg = Type;
247  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
248}
249
250llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
251  return llvm::ConstantInt::get(SizeTy, size.getQuantity());
252}
253
254void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
255                                        const NamedDecl *D) const {
256  // Internal definitions always have default visibility.
257  if (GV->hasLocalLinkage()) {
258    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
259    return;
260  }
261
262  // Set visibility for definitions.
263  NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
264  if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
265    GV->setVisibility(GetLLVMVisibility(LV.visibility()));
266}
267
268static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
269  return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
270      .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
271      .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
272      .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
273      .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
274}
275
276static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
277    CodeGenOptions::TLSModel M) {
278  switch (M) {
279  case CodeGenOptions::GeneralDynamicTLSModel:
280    return llvm::GlobalVariable::GeneralDynamicTLSModel;
281  case CodeGenOptions::LocalDynamicTLSModel:
282    return llvm::GlobalVariable::LocalDynamicTLSModel;
283  case CodeGenOptions::InitialExecTLSModel:
284    return llvm::GlobalVariable::InitialExecTLSModel;
285  case CodeGenOptions::LocalExecTLSModel:
286    return llvm::GlobalVariable::LocalExecTLSModel;
287  }
288  llvm_unreachable("Invalid TLS model!");
289}
290
291void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
292                               const VarDecl &D) const {
293  assert(D.isThreadSpecified() && "setting TLS mode on non-TLS var!");
294
295  llvm::GlobalVariable::ThreadLocalMode TLM;
296  TLM = GetLLVMTLSModel(CodeGenOpts.DefaultTLSModel);
297
298  // Override the TLS model if it is explicitly specified.
299  if (D.hasAttr<TLSModelAttr>()) {
300    const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
301    TLM = GetLLVMTLSModel(Attr->getModel());
302  }
303
304  GV->setThreadLocalMode(TLM);
305}
306
307/// Set the symbol visibility of type information (vtable and RTTI)
308/// associated with the given type.
309void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
310                                      const CXXRecordDecl *RD,
311                                      TypeVisibilityKind TVK) const {
312  setGlobalVisibility(GV, RD);
313
314  if (!CodeGenOpts.HiddenWeakVTables)
315    return;
316
317  // We never want to drop the visibility for RTTI names.
318  if (TVK == TVK_ForRTTIName)
319    return;
320
321  // We want to drop the visibility to hidden for weak type symbols.
322  // This isn't possible if there might be unresolved references
323  // elsewhere that rely on this symbol being visible.
324
325  // This should be kept roughly in sync with setThunkVisibility
326  // in CGVTables.cpp.
327
328  // Preconditions.
329  if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
330      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
331    return;
332
333  // Don't override an explicit visibility attribute.
334  if (RD->getExplicitVisibility())
335    return;
336
337  switch (RD->getTemplateSpecializationKind()) {
338  // We have to disable the optimization if this is an EI definition
339  // because there might be EI declarations in other shared objects.
340  case TSK_ExplicitInstantiationDefinition:
341  case TSK_ExplicitInstantiationDeclaration:
342    return;
343
344  // Every use of a non-template class's type information has to emit it.
345  case TSK_Undeclared:
346    break;
347
348  // In theory, implicit instantiations can ignore the possibility of
349  // an explicit instantiation declaration because there necessarily
350  // must be an EI definition somewhere with default visibility.  In
351  // practice, it's possible to have an explicit instantiation for
352  // an arbitrary template class, and linkers aren't necessarily able
353  // to deal with mixed-visibility symbols.
354  case TSK_ExplicitSpecialization:
355  case TSK_ImplicitInstantiation:
356    if (!CodeGenOpts.HiddenWeakTemplateVTables)
357      return;
358    break;
359  }
360
361  // If there's a key function, there may be translation units
362  // that don't have the key function's definition.  But ignore
363  // this if we're emitting RTTI under -fno-rtti.
364  if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
365    if (Context.getKeyFunction(RD))
366      return;
367  }
368
369  // Otherwise, drop the visibility to hidden.
370  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
371  GV->setUnnamedAddr(true);
372}
373
374StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
375  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
376
377  StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
378  if (!Str.empty())
379    return Str;
380
381  if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
382    IdentifierInfo *II = ND->getIdentifier();
383    assert(II && "Attempt to mangle unnamed decl.");
384
385    Str = II->getName();
386    return Str;
387  }
388
389  SmallString<256> Buffer;
390  llvm::raw_svector_ostream Out(Buffer);
391  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
392    getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
393  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
394    getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
395  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
396    getCXXABI().getMangleContext().mangleBlock(BD, Out,
397      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
398  else
399    getCXXABI().getMangleContext().mangleName(ND, Out);
400
401  // Allocate space for the mangled name.
402  Out.flush();
403  size_t Length = Buffer.size();
404  char *Name = MangledNamesAllocator.Allocate<char>(Length);
405  std::copy(Buffer.begin(), Buffer.end(), Name);
406
407  Str = StringRef(Name, Length);
408
409  return Str;
410}
411
412void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
413                                        const BlockDecl *BD) {
414  MangleContext &MangleCtx = getCXXABI().getMangleContext();
415  const Decl *D = GD.getDecl();
416  llvm::raw_svector_ostream Out(Buffer.getBuffer());
417  if (D == 0)
418    MangleCtx.mangleGlobalBlock(BD,
419      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
420  else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
421    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
422  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
423    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
424  else
425    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
426}
427
428llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
429  return getModule().getNamedValue(Name);
430}
431
432/// AddGlobalCtor - Add a function to the list that will be called before
433/// main() runs.
434void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
435  // FIXME: Type coercion of void()* types.
436  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
437}
438
439/// AddGlobalDtor - Add a function to the list that will be called
440/// when the module is unloaded.
441void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
442  // FIXME: Type coercion of void()* types.
443  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
444}
445
446void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
447  // Ctor function type is void()*.
448  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
449  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
450
451  // Get the type of a ctor entry, { i32, void ()* }.
452  llvm::StructType *CtorStructTy =
453    llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
454
455  // Construct the constructor and destructor arrays.
456  SmallVector<llvm::Constant*, 8> Ctors;
457  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
458    llvm::Constant *S[] = {
459      llvm::ConstantInt::get(Int32Ty, I->second, false),
460      llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
461    };
462    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
463  }
464
465  if (!Ctors.empty()) {
466    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
467    new llvm::GlobalVariable(TheModule, AT, false,
468                             llvm::GlobalValue::AppendingLinkage,
469                             llvm::ConstantArray::get(AT, Ctors),
470                             GlobalName);
471  }
472}
473
474llvm::GlobalValue::LinkageTypes
475CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
476  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
477
478  if (Linkage == GVA_Internal)
479    return llvm::Function::InternalLinkage;
480
481  if (D->hasAttr<DLLExportAttr>())
482    return llvm::Function::DLLExportLinkage;
483
484  if (D->hasAttr<WeakAttr>())
485    return llvm::Function::WeakAnyLinkage;
486
487  // In C99 mode, 'inline' functions are guaranteed to have a strong
488  // definition somewhere else, so we can use available_externally linkage.
489  if (Linkage == GVA_C99Inline)
490    return llvm::Function::AvailableExternallyLinkage;
491
492  // Note that Apple's kernel linker doesn't support symbol
493  // coalescing, so we need to avoid linkonce and weak linkages there.
494  // Normally, this means we just map to internal, but for explicit
495  // instantiations we'll map to external.
496
497  // In C++, the compiler has to emit a definition in every translation unit
498  // that references the function.  We should use linkonce_odr because
499  // a) if all references in this translation unit are optimized away, we
500  // don't need to codegen it.  b) if the function persists, it needs to be
501  // merged with other definitions. c) C++ has the ODR, so we know the
502  // definition is dependable.
503  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
504    return !Context.getLangOpts().AppleKext
505             ? llvm::Function::LinkOnceODRLinkage
506             : llvm::Function::InternalLinkage;
507
508  // An explicit instantiation of a template has weak linkage, since
509  // explicit instantiations can occur in multiple translation units
510  // and must all be equivalent. However, we are not allowed to
511  // throw away these explicit instantiations.
512  if (Linkage == GVA_ExplicitTemplateInstantiation)
513    return !Context.getLangOpts().AppleKext
514             ? llvm::Function::WeakODRLinkage
515             : llvm::Function::ExternalLinkage;
516
517  // Otherwise, we have strong external linkage.
518  assert(Linkage == GVA_StrongExternal);
519  return llvm::Function::ExternalLinkage;
520}
521
522
523/// SetFunctionDefinitionAttributes - Set attributes for a global.
524///
525/// FIXME: This is currently only done for aliases and functions, but not for
526/// variables (these details are set in EmitGlobalVarDefinition for variables).
527void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
528                                                    llvm::GlobalValue *GV) {
529  SetCommonAttributes(D, GV);
530}
531
532void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
533                                              const CGFunctionInfo &Info,
534                                              llvm::Function *F) {
535  unsigned CallingConv;
536  AttributeListType AttributeList;
537  ConstructAttributeList(Info, D, AttributeList, CallingConv);
538  F->setAttributes(llvm::AttrListPtr::get(AttributeList));
539  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
540}
541
542/// Determines whether the language options require us to model
543/// unwind exceptions.  We treat -fexceptions as mandating this
544/// except under the fragile ObjC ABI with only ObjC exceptions
545/// enabled.  This means, for example, that C with -fexceptions
546/// enables this.
547static bool hasUnwindExceptions(const LangOptions &LangOpts) {
548  // If exceptions are completely disabled, obviously this is false.
549  if (!LangOpts.Exceptions) return false;
550
551  // If C++ exceptions are enabled, this is true.
552  if (LangOpts.CXXExceptions) return true;
553
554  // If ObjC exceptions are enabled, this depends on the ABI.
555  if (LangOpts.ObjCExceptions) {
556    return LangOpts.ObjCRuntime.hasUnwindExceptions();
557  }
558
559  return true;
560}
561
562void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
563                                                           llvm::Function *F) {
564  if (CodeGenOpts.UnwindTables)
565    F->setHasUWTable();
566
567  if (!hasUnwindExceptions(LangOpts))
568    F->addFnAttr(llvm::Attribute::NoUnwind);
569
570  if (D->hasAttr<NakedAttr>()) {
571    // Naked implies noinline: we should not be inlining such functions.
