CodeGenModule.cpp revision d27e5cbff3c98fa3f623c75dce7165176c1f98a5
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGCUDARuntime.h"
16#include "CGCXXABI.h"
17#include "CGCall.h"
18#include "CGDebugInfo.h"
19#include "CGObjCRuntime.h"
20#include "CGOpenCLRuntime.h"
21#include "CodeGenFunction.h"
22#include "CodeGenTBAA.h"
23#include "TargetInfo.h"
24#include "clang/AST/ASTContext.h"
25#include "clang/AST/CharUnits.h"
26#include "clang/AST/DeclCXX.h"
27#include "clang/AST/DeclObjC.h"
28#include "clang/AST/DeclTemplate.h"
29#include "clang/AST/Mangle.h"
30#include "clang/AST/RecordLayout.h"
31#include "clang/AST/RecursiveASTVisitor.h"
32#include "clang/Basic/Builtins.h"
33#include "clang/Basic/CharInfo.h"
34#include "clang/Basic/Diagnostic.h"
35#include "clang/Basic/Module.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38#include "clang/Frontend/CodeGenOptions.h"
39#include "llvm/ADT/APSInt.h"
40#include "llvm/ADT/Triple.h"
41#include "llvm/IR/CallingConv.h"
42#include "llvm/IR/DataLayout.h"
43#include "llvm/IR/Intrinsics.h"
44#include "llvm/IR/LLVMContext.h"
45#include "llvm/IR/Module.h"
46#include "llvm/Support/CallSite.h"
47#include "llvm/Support/ConvertUTF.h"
48#include "llvm/Support/ErrorHandling.h"
49#include "llvm/Target/Mangler.h"
50
51using namespace clang;
52using namespace CodeGen;
53
54static const char AnnotationSection[] = "llvm.metadata";
55
56static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
57  switch (CGM.getTarget().getCXXABI().getKind()) {
58  case TargetCXXABI::GenericAArch64:
59  case TargetCXXABI::GenericARM:
60  case TargetCXXABI::iOS:
61  case TargetCXXABI::GenericItanium:
62    return *CreateItaniumCXXABI(CGM);
63  case TargetCXXABI::Microsoft:
64    return *CreateMicrosoftCXXABI(CGM);
65  }
66
67  llvm_unreachable("invalid C++ ABI kind");
68}
69
70
71CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
72                             llvm::Module &M, const llvm::DataLayout &TD,
73                             DiagnosticsEngine &diags)
74  : Context(C), LangOpts(C.getLangOpts()), CodeGenOpts(CGO), TheModule(M),
75    Diags(diags), TheDataLayout(TD), Target(C.getTargetInfo()),
76    ABI(createCXXABI(*this)), VMContext(M.getContext()), TBAA(0),
77    TheTargetCodeGenInfo(0), Types(*this), VTables(*this),
78    ObjCRuntime(0), OpenCLRuntime(0), CUDARuntime(0),
79    DebugInfo(0), ARCData(0), NoObjCARCExceptionsMetadata(0),
80    RRData(0), CFConstantStringClassRef(0),
81    ConstantStringClassRef(0), NSConstantStringType(0),
82    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
83    BlockObjectAssign(0), BlockObjectDispose(0),
84    BlockDescriptorType(0), GenericBlockLiteralType(0),
85    LifetimeStartFn(0), LifetimeEndFn(0),
86    SanitizerBlacklist(CGO.SanitizerBlacklistFile),
87    SanOpts(SanitizerBlacklist.isIn(M) ?
88            SanitizerOptions::Disabled : LangOpts.Sanitize) {
89
90  // Initialize the type cache.
91  llvm::LLVMContext &LLVMContext = M.getContext();
92  VoidTy = llvm::Type::getVoidTy(LLVMContext);
93  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
94  Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
95  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
96  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
97  FloatTy = llvm::Type::getFloatTy(LLVMContext);
98  DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
99  PointerWidthInBits = C.getTargetInfo().getPointerWidth(0);
100  PointerAlignInBytes =
101  C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity();
102  IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
103  IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
104  Int8PtrTy = Int8Ty->getPointerTo(0);
105  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
106
107  RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
108
109  if (LangOpts.ObjC1)
110    createObjCRuntime();
111  if (LangOpts.OpenCL)
112    createOpenCLRuntime();
113  if (LangOpts.CUDA)
114    createCUDARuntime();
115
116  // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
117  if (SanOpts.Thread ||
118      (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
119    TBAA = new CodeGenTBAA(Context, VMContext, CodeGenOpts, getLangOpts(),
120                           ABI.getMangleContext());
121
122  // If debug info or coverage generation is enabled, create the CGDebugInfo
123  // object.
124  if (CodeGenOpts.getDebugInfo() != CodeGenOptions::NoDebugInfo ||
125      CodeGenOpts.EmitGcovArcs ||
126      CodeGenOpts.EmitGcovNotes)
127    DebugInfo = new CGDebugInfo(*this);
128
129  Block.GlobalUniqueCount = 0;
130
131  if (C.getLangOpts().ObjCAutoRefCount)
132    ARCData = new ARCEntrypoints();
133  RRData = new RREntrypoints();
134}
135
136CodeGenModule::~CodeGenModule() {
137  delete ObjCRuntime;
138  delete OpenCLRuntime;
139  delete CUDARuntime;
140  delete TheTargetCodeGenInfo;
141  delete &ABI;
142  delete TBAA;
143  delete DebugInfo;
144  delete ARCData;
145  delete RRData;
146}
147
148void CodeGenModule::createObjCRuntime() {
149  // This is just isGNUFamily(), but we want to force implementors of
150  // new ABIs to decide how best to do this.
151  switch (LangOpts.ObjCRuntime.getKind()) {
152  case ObjCRuntime::GNUstep:
153  case ObjCRuntime::GCC:
154  case ObjCRuntime::ObjFW:
155    ObjCRuntime = CreateGNUObjCRuntime(*this);
156    return;
157
158  case ObjCRuntime::FragileMacOSX:
159  case ObjCRuntime::MacOSX:
160  case ObjCRuntime::iOS:
161    ObjCRuntime = CreateMacObjCRuntime(*this);
162    return;
163  }
164  llvm_unreachable("bad runtime kind");
165}
166
167void CodeGenModule::createOpenCLRuntime() {
168  OpenCLRuntime = new CGOpenCLRuntime(*this);
169}
170
171void CodeGenModule::createCUDARuntime() {
172  CUDARuntime = CreateNVCUDARuntime(*this);
173}
174
175void CodeGenModule::Release() {
176  EmitDeferred();
177  EmitCXXGlobalInitFunc();
178  EmitCXXGlobalDtorFunc();
179  EmitCXXThreadLocalInitFunc();
180  if (ObjCRuntime)
181    if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
182      AddGlobalCtor(ObjCInitFunction);
183  EmitCtorList(GlobalCtors, "llvm.global_ctors");
184  EmitCtorList(GlobalDtors, "llvm.global_dtors");
185  EmitGlobalAnnotations();
186  EmitStaticExternCAliases();
187  EmitLLVMUsed();
188
189  if (CodeGenOpts.Autolink &&
190      (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
191    EmitModuleLinkOptions();
192  }
193
194  SimplifyPersonality();
195
196  if (getCodeGenOpts().EmitDeclMetadata)
197    EmitDeclMetadata();
198
199  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
200    EmitCoverageFile();
201
202  if (DebugInfo)
203    DebugInfo->finalize();
204}
205
206void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
207  // Make sure that this type is translated.
208  Types.UpdateCompletedType(TD);
209}
210
211llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
212  if (!TBAA)
213    return 0;
214  return TBAA->getTBAAInfo(QTy);
215}
216
217llvm::MDNode *CodeGenModule::getTBAAInfoForVTablePtr() {
218  if (!TBAA)
219    return 0;
220  return TBAA->getTBAAInfoForVTablePtr();
221}
222
223llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
224  if (!TBAA)
225    return 0;
226  return TBAA->getTBAAStructInfo(QTy);
227}
228
229llvm::MDNode *CodeGenModule::getTBAAStructTypeInfo(QualType QTy) {
230  if (!TBAA)
231    return 0;
232  return TBAA->getTBAAStructTypeInfo(QTy);
233}
234
235llvm::MDNode *CodeGenModule::getTBAAStructTagInfo(QualType BaseTy,
236                                                  llvm::MDNode *AccessN,
237                                                  uint64_t O) {
238  if (!TBAA)
239    return 0;
240  return TBAA->getTBAAStructTagInfo(BaseTy, AccessN, O);
241}
242
243/// Decorate the instruction with a TBAA tag. For scalar TBAA, the tag
244/// is the same as the type. For struct-path aware TBAA, the tag
245/// is different from the type: base type, access type and offset.
246/// When ConvertTypeToTag is true, we create a tag based on the scalar type.
247void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
248                                        llvm::MDNode *TBAAInfo,
249                                        bool ConvertTypeToTag) {
250  if (ConvertTypeToTag && TBAA && CodeGenOpts.StructPathTBAA)
251    Inst->setMetadata(llvm::LLVMContext::MD_tbaa,
252                      TBAA->getTBAAScalarTagInfo(TBAAInfo));
253  else
254    Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
255}
256
257void CodeGenModule::Error(SourceLocation loc, StringRef error) {
258  unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, error);
259  getDiags().Report(Context.getFullLoc(loc), diagID);
260}
261
262/// ErrorUnsupported - Print out an error that codegen doesn't support the
263/// specified stmt yet.
264void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
265                                     bool OmitOnError) {
266  if (OmitOnError && getDiags().hasErrorOccurred())
267    return;
268  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
269                                               "cannot compile this %0 yet");
270  std::string Msg = Type;
271  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
272    << Msg << S->getSourceRange();
273}
274
275/// ErrorUnsupported - Print out an error that codegen doesn't support the
276/// specified decl yet.
277void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
278                                     bool OmitOnError) {
279  if (OmitOnError && getDiags().hasErrorOccurred())
280    return;
281  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
282                                               "cannot compile this %0 yet");
283  std::string Msg = Type;
284  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
285}
286
287llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
288  return llvm::ConstantInt::get(SizeTy, size.getQuantity());
289}
290
291void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
292                                        const NamedDecl *D) const {
293  // Internal definitions always have default visibility.
294  if (GV->hasLocalLinkage()) {
295    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
296    return;
297  }
298
299  // Set visibility for definitions.
300  LinkageInfo LV = D->getLinkageAndVisibility();
301  if (LV.isVisibilityExplicit() || !GV->hasAvailableExternallyLinkage())
302    GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
303}
304
305static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
306  return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
307      .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
308      .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
309      .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
310      .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
311}
312
313static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(
314    CodeGenOptions::TLSModel M) {
315  switch (M) {
316  case CodeGenOptions::GeneralDynamicTLSModel:
317    return llvm::GlobalVariable::GeneralDynamicTLSModel;
318  case CodeGenOptions::LocalDynamicTLSModel:
319    return llvm::GlobalVariable::LocalDynamicTLSModel;
320  case CodeGenOptions::InitialExecTLSModel:
321    return llvm::GlobalVariable::InitialExecTLSModel;
322  case CodeGenOptions::LocalExecTLSModel:
323    return llvm::GlobalVariable::LocalExecTLSModel;
324  }
325  llvm_unreachable("Invalid TLS model!");
326}
327
328void CodeGenModule::setTLSMode(llvm::GlobalVariable *GV,
329                               const VarDecl &D) const {
330  assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
331
332  llvm::GlobalVariable::ThreadLocalMode TLM;
333  TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel());
334
335  // Override the TLS model if it is explicitly specified.
336  if (D.hasAttr<TLSModelAttr>()) {
337    const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>();
338    TLM = GetLLVMTLSModel(Attr->getModel());
339  }
340
341  GV->setThreadLocalMode(TLM);
342}
343
344/// Set the symbol visibility of type information (vtable and RTTI)
345/// associated with the given type.
346void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
347                                      const CXXRecordDecl *RD,
348                                      TypeVisibilityKind TVK) const {
349  setGlobalVisibility(GV, RD);
350
351  if (!CodeGenOpts.HiddenWeakVTables)
352    return;
353
354  // We never want to drop the visibility for RTTI names.
355  if (TVK == TVK_ForRTTIName)
356    return;
357
358  // We want to drop the visibility to hidden for weak type symbols.
359  // This isn't possible if there might be unresolved references
360  // elsewhere that rely on this symbol being visible.
361
362  // This should be kept roughly in sync with setThunkVisibility
363  // in CGVTables.cpp.
364
365  // Preconditions.
366  if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
367      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
368    return;
369
370  // Don't override an explicit visibility attribute.
371  if (RD->getExplicitVisibility(NamedDecl::VisibilityForType))
372    return;
373
374  switch (RD->getTemplateSpecializationKind()) {
375  // We have to disable the optimization if this is an EI definition
376  // because there might be EI declarations in other shared objects.
377  case TSK_ExplicitInstantiationDefinition:
378  case TSK_ExplicitInstantiationDeclaration:
379    return;
380
381  // Every use of a non-template class's type information has to emit it.
382  case TSK_Undeclared:
383    break;
384
385  // In theory, implicit instantiations can ignore the possibility of
386  // an explicit instantiation declaration because there necessarily
387  // must be an EI definition somewhere with default visibility.  In
388  // practice, it's possible to have an explicit instantiation for
389  // an arbitrary template class, and linkers aren't necessarily able
390  // to deal with mixed-visibility symbols.
391  case TSK_ExplicitSpecialization:
392  case TSK_ImplicitInstantiation:
393    return;
394  }
395
396  // If there's a key function, there may be translation units
397  // that don't have the key function's definition.  But ignore
398  // this if we're emitting RTTI under -fno-rtti.
399  if (!(TVK != TVK_ForRTTI) || LangOpts.RTTI) {
400    // FIXME: what should we do if we "lose" the key function during
401    // the emission of the file?
402    if (Context.getCurrentKeyFunction(RD))
403      return;
404  }
405
406  // Otherwise, drop the visibility to hidden.