572    F->addFnAttr(llvm::Attribute::Naked);
573    F->addFnAttr(llvm::Attribute::NoInline);
574  }
575
576  if (D->hasAttr<NoInlineAttr>())
577    F->addFnAttr(llvm::Attribute::NoInline);
578
579  // (noinline wins over always_inline, and we can't specify both in IR)
580  if ((D->hasAttr<AlwaysInlineAttr>() || D->hasAttr<ForceInlineAttr>()) &&
581      !F->getFnAttributes().hasNoInlineAttr())
582    F->addFnAttr(llvm::Attribute::AlwaysInline);
583
584  // FIXME: Communicate hot and cold attributes to LLVM more directly.
585  if (D->hasAttr<ColdAttr>())
586    F->addFnAttr(llvm::Attribute::OptimizeForSize);
587
588  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
589    F->setUnnamedAddr(true);
590
591  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
592    if (MD->isVirtual())
593      F->setUnnamedAddr(true);
594
595  if (LangOpts.getStackProtector() == LangOptions::SSPOn)
596    F->addFnAttr(llvm::Attribute::StackProtect);
597  else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
598    F->addFnAttr(llvm::Attribute::StackProtectReq);
599
600  if (LangOpts.AddressSanitizer) {
601    // When AddressSanitizer is enabled, set AddressSafety attribute
602    // unless __attribute__((no_address_safety_analysis)) is used.
603    if (!D->hasAttr<NoAddressSafetyAnalysisAttr>())
604      F->addFnAttr(llvm::Attribute::AddressSafety);
605  }
606
607  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
608  if (alignment)
609    F->setAlignment(alignment);
610
611  // C++ ABI requires 2-byte alignment for member functions.
612  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
613    F->setAlignment(2);
614}
615
616void CodeGenModule::SetCommonAttributes(const Decl *D,
617                                        llvm::GlobalValue *GV) {
618  if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
619    setGlobalVisibility(GV, ND);
620  else
621    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
622
623  if (D->hasAttr<UsedAttr>())
624    AddUsedGlobal(GV);
625
626  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
627    GV->setSection(SA->getName());
628
629  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
630}
631
632void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
633                                                  llvm::Function *F,
634                                                  const CGFunctionInfo &FI) {
635  SetLLVMFunctionAttributes(D, FI, F);
636  SetLLVMFunctionAttributesForDefinition(D, F);
637
638  F->setLinkage(llvm::Function::InternalLinkage);
639
640  SetCommonAttributes(D, F);
641}
642
643void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
644                                          llvm::Function *F,
645                                          bool IsIncompleteFunction) {
646  if (unsigned IID = F->getIntrinsicID()) {
647    // If this is an intrinsic function, set the function's attributes
648    // to the intrinsic's attributes.
649    F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
650    return;
651  }
652
653  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
654
655  if (!IsIncompleteFunction)
656    SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
657
658  // Only a few attributes are set on declarations; these may later be
659  // overridden by a definition.
660
661  if (FD->hasAttr<DLLImportAttr>()) {
662    F->setLinkage(llvm::Function::DLLImportLinkage);
663  } else if (FD->hasAttr<WeakAttr>() ||
664             FD->isWeakImported()) {
665    // "extern_weak" is overloaded in LLVM; we probably should have
666    // separate linkage types for this.
667    F->setLinkage(llvm::Function::ExternalWeakLinkage);
668  } else {
669    F->setLinkage(llvm::Function::ExternalLinkage);
670
671    NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
672    if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
673      F->setVisibility(GetLLVMVisibility(LV.visibility()));
674    }
675  }
676
677  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
678    F->setSection(SA->getName());
679}
680
681void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
682  assert(!GV->isDeclaration() &&
683         "Only globals with definition can force usage.");
684  LLVMUsed.push_back(GV);
685}
686
687void CodeGenModule::EmitLLVMUsed() {
688  // Don't create llvm.used if there is no need.
689  if (LLVMUsed.empty())
690    return;
691
692  // Convert LLVMUsed to what ConstantArray needs.
693  SmallVector<llvm::Constant*, 8> UsedArray;
694  UsedArray.resize(LLVMUsed.size());
695  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
696    UsedArray[i] =
697     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
698                                    Int8PtrTy);
699  }
700
701  if (UsedArray.empty())
702    return;
703  llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
704
705  llvm::GlobalVariable *GV =
706    new llvm::GlobalVariable(getModule(), ATy, false,
707                             llvm::GlobalValue::AppendingLinkage,
708                             llvm::ConstantArray::get(ATy, UsedArray),
709                             "llvm.used");
710
711  GV->setSection("llvm.metadata");
712}
713
714void CodeGenModule::EmitDeferred() {
715  // Emit code for any potentially referenced deferred decls.  Since a
716  // previously unused static decl may become used during the generation of code
717  // for a static function, iterate until no changes are made.
718
719  while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
720    if (!DeferredVTables.empty()) {
721      const CXXRecordDecl *RD = DeferredVTables.back();
722      DeferredVTables.pop_back();
723      getCXXABI().EmitVTables(RD);
724      continue;
725    }
726
727    GlobalDecl D = DeferredDeclsToEmit.back();
728    DeferredDeclsToEmit.pop_back();
729
730    // Check to see if we've already emitted this.  This is necessary
731    // for a couple of reasons: first, decls can end up in the
732    // deferred-decls queue multiple times, and second, decls can end
733    // up with definitions in unusual ways (e.g. by an extern inline
734    // function acquiring a strong function redefinition).  Just
735    // ignore these cases.
736    //
737    // TODO: That said, looking this up multiple times is very wasteful.
738    StringRef Name = getMangledName(D);
739    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
740    assert(CGRef && "Deferred decl wasn't referenced?");
741
742    if (!CGRef->isDeclaration())
743      continue;
744
745    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
746    // purposes an alias counts as a definition.
747    if (isa<llvm::GlobalAlias>(CGRef))
748      continue;
749
750    // Otherwise, emit the definition and move on to the next one.
751    EmitGlobalDefinition(D);
752  }
753}
754
755void CodeGenModule::EmitGlobalAnnotations() {
756  if (Annotations.empty())
757    return;
758
759  // Create a new global variable for the ConstantStruct in the Module.
760  llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
761    Annotations[0]->getType(), Annotations.size()), Annotations);
762  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
763    Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
764    "llvm.global.annotations");
765  gv->setSection(AnnotationSection);
766}
767
768llvm::Constant *CodeGenModule::EmitAnnotationString(llvm::StringRef Str) {
769  llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
770  if (i != AnnotationStrings.end())
771    return i->second;
772
773  // Not found yet, create a new global.
774  llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
775  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
776    true, llvm::GlobalValue::PrivateLinkage, s, ".str");
777  gv->setSection(AnnotationSection);
778  gv->setUnnamedAddr(true);
779  AnnotationStrings[Str] = gv;
780  return gv;
781}
782
783llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
784  SourceManager &SM = getContext().getSourceManager();
785  PresumedLoc PLoc = SM.getPresumedLoc(Loc);
786  if (PLoc.isValid())
787    return EmitAnnotationString(PLoc.getFilename());
788  return EmitAnnotationString(SM.getBufferName(Loc));
789}
790
791llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
792  SourceManager &SM = getContext().getSourceManager();
793  PresumedLoc PLoc = SM.getPresumedLoc(L);
794  unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
795    SM.getExpansionLineNumber(L);
796  return llvm::ConstantInt::get(Int32Ty, LineNo);
797}
798
799llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
800                                                const AnnotateAttr *AA,
801                                                SourceLocation L) {
802  // Get the globals for file name, annotation, and the line number.
803  llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
804                 *UnitGV = EmitAnnotationUnit(L),
805                 *LineNoCst = EmitAnnotationLineNo(L);
806
807  // Create the ConstantStruct for the global annotation.
808  llvm::Constant *Fields[4] = {
809    llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
810    llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
811    llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
812    LineNoCst
813  };
814  return llvm::ConstantStruct::getAnon(Fields);
815}
816
817void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
818                                         llvm::GlobalValue *GV) {
819  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
820  // Get the struct elements for these annotations.
821  for (specific_attr_iterator<AnnotateAttr>
822       ai = D->specific_attr_begin<AnnotateAttr>(),
823       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
824    Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
825}
826
827bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
828  // Never defer when EmitAllDecls is specified.
829  if (LangOpts.EmitAllDecls)
830    return false;
831
832  return !getContext().DeclMustBeEmitted(Global);
833}
834
835llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
836  const AliasAttr *AA = VD->getAttr<AliasAttr>();
837  assert(AA && "No alias?");
838
839  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
840
841  // See if there is already something with the target's name in the module.
842  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
843
844  llvm::Constant *Aliasee;
845  if (isa<llvm::FunctionType>(DeclTy))
846    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
847                                      GlobalDecl(cast<FunctionDecl>(VD)),
848                                      /*ForVTable=*/false);
849  else
850    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
851                                    llvm::PointerType::getUnqual(DeclTy), 0);
852  if (!Entry) {
853    llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
854    F->setLinkage(llvm::Function::ExternalWeakLinkage);
855    WeakRefReferences.insert(F);
856  }
857
858  return Aliasee;
859}
860
861void CodeGenModule::EmitGlobal(GlobalDecl GD) {
862  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
863
864  // Weak references don't produce any output by themselves.
865  if (Global->hasAttr<WeakRefAttr>())
866    return;
867
868  // If this is an alias definition (which otherwise looks like a declaration)
869  // emit it now.
870  if (Global->hasAttr<AliasAttr>())
871    return EmitAliasDefinition(GD);
872
873  // If this is CUDA, be selective about which declarations we emit.
874  if (LangOpts.CUDA) {
875    if (CodeGenOpts.CUDAIsDevice) {
876      if (!Global->hasAttr<CUDADeviceAttr>() &&
877          !Global->hasAttr<CUDAGlobalAttr>() &&
878          !Global->hasAttr<CUDAConstantAttr>() &&
879          !Global->hasAttr<CUDASharedAttr>())
880        return;
881    } else {
882      if (!Global->hasAttr<CUDAHostAttr>() && (
883            Global->hasAttr<CUDADeviceAttr>() ||
884            Global->hasAttr<CUDAConstantAttr>() ||
885            Global->hasAttr<CUDASharedAttr>()))
886        return;
887    }
888  }
889
890  // Ignore declarations, they will be emitted on their first use.
891  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
892    // Forward declarations are emitted lazily on first use.
893    if (!FD->doesThisDeclarationHaveABody()) {
894      if (!FD->doesDeclarationForceExternallyVisibleDefinition())
895        return;
896
897      const FunctionDecl *InlineDefinition = 0;
898      FD->getBody(InlineDefinition);
899
900      StringRef MangledName = getMangledName(GD);
901      DeferredDecls.erase(MangledName);
902      EmitGlobalDefinition(InlineDefinition);
903      return;
904    }
905  } else {
906    const VarDecl *VD = cast<VarDecl>(Global);
907    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
908
909    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
910      return;
911  }
912
913  // Defer code generation when possible if this is a static definition, inline
914  // function etc.  These we only want to emit if they are used.
915  if (!MayDeferGeneration(Global)) {
916    // Emit the definition if it can't be deferred.
917    EmitGlobalDefinition(GD);
918    return;
919  }
920
921  // If we're deferring emission of a C++ variable with an
922  // initializer, remember the order in which it appeared in the file.
923  if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
924      cast<VarDecl>(Global)->hasInit()) {
925    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
926    CXXGlobalInits.push_back(0);
927  }
928
929  // If the value has already been used, add it directly to the
930  // DeferredDeclsToEmit list.
931  StringRef MangledName = getMangledName(GD);
932  if (GetGlobalValue(MangledName))
933    DeferredDeclsToEmit.push_back(GD);
934  else {
935    // Otherwise, remember that we saw a deferred decl with this name.  The
936    // first use of the mangled name will cause it to move into
937    // DeferredDeclsToEmit.
938    DeferredDecls[MangledName] = GD;
939  }
940}
941
942namespace {
943  struct FunctionIsDirectlyRecursive :
944    public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
945    const StringRef Name;
946    const Builtin::Context &BI;
947    bool Result;
948    FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
949      Name(N), BI(C), Result(false) {
950    }
951    typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
952
953    bool TraverseCallExpr(CallExpr *E) {
954      const FunctionDecl *FD = E->getDirectCallee();
955      if (!FD)
956        return true;
957      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
958      if (Attr && Name == Attr->getLabel()) {
959        Result = true;
960        return false;
961      }
962      unsigned BuiltinID = FD->getBuiltinID();
963      if (!BuiltinID)
964        return true;
965      StringRef BuiltinName = BI.GetName(BuiltinID);
966      if (BuiltinName.startswith("__builtin_") &&
967          Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
968        Result = true;
969        return false;
970      }
971      return true;
972    }
973  };
974}
975
976// isTriviallyRecursive - Check if this function calls another
977// decl that, because of the asm attribute or the other decl being a builtin,
978// ends up pointing to itself.
979bool
980CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
981  StringRef Name;
982  if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
983    // asm labels are a special kind of mangling we have to support.
984    AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
985    if (!Attr)
986      return false;
987    Name = Attr->getLabel();
988  } else {
989    Name = FD->getName();
990  }
991
992  FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
993  Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
994  return Walker.Result;
995}
996
997bool
998CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
999  if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1000    return true;
1001  if (CodeGenOpts.OptimizationLevel == 0 &&
1002      !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1003    return false;
1004  // PR9614. Avoid cases where the source code is lying to us. An available
1005  // externally function should have an equivalent function somewhere else,
1006  // but a function that calls itself is clearly not equivalent to the real
1007  // implementation.
1008  // This happens in glibc's btowc and in some configure checks.
1009  return !isTriviallyRecursive(F);
1010}
1011
1012void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1013  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1014
1015  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1016                                 Context.getSourceManager(),
1017                                 "Generating code for declaration");
1018
1019  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1020    // At -O0, don't generate IR for functions with available_externally
1021    // linkage.
1022    if (!shouldEmitFunction(Function))
1023      return;
1024
1025    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1026      // Make sure to emit the definition(s) before we emit the thunks.
1027      // This is necessary for the generation of certain thunks.
1028      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1029        EmitCXXConstructor(CD, GD.getCtorType());
1030      else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1031        EmitCXXDestructor(DD, GD.getDtorType());
1032      else
1033        EmitGlobalFunctionDefinition(GD);
1034
1035      if (Method->isVirtual())
1036        getVTables().EmitThunks(GD);
1037
1038      return;
1039    }
1040
1041    return EmitGlobalFunctionDefinition(GD);
1042  }
1043
1044  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1045    return EmitGlobalVarDefinition(VD);
1046
1047  llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1048}
1049
1050/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1051/// module, create and return an llvm Function with the specified type. If there
1052/// is something in the module with the specified name, return it potentially
1053/// bitcasted to the right type.
1054///
1055/// If D is non-null, it specifies a decl that correspond to this.  This is used
1056/// to set the attributes on the function when it is first created.
1057llvm::Constant *
1058CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1059                                       llvm::Type *Ty,
1060                                       GlobalDecl D, bool ForVTable,
1061                                       llvm::Attributes ExtraAttrs) {
1062  // Lookup the entry, lazily creating it if necessary.
1063  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1064  if (Entry) {
1065    if (WeakRefReferences.erase(Entry)) {
1066      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1067      if (FD && !FD->hasAttr<WeakAttr>())
1068        Entry->setLinkage(llvm::Function::ExternalLinkage);
1069    }
1070
1071    if (Entry->getType()->getElementType() == Ty)
1072      return Entry;
1073
1074    // Make sure the result is of the correct type.
1075    return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1076  }
1077
1078  // This function doesn't have a complete type (for example, the return
1079  // type is an incomplete struct). Use a fake type instead, and make
1080  // sure not to try to set attributes.
1081  bool IsIncompleteFunction = false;
1082
1083  llvm::FunctionType *FTy;
1084  if (isa<llvm::FunctionType>(Ty)) {
1085    FTy = cast<llvm::FunctionType>(Ty);
1086  } else {
1087    FTy = llvm::FunctionType::get(VoidTy, false);
1088    IsIncompleteFunction = true;
1089  }
1090
1091  llvm::Function *F = llvm::Function::Create(FTy,
1092                                             llvm::Function::ExternalLinkage,
1093                                             MangledName, &getModule());
1094  assert(F->getName() == MangledName && "name was uniqued!");
1095  if (D.getDecl())
1096    SetFunctionAttributes(D, F, IsIncompleteFunction);
1097  if (ExtraAttrs != llvm::Attribute::None)
1098    F->addFnAttr(ExtraAttrs);
1099
1100  // This is the first use or definition of a mangled name.  If there is a
1101  // deferred decl with this name, remember that we need to emit it at the end
1102  // of the file.
1103  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1104  if (DDI != DeferredDecls.end()) {
1105    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1106    // list, and remove it from DeferredDecls (since we don't need it anymore).
1107    DeferredDeclsToEmit.push_back(DDI->second);
1108    DeferredDecls.erase(DDI);
1109
1110  // Otherwise, there are cases we have to worry about where we're
1111  // using a declaration for which we must emit a definition but where
1112  // we might not find a top-level definition:
1113  //   - member functions defined inline in their classes
1114  //   - friend functions defined inline in some class
1115  //   - special member functions with implicit definitions
1116  // If we ever change our AST traversal to walk into class methods,
1117  // this will be unnecessary.
1118  //
1119  // We also don't emit a definition for a function if it's going to be an entry
1120  // in a vtable, unless it's already marked as used.
1121  } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1122    // Look for a declaration that's lexically in a record.
1123    const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1124    FD = FD->getMostRecentDecl();
1125    do {
1126      if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1127        if (FD->isImplicit() && !ForVTable) {
1128          assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1129          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1130          break;
1131        } else if (FD->doesThisDeclarationHaveABody()) {
1132          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1133          break;
1134        }
1135      }
1136      FD = FD->getPreviousDecl();
1137    } while (FD);
1138  }
1139
1140  // Make sure the result is of the requested type.
1141  if (!IsIncompleteFunction) {
1142    assert(F->getType()->getElementType() == Ty);
1143    return F;
1144  }
1145
1146  llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1147  return llvm::ConstantExpr::getBitCast(F, PTy);
1148}
1149
1150/// GetAddrOfFunction - Return the address of the given function.  If Ty is
1151/// non-null, then this function will use the specified type if it has to
1152/// create it (this occurs when we see a definition of the function).
1153llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1154                                                 llvm::Type *Ty,
1155                                                 bool ForVTable) {
1156  // If there was no specific requested type, just convert it now.
1157  if (!Ty)
1158    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1159
1160  StringRef MangledName = getMangledName(GD);
1161  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1162}
1163
1164/// CreateRuntimeFunction - Create a new runtime function with the specified
1165/// type and name.
1166llvm::Constant *
1167CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1168                                     StringRef Name,
1169                                     llvm::Attributes ExtraAttrs) {
1170  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1171                                 ExtraAttrs);
1172}
1173
1174/// isTypeConstant - Determine whether an object of this type can be emitted
1175/// as a constant.
1176///
1177/// If ExcludeCtor is true, the duration when the object's constructor runs
1178/// will not be considered. The caller will need to verify that the object is
1179/// not written to during its construction.
1180bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1181  if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1182    return false;
1183
1184  if (Context.getLangOpts().CPlusPlus) {
1185    if (const CXXRecordDecl *Record
1186          = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1187      return ExcludeCtor && !Record->hasMutableFields() &&
1188             Record->hasTrivialDestructor();
1189  }
1190
1191  return true;
1192}
1193
1194/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1195/// create and return an llvm GlobalVariable with the specified type.  If there
1196/// is something in the module with the specified name, return it potentially
1197/// bitcasted to the right type.
1198///
1199/// If D is non-null, it specifies a decl that correspond to this.  This is used
1200/// to set the attributes on the global when it is first created.
1201llvm::Constant *
1202CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1203                                     llvm::PointerType *Ty,
1204                                     const VarDecl *D,
1205                                     bool UnnamedAddr) {
1206  // Lookup the entry, lazily creating it if necessary.
1207  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1208  if (Entry) {
1209    if (WeakRefReferences.erase(Entry)) {
1210      if (D && !D->hasAttr<WeakAttr>())
1211        Entry->setLinkage(llvm::Function::ExternalLinkage);
1212    }
1213
1214    if (UnnamedAddr)
1215      Entry->setUnnamedAddr(true);
1216
1217    if (Entry->getType() == Ty)
1218      return Entry;
1219
1220    // Make sure the result is of the correct type.