407  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
408  GV->setUnnamedAddr(true);
409}
410
411StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
412  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
413
414  StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
415  if (!Str.empty())
416    return Str;
417
418  if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
419    IdentifierInfo *II = ND->getIdentifier();
420    assert(II && "Attempt to mangle unnamed decl.");
421
422    Str = II->getName();
423    return Str;
424  }
425
426  SmallString<256> Buffer;
427  llvm::raw_svector_ostream Out(Buffer);
428  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
429    getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
430  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
431    getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
432  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
433    getCXXABI().getMangleContext().mangleBlock(BD, Out,
434      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()));
435  else
436    getCXXABI().getMangleContext().mangleName(ND, Out);
437
438  // Allocate space for the mangled name.
439  Out.flush();
440  size_t Length = Buffer.size();
441  char *Name = MangledNamesAllocator.Allocate<char>(Length);
442  std::copy(Buffer.begin(), Buffer.end(), Name);
443
444  Str = StringRef(Name, Length);
445
446  return Str;
447}
448
449void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
450                                        const BlockDecl *BD) {
451  MangleContext &MangleCtx = getCXXABI().getMangleContext();
452  const Decl *D = GD.getDecl();
453  llvm::raw_svector_ostream Out(Buffer.getBuffer());
454  if (D == 0)
455    MangleCtx.mangleGlobalBlock(BD,
456      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
457  else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
458    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
459  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
460    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
461  else
462    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
463}
464
465llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
466  return getModule().getNamedValue(Name);
467}
468
469/// AddGlobalCtor - Add a function to the list that will be called before
470/// main() runs.
471void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
472  // FIXME: Type coercion of void()* types.
473  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
474}
475
476/// AddGlobalDtor - Add a function to the list that will be called
477/// when the module is unloaded.
478void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
479  // FIXME: Type coercion of void()* types.
480  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
481}
482
483void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
484  // Ctor function type is void()*.
485  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
486  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
487
488  // Get the type of a ctor entry, { i32, void ()* }.
489  llvm::StructType *CtorStructTy =
490    llvm::StructType::get(Int32Ty, llvm::PointerType::getUnqual(CtorFTy), NULL);
491
492  // Construct the constructor and destructor arrays.
493  SmallVector<llvm::Constant*, 8> Ctors;
494  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
495    llvm::Constant *S[] = {
496      llvm::ConstantInt::get(Int32Ty, I->second, false),
497      llvm::ConstantExpr::getBitCast(I->first, CtorPFTy)
498    };
499    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
500  }
501
502  if (!Ctors.empty()) {
503    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
504    new llvm::GlobalVariable(TheModule, AT, false,
505                             llvm::GlobalValue::AppendingLinkage,
506                             llvm::ConstantArray::get(AT, Ctors),
507                             GlobalName);
508  }
509}
510
511llvm::GlobalValue::LinkageTypes
512CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
513  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
514
515  if (Linkage == GVA_Internal)
516    return llvm::Function::InternalLinkage;
517
518  if (D->hasAttr<DLLExportAttr>())
519    return llvm::Function::DLLExportLinkage;
520
521  if (D->hasAttr<WeakAttr>())
522    return llvm::Function::WeakAnyLinkage;
523
524  // In C99 mode, 'inline' functions are guaranteed to have a strong
525  // definition somewhere else, so we can use available_externally linkage.
526  if (Linkage == GVA_C99Inline)
527    return llvm::Function::AvailableExternallyLinkage;
528
529  // Note that Apple's kernel linker doesn't support symbol
530  // coalescing, so we need to avoid linkonce and weak linkages there.
531  // Normally, this means we just map to internal, but for explicit
532  // instantiations we'll map to external.
533
534  // In C++, the compiler has to emit a definition in every translation unit
535  // that references the function.  We should use linkonce_odr because
536  // a) if all references in this translation unit are optimized away, we
537  // don't need to codegen it.  b) if the function persists, it needs to be
538  // merged with other definitions. c) C++ has the ODR, so we know the
539  // definition is dependable.
540  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
541    return !Context.getLangOpts().AppleKext
542             ? llvm::Function::LinkOnceODRLinkage
543             : llvm::Function::InternalLinkage;
544
545  // An explicit instantiation of a template has weak linkage, since
546  // explicit instantiations can occur in multiple translation units
547  // and must all be equivalent. However, we are not allowed to
548  // throw away these explicit instantiations.
549  if (Linkage == GVA_ExplicitTemplateInstantiation)
550    return !Context.getLangOpts().AppleKext
551             ? llvm::Function::WeakODRLinkage
552             : llvm::Function::ExternalLinkage;
553
554  // Otherwise, we have strong external linkage.
555  assert(Linkage == GVA_StrongExternal);
556  return llvm::Function::ExternalLinkage;
557}
558
559
560/// SetFunctionDefinitionAttributes - Set attributes for a global.
561///
562/// FIXME: This is currently only done for aliases and functions, but not for
563/// variables (these details are set in EmitGlobalVarDefinition for variables).
564void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
565                                                    llvm::GlobalValue *GV) {
566  SetCommonAttributes(D, GV);
567}
568
569void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
570                                              const CGFunctionInfo &Info,
571                                              llvm::Function *F) {
572  unsigned CallingConv;
573  AttributeListType AttributeList;
574  ConstructAttributeList(Info, D, AttributeList, CallingConv, false);
575  F->setAttributes(llvm::AttributeSet::get(getLLVMContext(), AttributeList));
576  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
577}
578
579/// Determines whether the language options require us to model
580/// unwind exceptions.  We treat -fexceptions as mandating this
581/// except under the fragile ObjC ABI with only ObjC exceptions
582/// enabled.  This means, for example, that C with -fexceptions
583/// enables this.
584static bool hasUnwindExceptions(const LangOptions &LangOpts) {
585  // If exceptions are completely disabled, obviously this is false.
586  if (!LangOpts.Exceptions) return false;
587
588  // If C++ exceptions are enabled, this is true.
589  if (LangOpts.CXXExceptions) return true;
590
591  // If ObjC exceptions are enabled, this depends on the ABI.
592  if (LangOpts.ObjCExceptions) {
593    return LangOpts.ObjCRuntime.hasUnwindExceptions();
594  }
595
596  return true;
597}
598
599void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
600                                                           llvm::Function *F) {
601  llvm::AttrBuilder B;
602
603  if (CodeGenOpts.UnwindTables)
604    B.addAttribute(llvm::Attribute::UWTable);
605
606  if (!hasUnwindExceptions(LangOpts))
607    B.addAttribute(llvm::Attribute::NoUnwind);
608
609  if (D->hasAttr<NakedAttr>()) {
610    // Naked implies noinline: we should not be inlining such functions.
611    B.addAttribute(llvm::Attribute::Naked);
612    B.addAttribute(llvm::Attribute::NoInline);
613  } else if (D->hasAttr<NoInlineAttr>()) {
614    B.addAttribute(llvm::Attribute::NoInline);
615  } else if ((D->hasAttr<AlwaysInlineAttr>() ||
616              D->hasAttr<ForceInlineAttr>()) &&
617             !F->getAttributes().hasAttribute(llvm::AttributeSet::FunctionIndex,
618                                              llvm::Attribute::NoInline)) {
619    // (noinline wins over always_inline, and we can't specify both in IR)
620    B.addAttribute(llvm::Attribute::AlwaysInline);
621  }
622
623  if (D->hasAttr<ColdAttr>()) {
624    B.addAttribute(llvm::Attribute::OptimizeForSize);
625    B.addAttribute(llvm::Attribute::Cold);
626  }
627
628  if (D->hasAttr<MinSizeAttr>())
629    B.addAttribute(llvm::Attribute::MinSize);
630
631  if (LangOpts.getStackProtector() == LangOptions::SSPOn)
632    B.addAttribute(llvm::Attribute::StackProtect);
633  else if (LangOpts.getStackProtector() == LangOptions::SSPReq)
634    B.addAttribute(llvm::Attribute::StackProtectReq);
635
636  // Add sanitizer attributes if function is not blacklisted.
637  if (!SanitizerBlacklist.isIn(*F)) {
638    // When AddressSanitizer is enabled, set SanitizeAddress attribute
639    // unless __attribute__((no_sanitize_address)) is used.
640    if (SanOpts.Address && !D->hasAttr<NoSanitizeAddressAttr>())
641      B.addAttribute(llvm::Attribute::SanitizeAddress);
642    // Same for ThreadSanitizer and __attribute__((no_sanitize_thread))
643    if (SanOpts.Thread && !D->hasAttr<NoSanitizeThreadAttr>()) {
644      B.addAttribute(llvm::Attribute::SanitizeThread);
645    }
646    // Same for MemorySanitizer and __attribute__((no_sanitize_memory))
647    if (SanOpts.Memory && !D->hasAttr<NoSanitizeMemoryAttr>())
648      B.addAttribute(llvm::Attribute::SanitizeMemory);
649  }
650
651  F->addAttributes(llvm::AttributeSet::FunctionIndex,
652                   llvm::AttributeSet::get(
653                       F->getContext(), llvm::AttributeSet::FunctionIndex, B));
654
655  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
656    F->setUnnamedAddr(true);
657  else if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D))
658    if (MD->isVirtual())
659      F->setUnnamedAddr(true);
660
661  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
662  if (alignment)
663    F->setAlignment(alignment);
664
665  // C++ ABI requires 2-byte alignment for member functions.
666  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
667    F->setAlignment(2);
668}
669
670void CodeGenModule::SetCommonAttributes(const Decl *D,
671                                        llvm::GlobalValue *GV) {
672  if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
673    setGlobalVisibility(GV, ND);
674  else
675    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
676
677  if (D->hasAttr<UsedAttr>())
678    AddUsedGlobal(GV);
679
680  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
681    GV->setSection(SA->getName());
682
683  // Alias cannot have attributes. Filter them here.
684  if (!isa<llvm::GlobalAlias>(GV))
685    getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
686}
687
688void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
689                                                  llvm::Function *F,
690                                                  const CGFunctionInfo &FI) {
691  SetLLVMFunctionAttributes(D, FI, F);
692  SetLLVMFunctionAttributesForDefinition(D, F);
693
694  F->setLinkage(llvm::Function::InternalLinkage);
695
696  SetCommonAttributes(D, F);
697}
698
699void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
700                                          llvm::Function *F,
701                                          bool IsIncompleteFunction) {
702  if (unsigned IID = F->getIntrinsicID()) {
703    // If this is an intrinsic function, set the function's attributes
704    // to the intrinsic's attributes.
705    F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(),
706                                                    (llvm::Intrinsic::ID)IID));
707    return;
708  }
709
710  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
711
712  if (!IsIncompleteFunction)
713    SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F);
714
715  // Only a few attributes are set on declarations; these may later be
716  // overridden by a definition.
717
718  if (FD->hasAttr<DLLImportAttr>()) {
719    F->setLinkage(llvm::Function::DLLImportLinkage);
720  } else if (FD->hasAttr<WeakAttr>() ||
721             FD->isWeakImported()) {
722    // "extern_weak" is overloaded in LLVM; we probably should have
723    // separate linkage types for this.
724    F->setLinkage(llvm::Function::ExternalWeakLinkage);
725  } else {
726    F->setLinkage(llvm::Function::ExternalLinkage);
727
728    LinkageInfo LV = FD->getLinkageAndVisibility();
729    if (LV.getLinkage() == ExternalLinkage && LV.isVisibilityExplicit()) {
730      F->setVisibility(GetLLVMVisibility(LV.getVisibility()));
731    }
732  }
733
734  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
735    F->setSection(SA->getName());
736}
737
738void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
739  assert(!GV->isDeclaration() &&
740         "Only globals with definition can force usage.");
741  LLVMUsed.push_back(GV);
742}
743
744void CodeGenModule::EmitLLVMUsed() {
745  // Don't create llvm.used if there is no need.
746  if (LLVMUsed.empty())
747    return;
748
749  // Convert LLVMUsed to what ConstantArray needs.
750  SmallVector<llvm::Constant*, 8> UsedArray;
751  UsedArray.resize(LLVMUsed.size());
752  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
753    UsedArray[i] =
754     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
755                                    Int8PtrTy);
756  }
757
758  if (UsedArray.empty())
759    return;
760  llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
761
762  llvm::GlobalVariable *GV =
763    new llvm::GlobalVariable(getModule(), ATy, false,
764                             llvm::GlobalValue::AppendingLinkage,
765                             llvm::ConstantArray::get(ATy, UsedArray),
766                             "llvm.used");
767
768  GV->setSection("llvm.metadata");
769}
770
771void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
772  llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
773  LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
774}
775
776void CodeGenModule::AddDependentLib(StringRef Lib) {
777  llvm::SmallString<24> Opt;
778  getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
779  llvm::Value *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
780  LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
781}
782
783/// \brief Add link options implied by the given module, including modules
784/// it depends on, using a postorder walk.
785static void addLinkOptionsPostorder(CodeGenModule &CGM,
786                                    Module *Mod,
787                                    SmallVectorImpl<llvm::Value *> &Metadata,
788                                    llvm::SmallPtrSet<Module *, 16> &Visited) {
789  // Import this module's parent.
790  if (Mod->Parent && Visited.insert(Mod->Parent)) {
791    addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
792  }
793
794  // Import this module's dependencies.
795  for (unsigned I = Mod->Imports.size(); I > 0; --I) {
796    if (Visited.insert(Mod->Imports[I-1]))
797      addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited);
798  }
799
800  // Add linker options to link against the libraries/frameworks
801  // described by this module.
802  llvm::LLVMContext &Context = CGM.getLLVMContext();
803  for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) {
804    // Link against a framework.  Frameworks are currently Darwin only, so we
805    // don't to ask TargetCodeGenInfo for the spelling of the linker option.
806    if (Mod->LinkLibraries[I-1].IsFramework) {
807      llvm::Value *Args[2] = {
808        llvm::MDString::get(Context, "-framework"),
809        llvm::MDString::get(Context, Mod->LinkLibraries[I-1].Library)
810      };
811
812      Metadata.push_back(llvm::MDNode::get(Context, Args));
813      continue;
814    }
815
816    // Link against a library.