1221    return llvm::ConstantExpr::getBitCast(Entry, Ty);
1222  }
1223
1224  // This is the first use or definition of a mangled name.  If there is a
1225  // deferred decl with this name, remember that we need to emit it at the end
1226  // of the file.
1227  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1228  if (DDI != DeferredDecls.end()) {
1229    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1230    // list, and remove it from DeferredDecls (since we don't need it anymore).
1231    DeferredDeclsToEmit.push_back(DDI->second);
1232    DeferredDecls.erase(DDI);
1233  }
1234
1235  unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1236  llvm::GlobalVariable *GV =
1237    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1238                             llvm::GlobalValue::ExternalLinkage,
1239                             0, MangledName, 0,
1240                             llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1241
1242  // Handle things which are present even on external declarations.
1243  if (D) {
1244    // FIXME: This code is overly simple and should be merged with other global
1245    // handling.
1246    GV->setConstant(isTypeConstant(D->getType(), false));
1247
1248    // Set linkage and visibility in case we never see a definition.
1249    NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1250    if (LV.linkage() != ExternalLinkage) {
1251      // Don't set internal linkage on declarations.
1252    } else {
1253      if (D->hasAttr<DLLImportAttr>())
1254        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1255      else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1256        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1257
1258      // Set visibility on a declaration only if it's explicit.
1259      if (LV.visibilityExplicit())
1260        GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1261    }
1262
1263    if (D->isThreadSpecified())
1264      setTLSMode(GV, *D);
1265  }
1266
1267  if (AddrSpace != Ty->getAddressSpace())
1268    return llvm::ConstantExpr::getBitCast(GV, Ty);
1269  else
1270    return GV;
1271}
1272
1273
1274llvm::GlobalVariable *
1275CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1276                                      llvm::Type *Ty,
1277                                      llvm::GlobalValue::LinkageTypes Linkage) {
1278  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1279  llvm::GlobalVariable *OldGV = 0;
1280
1281
1282  if (GV) {
1283    // Check if the variable has the right type.
1284    if (GV->getType()->getElementType() == Ty)
1285      return GV;
1286
1287    // Because C++ name mangling, the only way we can end up with an already
1288    // existing global with the same name is if it has been declared extern "C".
1289      assert(GV->isDeclaration() && "Declaration has wrong type!");
1290    OldGV = GV;
1291  }
1292
1293  // Create a new variable.
1294  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1295                                Linkage, 0, Name);
1296
1297  if (OldGV) {
1298    // Replace occurrences of the old variable if needed.
1299    GV->takeName(OldGV);
1300
1301    if (!OldGV->use_empty()) {
1302      llvm::Constant *NewPtrForOldDecl =
1303      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1304      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1305    }
1306
1307    OldGV->eraseFromParent();
1308  }
1309
1310  return GV;
1311}
1312
1313/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1314/// given global variable.  If Ty is non-null and if the global doesn't exist,
1315/// then it will be created with the specified type instead of whatever the
1316/// normal requested type would be.
1317llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1318                                                  llvm::Type *Ty) {
1319  assert(D->hasGlobalStorage() && "Not a global variable");
1320  QualType ASTTy = D->getType();
1321  if (Ty == 0)
1322    Ty = getTypes().ConvertTypeForMem(ASTTy);
1323
1324  llvm::PointerType *PTy =
1325    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1326
1327  StringRef MangledName = getMangledName(D);
1328  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1329}
1330
1331/// CreateRuntimeVariable - Create a new runtime global variable with the
1332/// specified type and name.
1333llvm::Constant *
1334CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1335                                     StringRef Name) {
1336  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1337                               true);
1338}
1339
1340void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1341  assert(!D->getInit() && "Cannot emit definite definitions here!");
1342
1343  if (MayDeferGeneration(D)) {
1344    // If we have not seen a reference to this variable yet, place it
1345    // into the deferred declarations table to be emitted if needed
1346    // later.
1347    StringRef MangledName = getMangledName(D);
1348    if (!GetGlobalValue(MangledName)) {
1349      DeferredDecls[MangledName] = D;
1350      return;
1351    }
1352  }
1353
1354  // The tentative definition is the only definition.
1355  EmitGlobalVarDefinition(D);
1356}
1357
1358void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1359  if (DefinitionRequired)
1360    getCXXABI().EmitVTables(Class);
1361}
1362
1363llvm::GlobalVariable::LinkageTypes
1364CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1365  if (RD->getLinkage() != ExternalLinkage)
1366    return llvm::GlobalVariable::InternalLinkage;
1367
1368  if (const CXXMethodDecl *KeyFunction
1369                                    = RD->getASTContext().getKeyFunction(RD)) {
1370    // If this class has a key function, use that to determine the linkage of
1371    // the vtable.
1372    const FunctionDecl *Def = 0;
1373    if (KeyFunction->hasBody(Def))
1374      KeyFunction = cast<CXXMethodDecl>(Def);
1375
1376    switch (KeyFunction->getTemplateSpecializationKind()) {
1377      case TSK_Undeclared:
1378      case TSK_ExplicitSpecialization:
1379        // When compiling with optimizations turned on, we emit all vtables,
1380        // even if the key function is not defined in the current translation
1381        // unit. If this is the case, use available_externally linkage.
1382        if (!Def && CodeGenOpts.OptimizationLevel)
1383          return llvm::GlobalVariable::AvailableExternallyLinkage;
1384
1385        if (KeyFunction->isInlined())
1386          return !Context.getLangOpts().AppleKext ?
1387                   llvm::GlobalVariable::LinkOnceODRLinkage :
1388                   llvm::Function::InternalLinkage;
1389
1390        return llvm::GlobalVariable::ExternalLinkage;
1391
1392      case TSK_ImplicitInstantiation:
1393        return !Context.getLangOpts().AppleKext ?
1394                 llvm::GlobalVariable::LinkOnceODRLinkage :
1395                 llvm::Function::InternalLinkage;
1396
1397      case TSK_ExplicitInstantiationDefinition:
1398        return !Context.getLangOpts().AppleKext ?
1399                 llvm::GlobalVariable::WeakODRLinkage :
1400                 llvm::Function::InternalLinkage;
1401
1402      case TSK_ExplicitInstantiationDeclaration:
1403        // FIXME: Use available_externally linkage. However, this currently
1404        // breaks LLVM's build due to undefined symbols.
1405        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1406        return !Context.getLangOpts().AppleKext ?
1407                 llvm::GlobalVariable::LinkOnceODRLinkage :
1408                 llvm::Function::InternalLinkage;
1409    }
1410  }
1411
1412  if (Context.getLangOpts().AppleKext)
1413    return llvm::Function::InternalLinkage;
1414
1415  switch (RD->getTemplateSpecializationKind()) {
1416  case TSK_Undeclared:
1417  case TSK_ExplicitSpecialization:
1418  case TSK_ImplicitInstantiation:
1419    // FIXME: Use available_externally linkage. However, this currently
1420    // breaks LLVM's build due to undefined symbols.
1421    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1422  case TSK_ExplicitInstantiationDeclaration:
1423    return llvm::GlobalVariable::LinkOnceODRLinkage;
1424
1425  case TSK_ExplicitInstantiationDefinition:
1426      return llvm::GlobalVariable::WeakODRLinkage;
1427  }
1428
1429  llvm_unreachable("Invalid TemplateSpecializationKind!");
1430}
1431
1432CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1433    return Context.toCharUnitsFromBits(
1434      TheTargetData.getTypeStoreSizeInBits(Ty));
1435}
1436
1437llvm::Constant *
1438CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1439                                                       const Expr *rawInit) {
1440  ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1441  if (const ExprWithCleanups *withCleanups =
1442          dyn_cast<ExprWithCleanups>(rawInit)) {
1443    cleanups = withCleanups->getObjects();
1444    rawInit = withCleanups->getSubExpr();
1445  }
1446
1447  const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1448  if (!init || !init->initializesStdInitializerList() ||
1449      init->getNumInits() == 0)
1450    return 0;
1451
1452  ASTContext &ctx = getContext();
1453  unsigned numInits = init->getNumInits();
1454  // FIXME: This check is here because we would otherwise silently miscompile
1455  // nested global std::initializer_lists. Better would be to have a real
1456  // implementation.
1457  for (unsigned i = 0; i < numInits; ++i) {
1458    const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1459    if (inner && inner->initializesStdInitializerList()) {
1460      ErrorUnsupported(inner, "nested global std::initializer_list");
1461      return 0;
1462    }
1463  }
1464
1465  // Synthesize a fake VarDecl for the array and initialize that.
1466  QualType elementType = init->getInit(0)->getType();
1467  llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1468  QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1469                                                ArrayType::Normal, 0);
1470
1471  IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1472  TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1473                                              arrayType, D->getLocation());
1474  VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1475                                                          D->getDeclContext()),
1476                                          D->getLocStart(), D->getLocation(),
1477                                          name, arrayType, sourceInfo,
1478                                          SC_Static, SC_Static);
1479
1480  // Now clone the InitListExpr to initialize the array instead.
1481  // Incredible hack: we want to use the existing InitListExpr here, so we need
1482  // to tell it that it no longer initializes a std::initializer_list.
1483  ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1484                        init->getNumInits());
1485  Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1486                                           init->getRBraceLoc());
1487  arrayInit->setType(arrayType);
1488
1489  if (!cleanups.empty())
1490    arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1491
1492  backingArray->setInit(arrayInit);
1493
1494  // Emit the definition of the array.
1495  EmitGlobalVarDefinition(backingArray);
1496
1497  // Inspect the initializer list to validate it and determine its type.
1498  // FIXME: doing this every time is probably inefficient; caching would be nice
1499  RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1500  RecordDecl::field_iterator field = record->field_begin();
1501  if (field == record->field_end()) {
1502    ErrorUnsupported(D, "weird std::initializer_list");
1503    return 0;
1504  }
1505  QualType elementPtr = ctx.getPointerType(elementType.withConst());
1506  // Start pointer.
1507  if (!ctx.hasSameType(field->getType(), elementPtr)) {
1508    ErrorUnsupported(D, "weird std::initializer_list");
1509    return 0;
1510  }
1511  ++field;
1512  if (field == record->field_end()) {
1513    ErrorUnsupported(D, "weird std::initializer_list");
1514    return 0;
1515  }
1516  bool isStartEnd = false;
1517  if (ctx.hasSameType(field->getType(), elementPtr)) {
1518    // End pointer.
1519    isStartEnd = true;
1520  } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1521    ErrorUnsupported(D, "weird std::initializer_list");
1522    return 0;
1523  }
1524
1525  // Now build an APValue representing the std::initializer_list.
1526  APValue initListValue(APValue::UninitStruct(), 0, 2);
1527  APValue &startField = initListValue.getStructField(0);
1528  APValue::LValuePathEntry startOffsetPathEntry;
1529  startOffsetPathEntry.ArrayIndex = 0;
1530  startField = APValue(APValue::LValueBase(backingArray),
1531                       CharUnits::fromQuantity(0),
1532                       llvm::makeArrayRef(startOffsetPathEntry),
1533                       /*IsOnePastTheEnd=*/false, 0);
1534
1535  if (isStartEnd) {
1536    APValue &endField = initListValue.getStructField(1);
1537    APValue::LValuePathEntry endOffsetPathEntry;
1538    endOffsetPathEntry.ArrayIndex = numInits;
1539    endField = APValue(APValue::LValueBase(backingArray),
1540                       ctx.getTypeSizeInChars(elementType) * numInits,
1541                       llvm::makeArrayRef(endOffsetPathEntry),
1542                       /*IsOnePastTheEnd=*/true, 0);
1543  } else {
1544    APValue &sizeField = initListValue.getStructField(1);
1545    sizeField = APValue(llvm::APSInt(numElements));
1546  }
1547
1548  // Emit the constant for the initializer_list.
1549  llvm::Constant *llvmInit =
1550      EmitConstantValueForMemory(initListValue, D->getType());
1551  assert(llvmInit && "failed to initialize as constant");
1552  return llvmInit;
1553}
1554
1555unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1556                                                 unsigned AddrSpace) {
1557  if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1558    if (D->hasAttr<CUDAConstantAttr>())
1559      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1560    else if (D->hasAttr<CUDASharedAttr>())
1561      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1562    else
1563      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1564  }
1565
1566  return AddrSpace;
1567}
1568
1569void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1570  llvm::Constant *Init = 0;
1571  QualType ASTTy = D->getType();
1572  CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1573  bool NeedsGlobalCtor = false;
1574  bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1575
1576  const VarDecl *InitDecl;
1577  const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1578
1579  if (!InitExpr) {
1580    // This is a tentative definition; tentative definitions are
1581    // implicitly initialized with { 0 }.
1582    //
1583    // Note that tentative definitions are only emitted at the end of
1584    // a translation unit, so they should never have incomplete
1585    // type. In addition, EmitTentativeDefinition makes sure that we
1586    // never attempt to emit a tentative definition if a real one
1587    // exists. A use may still exists, however, so we still may need
1588    // to do a RAUW.
1589    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1590    Init = EmitNullConstant(D->getType());
1591  } else {
1592    // If this is a std::initializer_list, emit the special initializer.
1593    Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1594    // An empty init list will perform zero-initialization, which happens
1595    // to be exactly what we want.
1596    // FIXME: It does so in a global constructor, which is *not* what we
1597    // want.
1598
1599    if (!Init) {
1600      initializedGlobalDecl = GlobalDecl(D);
1601      Init = EmitConstantInit(*InitDecl);
1602    }
1603    if (!Init) {
1604      QualType T = InitExpr->getType();
1605      if (D->getType()->isReferenceType())
1606        T = D->getType();
1607
1608      if (getLangOpts().CPlusPlus) {
1609        Init = EmitNullConstant(T);
1610        NeedsGlobalCtor = true;
1611      } else {
1612        ErrorUnsupported(D, "static initializer");
1613        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1614      }
1615    } else {
1616      // We don't need an initializer, so remove the entry for the delayed
1617      // initializer position (just in case this entry was delayed) if we
1618      // also don't need to register a destructor.
1619      if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1620        DelayedCXXInitPosition.erase(D);
1621    }
1622  }
1623
1624  llvm::Type* InitType = Init->getType();
1625  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1626
1627  // Strip off a bitcast if we got one back.
1628  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1629    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1630           // all zero index gep.
1631           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1632    Entry = CE->getOperand(0);
1633  }
1634
1635  // Entry is now either a Function or GlobalVariable.
1636  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1637
1638  // We have a definition after a declaration with the wrong type.
1639  // We must make a new GlobalVariable* and update everything that used OldGV
1640  // (a declaration or tentative definition) with the new GlobalVariable*
1641  // (which will be a definition).
1642  //
1643  // This happens if there is a prototype for a global (e.g.
1644  // "extern int x[];") and then a definition of a different type (e.g.
1645  // "int x[10];"). This also happens when an initializer has a different type
1646  // from the type of the global (this happens with unions).
1647  if (GV == 0 ||
1648      GV->getType()->getElementType() != InitType ||
1649      GV->getType()->getAddressSpace() !=
1650       GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1651
1652    // Move the old entry aside so that we'll create a new one.
1653    Entry->setName(StringRef());
1654
1655    // Make a new global with the correct type, this is now guaranteed to work.
1656    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1657
1658    // Replace all uses of the old global with the new global
1659    llvm::Constant *NewPtrForOldDecl =
1660        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1661    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1662
1663    // Erase the old global, since it is no longer used.
1664    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1665  }
1666
1667  if (D->hasAttr<AnnotateAttr>())
1668    AddGlobalAnnotations(D, GV);
1669
1670  GV->setInitializer(Init);
1671
1672  // If it is safe to mark the global 'constant', do so now.
1673  GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1674                  isTypeConstant(D->getType(), true));
1675
1676  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1677
1678  // Set the llvm linkage type as appropriate.
1679  llvm::GlobalValue::LinkageTypes Linkage =
1680    GetLLVMLinkageVarDefinition(D, GV);
1681  GV->setLinkage(Linkage);
1682  if (Linkage == llvm::GlobalVariable::CommonLinkage)
1683    // common vars aren't constant even if declared const.
1684    GV->setConstant(false);
1685
1686  SetCommonAttributes(D, GV);
1687
1688  // Emit the initializer function if necessary.
1689  if (NeedsGlobalCtor || NeedsGlobalDtor)
1690    EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1691
1692  // If we are compiling with ASan, add metadata indicating dynamically
1693  // initialized globals.
1694  if (LangOpts.AddressSanitizer && NeedsGlobalCtor) {
1695    llvm::Module &M = getModule();
1696
1697    llvm::NamedMDNode *DynamicInitializers =
1698        M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1699    llvm::Value *GlobalToAdd[] = { GV };
1700    llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1701    DynamicInitializers->addOperand(ThisGlobal);
1702  }
1703
1704  // Emit global variable debug information.
1705  if (CGDebugInfo *DI = getModuleDebugInfo())
1706    if (getCodeGenOpts().DebugInfo >= CodeGenOptions::LimitedDebugInfo)
1707      DI->EmitGlobalVariable(GV, D);
1708}
1709
1710llvm::GlobalValue::LinkageTypes
1711CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1712                                           llvm::GlobalVariable *GV) {
1713  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1714  if (Linkage == GVA_Internal)
1715    return llvm::Function::InternalLinkage;
1716  else if (D->hasAttr<DLLImportAttr>())
1717    return llvm::Function::DLLImportLinkage;
1718  else if (D->hasAttr<DLLExportAttr>())
1719    return llvm::Function::DLLExportLinkage;
1720  else if (D->hasAttr<WeakAttr>()) {
1721    if (GV->isConstant())
1722      return llvm::GlobalVariable::WeakODRLinkage;
1723    else
1724      return llvm::GlobalVariable::WeakAnyLinkage;
1725  } else if (Linkage == GVA_TemplateInstantiation ||
1726             Linkage == GVA_ExplicitTemplateInstantiation)
1727    return llvm::GlobalVariable::WeakODRLinkage;
1728  else if (!getLangOpts().CPlusPlus &&
1729           ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1730             D->getAttr<CommonAttr>()) &&
1731           !D->hasExternalStorage() && !D->getInit() &&
1732           !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1733           !D->getAttr<WeakImportAttr>()) {
1734    // Thread local vars aren't considered common linkage.
1735    return llvm::GlobalVariable::CommonLinkage;
1736  }
1737  return llvm::GlobalVariable::ExternalLinkage;
1738}
1739
1740/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1741/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1742/// existing call uses of the old function in the module, this adjusts them to
1743/// call the new function directly.
1744///
1745/// This is not just a cleanup: the always_inline pass requires direct calls to
1746/// functions to be able to inline them.  If there is a bitcast in the way, it
1747/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1748/// run at -O0.
1749static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1750                                                      llvm::Function *NewFn) {
1751  // If we're redefining a global as a function, don't transform it.
1752  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1753  if (OldFn == 0) return;
1754
1755  llvm::Type *NewRetTy = NewFn->getReturnType();
1756  SmallVector<llvm::Value*, 4> ArgList;
1757
1758  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1759       UI != E; ) {
1760    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1761    llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1762    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1763    if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1764    llvm::CallSite CS(CI);
1765    if (!CI || !CS.isCallee(I)) continue;
1766
1767    // If the return types don't match exactly, and if the call isn't dead, then
1768    // we can't transform this call.
1769    if (CI->getType() != NewRetTy && !CI->use_empty())
1770      continue;
1771
1772    // Get the attribute list.
1773    llvm::SmallVector<llvm::AttributeWithIndex, 8> AttrVec;
1774    llvm::AttrListPtr AttrList = CI->getAttributes();
1775
1776    // Get any return attributes.
1777    llvm::Attributes RAttrs = AttrList.getRetAttributes();
1778
1779    // Add the return attributes.
1780    if (RAttrs)
1781      AttrVec.push_back(llvm::AttributeWithIndex::get(0, RAttrs));
1782
1783    // If the function was passed too few arguments, don't transform.  If extra
1784    // arguments were passed, we silently drop them.  If any of the types
1785    // mismatch, we don't transform.
1786    unsigned ArgNo = 0;
1787    bool DontTransform = false;
1788    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1789         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1790      if (CS.arg_size() == ArgNo ||
1791          CS.getArgument(ArgNo)->getType() != AI->getType()) {
1792        DontTransform = true;
1793        break;
1794      }
1795
1796      // Add any parameter attributes.