817    llvm::SmallString<24> Opt;
818    CGM.getTargetCodeGenInfo().getDependentLibraryOption(
819      Mod->LinkLibraries[I-1].Library, Opt);
820    llvm::Value *OptString = llvm::MDString::get(Context, Opt);
821    Metadata.push_back(llvm::MDNode::get(Context, OptString));
822  }
823}
824
825void CodeGenModule::EmitModuleLinkOptions() {
826  // Collect the set of all of the modules we want to visit to emit link
827  // options, which is essentially the imported modules and all of their
828  // non-explicit child modules.
829  llvm::SetVector<clang::Module *> LinkModules;
830  llvm::SmallPtrSet<clang::Module *, 16> Visited;
831  SmallVector<clang::Module *, 16> Stack;
832
833  // Seed the stack with imported modules.
834  for (llvm::SetVector<clang::Module *>::iterator M = ImportedModules.begin(),
835                                               MEnd = ImportedModules.end();
836       M != MEnd; ++M) {
837    if (Visited.insert(*M))
838      Stack.push_back(*M);
839  }
840
841  // Find all of the modules to import, making a little effort to prune
842  // non-leaf modules.
843  while (!Stack.empty()) {
844    clang::Module *Mod = Stack.back();
845    Stack.pop_back();
846
847    bool AnyChildren = false;
848
849    // Visit the submodules of this module.
850    for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(),
851                                        SubEnd = Mod->submodule_end();
852         Sub != SubEnd; ++Sub) {
853      // Skip explicit children; they need to be explicitly imported to be
854      // linked against.
855      if ((*Sub)->IsExplicit)
856        continue;
857
858      if (Visited.insert(*Sub)) {
859        Stack.push_back(*Sub);
860        AnyChildren = true;
861      }
862    }
863
864    // We didn't find any children, so add this module to the list of
865    // modules to link against.
866    if (!AnyChildren) {
867      LinkModules.insert(Mod);
868    }
869  }
870
871  // Add link options for all of the imported modules in reverse topological
872  // order.  We don't do anything to try to order import link flags with respect
873  // to linker options inserted by things like #pragma comment().
874  SmallVector<llvm::Value *, 16> MetadataArgs;
875  Visited.clear();
876  for (llvm::SetVector<clang::Module *>::iterator M = LinkModules.begin(),
877                                               MEnd = LinkModules.end();
878       M != MEnd; ++M) {
879    if (Visited.insert(*M))
880      addLinkOptionsPostorder(*this, *M, MetadataArgs, Visited);
881  }
882  std::reverse(MetadataArgs.begin(), MetadataArgs.end());
883  LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
884
885  // Add the linker options metadata flag.
886  getModule().addModuleFlag(llvm::Module::AppendUnique, "Linker Options",
887                            llvm::MDNode::get(getLLVMContext(),
888                                              LinkerOptionsMetadata));
889}
890
891void CodeGenModule::EmitDeferred() {
892  // Emit code for any potentially referenced deferred decls.  Since a
893  // previously unused static decl may become used during the generation of code
894  // for a static function, iterate until no changes are made.
895
896  while (true) {
897    if (!DeferredVTables.empty()) {
898      EmitDeferredVTables();
899
900      // Emitting a v-table doesn't directly cause more v-tables to
901      // become deferred, although it can cause functions to be
902      // emitted that then need those v-tables.
903      assert(DeferredVTables.empty());
904    }
905
906    // Stop if we're out of both deferred v-tables and deferred declarations.
907    if (DeferredDeclsToEmit.empty()) break;
908
909    GlobalDecl D = DeferredDeclsToEmit.back();
910    DeferredDeclsToEmit.pop_back();
911
912    // Check to see if we've already emitted this.  This is necessary
913    // for a couple of reasons: first, decls can end up in the
914    // deferred-decls queue multiple times, and second, decls can end
915    // up with definitions in unusual ways (e.g. by an extern inline
916    // function acquiring a strong function redefinition).  Just
917    // ignore these cases.
918    //
919    // TODO: That said, looking this up multiple times is very wasteful.
920    StringRef Name = getMangledName(D);
921    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
922    assert(CGRef && "Deferred decl wasn't referenced?");
923
924    if (!CGRef->isDeclaration())
925      continue;
926
927    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
928    // purposes an alias counts as a definition.
929    if (isa<llvm::GlobalAlias>(CGRef))
930      continue;
931
932    // Otherwise, emit the definition and move on to the next one.
933    EmitGlobalDefinition(D);
934  }
935}
936
937void CodeGenModule::EmitGlobalAnnotations() {
938  if (Annotations.empty())
939    return;
940
941  // Create a new global variable for the ConstantStruct in the Module.
942  llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
943    Annotations[0]->getType(), Annotations.size()), Annotations);
944  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(),
945    Array->getType(), false, llvm::GlobalValue::AppendingLinkage, Array,
946    "llvm.global.annotations");
947  gv->setSection(AnnotationSection);
948}
949
950llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
951  llvm::StringMap<llvm::Constant*>::iterator i = AnnotationStrings.find(Str);
952  if (i != AnnotationStrings.end())
953    return i->second;
954
955  // Not found yet, create a new global.
956  llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
957  llvm::GlobalValue *gv = new llvm::GlobalVariable(getModule(), s->getType(),
958    true, llvm::GlobalValue::PrivateLinkage, s, ".str");
959  gv->setSection(AnnotationSection);
960  gv->setUnnamedAddr(true);
961  AnnotationStrings[Str] = gv;
962  return gv;
963}
964
965llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
966  SourceManager &SM = getContext().getSourceManager();
967  PresumedLoc PLoc = SM.getPresumedLoc(Loc);
968  if (PLoc.isValid())
969    return EmitAnnotationString(PLoc.getFilename());
970  return EmitAnnotationString(SM.getBufferName(Loc));
971}
972
973llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
974  SourceManager &SM = getContext().getSourceManager();
975  PresumedLoc PLoc = SM.getPresumedLoc(L);
976  unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
977    SM.getExpansionLineNumber(L);
978  return llvm::ConstantInt::get(Int32Ty, LineNo);
979}
980
981llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
982                                                const AnnotateAttr *AA,
983                                                SourceLocation L) {
984  // Get the globals for file name, annotation, and the line number.
985  llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
986                 *UnitGV = EmitAnnotationUnit(L),
987                 *LineNoCst = EmitAnnotationLineNo(L);
988
989  // Create the ConstantStruct for the global annotation.
990  llvm::Constant *Fields[4] = {
991    llvm::ConstantExpr::getBitCast(GV, Int8PtrTy),
992    llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy),
993    llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy),
994    LineNoCst
995  };
996  return llvm::ConstantStruct::getAnon(Fields);
997}
998
999void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
1000                                         llvm::GlobalValue *GV) {
1001  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
1002  // Get the struct elements for these annotations.
1003  for (specific_attr_iterator<AnnotateAttr>
1004       ai = D->specific_attr_begin<AnnotateAttr>(),
1005       ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai)
1006    Annotations.push_back(EmitAnnotateAttr(GV, *ai, D->getLocation()));
1007}
1008
1009bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
1010  // Never defer when EmitAllDecls is specified.
1011  if (LangOpts.EmitAllDecls)
1012    return false;
1013
1014  return !getContext().DeclMustBeEmitted(Global);
1015}
1016
1017llvm::Constant *CodeGenModule::GetAddrOfUuidDescriptor(
1018    const CXXUuidofExpr* E) {
1019  // Sema has verified that IIDSource has a __declspec(uuid()), and that its
1020  // well-formed.
1021  StringRef Uuid;
1022  if (E->isTypeOperand())
1023    Uuid = CXXUuidofExpr::GetUuidAttrOfType(E->getTypeOperand())->getGuid();
1024  else {
1025    // Special case: __uuidof(0) means an all-zero GUID.
1026    Expr *Op = E->getExprOperand();
1027    if (!Op->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
1028      Uuid = CXXUuidofExpr::GetUuidAttrOfType(Op->getType())->getGuid();
1029    else
1030      Uuid = "00000000-0000-0000-0000-000000000000";
1031  }
1032  std::string Name = "__uuid_" + Uuid.str();
1033
1034  // Look for an existing global.
1035  if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
1036    return GV;
1037
1038  llvm::Constant *Init = EmitUuidofInitializer(Uuid, E->getType());
1039  assert(Init && "failed to initialize as constant");
1040
1041  // GUIDs are assumed to be 16 bytes, spread over 4-2-2-8 bytes. However, the
1042  // first field is declared as "long", which for many targets is 8 bytes.
1043  // Those architectures are not supported. (With the MS abi, long is always 4
1044  // bytes.)
1045  llvm::Type *GuidType = getTypes().ConvertType(E->getType());
1046  if (Init->getType() != GuidType) {
1047    DiagnosticsEngine &Diags = getDiags();
1048    unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1049        "__uuidof codegen is not supported on this architecture");
1050    Diags.Report(E->getExprLoc(), DiagID) << E->getSourceRange();
1051    Init = llvm::UndefValue::get(GuidType);
1052  }
1053
1054  llvm::GlobalVariable *GV = new llvm::GlobalVariable(getModule(), GuidType,
1055      /*isConstant=*/true, llvm::GlobalValue::PrivateLinkage, Init, Name);
1056  GV->setUnnamedAddr(true);
1057  return GV;
1058}
1059
1060llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
1061  const AliasAttr *AA = VD->getAttr<AliasAttr>();
1062  assert(AA && "No alias?");
1063
1064  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
1065
1066  // See if there is already something with the target's name in the module.
1067  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
1068  if (Entry) {
1069    unsigned AS = getContext().getTargetAddressSpace(VD->getType());
1070    return llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS));
1071  }
1072
1073  llvm::Constant *Aliasee;
1074  if (isa<llvm::FunctionType>(DeclTy))
1075    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
1076                                      GlobalDecl(cast<FunctionDecl>(VD)),
1077                                      /*ForVTable=*/false);
1078  else
1079    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1080                                    llvm::PointerType::getUnqual(DeclTy), 0);
1081
1082  llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
1083  F->setLinkage(llvm::Function::ExternalWeakLinkage);
1084  WeakRefReferences.insert(F);
1085
1086  return Aliasee;
1087}
1088
1089void CodeGenModule::EmitGlobal(GlobalDecl GD) {
1090  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
1091
1092  // Weak references don't produce any output by themselves.
1093  if (Global->hasAttr<WeakRefAttr>())
1094    return;
1095
1096  // If this is an alias definition (which otherwise looks like a declaration)
1097  // emit it now.
1098  if (Global->hasAttr<AliasAttr>())
1099    return EmitAliasDefinition(GD);
1100
1101  // If this is CUDA, be selective about which declarations we emit.
1102  if (LangOpts.CUDA) {
1103    if (CodeGenOpts.CUDAIsDevice) {
1104      if (!Global->hasAttr<CUDADeviceAttr>() &&
1105          !Global->hasAttr<CUDAGlobalAttr>() &&
1106          !Global->hasAttr<CUDAConstantAttr>() &&
1107          !Global->hasAttr<CUDASharedAttr>())
1108        return;
1109    } else {
1110      if (!Global->hasAttr<CUDAHostAttr>() && (
1111            Global->hasAttr<CUDADeviceAttr>() ||
1112            Global->hasAttr<CUDAConstantAttr>() ||
1113            Global->hasAttr<CUDASharedAttr>()))
1114        return;
1115    }
1116  }
1117
1118  // Ignore declarations, they will be emitted on their first use.
1119  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
1120    // Forward declarations are emitted lazily on first use.
1121    if (!FD->doesThisDeclarationHaveABody()) {
1122      if (!FD->doesDeclarationForceExternallyVisibleDefinition())
1123        return;
1124
1125      const FunctionDecl *InlineDefinition = 0;
1126      FD->getBody(InlineDefinition);
1127
1128      StringRef MangledName = getMangledName(GD);
1129      DeferredDecls.erase(MangledName);
1130      EmitGlobalDefinition(InlineDefinition);
1131      return;
1132    }
1133  } else {
1134    const VarDecl *VD = cast<VarDecl>(Global);
1135    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
1136
1137    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
1138      return;
1139  }
1140
1141  // Defer code generation when possible if this is a static definition, inline
1142  // function etc.  These we only want to emit if they are used.
1143  if (!MayDeferGeneration(Global)) {
1144    // Emit the definition if it can't be deferred.
1145    EmitGlobalDefinition(GD);
1146    return;
1147  }
1148
1149  // If we're deferring emission of a C++ variable with an
1150  // initializer, remember the order in which it appeared in the file.
1151  if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
1152      cast<VarDecl>(Global)->hasInit()) {
1153    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
1154    CXXGlobalInits.push_back(0);
1155  }
1156
1157  // If the value has already been used, add it directly to the
1158  // DeferredDeclsToEmit list.
1159  StringRef MangledName = getMangledName(GD);
1160  if (GetGlobalValue(MangledName))
1161    DeferredDeclsToEmit.push_back(GD);
1162  else {
1163    // Otherwise, remember that we saw a deferred decl with this name.  The
1164    // first use of the mangled name will cause it to move into
1165    // DeferredDeclsToEmit.
1166    DeferredDecls[MangledName] = GD;
1167  }
1168}
1169
1170namespace {
1171  struct FunctionIsDirectlyRecursive :
1172    public RecursiveASTVisitor<FunctionIsDirectlyRecursive> {
1173    const StringRef Name;
1174    const Builtin::Context &BI;
1175    bool Result;
1176    FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) :
1177      Name(N), BI(C), Result(false) {
1178    }
1179    typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base;
1180
1181    bool TraverseCallExpr(CallExpr *E) {
1182      const FunctionDecl *FD = E->getDirectCallee();
1183      if (!FD)
1184        return true;
1185      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1186      if (Attr && Name == Attr->getLabel()) {
1187        Result = true;
1188        return false;
1189      }
1190      unsigned BuiltinID = FD->getBuiltinID();
1191      if (!BuiltinID)
1192        return true;
1193      StringRef BuiltinName = BI.GetName(BuiltinID);
1194      if (BuiltinName.startswith("__builtin_") &&
1195          Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
1196        Result = true;
1197        return false;
1198      }
1199      return true;
1200    }
1201  };
1202}
1203
1204// isTriviallyRecursive - Check if this function calls another
1205// decl that, because of the asm attribute or the other decl being a builtin,
1206// ends up pointing to itself.