1797      if (llvm::Attributes PAttrs = AttrList.getParamAttributes(ArgNo + 1))
1798        AttrVec.push_back(llvm::AttributeWithIndex::get(ArgNo + 1, PAttrs));
1799    }
1800    if (DontTransform)
1801      continue;
1802
1803    if (llvm::Attributes FnAttrs =  AttrList.getFnAttributes())
1804      AttrVec.push_back(llvm::AttributeWithIndex::get(~0, FnAttrs));
1805
1806    // Okay, we can transform this.  Create the new call instruction and copy
1807    // over the required information.
1808    ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1809    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList, "", CI);
1810    ArgList.clear();
1811    if (!NewCall->getType()->isVoidTy())
1812      NewCall->takeName(CI);
1813    NewCall->setAttributes(llvm::AttrListPtr::get(AttrVec));
1814    NewCall->setCallingConv(CI->getCallingConv());
1815
1816    // Finally, remove the old call, replacing any uses with the new one.
1817    if (!CI->use_empty())
1818      CI->replaceAllUsesWith(NewCall);
1819
1820    // Copy debug location attached to CI.
1821    if (!CI->getDebugLoc().isUnknown())
1822      NewCall->setDebugLoc(CI->getDebugLoc());
1823    CI->eraseFromParent();
1824  }
1825}
1826
1827void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
1828  TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
1829  // If we have a definition, this might be a deferred decl. If the
1830  // instantiation is explicit, make sure we emit it at the end.
1831  if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
1832    GetAddrOfGlobalVar(VD);
1833}
1834
1835void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1836  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1837
1838  // Compute the function info and LLVM type.
1839  const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
1840  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
1841
1842  // Get or create the prototype for the function.
1843  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1844
1845  // Strip off a bitcast if we got one back.
1846  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1847    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1848    Entry = CE->getOperand(0);
1849  }
1850
1851
1852  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1853    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1854
1855    // If the types mismatch then we have to rewrite the definition.
1856    assert(OldFn->isDeclaration() &&
1857           "Shouldn't replace non-declaration");
1858
1859    // F is the Function* for the one with the wrong type, we must make a new
1860    // Function* and update everything that used F (a declaration) with the new
1861    // Function* (which will be a definition).
1862    //
1863    // This happens if there is a prototype for a function
1864    // (e.g. "int f()") and then a definition of a different type
1865    // (e.g. "int f(int x)").  Move the old function aside so that it
1866    // doesn't interfere with GetAddrOfFunction.
1867    OldFn->setName(StringRef());
1868    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1869
1870    // If this is an implementation of a function without a prototype, try to
1871    // replace any existing uses of the function (which may be calls) with uses
1872    // of the new function
1873    if (D->getType()->isFunctionNoProtoType()) {
1874      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1875      OldFn->removeDeadConstantUsers();
1876    }
1877
1878    // Replace uses of F with the Function we will endow with a body.
1879    if (!Entry->use_empty()) {
1880      llvm::Constant *NewPtrForOldDecl =
1881        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1882      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1883    }
1884
1885    // Ok, delete the old function now, which is dead.
1886    OldFn->eraseFromParent();
1887
1888    Entry = NewFn;
1889  }
1890
1891  // We need to set linkage and visibility on the function before
1892  // generating code for it because various parts of IR generation
1893  // want to propagate this information down (e.g. to local static
1894  // declarations).
1895  llvm::Function *Fn = cast<llvm::Function>(Entry);
1896  setFunctionLinkage(D, Fn);
1897
1898  // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1899  setGlobalVisibility(Fn, D);
1900
1901  CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1902
1903  SetFunctionDefinitionAttributes(D, Fn);
1904  SetLLVMFunctionAttributesForDefinition(D, Fn);
1905
1906  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1907    AddGlobalCtor(Fn, CA->getPriority());
1908  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1909    AddGlobalDtor(Fn, DA->getPriority());
1910  if (D->hasAttr<AnnotateAttr>())
1911    AddGlobalAnnotations(D, Fn);
1912}
1913
1914void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1915  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1916  const AliasAttr *AA = D->getAttr<AliasAttr>();
1917  assert(AA && "Not an alias?");
1918
1919  StringRef MangledName = getMangledName(GD);
1920
1921  // If there is a definition in the module, then it wins over the alias.
1922  // This is dubious, but allow it to be safe.  Just ignore the alias.
1923  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1924  if (Entry && !Entry->isDeclaration())
1925    return;
1926
1927  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1928
1929  // Create a reference to the named value.  This ensures that it is emitted
1930  // if a deferred decl.
1931  llvm::Constant *Aliasee;
1932  if (isa<llvm::FunctionType>(DeclTy))
1933    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
1934                                      /*ForVTable=*/false);
1935  else
1936    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1937                                    llvm::PointerType::getUnqual(DeclTy), 0);
1938
1939  // Create the new alias itself, but don't set a name yet.
1940  llvm::GlobalValue *GA =
1941    new llvm::GlobalAlias(Aliasee->getType(),
1942                          llvm::Function::ExternalLinkage,
1943                          "", Aliasee, &getModule());
1944
1945  if (Entry) {
1946    assert(Entry->isDeclaration());
1947
1948    // If there is a declaration in the module, then we had an extern followed
1949    // by the alias, as in:
1950    //   extern int test6();
1951    //   ...
1952    //   int test6() __attribute__((alias("test7")));
1953    //
1954    // Remove it and replace uses of it with the alias.
1955    GA->takeName(Entry);
1956
1957    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1958                                                          Entry->getType()));
1959    Entry->eraseFromParent();
1960  } else {
1961    GA->setName(MangledName);
1962  }
1963
1964  // Set attributes which are particular to an alias; this is a
1965  // specialization of the attributes which may be set on a global
1966  // variable/function.
1967  if (D->hasAttr<DLLExportAttr>()) {
1968    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1969      // The dllexport attribute is ignored for undefined symbols.
1970      if (FD->hasBody())
1971        GA->setLinkage(llvm::Function::DLLExportLinkage);
1972    } else {
1973      GA->setLinkage(llvm::Function::DLLExportLinkage);
1974    }
1975  } else if (D->hasAttr<WeakAttr>() ||
1976             D->hasAttr<WeakRefAttr>() ||
1977             D->isWeakImported()) {
1978    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1979  }
1980
1981  SetCommonAttributes(D, GA);
1982}
1983
1984llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
1985                                            ArrayRef<llvm::Type*> Tys) {
1986  return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
1987                                         Tys);
1988}
1989
1990static llvm::StringMapEntry<llvm::Constant*> &
1991GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1992                         const StringLiteral *Literal,
1993                         bool TargetIsLSB,
1994                         bool &IsUTF16,
1995                         unsigned &StringLength) {
1996  StringRef String = Literal->getString();
1997  unsigned NumBytes = String.size();
1998
1999  // Check for simple case.
2000  if (!Literal->containsNonAsciiOrNull()) {
2001    StringLength = NumBytes;
2002    return Map.GetOrCreateValue(String);
2003  }
2004
2005  // Otherwise, convert the UTF8 literals into a string of shorts.
2006  IsUTF16 = true;
2007
2008  SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2009  const UTF8 *FromPtr = (const UTF8 *)String.data();
2010  UTF16 *ToPtr = &ToBuf[0];
2011
2012  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2013                           &ToPtr, ToPtr + NumBytes,
2014                           strictConversion);
2015
2016  // ConvertUTF8toUTF16 returns the length in ToPtr.
2017  StringLength = ToPtr - &ToBuf[0];
2018
2019  // Add an explicit null.
2020  *ToPtr = 0;
2021  return Map.
2022    GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2023                               (StringLength + 1) * 2));
2024}
2025
2026static llvm::StringMapEntry<llvm::Constant*> &
2027GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2028                       const StringLiteral *Literal,
2029                       unsigned &StringLength) {
2030  StringRef String = Literal->getString();
2031  StringLength = String.size();
2032  return Map.GetOrCreateValue(String);
2033}
2034
2035llvm::Constant *
2036CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2037  unsigned StringLength = 0;
2038  bool isUTF16 = false;
2039  llvm::StringMapEntry<llvm::Constant*> &Entry =
2040    GetConstantCFStringEntry(CFConstantStringMap, Literal,
2041                             getTargetData().isLittleEndian(),
2042                             isUTF16, StringLength);
2043
2044  if (llvm::Constant *C = Entry.getValue())
2045    return C;
2046
2047  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2048  llvm::Constant *Zeros[] = { Zero, Zero };
2049
2050  // If we don't already have it, get __CFConstantStringClassReference.
2051  if (!CFConstantStringClassRef) {
2052    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2053    Ty = llvm::ArrayType::get(Ty, 0);
2054    llvm::Constant *GV = CreateRuntimeVariable(Ty,
2055                                           "__CFConstantStringClassReference");
2056    // Decay array -> ptr
2057    CFConstantStringClassRef =
2058      llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2059  }
2060
2061  QualType CFTy = getContext().getCFConstantStringType();
2062
2063  llvm::StructType *STy =
2064    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2065
2066  llvm::Constant *Fields[4];
2067
2068  // Class pointer.
2069  Fields[0] = CFConstantStringClassRef;
2070
2071  // Flags.
2072  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2073  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2074    llvm::ConstantInt::get(Ty, 0x07C8);
2075
2076  // String pointer.
2077  llvm::Constant *C = 0;
2078  if (isUTF16) {
2079    ArrayRef<uint16_t> Arr =
2080      llvm::makeArrayRef<uint16_t>((uint16_t*)Entry.getKey().data(),
2081                                   Entry.getKey().size() / 2);
2082    C = llvm::ConstantDataArray::get(VMContext, Arr);
2083  } else {
2084    C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2085  }
2086
2087  llvm::GlobalValue::LinkageTypes Linkage;
2088  if (isUTF16)
2089    // FIXME: why do utf strings get "_" labels instead of "L" labels?
2090    Linkage = llvm::GlobalValue::InternalLinkage;
2091  else
2092    // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2093    // when using private linkage. It is not clear if this is a bug in ld
2094    // or a reasonable new restriction.
2095    Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2096
2097  // Note: -fwritable-strings doesn't make the backing store strings of
2098  // CFStrings writable. (See <rdar://problem/10657500>)
2099  llvm::GlobalVariable *GV =
2100    new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2101                             Linkage, C, ".str");
2102  GV->setUnnamedAddr(true);
2103  if (isUTF16) {
2104    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2105    GV->setAlignment(Align.getQuantity());
2106  } else {
2107    CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2108    GV->setAlignment(Align.getQuantity());
2109  }
2110
2111  // String.