1207bool
1208CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
1209  StringRef Name;
1210  if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
1211    // asm labels are a special kind of mangling we have to support.
1212    AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
1213    if (!Attr)
1214      return false;
1215    Name = Attr->getLabel();
1216  } else {
1217    Name = FD->getName();
1218  }
1219
1220  FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
1221  Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD));
1222  return Walker.Result;
1223}
1224
1225bool
1226CodeGenModule::shouldEmitFunction(const FunctionDecl *F) {
1227  if (getFunctionLinkage(F) != llvm::Function::AvailableExternallyLinkage)
1228    return true;
1229  if (CodeGenOpts.OptimizationLevel == 0 &&
1230      !F->hasAttr<AlwaysInlineAttr>() && !F->hasAttr<ForceInlineAttr>())
1231    return false;
1232  // PR9614. Avoid cases where the source code is lying to us. An available
1233  // externally function should have an equivalent function somewhere else,
1234  // but a function that calls itself is clearly not equivalent to the real
1235  // implementation.
1236  // This happens in glibc's btowc and in some configure checks.
1237  return !isTriviallyRecursive(F);
1238}
1239
1240/// If the type for the method's class was generated by
1241/// CGDebugInfo::createContextChain(), the cache contains only a
1242/// limited DIType without any declarations. Since EmitFunctionStart()
1243/// needs to find the canonical declaration for each method, we need
1244/// to construct the complete type prior to emitting the method.
1245void CodeGenModule::CompleteDIClassType(const CXXMethodDecl* D) {
1246  if (!D->isInstance())
1247    return;
1248
1249  if (CGDebugInfo *DI = getModuleDebugInfo())
1250    if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
1251      const PointerType *ThisPtr =
1252        cast<PointerType>(D->getThisType(getContext()));
1253      DI->getOrCreateRecordType(ThisPtr->getPointeeType(), D->getLocation());
1254    }
1255}
1256
1257void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
1258  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1259
1260  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
1261                                 Context.getSourceManager(),
1262                                 "Generating code for declaration");
1263
1264  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1265    // At -O0, don't generate IR for functions with available_externally
1266    // linkage.
1267    if (!shouldEmitFunction(Function))
1268      return;
1269
1270    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
1271      CompleteDIClassType(Method);
1272      // Make sure to emit the definition(s) before we emit the thunks.
1273      // This is necessary for the generation of certain thunks.
1274      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
1275        EmitCXXConstructor(CD, GD.getCtorType());
1276      else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
1277        EmitCXXDestructor(DD, GD.getDtorType());
1278      else
1279        EmitGlobalFunctionDefinition(GD);
1280
1281      if (Method->isVirtual())
1282        getVTables().EmitThunks(GD);
1283
1284      return;
1285    }
1286
1287    return EmitGlobalFunctionDefinition(GD);
1288  }
1289
1290  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1291    return EmitGlobalVarDefinition(VD);
1292
1293  llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
1294}
1295
1296/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
1297/// module, create and return an llvm Function with the specified type. If there
1298/// is something in the module with the specified name, return it potentially
1299/// bitcasted to the right type.
1300///
1301/// If D is non-null, it specifies a decl that correspond to this.  This is used
1302/// to set the attributes on the function when it is first created.
1303llvm::Constant *
1304CodeGenModule::GetOrCreateLLVMFunction(StringRef MangledName,
1305                                       llvm::Type *Ty,
1306                                       GlobalDecl D, bool ForVTable,
1307                                       llvm::AttributeSet ExtraAttrs) {
1308  // Lookup the entry, lazily creating it if necessary.
1309  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1310  if (Entry) {
1311    if (WeakRefReferences.erase(Entry)) {
1312      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
1313      if (FD && !FD->hasAttr<WeakAttr>())
1314        Entry->setLinkage(llvm::Function::ExternalLinkage);
1315    }
1316
1317    if (Entry->getType()->getElementType() == Ty)
1318      return Entry;
1319
1320    // Make sure the result is of the correct type.
1321    return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo());
1322  }
1323
1324  // This function doesn't have a complete type (for example, the return
1325  // type is an incomplete struct). Use a fake type instead, and make
1326  // sure not to try to set attributes.
1327  bool IsIncompleteFunction = false;
1328
1329  llvm::FunctionType *FTy;
1330  if (isa<llvm::FunctionType>(Ty)) {
1331    FTy = cast<llvm::FunctionType>(Ty);
1332  } else {
1333    FTy = llvm::FunctionType::get(VoidTy, false);
1334    IsIncompleteFunction = true;
1335  }
1336
1337  llvm::Function *F = llvm::Function::Create(FTy,
1338                                             llvm::Function::ExternalLinkage,
1339                                             MangledName, &getModule());
1340  assert(F->getName() == MangledName && "name was uniqued!");
1341  if (D.getDecl())
1342    SetFunctionAttributes(D, F, IsIncompleteFunction);
1343  if (ExtraAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex)) {
1344    llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeSet::FunctionIndex);
1345    F->addAttributes(llvm::AttributeSet::FunctionIndex,
1346                     llvm::AttributeSet::get(VMContext,
1347                                             llvm::AttributeSet::FunctionIndex,
1348                                             B));
1349  }
1350
1351  // This is the first use or definition of a mangled name.  If there is a
1352  // deferred decl with this name, remember that we need to emit it at the end
1353  // of the file.
1354  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1355  if (DDI != DeferredDecls.end()) {
1356    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1357    // list, and remove it from DeferredDecls (since we don't need it anymore).
1358    DeferredDeclsToEmit.push_back(DDI->second);
1359    DeferredDecls.erase(DDI);
1360
1361  // Otherwise, there are cases we have to worry about where we're
1362  // using a declaration for which we must emit a definition but where
1363  // we might not find a top-level definition:
1364  //   - member functions defined inline in their classes
1365  //   - friend functions defined inline in some class
1366  //   - special member functions with implicit definitions
1367  // If we ever change our AST traversal to walk into class methods,
1368  // this will be unnecessary.
1369  //
1370  // We also don't emit a definition for a function if it's going to be an entry
1371  // in a vtable, unless it's already marked as used.
1372  } else if (getLangOpts().CPlusPlus && D.getDecl()) {
1373    // Look for a declaration that's lexically in a record.
1374    const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
1375    FD = FD->getMostRecentDecl();
1376    do {
1377      if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
1378        if (FD->isImplicit() && !ForVTable) {
1379          assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
1380          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1381          break;
1382        } else if (FD->doesThisDeclarationHaveABody()) {
1383          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
1384          break;
1385        }
1386      }
1387      FD = FD->getPreviousDecl();
1388    } while (FD);
1389  }
1390
1391  // Make sure the result is of the requested type.
1392  if (!IsIncompleteFunction) {
1393    assert(F->getType()->getElementType() == Ty);
1394    return F;
1395  }
1396
1397  llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1398  return llvm::ConstantExpr::getBitCast(F, PTy);
1399}
1400
1401/// GetAddrOfFunction - Return the address of the given function.  If Ty is
1402/// non-null, then this function will use the specified type if it has to
1403/// create it (this occurs when we see a definition of the function).
1404llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
1405                                                 llvm::Type *Ty,
1406                                                 bool ForVTable) {
1407  // If there was no specific requested type, just convert it now.
1408  if (!Ty)
1409    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
1410
1411  StringRef MangledName = getMangledName(GD);
1412  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
1413}
1414
1415/// CreateRuntimeFunction - Create a new runtime function with the specified
1416/// type and name.
1417llvm::Constant *
1418CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy,
1419                                     StringRef Name,
1420                                     llvm::AttributeSet ExtraAttrs) {
1421  llvm::Constant *C
1422    = GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
1423                              ExtraAttrs);
1424  if (llvm::Function *F = dyn_cast<llvm::Function>(C))
1425    if (F->empty())
1426      F->setCallingConv(getRuntimeCC());
1427  return C;
1428}
1429
1430/// isTypeConstant - Determine whether an object of this type can be emitted
1431/// as a constant.
1432///
1433/// If ExcludeCtor is true, the duration when the object's constructor runs
1434/// will not be considered. The caller will need to verify that the object is
1435/// not written to during its construction.
1436bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) {
1437  if (!Ty.isConstant(Context) && !Ty->isReferenceType())
1438    return false;
1439
1440  if (Context.getLangOpts().CPlusPlus) {
1441    if (const CXXRecordDecl *Record
1442          = Context.getBaseElementType(Ty)->getAsCXXRecordDecl())
1443      return ExcludeCtor && !Record->hasMutableFields() &&
1444             Record->hasTrivialDestructor();
1445  }
1446
1447  return true;
1448}
1449
1450/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
1451/// create and return an llvm GlobalVariable with the specified type.  If there
1452/// is something in the module with the specified name, return it potentially
1453/// bitcasted to the right type.
1454///
1455/// If D is non-null, it specifies a decl that correspond to this.  This is used
1456/// to set the attributes on the global when it is first created.
1457llvm::Constant *
1458CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName,
1459                                     llvm::PointerType *Ty,
1460                                     const VarDecl *D,
1461                                     bool UnnamedAddr) {
1462  // Lookup the entry, lazily creating it if necessary.
1463  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1464  if (Entry) {
1465    if (WeakRefReferences.erase(Entry)) {
1466      if (D && !D->hasAttr<WeakAttr>())
1467        Entry->setLinkage(llvm::Function::ExternalLinkage);
1468    }
1469
1470    if (UnnamedAddr)
1471      Entry->setUnnamedAddr(true);
1472
1473    if (Entry->getType() == Ty)
1474      return Entry;
1475
1476    // Make sure the result is of the correct type.
1477    return llvm::ConstantExpr::getBitCast(Entry, Ty);
1478  }
1479
1480  // This is the first use or definition of a mangled name.  If there is a
1481  // deferred decl with this name, remember that we need to emit it at the end
1482  // of the file.
1483  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1484  if (DDI != DeferredDecls.end()) {
1485    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1486    // list, and remove it from DeferredDecls (since we don't need it anymore).
1487    DeferredDeclsToEmit.push_back(DDI->second);
1488    DeferredDecls.erase(DDI);
1489  }
1490
1491  unsigned AddrSpace = GetGlobalVarAddressSpace(D, Ty->getAddressSpace());
1492  llvm::GlobalVariable *GV =
1493    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1494                             llvm::GlobalValue::ExternalLinkage,
1495                             0, MangledName, 0,
1496                             llvm::GlobalVariable::NotThreadLocal, AddrSpace);
1497
1498  // Handle things which are present even on external declarations.
1499  if (D) {
1500    // FIXME: This code is overly simple and should be merged with other global
1501    // handling.
1502    GV->setConstant(isTypeConstant(D->getType(), false));
1503
1504    // Set linkage and visibility in case we never see a definition.
1505    LinkageInfo LV = D->getLinkageAndVisibility();
1506    if (LV.getLinkage() != ExternalLinkage) {
1507      // Don't set internal linkage on declarations.
1508    } else {
1509      if (D->hasAttr<DLLImportAttr>())
1510        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1511      else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1512        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1513
1514      // Set visibility on a declaration only if it's explicit.
1515      if (LV.isVisibilityExplicit())
1516        GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1517    }
1518
1519    if (D->getTLSKind()) {
1520      if (D->getTLSKind() == VarDecl::TLS_Dynamic)
1521        CXXThreadLocals.push_back(std::make_pair(D, GV));
1522      setTLSMode(GV, *D);
1523    }
1524  }
1525
1526  if (AddrSpace != Ty->getAddressSpace())
1527    return llvm::ConstantExpr::getBitCast(GV, Ty);
1528  else
1529    return GV;
1530}
1531
1532
1533llvm::GlobalVariable *
1534CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name,
1535                                      llvm::Type *Ty,
1536                                      llvm::GlobalValue::LinkageTypes Linkage) {
1537  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1538  llvm::GlobalVariable *OldGV = 0;
1539
1540
1541  if (GV) {
1542    // Check if the variable has the right type.
1543    if (GV->getType()->getElementType() == Ty)
1544      return GV;
1545
1546    // Because C++ name mangling, the only way we can end up with an already
1547    // existing global with the same name is if it has been declared extern "C".
1548    assert(GV->isDeclaration() && "Declaration has wrong type!");
1549    OldGV = GV;
1550  }
1551
1552  // Create a new variable.
1553  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1554                                Linkage, 0, Name);
1555
1556  if (OldGV) {
1557    // Replace occurrences of the old variable if needed.
1558    GV->takeName(OldGV);
1559
1560    if (!OldGV->use_empty()) {
1561      llvm::Constant *NewPtrForOldDecl =
1562      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1563      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1564    }
1565
1566    OldGV->eraseFromParent();
1567  }
1568
1569  return GV;
1570}
1571
1572/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1573/// given global variable.  If Ty is non-null and if the global doesn't exist,
1574/// then it will be created with the specified type instead of whatever the
1575/// normal requested type would be.
1576llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1577                                                  llvm::Type *Ty) {
1578  assert(D->hasGlobalStorage() && "Not a global variable");
1579  QualType ASTTy = D->getType();
1580  if (Ty == 0)
1581    Ty = getTypes().ConvertTypeForMem(ASTTy);
1582
1583  llvm::PointerType *PTy =
1584    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1585
1586  StringRef MangledName = getMangledName(D);
1587  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1588}
1589
1590/// CreateRuntimeVariable - Create a new runtime global variable with the
1591/// specified type and name.
1592llvm::Constant *
1593CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
1594                                     StringRef Name) {
1595  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1596                               true);
1597}
1598
1599void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1600  assert(!D->getInit() && "Cannot emit definite definitions here!");
1601
1602  if (MayDeferGeneration(D)) {
1603    // If we have not seen a reference to this variable yet, place it
1604    // into the deferred declarations table to be emitted if needed
1605    // later.
1606    StringRef MangledName = getMangledName(D);
1607    if (!GetGlobalValue(MangledName)) {
1608      DeferredDecls[MangledName] = D;
1609      return;
1610    }
1611  }
1612
1613  // The tentative definition is the only definition.