2112  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2113
2114  if (isUTF16)
2115    // Cast the UTF16 string to the correct type.
2116    Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2117
2118  // String length.
2119  Ty = getTypes().ConvertType(getContext().LongTy);
2120  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2121
2122  // The struct.
2123  C = llvm::ConstantStruct::get(STy, Fields);
2124  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2125                                llvm::GlobalVariable::PrivateLinkage, C,
2126                                "_unnamed_cfstring_");
2127  if (const char *Sect = getContext().getTargetInfo().getCFStringSection())
2128    GV->setSection(Sect);
2129  Entry.setValue(GV);
2130
2131  return GV;
2132}
2133
2134static RecordDecl *
2135CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2136                 DeclContext *DC, IdentifierInfo *Id) {
2137  SourceLocation Loc;
2138  if (Ctx.getLangOpts().CPlusPlus)
2139    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2140  else
2141    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2142}
2143
2144llvm::Constant *
2145CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2146  unsigned StringLength = 0;
2147  llvm::StringMapEntry<llvm::Constant*> &Entry =
2148    GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2149
2150  if (llvm::Constant *C = Entry.getValue())
2151    return C;
2152
2153  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2154  llvm::Constant *Zeros[] = { Zero, Zero };
2155
2156  // If we don't already have it, get _NSConstantStringClassReference.
2157  if (!ConstantStringClassRef) {
2158    std::string StringClass(getLangOpts().ObjCConstantStringClass);
2159    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2160    llvm::Constant *GV;
2161    if (LangOpts.ObjCRuntime.isNonFragile()) {
2162      std::string str =
2163        StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2164                            : "OBJC_CLASS_$_" + StringClass;
2165      GV = getObjCRuntime().GetClassGlobal(str);
2166      // Make sure the result is of the correct type.
2167      llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2168      ConstantStringClassRef =
2169        llvm::ConstantExpr::getBitCast(GV, PTy);
2170    } else {
2171      std::string str =
2172        StringClass.empty() ? "_NSConstantStringClassReference"
2173                            : "_" + StringClass + "ClassReference";
2174      llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2175      GV = CreateRuntimeVariable(PTy, str);
2176      // Decay array -> ptr
2177      ConstantStringClassRef =
2178        llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2179    }
2180  }
2181
2182  if (!NSConstantStringType) {
2183    // Construct the type for a constant NSString.
2184    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2185                                     Context.getTranslationUnitDecl(),
2186                                   &Context.Idents.get("__builtin_NSString"));
2187    D->startDefinition();
2188
2189    QualType FieldTypes[3];
2190
2191    // const int *isa;
2192    FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2193    // const char *str;
2194    FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2195    // unsigned int length;
2196    FieldTypes[2] = Context.UnsignedIntTy;
2197
2198    // Create fields
2199    for (unsigned i = 0; i < 3; ++i) {
2200      FieldDecl *Field = FieldDecl::Create(Context, D,
2201                                           SourceLocation(),
2202                                           SourceLocation(), 0,
2203                                           FieldTypes[i], /*TInfo=*/0,
2204                                           /*BitWidth=*/0,
2205                                           /*Mutable=*/false,
2206                                           ICIS_NoInit);
2207      Field->setAccess(AS_public);
2208      D->addDecl(Field);
2209    }
2210
2211    D->completeDefinition();
2212    QualType NSTy = Context.getTagDeclType(D);
2213    NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2214  }
2215
2216  llvm::Constant *Fields[3];
2217
2218  // Class pointer.
2219  Fields[0] = ConstantStringClassRef;
2220
2221  // String pointer.
2222  llvm::Constant *C =
2223    llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2224
2225  llvm::GlobalValue::LinkageTypes Linkage;
2226  bool isConstant;
2227  Linkage = llvm::GlobalValue::PrivateLinkage;
2228  isConstant = !LangOpts.WritableStrings;
2229
2230  llvm::GlobalVariable *GV =
2231  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2232                           ".str");
2233  GV->setUnnamedAddr(true);
2234  CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2235  GV->setAlignment(Align.getQuantity());
2236  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2237
2238  // String length.
2239  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2240  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2241
2242  // The struct.
2243  C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2244  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2245                                llvm::GlobalVariable::PrivateLinkage, C,
2246                                "_unnamed_nsstring_");
2247  // FIXME. Fix section.
2248  if (const char *Sect =
2249        LangOpts.ObjCRuntime.isNonFragile()
2250          ? getContext().getTargetInfo().getNSStringNonFragileABISection()
2251          : getContext().getTargetInfo().getNSStringSection())
2252    GV->setSection(Sect);
2253  Entry.setValue(GV);
2254
2255  return GV;
2256}
2257
2258QualType CodeGenModule::getObjCFastEnumerationStateType() {
2259  if (ObjCFastEnumerationStateType.isNull()) {
2260    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2261                                     Context.getTranslationUnitDecl(),
2262                      &Context.Idents.get("__objcFastEnumerationState"));
2263    D->startDefinition();
2264
2265    QualType FieldTypes[] = {
2266      Context.UnsignedLongTy,
2267      Context.getPointerType(Context.getObjCIdType()),
2268      Context.getPointerType(Context.UnsignedLongTy),
2269      Context.getConstantArrayType(Context.UnsignedLongTy,
2270                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2271    };
2272
2273    for (size_t i = 0; i < 4; ++i) {
2274      FieldDecl *Field = FieldDecl::Create(Context,
2275                                           D,
2276                                           SourceLocation(),
2277                                           SourceLocation(), 0,
2278                                           FieldTypes[i], /*TInfo=*/0,
2279                                           /*BitWidth=*/0,
2280                                           /*Mutable=*/false,
2281                                           ICIS_NoInit);
2282      Field->setAccess(AS_public);
2283      D->addDecl(Field);
2284    }
2285
2286    D->completeDefinition();
2287    ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2288  }
2289
2290  return ObjCFastEnumerationStateType;
2291}
2292
2293llvm::Constant *
2294CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2295  assert(!E->getType()->isPointerType() && "Strings are always arrays");
2296
2297  // Don't emit it as the address of the string, emit the string data itself
2298  // as an inline array.
2299  if (E->getCharByteWidth() == 1) {
2300    SmallString<64> Str(E->getString());
2301
2302    // Resize the string to the right size, which is indicated by its type.
2303    const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2304    Str.resize(CAT->getSize().getZExtValue());
2305    return llvm::ConstantDataArray::getString(VMContext, Str, false);
2306  }
2307
2308  llvm::ArrayType *AType =
2309    cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2310  llvm::Type *ElemTy = AType->getElementType();
2311  unsigned NumElements = AType->getNumElements();
2312
2313  // Wide strings have either 2-byte or 4-byte elements.
2314  if (ElemTy->getPrimitiveSizeInBits() == 16) {
2315    SmallVector<uint16_t, 32> Elements;
2316    Elements.reserve(NumElements);
2317
2318    for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2319      Elements.push_back(E->getCodeUnit(i));
2320    Elements.resize(NumElements);
2321    return llvm::ConstantDataArray::get(VMContext, Elements);
2322  }
2323
2324  assert(ElemTy->getPrimitiveSizeInBits() == 32);
2325  SmallVector<uint32_t, 32> Elements;
2326  Elements.reserve(NumElements);
2327
2328  for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2329    Elements.push_back(E->getCodeUnit(i));
2330  Elements.resize(NumElements);
2331  return llvm::ConstantDataArray::get(VMContext, Elements);
2332}
2333
2334/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2335/// constant array for the given string literal.
2336llvm::Constant *
2337CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2338  CharUnits Align = getContext().getTypeAlignInChars(S->getType());
2339  if (S->isAscii() || S->isUTF8()) {
2340    SmallString<64> Str(S->getString());
2341
2342    // Resize the string to the right size, which is indicated by its type.
2343    const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2344    Str.resize(CAT->getSize().getZExtValue());
2345    return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2346  }
2347
2348  // FIXME: the following does not memoize wide strings.
2349  llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2350  llvm::GlobalVariable *GV =
2351    new llvm::GlobalVariable(getModule(),C->getType(),
2352                             !LangOpts.WritableStrings,
2353                             llvm::GlobalValue::PrivateLinkage,
2354                             C,".str");
2355
2356  GV->setAlignment(Align.getQuantity());
2357  GV->setUnnamedAddr(true);
2358  return GV;
2359}
2360
2361/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2362/// array for the given ObjCEncodeExpr node.
2363llvm::Constant *
2364CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2365  std::string Str;
2366  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2367
2368  return GetAddrOfConstantCString(Str);
2369}
2370
2371
2372/// GenerateWritableString -- Creates storage for a string literal.
2373static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2374                                             bool constant,
2375                                             CodeGenModule &CGM,
2376                                             const char *GlobalName,
2377                                             unsigned Alignment) {
2378  // Create Constant for this string literal. Don't add a '\0'.
2379  llvm::Constant *C =
2380      llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2381
2382  // Create a global variable for this string
2383  llvm::GlobalVariable *GV =
2384    new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2385                             llvm::GlobalValue::PrivateLinkage,
2386                             C, GlobalName);
2387  GV->setAlignment(Alignment);
2388  GV->setUnnamedAddr(true);
2389  return GV;
2390}
2391
2392/// GetAddrOfConstantString - Returns a pointer to a character array
2393/// containing the literal. This contents are exactly that of the
2394/// given string, i.e. it will not be null terminated automatically;
2395/// see GetAddrOfConstantCString. Note that whether the result is
2396/// actually a pointer to an LLVM constant depends on
2397/// Feature.WriteableStrings.
2398///
2399/// The result has pointer to array type.
2400llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2401                                                       const char *GlobalName,
2402                                                       unsigned Alignment) {
2403  // Get the default prefix if a name wasn't specified.
2404  if (!GlobalName)
2405    GlobalName = ".str";
2406
2407  // Don't share any string literals if strings aren't constant.
2408  if (LangOpts.WritableStrings)
2409    return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2410
2411  llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2412    ConstantStringMap.GetOrCreateValue(Str);
2413
2414  if (llvm::GlobalVariable *GV = Entry.getValue()) {
2415    if (Alignment > GV->getAlignment()) {
2416      GV->setAlignment(Alignment);
2417    }
2418    return GV;
2419  }
2420
2421  // Create a global variable for this.
2422  llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2423                                                   Alignment);
2424  Entry.setValue(GV);
2425  return GV;
2426}
2427
2428/// GetAddrOfConstantCString - Returns a pointer to a character
2429/// array containing the literal and a terminating '\0'
2430/// character. The result has pointer to array type.
2431llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2432                                                        const char *GlobalName,
2433                                                        unsigned Alignment) {
2434  StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2435  return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2436}
2437
2438/// EmitObjCPropertyImplementations - Emit information for synthesized
2439/// properties for an implementation.
2440void CodeGenModule::EmitObjCPropertyImplementations(const
2441                                                    ObjCImplementationDecl *D) {
2442  for (ObjCImplementationDecl::propimpl_iterator
2443         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2444    ObjCPropertyImplDecl *PID = *i;
2445
2446    // Dynamic is just for type-checking.
2447    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2448      ObjCPropertyDecl *PD = PID->getPropertyDecl();
2449
2450      // Determine which methods need to be implemented, some may have
2451      // been overridden. Note that ::isSynthesized is not the method
2452      // we want, that just indicates if the decl came from a
2453      // property. What we want to know is if the method is defined in
2454      // this implementation.
2455      if (!D->getInstanceMethod(PD->getGetterName()))
2456        CodeGenFunction(*this).GenerateObjCGetter(
2457                                 const_cast<ObjCImplementationDecl *>(D), PID);
2458      if (!PD->isReadOnly() &&
2459          !D->getInstanceMethod(PD->getSetterName()))
2460        CodeGenFunction(*this).GenerateObjCSetter(
2461                                 const_cast<ObjCImplementationDecl *>(D), PID);
2462    }
2463  }
2464}
2465
2466static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2467  const ObjCInterfaceDecl *iface = impl->getClassInterface();
2468  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2469       ivar; ivar = ivar->getNextIvar())
2470    if (ivar->getType().isDestructedType())
2471      return true;
2472
2473  return false;
2474}
2475
2476/// EmitObjCIvarInitializations - Emit information for ivar initialization
2477/// for an implementation.
2478void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2479  // We might need a .cxx_destruct even if we don't have any ivar initializers.
2480  if (needsDestructMethod(D)) {
2481    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2482    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2483    ObjCMethodDecl *DTORMethod =
2484      ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2485                             cxxSelector, getContext().VoidTy, 0, D,
2486                             /*isInstance=*/true, /*isVariadic=*/false,
2487                          /*isSynthesized=*/true, /*isImplicitlyDeclared=*/true,
2488                             /*isDefined=*/false, ObjCMethodDecl::Required);
2489    D->addInstanceMethod(DTORMethod);
2490    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2491    D->setHasCXXStructors(true);
2492  }
2493
2494  // If the implementation doesn't have any ivar initializers, we don't need
2495  // a .cxx_construct.
2496  if (D->getNumIvarInitializers() == 0)
2497    return;
2498
2499  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2500  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2501  // The constructor returns 'self'.
2502  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2503                                                D->getLocation(),
2504                                                D->getLocation(),
2505                                                cxxSelector,
2506                                                getContext().getObjCIdType(), 0,
2507                                                D, /*isInstance=*/true,
2508                                                /*isVariadic=*/false,
2509                                                /*isSynthesized=*/true,
2510                                                /*isImplicitlyDeclared=*/true,
2511                                                /*isDefined=*/false,
2512                                                ObjCMethodDecl::Required);
2513  D->addInstanceMethod(CTORMethod);
2514  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2515  D->setHasCXXStructors(true);
2516}
2517
2518/// EmitNamespace - Emit all declarations in a namespace.
2519void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2520  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2521       I != E; ++I)
2522    EmitTopLevelDecl(*I);
2523}
2524
2525// EmitLinkageSpec - Emit all declarations in a linkage spec.
2526void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2527  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2528      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2529    ErrorUnsupported(LSD, "linkage spec");
2530    return;
2531  }
2532
2533  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2534       I != E; ++I)
2535    EmitTopLevelDecl(*I);
2536}
2537
2538/// EmitTopLevelDecl - Emit code for a single top level declaration.
2539void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2540  // If an error has occurred, stop code generation, but continue
2541  // parsing and semantic analysis (to ensure all warnings and errors
2542  // are emitted).
2543  if (Diags.hasErrorOccurred())
2544    return;
2545
2546  // Ignore dependent declarations.
2547  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2548    return;
2549
2550  switch (D->getKind()) {
2551  case Decl::CXXConversion:
2552  case Decl::CXXMethod:
2553  case Decl::Function:
2554    // Skip function templates
2555    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2556        cast<FunctionDecl>(D)->isLateTemplateParsed())
2557      return;
2558
2559    EmitGlobal(cast<FunctionDecl>(D));
2560    break;
2561
2562  case Decl::Var:
2563    EmitGlobal(cast<VarDecl>(D));
2564    break;
2565
2566  // Indirect fields from global anonymous structs and unions can be
2567  // ignored; only the actual variable requires IR gen support.
2568  case Decl::IndirectField:
2569    break;
2570
2571  // C++ Decls
2572  case Decl::Namespace:
2573    EmitNamespace(cast<NamespaceDecl>(D));
2574    break;
2575    // No code generation needed.
2576  case Decl::UsingShadow:
2577  case Decl::Using:
2578  case Decl::UsingDirective:
2579  case Decl::ClassTemplate:
2580  case Decl::FunctionTemplate:
2581  case Decl::TypeAliasTemplate:
2582  case Decl::NamespaceAlias:
2583  case Decl::Block:
2584  case Decl::Import:
2585    break;
2586  case Decl::CXXConstructor:
2587    // Skip function templates
2588    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2589        cast<FunctionDecl>(D)->isLateTemplateParsed())
2590      return;
2591
2592    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2593    break;
2594  case Decl::CXXDestructor:
2595    if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2596      return;
2597    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2598    break;
2599
2600  case Decl::StaticAssert:
2601    // Nothing to do.
2602    break;
2603
2604  // Objective-C Decls
2605
2606  // Forward declarations, no (immediate) code generation.
2607  case Decl::ObjCInterface:
2608  case Decl::ObjCCategory:
2609    break;
2610
2611  case Decl::ObjCProtocol: {
2612    ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2613    if (Proto->isThisDeclarationADefinition())
2614      ObjCRuntime->GenerateProtocol(Proto);
2615    break;
2616  }
2617
2618  case Decl::ObjCCategoryImpl:
2619    // Categories have properties but don't support synthesize so we
2620    // can ignore them here.
2621    ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2622    break;
2623
2624  case Decl::ObjCImplementation: {
2625    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2626    EmitObjCPropertyImplementations(OMD);
2627    EmitObjCIvarInitializations(OMD);
2628    ObjCRuntime->GenerateClass(OMD);
2629    // Emit global variable debug information.
2630    if (CGDebugInfo *DI = getModuleDebugInfo())
2631      DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(OMD->getClassInterface()),
2632				   OMD->getLocation());
2633
2634    break;
2635  }
2636  case Decl::ObjCMethod: {
2637    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2638    // If this is not a prototype, emit the body.
2639    if (OMD->getBody())
2640      CodeGenFunction(*this).GenerateObjCMethod(OMD);
2641    break;
2642  }
2643  case Decl::ObjCCompatibleAlias:
2644    ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2645    break;
2646
2647  case Decl::LinkageSpec:
2648    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2649    break;
2650
2651  case Decl::FileScopeAsm: {
2652    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2653    StringRef AsmString = AD->getAsmString()->getString();
2654
2655    const std::string &S = getModule().getModuleInlineAsm();
2656    if (S.empty())
2657      getModule().setModuleInlineAsm(AsmString);
2658    else if (S.end()[-1] == '\n')
2659      getModule().setModuleInlineAsm(S + AsmString.str());
2660    else
2661      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2662    break;
2663  }
2664
2665  default:
2666    // Make sure we handled everything we should, every other kind is a
2667    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2668    // function. Need to recode Decl::Kind to do that easily.
2669    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2670  }
2671}
2672
2673/// Turns the given pointer into a constant.
2674static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2675                                          const void *Ptr) {
2676  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2677  llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2678  return llvm::ConstantInt::get(i64, PtrInt);
2679}
2680
2681static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2682                                   llvm::NamedMDNode *&GlobalMetadata,
2683                                   GlobalDecl D,
2684                                   llvm::GlobalValue *Addr) {
2685  if (!GlobalMetadata)
2686    GlobalMetadata =
2687      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2688
2689  // TODO: should we report variant information for ctors/dtors?
2690  llvm::Value *Ops[] = {
2691    Addr,
2692    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2693  };
2694  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2695}
2696
2697/// Emits metadata nodes associating all the global values in the
2698/// current module with the Decls they came from.  This is useful for
2699/// projects using IR gen as a subroutine.
2700///
2701/// Since there's currently no way to associate an MDNode directly
2702/// with an llvm::GlobalValue, we create a global named metadata
2703/// with the name 'clang.global.decl.ptrs'.
2704void CodeGenModule::EmitDeclMetadata() {
2705  llvm::NamedMDNode *GlobalMetadata = 0;
2706
2707  // StaticLocalDeclMap
2708  for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
2709         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2710       I != E; ++I) {
2711    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2712    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2713  }
2714}
2715
2716/// Emits metadata nodes for all the local variables in the current
2717/// function.
2718void CodeGenFunction::EmitDeclMetadata() {
2719  if (LocalDeclMap.empty()) return;
2720
2721  llvm::LLVMContext &Context = getLLVMContext();
2722
2723  // Find the unique metadata ID for this name.
2724  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2725
2726  llvm::NamedMDNode *GlobalMetadata = 0;
2727
2728  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2729         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2730    const Decl *D = I->first;
2731    llvm::Value *Addr = I->second;
2732
2733    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2734      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2735      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2736    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2737      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2738      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2739    }
2740  }
2741}
2742
2743void CodeGenModule::EmitCoverageFile() {
2744  if (!getCodeGenOpts().CoverageFile.empty()) {
2745    if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2746      llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2747      llvm::LLVMContext &Ctx = TheModule.getContext();
2748      llvm::MDString *CoverageFile =
2749          llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2750      for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2751        llvm::MDNode *CU = CUNode->getOperand(i);
2752        llvm::Value *node[] = { CoverageFile, CU };
2753        llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2754        GCov->addOperand(N);
2755      }
2756    }
2757  }
2758}
2759