1614  EmitGlobalVarDefinition(D);
1615}
1616
1617CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
1618    return Context.toCharUnitsFromBits(
1619      TheDataLayout.getTypeStoreSizeInBits(Ty));
1620}
1621
1622llvm::Constant *
1623CodeGenModule::MaybeEmitGlobalStdInitializerListInitializer(const VarDecl *D,
1624                                                       const Expr *rawInit) {
1625  ArrayRef<ExprWithCleanups::CleanupObject> cleanups;
1626  if (const ExprWithCleanups *withCleanups =
1627          dyn_cast<ExprWithCleanups>(rawInit)) {
1628    cleanups = withCleanups->getObjects();
1629    rawInit = withCleanups->getSubExpr();
1630  }
1631
1632  const InitListExpr *init = dyn_cast<InitListExpr>(rawInit);
1633  if (!init || !init->initializesStdInitializerList() ||
1634      init->getNumInits() == 0)
1635    return 0;
1636
1637  ASTContext &ctx = getContext();
1638  unsigned numInits = init->getNumInits();
1639  // FIXME: This check is here because we would otherwise silently miscompile
1640  // nested global std::initializer_lists. Better would be to have a real
1641  // implementation.
1642  for (unsigned i = 0; i < numInits; ++i) {
1643    const InitListExpr *inner = dyn_cast<InitListExpr>(init->getInit(i));
1644    if (inner && inner->initializesStdInitializerList()) {
1645      ErrorUnsupported(inner, "nested global std::initializer_list");
1646      return 0;
1647    }
1648  }
1649
1650  // Synthesize a fake VarDecl for the array and initialize that.
1651  QualType elementType = init->getInit(0)->getType();
1652  llvm::APInt numElements(ctx.getTypeSize(ctx.getSizeType()), numInits);
1653  QualType arrayType = ctx.getConstantArrayType(elementType, numElements,
1654                                                ArrayType::Normal, 0);
1655
1656  IdentifierInfo *name = &ctx.Idents.get(D->getNameAsString() + "__initlist");
1657  TypeSourceInfo *sourceInfo = ctx.getTrivialTypeSourceInfo(
1658                                              arrayType, D->getLocation());
1659  VarDecl *backingArray = VarDecl::Create(ctx, const_cast<DeclContext*>(
1660                                                          D->getDeclContext()),
1661                                          D->getLocStart(), D->getLocation(),
1662                                          name, arrayType, sourceInfo,
1663                                          SC_Static);
1664  backingArray->setTSCSpec(D->getTSCSpec());
1665
1666  // Now clone the InitListExpr to initialize the array instead.
1667  // Incredible hack: we want to use the existing InitListExpr here, so we need
1668  // to tell it that it no longer initializes a std::initializer_list.
1669  ArrayRef<Expr*> Inits(const_cast<InitListExpr*>(init)->getInits(),
1670                        init->getNumInits());
1671  Expr *arrayInit = new (ctx) InitListExpr(ctx, init->getLBraceLoc(), Inits,
1672                                           init->getRBraceLoc());
1673  arrayInit->setType(arrayType);
1674
1675  if (!cleanups.empty())
1676    arrayInit = ExprWithCleanups::Create(ctx, arrayInit, cleanups);
1677
1678  backingArray->setInit(arrayInit);
1679
1680  // Emit the definition of the array.
1681  EmitGlobalVarDefinition(backingArray);
1682
1683  // Inspect the initializer list to validate it and determine its type.
1684  // FIXME: doing this every time is probably inefficient; caching would be nice
1685  RecordDecl *record = init->getType()->castAs<RecordType>()->getDecl();
1686  RecordDecl::field_iterator field = record->field_begin();
1687  if (field == record->field_end()) {
1688    ErrorUnsupported(D, "weird std::initializer_list");
1689    return 0;
1690  }
1691  QualType elementPtr = ctx.getPointerType(elementType.withConst());
1692  // Start pointer.
1693  if (!ctx.hasSameType(field->getType(), elementPtr)) {
1694    ErrorUnsupported(D, "weird std::initializer_list");
1695    return 0;
1696  }
1697  ++field;
1698  if (field == record->field_end()) {
1699    ErrorUnsupported(D, "weird std::initializer_list");
1700    return 0;
1701  }
1702  bool isStartEnd = false;
1703  if (ctx.hasSameType(field->getType(), elementPtr)) {
1704    // End pointer.
1705    isStartEnd = true;
1706  } else if(!ctx.hasSameType(field->getType(), ctx.getSizeType())) {
1707    ErrorUnsupported(D, "weird std::initializer_list");
1708    return 0;
1709  }
1710
1711  // Now build an APValue representing the std::initializer_list.
1712  APValue initListValue(APValue::UninitStruct(), 0, 2);
1713  APValue &startField = initListValue.getStructField(0);
1714  APValue::LValuePathEntry startOffsetPathEntry;
1715  startOffsetPathEntry.ArrayIndex = 0;
1716  startField = APValue(APValue::LValueBase(backingArray),
1717                       CharUnits::fromQuantity(0),
1718                       llvm::makeArrayRef(startOffsetPathEntry),
1719                       /*IsOnePastTheEnd=*/false, 0);
1720
1721  if (isStartEnd) {
1722    APValue &endField = initListValue.getStructField(1);
1723    APValue::LValuePathEntry endOffsetPathEntry;
1724    endOffsetPathEntry.ArrayIndex = numInits;
1725    endField = APValue(APValue::LValueBase(backingArray),
1726                       ctx.getTypeSizeInChars(elementType) * numInits,
1727                       llvm::makeArrayRef(endOffsetPathEntry),
1728                       /*IsOnePastTheEnd=*/true, 0);
1729  } else {
1730    APValue &sizeField = initListValue.getStructField(1);
1731    sizeField = APValue(llvm::APSInt(numElements));
1732  }
1733
1734  // Emit the constant for the initializer_list.
1735  llvm::Constant *llvmInit =
1736      EmitConstantValueForMemory(initListValue, D->getType());
1737  assert(llvmInit && "failed to initialize as constant");
1738  return llvmInit;
1739}
1740
1741unsigned CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D,
1742                                                 unsigned AddrSpace) {
1743  if (LangOpts.CUDA && CodeGenOpts.CUDAIsDevice) {
1744    if (D->hasAttr<CUDAConstantAttr>())
1745      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_constant);
1746    else if (D->hasAttr<CUDASharedAttr>())
1747      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_shared);
1748    else
1749      AddrSpace = getContext().getTargetAddressSpace(LangAS::cuda_device);
1750  }
1751
1752  return AddrSpace;
1753}
1754
1755template<typename SomeDecl>
1756void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
1757                                               llvm::GlobalValue *GV) {
1758  if (!getLangOpts().CPlusPlus)
1759    return;
1760
1761  // Must have 'used' attribute, or else inline assembly can't rely on
1762  // the name existing.
1763  if (!D->template hasAttr<UsedAttr>())
1764    return;
1765
1766  // Must have internal linkage and an ordinary name.
1767  if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage)
1768    return;
1769
1770  // Must be in an extern "C" context. Entities declared directly within
1771  // a record are not extern "C" even if the record is in such a context.
1772  const SomeDecl *First = D->getFirstDeclaration();
1773  if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
1774    return;
1775
1776  // OK, this is an internal linkage entity inside an extern "C" linkage
1777  // specification. Make a note of that so we can give it the "expected"
1778  // mangled name if nothing else is using that name.
1779  std::pair<StaticExternCMap::iterator, bool> R =
1780      StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
1781
1782  // If we have multiple internal linkage entities with the same name
1783  // in extern "C" regions, none of them gets that name.
1784  if (!R.second)
1785    R.first->second = 0;
1786}
1787
1788void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1789  llvm::Constant *Init = 0;
1790  QualType ASTTy = D->getType();
1791  CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
1792  bool NeedsGlobalCtor = false;
1793  bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor();
1794
1795  const VarDecl *InitDecl;
1796  const Expr *InitExpr = D->getAnyInitializer(InitDecl);
1797
1798  if (!InitExpr) {
1799    // This is a tentative definition; tentative definitions are
1800    // implicitly initialized with { 0 }.
1801    //
1802    // Note that tentative definitions are only emitted at the end of
1803    // a translation unit, so they should never have incomplete
1804    // type. In addition, EmitTentativeDefinition makes sure that we
1805    // never attempt to emit a tentative definition if a real one
1806    // exists. A use may still exists, however, so we still may need
1807    // to do a RAUW.
1808    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1809    Init = EmitNullConstant(D->getType());
1810  } else {
1811    // If this is a std::initializer_list, emit the special initializer.
1812    Init = MaybeEmitGlobalStdInitializerListInitializer(D, InitExpr);
1813    // An empty init list will perform zero-initialization, which happens
1814    // to be exactly what we want.
1815    // FIXME: It does so in a global constructor, which is *not* what we
1816    // want.
1817
1818    if (!Init) {
1819      initializedGlobalDecl = GlobalDecl(D);
1820      Init = EmitConstantInit(*InitDecl);
1821    }
1822    if (!Init) {
1823      QualType T = InitExpr->getType();
1824      if (D->getType()->isReferenceType())
1825        T = D->getType();
1826
1827      if (getLangOpts().CPlusPlus) {
1828        Init = EmitNullConstant(T);
1829        NeedsGlobalCtor = true;
1830      } else {
1831        ErrorUnsupported(D, "static initializer");
1832        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1833      }
1834    } else {
1835      // We don't need an initializer, so remove the entry for the delayed
1836      // initializer position (just in case this entry was delayed) if we
1837      // also don't need to register a destructor.
1838      if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
1839        DelayedCXXInitPosition.erase(D);
1840    }
1841  }
1842
1843  llvm::Type* InitType = Init->getType();
1844  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1845
1846  // Strip off a bitcast if we got one back.
1847  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1848    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1849           // all zero index gep.
1850           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1851    Entry = CE->getOperand(0);
1852  }
1853
1854  // Entry is now either a Function or GlobalVariable.
1855  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1856
1857  // We have a definition after a declaration with the wrong type.
1858  // We must make a new GlobalVariable* and update everything that used OldGV
1859  // (a declaration or tentative definition) with the new GlobalVariable*
1860  // (which will be a definition).
1861  //
1862  // This happens if there is a prototype for a global (e.g.
1863  // "extern int x[];") and then a definition of a different type (e.g.
1864  // "int x[10];"). This also happens when an initializer has a different type
1865  // from the type of the global (this happens with unions).
1866  if (GV == 0 ||
1867      GV->getType()->getElementType() != InitType ||
1868      GV->getType()->getAddressSpace() !=
1869       GetGlobalVarAddressSpace(D, getContext().getTargetAddressSpace(ASTTy))) {
1870
1871    // Move the old entry aside so that we'll create a new one.
1872    Entry->setName(StringRef());
1873
1874    // Make a new global with the correct type, this is now guaranteed to work.
1875    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1876
1877    // Replace all uses of the old global with the new global
1878    llvm::Constant *NewPtrForOldDecl =
1879        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1880    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1881
1882    // Erase the old global, since it is no longer used.
1883    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1884  }
1885
1886  MaybeHandleStaticInExternC(D, GV);
1887
1888  if (D->hasAttr<AnnotateAttr>())
1889    AddGlobalAnnotations(D, GV);
1890
1891  GV->setInitializer(Init);
1892
1893  // If it is safe to mark the global 'constant', do so now.
1894  GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
1895                  isTypeConstant(D->getType(), true));
1896
1897  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1898
1899  // Set the llvm linkage type as appropriate.
1900  llvm::GlobalValue::LinkageTypes Linkage =
1901    GetLLVMLinkageVarDefinition(D, GV);
1902  GV->setLinkage(Linkage);
1903  if (Linkage == llvm::GlobalVariable::CommonLinkage)
1904    // common vars aren't constant even if declared const.
1905    GV->setConstant(false);
1906
1907  SetCommonAttributes(D, GV);
1908
1909  // Emit the initializer function if necessary.
1910  if (NeedsGlobalCtor || NeedsGlobalDtor)
1911    EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
1912
1913  // If we are compiling with ASan, add metadata indicating dynamically
1914  // initialized globals.
1915  if (SanOpts.Address && NeedsGlobalCtor) {
1916    llvm::Module &M = getModule();
1917
1918    llvm::NamedMDNode *DynamicInitializers =
1919        M.getOrInsertNamedMetadata("llvm.asan.dynamically_initialized_globals");
1920    llvm::Value *GlobalToAdd[] = { GV };
1921    llvm::MDNode *ThisGlobal = llvm::MDNode::get(VMContext, GlobalToAdd);
1922    DynamicInitializers->addOperand(ThisGlobal);
1923  }
1924
1925  // Emit global variable debug information.
1926  if (CGDebugInfo *DI = getModuleDebugInfo())
1927    if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
1928      DI->EmitGlobalVariable(GV, D);
1929}
1930
1931llvm::GlobalValue::LinkageTypes
1932CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1933                                           llvm::GlobalVariable *GV) {
1934  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1935  if (Linkage == GVA_Internal)
1936    return llvm::Function::InternalLinkage;
1937  else if (D->hasAttr<DLLImportAttr>())
1938    return llvm::Function::DLLImportLinkage;
1939  else if (D->hasAttr<DLLExportAttr>())
1940    return llvm::Function::DLLExportLinkage;
1941  else if (D->hasAttr<SelectAnyAttr>()) {
1942    // selectany symbols are externally visible, so use weak instead of
1943    // linkonce.  MSVC optimizes away references to const selectany globals, so
1944    // all definitions should be the same and ODR linkage should be used.
1945    // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
1946    return llvm::GlobalVariable::WeakODRLinkage;
1947  } else if (D->hasAttr<WeakAttr>()) {
1948    if (GV->isConstant())
1949      return llvm::GlobalVariable::WeakODRLinkage;
1950    else
1951      return llvm::GlobalVariable::WeakAnyLinkage;
1952  } else if (Linkage == GVA_TemplateInstantiation ||
1953             Linkage == GVA_ExplicitTemplateInstantiation)
1954    return llvm::GlobalVariable::WeakODRLinkage;
1955  else if (!getLangOpts().CPlusPlus &&
1956           ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1957             D->getAttr<CommonAttr>()) &&
1958           !D->hasExternalStorage() && !D->getInit() &&
1959           !D->getAttr<SectionAttr>() && !D->getTLSKind() &&
1960           !D->getAttr<WeakImportAttr>()) {
1961    // Thread local vars aren't considered common linkage.
1962    return llvm::GlobalVariable::CommonLinkage;
1963  } else if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
1964             getTarget().getTriple().isMacOSX())
1965    // On Darwin, the backing variable for a C++11 thread_local variable always
1966    // has internal linkage; all accesses should just be calls to the
1967    // Itanium-specified entry point, which has the normal linkage of the
1968    // variable.
1969    return llvm::GlobalValue::InternalLinkage;
1970  return llvm::GlobalVariable::ExternalLinkage;
1971}
1972
1973/// Replace the uses of a function that was declared with a non-proto type.
1974/// We want to silently drop extra arguments from call sites
1975static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
1976                                          llvm::Function *newFn) {
1977  // Fast path.
1978  if (old->use_empty()) return;
1979
1980  llvm::Type *newRetTy = newFn->getReturnType();
1981  SmallVector<llvm::Value*, 4> newArgs;
1982
1983  for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
1984         ui != ue; ) {
1985    llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
1986    llvm::User *user = *use;
1987
1988    // Recognize and replace uses of bitcasts.  Most calls to
1989    // unprototyped functions will use bitcasts.
1990    if (llvm::ConstantExpr *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
1991      if (bitcast->getOpcode() == llvm::Instruction::BitCast)
1992        replaceUsesOfNonProtoConstant(bitcast, newFn);
1993      continue;
1994    }
1995
1996    // Recognize calls to the function.
1997    llvm::CallSite callSite(user);
1998    if (!callSite) continue;
1999    if (!callSite.isCallee(use)) continue;
2000
2001    // If the return types don't match exactly, then we can't
2002    // transform this call unless it's dead.
2003    if (callSite->getType() != newRetTy && !callSite->use_empty())
2004      continue;
2005
2006    // Get the call site's attribute list.
2007    SmallVector<llvm::AttributeSet, 8> newAttrs;
2008    llvm::AttributeSet oldAttrs = callSite.getAttributes();
2009
2010    // Collect any return attributes from the call.
2011    if (oldAttrs.hasAttributes(llvm::AttributeSet::ReturnIndex))
2012      newAttrs.push_back(
2013        llvm::AttributeSet::get(newFn->getContext(),
2014                                oldAttrs.getRetAttributes()));
2015
2016    // If the function was passed too few arguments, don't transform.
2017    unsigned newNumArgs = newFn->arg_size();
2018    if (callSite.arg_size() < newNumArgs) continue;
2019
2020    // If extra arguments were passed, we silently drop them.
2021    // If any of the types mismatch, we don't transform.
2022    unsigned argNo = 0;
2023    bool dontTransform = false;
2024    for (llvm::Function::arg_iterator ai = newFn->arg_begin(),
2025           ae = newFn->arg_end(); ai != ae; ++ai, ++argNo) {
2026      if (callSite.getArgument(argNo)->getType() != ai->getType()) {
2027        dontTransform = true;
2028        break;
2029      }
2030
2031      // Add any parameter attributes.
2032      if (oldAttrs.hasAttributes(argNo + 1))
2033        newAttrs.
2034          push_back(llvm::
2035                    AttributeSet::get(newFn->getContext(),
2036                                      oldAttrs.getParamAttributes(argNo + 1)));
2037    }
2038    if (dontTransform)
2039      continue;
2040
2041    if (oldAttrs.hasAttributes(llvm::AttributeSet::FunctionIndex))
2042      newAttrs.push_back(llvm::AttributeSet::get(newFn->getContext(),
2043                                                 oldAttrs.getFnAttributes()));
2044
2045    // Okay, we can transform this.  Create the new call instruction and copy
2046    // over the required information.
2047    newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo);
2048
2049    llvm::CallSite newCall;
2050    if (callSite.isCall()) {
2051      newCall = llvm::CallInst::Create(newFn, newArgs, "",
2052                                       callSite.getInstruction());
2053    } else {
2054      llvm::InvokeInst *oldInvoke =
2055        cast<llvm::InvokeInst>(callSite.getInstruction());
2056      newCall = llvm::InvokeInst::Create(newFn,
2057                                         oldInvoke->getNormalDest(),
2058                                         oldInvoke->getUnwindDest(),
2059                                         newArgs, "",
2060                                         callSite.getInstruction());
2061    }
2062    newArgs.clear(); // for the next iteration
2063
2064    if (!newCall->getType()->isVoidTy())
2065      newCall->takeName(callSite.getInstruction());
2066    newCall.setAttributes(
2067                     llvm::AttributeSet::get(newFn->getContext(), newAttrs));
2068    newCall.setCallingConv(callSite.getCallingConv());
2069
2070    // Finally, remove the old call, replacing any uses with the new one.
2071    if (!callSite->use_empty())
2072      callSite->replaceAllUsesWith(newCall.getInstruction());
2073
2074    // Copy debug location attached to CI.
2075    if (!callSite->getDebugLoc().isUnknown())
2076      newCall->setDebugLoc(callSite->getDebugLoc());
2077    callSite->eraseFromParent();
2078  }
2079}
2080
2081/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
2082/// implement a function with no prototype, e.g. "int foo() {}".  If there are
2083/// existing call uses of the old function in the module, this adjusts them to
2084/// call the new function directly.
2085///
2086/// This is not just a cleanup: the always_inline pass requires direct calls to
2087/// functions to be able to inline them.  If there is a bitcast in the way, it
2088/// won't inline them.  Instcombine normally deletes these calls, but it isn't
2089/// run at -O0.
2090static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
2091                                                      llvm::Function *NewFn) {
2092  // If we're redefining a global as a function, don't transform it.
2093  if (!isa<llvm::Function>(Old)) return;
2094
2095  replaceUsesOfNonProtoConstant(Old, NewFn);
2096}
2097
2098void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
2099  TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
2100  // If we have a definition, this might be a deferred decl. If the
2101  // instantiation is explicit, make sure we emit it at the end.
2102  if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
2103    GetAddrOfGlobalVar(VD);
2104
2105  EmitTopLevelDecl(VD);
2106}
2107
2108void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
2109  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
2110
2111  // Compute the function info and LLVM type.
2112  const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
2113  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
2114
2115  // Get or create the prototype for the function.
2116  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
2117
2118  // Strip off a bitcast if we got one back.
2119  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
2120    assert(CE->getOpcode() == llvm::Instruction::BitCast);
2121    Entry = CE->getOperand(0);
2122  }
2123
2124
2125  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
2126    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
2127
2128    // If the types mismatch then we have to rewrite the definition.
2129    assert(OldFn->isDeclaration() &&
2130           "Shouldn't replace non-declaration");
2131
2132    // F is the Function* for the one with the wrong type, we must make a new
2133    // Function* and update everything that used F (a declaration) with the new
2134    // Function* (which will be a definition).
2135    //
2136    // This happens if there is a prototype for a function
2137    // (e.g. "int f()") and then a definition of a different type
2138    // (e.g. "int f(int x)").  Move the old function aside so that it
2139    // doesn't interfere with GetAddrOfFunction.
2140    OldFn->setName(StringRef());
2141    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
2142
2143    // This might be an implementation of a function without a
2144    // prototype, in which case, try to do special replacement of
2145    // calls which match the new prototype.  The really key thing here
2146    // is that we also potentially drop arguments from the call site
2147    // so as to make a direct call, which makes the inliner happier
2148    // and suppresses a number of optimizer warnings (!) about
2149    // dropping arguments.
2150    if (!OldFn->use_empty()) {
2151      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
2152      OldFn->removeDeadConstantUsers();
2153    }
2154
2155    // Replace uses of F with the Function we will endow with a body.
2156    if (!Entry->use_empty()) {
2157      llvm::Constant *NewPtrForOldDecl =
2158        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
2159      Entry->replaceAllUsesWith(NewPtrForOldDecl);
2160    }
2161
2162    // Ok, delete the old function now, which is dead.
2163    OldFn->eraseFromParent();
2164
2165    Entry = NewFn;
2166  }
2167
2168  // We need to set linkage and visibility on the function before
2169  // generating code for it because various parts of IR generation
2170  // want to propagate this information down (e.g. to local static
2171  // declarations).
2172  llvm::Function *Fn = cast<llvm::Function>(Entry);
2173  setFunctionLinkage(D, Fn);
2174
2175  // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
2176  setGlobalVisibility(Fn, D);
2177
2178  MaybeHandleStaticInExternC(D, Fn);
2179
2180  CodeGenFunction(*this).GenerateCode(D, Fn, FI);
2181
2182  SetFunctionDefinitionAttributes(D, Fn);
2183  SetLLVMFunctionAttributesForDefinition(D, Fn);
2184
2185  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
2186    AddGlobalCtor(Fn, CA->getPriority());
2187  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
2188    AddGlobalDtor(Fn, DA->getPriority());
2189  if (D->hasAttr<AnnotateAttr>())
2190    AddGlobalAnnotations(D, Fn);
2191}
2192
2193void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
2194  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
2195  const AliasAttr *AA = D->getAttr<AliasAttr>();
2196  assert(AA && "Not an alias?");
2197
2198  StringRef MangledName = getMangledName(GD);
2199
2200  // If there is a definition in the module, then it wins over the alias.
2201  // This is dubious, but allow it to be safe.  Just ignore the alias.
2202  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
2203  if (Entry && !Entry->isDeclaration())
2204    return;
2205
2206  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
2207
2208  // Create a reference to the named value.  This ensures that it is emitted
2209  // if a deferred decl.
2210  llvm::Constant *Aliasee;
2211  if (isa<llvm::FunctionType>(DeclTy))
2212    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
2213                                      /*ForVTable=*/false);
2214  else
2215    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
2216                                    llvm::PointerType::getUnqual(DeclTy), 0);
2217
2218  // Create the new alias itself, but don't set a name yet.
2219  llvm::GlobalValue *GA =
2220    new llvm::GlobalAlias(Aliasee->getType(),
2221                          llvm::Function::ExternalLinkage,
2222                          "", Aliasee, &getModule());
2223
2224  if (Entry) {
2225    assert(Entry->isDeclaration());
2226
2227    // If there is a declaration in the module, then we had an extern followed
2228    // by the alias, as in:
2229    //   extern int test6();
2230    //   ...
2231    //   int test6() __attribute__((alias("test7")));
2232    //
2233    // Remove it and replace uses of it with the alias.
2234    GA->takeName(Entry);
2235
2236    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
2237                                                          Entry->getType()));
2238    Entry->eraseFromParent();
2239  } else {
2240    GA->setName(MangledName);
2241  }
2242
2243  // Set attributes which are particular to an alias; this is a
2244  // specialization of the attributes which may be set on a global
2245  // variable/function.
2246  if (D->hasAttr<DLLExportAttr>()) {
2247    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2248      // The dllexport attribute is ignored for undefined symbols.
2249      if (FD->hasBody())
2250        GA->setLinkage(llvm::Function::DLLExportLinkage);
2251    } else {
2252      GA->setLinkage(llvm::Function::DLLExportLinkage);
2253    }
2254  } else if (D->hasAttr<WeakAttr>() ||
2255             D->hasAttr<WeakRefAttr>() ||
2256             D->isWeakImported()) {
2257    GA->setLinkage(llvm::Function::WeakAnyLinkage);
2258  }
2259
2260  SetCommonAttributes(D, GA);
2261}
2262
2263llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
2264                                            ArrayRef<llvm::Type*> Tys) {
2265  return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
2266                                         Tys);
2267}
2268
2269static llvm::StringMapEntry<llvm::Constant*> &
2270GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2271                         const StringLiteral *Literal,
2272                         bool TargetIsLSB,
2273                         bool &IsUTF16,
2274                         unsigned &StringLength) {
2275  StringRef String = Literal->getString();
2276  unsigned NumBytes = String.size();
2277
2278  // Check for simple case.
2279  if (!Literal->containsNonAsciiOrNull()) {
2280    StringLength = NumBytes;
2281    return Map.GetOrCreateValue(String);
2282  }
2283
2284  // Otherwise, convert the UTF8 literals into a string of shorts.
2285  IsUTF16 = true;
2286
2287  SmallVector<UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
2288  const UTF8 *FromPtr = (const UTF8 *)String.data();
2289  UTF16 *ToPtr = &ToBuf[0];
2290
2291  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
2292                           &ToPtr, ToPtr + NumBytes,
2293                           strictConversion);
2294
2295  // ConvertUTF8toUTF16 returns the length in ToPtr.
2296  StringLength = ToPtr - &ToBuf[0];
2297
2298  // Add an explicit null.
2299  *ToPtr = 0;
2300  return Map.
2301    GetOrCreateValue(StringRef(reinterpret_cast<const char *>(ToBuf.data()),
2302                               (StringLength + 1) * 2));
2303}
2304
2305static llvm::StringMapEntry<llvm::Constant*> &
2306GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
2307                       const StringLiteral *Literal,
2308                       unsigned &StringLength) {
2309  StringRef String = Literal->getString();
2310  StringLength = String.size();
2311  return Map.GetOrCreateValue(String);
2312}
2313
2314llvm::Constant *
2315CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
2316  unsigned StringLength = 0;
2317  bool isUTF16 = false;
2318  llvm::StringMapEntry<llvm::Constant*> &Entry =
2319    GetConstantCFStringEntry(CFConstantStringMap, Literal,
2320                             getDataLayout().isLittleEndian(),
2321                             isUTF16, StringLength);
2322
2323  if (llvm::Constant *C = Entry.getValue())
2324    return C;
2325
2326  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2327  llvm::Constant *Zeros[] = { Zero, Zero };
2328  llvm::Value *V;
2329
2330  // If we don't already have it, get __CFConstantStringClassReference.
2331  if (!CFConstantStringClassRef) {
2332    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2333    Ty = llvm::ArrayType::get(Ty, 0);
2334    llvm::Constant *GV = CreateRuntimeVariable(Ty,
2335                                           "__CFConstantStringClassReference");
2336    // Decay array -> ptr
2337    V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2338    CFConstantStringClassRef = V;
2339  }
2340  else
2341    V = CFConstantStringClassRef;
2342
2343  QualType CFTy = getContext().getCFConstantStringType();
2344
2345  llvm::StructType *STy =
2346    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
2347
2348  llvm::Constant *Fields[4];
2349
2350  // Class pointer.
2351  Fields[0] = cast<llvm::ConstantExpr>(V);
2352
2353  // Flags.
2354  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2355  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
2356    llvm::ConstantInt::get(Ty, 0x07C8);
2357
2358  // String pointer.
2359  llvm::Constant *C = 0;
2360  if (isUTF16) {
2361    ArrayRef<uint16_t> Arr =
2362      llvm::makeArrayRef<uint16_t>(reinterpret_cast<uint16_t*>(
2363                                     const_cast<char *>(Entry.getKey().data())),
2364                                   Entry.getKey().size() / 2);
2365    C = llvm::ConstantDataArray::get(VMContext, Arr);
2366  } else {
2367    C = llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2368  }
2369
2370  llvm::GlobalValue::LinkageTypes Linkage;
2371  if (isUTF16)
2372    // FIXME: why do utf strings get "_" labels instead of "L" labels?
2373    Linkage = llvm::GlobalValue::InternalLinkage;
2374  else
2375    // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
2376    // when using private linkage. It is not clear if this is a bug in ld
2377    // or a reasonable new restriction.
2378    Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
2379
2380  // Note: -fwritable-strings doesn't make the backing store strings of
2381  // CFStrings writable. (See <rdar://problem/10657500>)
2382  llvm::GlobalVariable *GV =
2383    new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
2384                             Linkage, C, ".str");
2385  GV->setUnnamedAddr(true);
2386  // Don't enforce the target's minimum global alignment, since the only use
2387  // of the string is via this class initializer.
2388  if (isUTF16) {
2389    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
2390    GV->setAlignment(Align.getQuantity());
2391  } else {
2392    CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2393    GV->setAlignment(Align.getQuantity());
2394  }
2395
2396  // String.
2397  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2398
2399  if (isUTF16)
2400    // Cast the UTF16 string to the correct type.
2401    Fields[2] = llvm::ConstantExpr::getBitCast(Fields[2], Int8PtrTy);
2402
2403  // String length.
2404  Ty = getTypes().ConvertType(getContext().LongTy);
2405  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
2406
2407  // The struct.
2408  C = llvm::ConstantStruct::get(STy, Fields);
2409  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2410                                llvm::GlobalVariable::PrivateLinkage, C,
2411                                "_unnamed_cfstring_");
2412  if (const char *Sect = getTarget().getCFStringSection())
2413    GV->setSection(Sect);
2414  Entry.setValue(GV);
2415
2416  return GV;
2417}
2418
2419static RecordDecl *
2420CreateRecordDecl(const ASTContext &Ctx, RecordDecl::TagKind TK,
2421                 DeclContext *DC, IdentifierInfo *Id) {
2422  SourceLocation Loc;
2423  if (Ctx.getLangOpts().CPlusPlus)
2424    return CXXRecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2425  else
2426    return RecordDecl::Create(Ctx, TK, DC, Loc, Loc, Id);
2427}
2428
2429llvm::Constant *
2430CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
2431  unsigned StringLength = 0;
2432  llvm::StringMapEntry<llvm::Constant*> &Entry =
2433    GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
2434
2435  if (llvm::Constant *C = Entry.getValue())
2436    return C;
2437
2438  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
2439  llvm::Constant *Zeros[] = { Zero, Zero };
2440  llvm::Value *V;
2441  // If we don't already have it, get _NSConstantStringClassReference.
2442  if (!ConstantStringClassRef) {
2443    std::string StringClass(getLangOpts().ObjCConstantStringClass);
2444    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
2445    llvm::Constant *GV;
2446    if (LangOpts.ObjCRuntime.isNonFragile()) {
2447      std::string str =
2448        StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
2449                            : "OBJC_CLASS_$_" + StringClass;
2450      GV = getObjCRuntime().GetClassGlobal(str);
2451      // Make sure the result is of the correct type.
2452      llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
2453      V = llvm::ConstantExpr::getBitCast(GV, PTy);
2454      ConstantStringClassRef = V;
2455    } else {
2456      std::string str =
2457        StringClass.empty() ? "_NSConstantStringClassReference"
2458                            : "_" + StringClass + "ClassReference";
2459      llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
2460      GV = CreateRuntimeVariable(PTy, str);
2461      // Decay array -> ptr
2462      V = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2463      ConstantStringClassRef = V;
2464    }
2465  }
2466  else
2467    V = ConstantStringClassRef;
2468
2469  if (!NSConstantStringType) {
2470    // Construct the type for a constant NSString.
2471    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2472                                     Context.getTranslationUnitDecl(),
2473                                   &Context.Idents.get("__builtin_NSString"));
2474    D->startDefinition();
2475
2476    QualType FieldTypes[3];
2477
2478    // const int *isa;
2479    FieldTypes[0] = Context.getPointerType(Context.IntTy.withConst());
2480    // const char *str;
2481    FieldTypes[1] = Context.getPointerType(Context.CharTy.withConst());
2482    // unsigned int length;
2483    FieldTypes[2] = Context.UnsignedIntTy;
2484
2485    // Create fields
2486    for (unsigned i = 0; i < 3; ++i) {
2487      FieldDecl *Field = FieldDecl::Create(Context, D,
2488                                           SourceLocation(),
2489                                           SourceLocation(), 0,
2490                                           FieldTypes[i], /*TInfo=*/0,
2491                                           /*BitWidth=*/0,
2492                                           /*Mutable=*/false,
2493                                           ICIS_NoInit);
2494      Field->setAccess(AS_public);
2495      D->addDecl(Field);
2496    }
2497
2498    D->completeDefinition();
2499    QualType NSTy = Context.getTagDeclType(D);
2500    NSConstantStringType = cast<llvm::StructType>(getTypes().ConvertType(NSTy));
2501  }
2502
2503  llvm::Constant *Fields[3];
2504
2505  // Class pointer.
2506  Fields[0] = cast<llvm::ConstantExpr>(V);
2507
2508  // String pointer.
2509  llvm::Constant *C =
2510    llvm::ConstantDataArray::getString(VMContext, Entry.getKey());
2511
2512  llvm::GlobalValue::LinkageTypes Linkage;
2513  bool isConstant;
2514  Linkage = llvm::GlobalValue::PrivateLinkage;
2515  isConstant = !LangOpts.WritableStrings;
2516
2517  llvm::GlobalVariable *GV =
2518  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
2519                           ".str");
2520  GV->setUnnamedAddr(true);
2521  // Don't enforce the target's minimum global alignment, since the only use
2522  // of the string is via this class initializer.
2523  CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
2524  GV->setAlignment(Align.getQuantity());
2525  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros);
2526
2527  // String length.
2528  llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
2529  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
2530
2531  // The struct.
2532  C = llvm::ConstantStruct::get(NSConstantStringType, Fields);
2533  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
2534                                llvm::GlobalVariable::PrivateLinkage, C,
2535                                "_unnamed_nsstring_");
2536  // FIXME. Fix section.
2537  if (const char *Sect =
2538        LangOpts.ObjCRuntime.isNonFragile()
2539          ? getTarget().getNSStringNonFragileABISection()
2540          : getTarget().getNSStringSection())
2541    GV->setSection(Sect);
2542  Entry.setValue(GV);
2543
2544  return GV;
2545}
2546
2547QualType CodeGenModule::getObjCFastEnumerationStateType() {
2548  if (ObjCFastEnumerationStateType.isNull()) {
2549    RecordDecl *D = CreateRecordDecl(Context, TTK_Struct,
2550                                     Context.getTranslationUnitDecl(),
2551                      &Context.Idents.get("__objcFastEnumerationState"));
2552    D->startDefinition();
2553
2554    QualType FieldTypes[] = {
2555      Context.UnsignedLongTy,
2556      Context.getPointerType(Context.getObjCIdType()),
2557      Context.getPointerType(Context.UnsignedLongTy),
2558      Context.getConstantArrayType(Context.UnsignedLongTy,
2559                           llvm::APInt(32, 5), ArrayType::Normal, 0)
2560    };
2561
2562    for (size_t i = 0; i < 4; ++i) {
2563      FieldDecl *Field = FieldDecl::Create(Context,
2564                                           D,
2565                                           SourceLocation(),
2566                                           SourceLocation(), 0,
2567                                           FieldTypes[i], /*TInfo=*/0,
2568                                           /*BitWidth=*/0,
2569                                           /*Mutable=*/false,
2570                                           ICIS_NoInit);
2571      Field->setAccess(AS_public);
2572      D->addDecl(Field);
2573    }
2574
2575    D->completeDefinition();
2576    ObjCFastEnumerationStateType = Context.getTagDeclType(D);
2577  }
2578
2579  return ObjCFastEnumerationStateType;
2580}
2581
2582llvm::Constant *
2583CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
2584  assert(!E->getType()->isPointerType() && "Strings are always arrays");
2585
2586  // Don't emit it as the address of the string, emit the string data itself
2587  // as an inline array.
2588  if (E->getCharByteWidth() == 1) {
2589    SmallString<64> Str(E->getString());
2590
2591    // Resize the string to the right size, which is indicated by its type.
2592    const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
2593    Str.resize(CAT->getSize().getZExtValue());
2594    return llvm::ConstantDataArray::getString(VMContext, Str, false);
2595  }
2596
2597  llvm::ArrayType *AType =
2598    cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
2599  llvm::Type *ElemTy = AType->getElementType();
2600  unsigned NumElements = AType->getNumElements();
2601
2602  // Wide strings have either 2-byte or 4-byte elements.
2603  if (ElemTy->getPrimitiveSizeInBits() == 16) {
2604    SmallVector<uint16_t, 32> Elements;
2605    Elements.reserve(NumElements);
2606
2607    for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2608      Elements.push_back(E->getCodeUnit(i));
2609    Elements.resize(NumElements);
2610    return llvm::ConstantDataArray::get(VMContext, Elements);
2611  }
2612
2613  assert(ElemTy->getPrimitiveSizeInBits() == 32);
2614  SmallVector<uint32_t, 32> Elements;
2615  Elements.reserve(NumElements);
2616
2617  for(unsigned i = 0, e = E->getLength(); i != e; ++i)
2618    Elements.push_back(E->getCodeUnit(i));
2619  Elements.resize(NumElements);
2620  return llvm::ConstantDataArray::get(VMContext, Elements);
2621}
2622
2623/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
2624/// constant array for the given string literal.
2625llvm::Constant *
2626CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
2627  CharUnits Align = getContext().getAlignOfGlobalVarInChars(S->getType());
2628  if (S->isAscii() || S->isUTF8()) {
2629    SmallString<64> Str(S->getString());
2630
2631    // Resize the string to the right size, which is indicated by its type.
2632    const ConstantArrayType *CAT = Context.getAsConstantArrayType(S->getType());
2633    Str.resize(CAT->getSize().getZExtValue());
2634    return GetAddrOfConstantString(Str, /*GlobalName*/ 0, Align.getQuantity());
2635  }
2636
2637  // FIXME: the following does not memoize wide strings.
2638  llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
2639  llvm::GlobalVariable *GV =
2640    new llvm::GlobalVariable(getModule(),C->getType(),
2641                             !LangOpts.WritableStrings,
2642                             llvm::GlobalValue::PrivateLinkage,
2643                             C,".str");
2644
2645  GV->setAlignment(Align.getQuantity());
2646  GV->setUnnamedAddr(true);
2647  return GV;
2648}
2649
2650/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
2651/// array for the given ObjCEncodeExpr node.
2652llvm::Constant *
2653CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
2654  std::string Str;
2655  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
2656
2657  return GetAddrOfConstantCString(Str);
2658}
2659
2660
2661/// GenerateWritableString -- Creates storage for a string literal.
2662static llvm::GlobalVariable *GenerateStringLiteral(StringRef str,
2663                                             bool constant,
2664                                             CodeGenModule &CGM,
2665                                             const char *GlobalName,
2666                                             unsigned Alignment) {
2667  // Create Constant for this string literal. Don't add a '\0'.
2668  llvm::Constant *C =
2669      llvm::ConstantDataArray::getString(CGM.getLLVMContext(), str, false);
2670
2671  // Create a global variable for this string
2672  llvm::GlobalVariable *GV =
2673    new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
2674                             llvm::GlobalValue::PrivateLinkage,
2675                             C, GlobalName);
2676  GV->setAlignment(Alignment);
2677  GV->setUnnamedAddr(true);
2678  return GV;
2679}
2680
2681/// GetAddrOfConstantString - Returns a pointer to a character array
2682/// containing the literal. This contents are exactly that of the
2683/// given string, i.e. it will not be null terminated automatically;
2684/// see GetAddrOfConstantCString. Note that whether the result is
2685/// actually a pointer to an LLVM constant depends on
2686/// Feature.WriteableStrings.
2687///
2688/// The result has pointer to array type.
2689llvm::Constant *CodeGenModule::GetAddrOfConstantString(StringRef Str,
2690                                                       const char *GlobalName,
2691                                                       unsigned Alignment) {
2692  // Get the default prefix if a name wasn't specified.
2693  if (!GlobalName)
2694    GlobalName = ".str";
2695
2696  if (Alignment == 0)
2697    Alignment = getContext().getAlignOfGlobalVarInChars(getContext().CharTy)
2698      .getQuantity();
2699
2700  // Don't share any string literals if strings aren't constant.
2701  if (LangOpts.WritableStrings)
2702    return GenerateStringLiteral(Str, false, *this, GlobalName, Alignment);
2703
2704  llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
2705    ConstantStringMap.GetOrCreateValue(Str);
2706
2707  if (llvm::GlobalVariable *GV = Entry.getValue()) {
2708    if (Alignment > GV->getAlignment()) {
2709      GV->setAlignment(Alignment);
2710    }
2711    return GV;
2712  }
2713
2714  // Create a global variable for this.
2715  llvm::GlobalVariable *GV = GenerateStringLiteral(Str, true, *this, GlobalName,
2716                                                   Alignment);
2717  Entry.setValue(GV);
2718  return GV;
2719}
2720
2721/// GetAddrOfConstantCString - Returns a pointer to a character
2722/// array containing the literal and a terminating '\0'
2723/// character. The result has pointer to array type.
2724llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
2725                                                        const char *GlobalName,
2726                                                        unsigned Alignment) {
2727  StringRef StrWithNull(Str.c_str(), Str.size() + 1);
2728  return GetAddrOfConstantString(StrWithNull, GlobalName, Alignment);
2729}
2730
2731/// EmitObjCPropertyImplementations - Emit information for synthesized
2732/// properties for an implementation.
2733void CodeGenModule::EmitObjCPropertyImplementations(const
2734                                                    ObjCImplementationDecl *D) {
2735  for (ObjCImplementationDecl::propimpl_iterator
2736         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
2737    ObjCPropertyImplDecl *PID = *i;
2738
2739    // Dynamic is just for type-checking.
2740    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
2741      ObjCPropertyDecl *PD = PID->getPropertyDecl();
2742
2743      // Determine which methods need to be implemented, some may have
2744      // been overridden. Note that ::isPropertyAccessor is not the method
2745      // we want, that just indicates if the decl came from a
2746      // property. What we want to know is if the method is defined in
2747      // this implementation.
2748      if (!D->getInstanceMethod(PD->getGetterName()))
2749        CodeGenFunction(*this).GenerateObjCGetter(
2750                                 const_cast<ObjCImplementationDecl *>(D), PID);
2751      if (!PD->isReadOnly() &&
2752          !D->getInstanceMethod(PD->getSetterName()))
2753        CodeGenFunction(*this).GenerateObjCSetter(
2754                                 const_cast<ObjCImplementationDecl *>(D), PID);
2755    }
2756  }
2757}
2758
2759static bool needsDestructMethod(ObjCImplementationDecl *impl) {
2760  const ObjCInterfaceDecl *iface = impl->getClassInterface();
2761  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
2762       ivar; ivar = ivar->getNextIvar())
2763    if (ivar->getType().isDestructedType())
2764      return true;
2765
2766  return false;
2767}
2768
2769/// EmitObjCIvarInitializations - Emit information for ivar initialization
2770/// for an implementation.
2771void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2772  // We might need a .cxx_destruct even if we don't have any ivar initializers.
2773  if (needsDestructMethod(D)) {
2774    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2775    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2776    ObjCMethodDecl *DTORMethod =
2777      ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2778                             cxxSelector, getContext().VoidTy, 0, D,
2779                             /*isInstance=*/true, /*isVariadic=*/false,
2780                          /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true,
2781                             /*isDefined=*/false, ObjCMethodDecl::Required);
2782    D->addInstanceMethod(DTORMethod);
2783    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2784    D->setHasDestructors(true);
2785  }
2786
2787  // If the implementation doesn't have any ivar initializers, we don't need
2788  // a .cxx_construct.
2789  if (D->getNumIvarInitializers() == 0)
2790    return;
2791
2792  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2793  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2794  // The constructor returns 'self'.
2795  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2796                                                D->getLocation(),
2797                                                D->getLocation(),
2798                                                cxxSelector,
2799                                                getContext().getObjCIdType(), 0,
2800                                                D, /*isInstance=*/true,
2801                                                /*isVariadic=*/false,
2802                                                /*isPropertyAccessor=*/true,
2803                                                /*isImplicitlyDeclared=*/true,
2804                                                /*isDefined=*/false,
2805                                                ObjCMethodDecl::Required);
2806  D->addInstanceMethod(CTORMethod);
2807  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2808  D->setHasNonZeroConstructors(true);
2809}
2810
2811/// EmitNamespace - Emit all declarations in a namespace.
2812void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2813  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2814       I != E; ++I)
2815    EmitTopLevelDecl(*I);
2816}
2817
2818// EmitLinkageSpec - Emit all declarations in a linkage spec.
2819void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2820  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2821      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2822    ErrorUnsupported(LSD, "linkage spec");
2823    return;
2824  }
2825
2826  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2827       I != E; ++I) {
2828    // Meta-data for ObjC class includes references to implemented methods.
2829    // Generate class's method definitions first.
2830    if (ObjCImplDecl *OID = dyn_cast<ObjCImplDecl>(*I)) {
2831      for (ObjCContainerDecl::method_iterator M = OID->meth_begin(),
2832           MEnd = OID->meth_end();
2833           M != MEnd; ++M)
2834        EmitTopLevelDecl(*M);
2835    }
2836    EmitTopLevelDecl(*I);
2837  }
2838}
2839
2840/// EmitTopLevelDecl - Emit code for a single top level declaration.
2841void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2842  // If an error has occurred, stop code generation, but continue
2843  // parsing and semantic analysis (to ensure all warnings and errors
2844  // are emitted).
2845  if (Diags.hasErrorOccurred())
2846    return;
2847
2848  // Ignore dependent declarations.
2849  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2850    return;
2851
2852  switch (D->getKind()) {
2853  case Decl::CXXConversion:
2854  case Decl::CXXMethod:
2855  case Decl::Function:
2856    // Skip function templates
2857    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2858        cast<FunctionDecl>(D)->isLateTemplateParsed())
2859      return;
2860
2861    EmitGlobal(cast<FunctionDecl>(D));
2862    break;
2863
2864  case Decl::Var:
2865    EmitGlobal(cast<VarDecl>(D));
2866    break;
2867
2868  // Indirect fields from global anonymous structs and unions can be
2869  // ignored; only the actual variable requires IR gen support.
2870  case Decl::IndirectField:
2871    break;
2872
2873  // C++ Decls
2874  case Decl::Namespace:
2875    EmitNamespace(cast<NamespaceDecl>(D));
2876    break;
2877    // No code generation needed.
2878  case Decl::UsingShadow:
2879  case Decl::Using:
2880  case Decl::ClassTemplate:
2881  case Decl::FunctionTemplate:
2882  case Decl::TypeAliasTemplate:
2883  case Decl::Block:
2884  case Decl::Empty:
2885    break;
2886  case Decl::NamespaceAlias:
2887    if (CGDebugInfo *DI = getModuleDebugInfo())
2888        DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
2889    return;
2890  case Decl::UsingDirective: // using namespace X; [C++]
2891    if (CGDebugInfo *DI = getModuleDebugInfo())
2892      DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
2893    return;
2894  case Decl::CXXConstructor:
2895    // Skip function templates
2896    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2897        cast<FunctionDecl>(D)->isLateTemplateParsed())
2898      return;
2899
2900    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2901    break;
2902  case Decl::CXXDestructor:
2903    if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2904      return;
2905    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2906    break;
2907
2908  case Decl::StaticAssert:
2909    // Nothing to do.
2910    break;
2911
2912  // Objective-C Decls
2913
2914  // Forward declarations, no (immediate) code generation.
2915  case Decl::ObjCInterface:
2916  case Decl::ObjCCategory:
2917    break;
2918
2919  case Decl::ObjCProtocol: {
2920    ObjCProtocolDecl *Proto = cast<ObjCProtocolDecl>(D);
2921    if (Proto->isThisDeclarationADefinition())
2922      ObjCRuntime->GenerateProtocol(Proto);
2923    break;
2924  }
2925
2926  case Decl::ObjCCategoryImpl:
2927    // Categories have properties but don't support synthesize so we
2928    // can ignore them here.
2929    ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2930    break;
2931
2932  case Decl::ObjCImplementation: {
2933    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2934    EmitObjCPropertyImplementations(OMD);
2935    EmitObjCIvarInitializations(OMD);
2936    ObjCRuntime->GenerateClass(OMD);
2937    // Emit global variable debug information.
2938    if (CGDebugInfo *DI = getModuleDebugInfo())
2939      if (getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo)
2940        DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
2941            OMD->getClassInterface()), OMD->getLocation());
2942    break;
2943  }
2944  case Decl::ObjCMethod: {
2945    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2946    // If this is not a prototype, emit the body.
2947    if (OMD->getBody())
2948      CodeGenFunction(*this).GenerateObjCMethod(OMD);
2949    break;
2950  }
2951  case Decl::ObjCCompatibleAlias:
2952    ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
2953    break;
2954
2955  case Decl::LinkageSpec:
2956    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2957    break;
2958
2959  case Decl::FileScopeAsm: {
2960    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2961    StringRef AsmString = AD->getAsmString()->getString();
2962
2963    const std::string &S = getModule().getModuleInlineAsm();
2964    if (S.empty())
2965      getModule().setModuleInlineAsm(AsmString);
2966    else if (S.end()[-1] == '\n')
2967      getModule().setModuleInlineAsm(S + AsmString.str());
2968    else
2969      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2970    break;
2971  }
2972
2973  case Decl::Import: {
2974    ImportDecl *Import = cast<ImportDecl>(D);
2975
2976    // Ignore import declarations that come from imported modules.
2977    if (clang::Module *Owner = Import->getOwningModule()) {
2978      if (getLangOpts().CurrentModule.empty() ||
2979          Owner->getTopLevelModule()->Name == getLangOpts().CurrentModule)
2980        break;
2981    }
2982
2983    ImportedModules.insert(Import->getImportedModule());
2984    break;
2985 }
2986
2987  default:
2988    // Make sure we handled everything we should, every other kind is a
2989    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2990    // function. Need to recode Decl::Kind to do that easily.
2991    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2992  }
2993}
2994
2995/// Turns the given pointer into a constant.
2996static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2997                                          const void *Ptr) {
2998  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2999  llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
3000  return llvm::ConstantInt::get(i64, PtrInt);
3001}
3002
3003static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
3004                                   llvm::NamedMDNode *&GlobalMetadata,
3005                                   GlobalDecl D,
3006                                   llvm::GlobalValue *Addr) {
3007  if (!GlobalMetadata)
3008    GlobalMetadata =
3009      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
3010
3011  // TODO: should we report variant information for ctors/dtors?
3012  llvm::Value *Ops[] = {
3013    Addr,
3014    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
3015  };
3016  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
3017}
3018
3019/// For each function which is declared within an extern "C" region and marked
3020/// as 'used', but has internal linkage, create an alias from the unmangled
3021/// name to the mangled name if possible. People expect to be able to refer
3022/// to such functions with an unmangled name from inline assembly within the
3023/// same translation unit.
3024void CodeGenModule::EmitStaticExternCAliases() {
3025  for (StaticExternCMap::iterator I = StaticExternCValues.begin(),
3026                                  E = StaticExternCValues.end();
3027       I != E; ++I) {
3028    IdentifierInfo *Name = I->first;
3029    llvm::GlobalValue *Val = I->second;
3030    if (Val && !getModule().getNamedValue(Name->getName()))
3031      AddUsedGlobal(new llvm::GlobalAlias(Val->getType(), Val->getLinkage(),
3032                                          Name->getName(), Val, &getModule()));
3033  }
3034}
3035
3036/// Emits metadata nodes associating all the global values in the
3037/// current module with the Decls they came from.  This is useful for
3038/// projects using IR gen as a subroutine.
3039///
3040/// Since there's currently no way to associate an MDNode directly
3041/// with an llvm::GlobalValue, we create a global named metadata
3042/// with the name 'clang.global.decl.ptrs'.
3043void CodeGenModule::EmitDeclMetadata() {
3044  llvm::NamedMDNode *GlobalMetadata = 0;
3045
3046  // StaticLocalDeclMap
3047  for (llvm::DenseMap<GlobalDecl,StringRef>::iterator
3048         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
3049       I != E; ++I) {
3050    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
3051    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
3052  }
3053}
3054
3055/// Emits metadata nodes for all the local variables in the current
3056/// function.
3057void CodeGenFunction::EmitDeclMetadata() {
3058  if (LocalDeclMap.empty()) return;
3059
3060  llvm::LLVMContext &Context = getLLVMContext();
3061
3062  // Find the unique metadata ID for this name.
3063  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
3064
3065  llvm::NamedMDNode *GlobalMetadata = 0;
3066
3067  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
3068         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
3069    const Decl *D = I->first;
3070    llvm::Value *Addr = I->second;
3071
3072    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
3073      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
3074      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
3075    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
3076      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
3077      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
3078    }
3079  }
3080}
3081
3082void CodeGenModule::EmitCoverageFile() {
3083  if (!getCodeGenOpts().CoverageFile.empty()) {
3084    if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
3085      llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
3086      llvm::LLVMContext &Ctx = TheModule.getContext();
3087      llvm::MDString *CoverageFile =
3088          llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
3089      for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
3090        llvm::MDNode *CU = CUNode->getOperand(i);
3091        llvm::Value *node[] = { CoverageFile, CU };
3092        llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
3093        GCov->addOperand(N);
3094      }
3095    }
3096  }
3097}
3098
3099llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid,
3100                                                     QualType GuidType) {
3101  // Sema has checked that all uuid strings are of the form
3102  // "12345678-1234-1234-1234-1234567890ab".
3103  assert(Uuid.size() == 36);
3104  const char *Uuidstr = Uuid.data();
3105  for (int i = 0; i < 36; ++i) {
3106    if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuidstr[i] == '-');
3107    else                                         assert(isHexDigit(Uuidstr[i]));
3108  }
3109
3110  llvm::APInt Field0(32, StringRef(Uuidstr     , 8), 16);
3111  llvm::APInt Field1(16, StringRef(Uuidstr +  9, 4), 16);
3112  llvm::APInt Field2(16, StringRef(Uuidstr + 14, 4), 16);
3113  static const int Field3ValueOffsets[] = { 19, 21, 24, 26, 28, 30, 32, 34 };
3114
3115  APValue InitStruct(APValue::UninitStruct(), /*NumBases=*/0, /*NumFields=*/4);
3116  InitStruct.getStructField(0) = APValue(llvm::APSInt(Field0));
3117  InitStruct.getStructField(1) = APValue(llvm::APSInt(Field1));
3118  InitStruct.getStructField(2) = APValue(llvm::APSInt(Field2));
3119  APValue& Arr = InitStruct.getStructField(3);
3120  Arr = APValue(APValue::UninitArray(), 8, 8);
3121  for (int t = 0; t < 8; ++t)
3122    Arr.getArrayInitializedElt(t) = APValue(llvm::APSInt(
3123          llvm::APInt(8, StringRef(Uuidstr + Field3ValueOffsets[t], 2), 16)));
3124
3125  return EmitConstantValue(InitStruct, GuidType);
3126}
3127