CodeGenModule.cpp revision dbb5a376c8b9272813a30c5519031e9ea2fb071f
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CGCall.h"
18#include "CGObjCRuntime.h"
19#include "Mangle.h"
20#include "clang/Frontend/CompileOptions.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclCXX.h"
24#include "clang/Basic/Diagnostic.h"
25#include "clang/Basic/SourceManager.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Basic/ConvertUTF.h"
28#include "llvm/CallingConv.h"
29#include "llvm/Module.h"
30#include "llvm/Intrinsics.h"
31#include "llvm/Target/TargetData.h"
32using namespace clang;
33using namespace CodeGen;
34
35
36CodeGenModule::CodeGenModule(ASTContext &C, const CompileOptions &compileOpts,
37                             llvm::Module &M, const llvm::TargetData &TD,
38                             Diagnostic &diags)
39  : BlockModule(C, M, TD, Types, *this), Context(C),
40    Features(C.getLangOptions()), CompileOpts(compileOpts), TheModule(M),
41    TheTargetData(TD), Diags(diags), Types(C, M, TD), Runtime(0),
42    MemCpyFn(0), MemMoveFn(0), MemSetFn(0), CFConstantStringClassRef(0) {
43
44  if (!Features.ObjC1)
45    Runtime = 0;
46  else if (!Features.NeXTRuntime)
47    Runtime = CreateGNUObjCRuntime(*this);
48  else if (Features.ObjCNonFragileABI)
49    Runtime = CreateMacNonFragileABIObjCRuntime(*this);
50  else
51    Runtime = CreateMacObjCRuntime(*this);
52
53  // If debug info generation is enabled, create the CGDebugInfo object.
54  DebugInfo = CompileOpts.DebugInfo ? new CGDebugInfo(this) : 0;
55}
56
57CodeGenModule::~CodeGenModule() {
58  delete Runtime;
59  delete DebugInfo;
60}
61
62void CodeGenModule::Release() {
63  EmitDeferred();
64  if (Runtime)
65    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
66      AddGlobalCtor(ObjCInitFunction);
67  EmitCtorList(GlobalCtors, "llvm.global_ctors");
68  EmitCtorList(GlobalDtors, "llvm.global_dtors");
69  EmitAnnotations();
70  EmitLLVMUsed();
71}
72
73/// ErrorUnsupported - Print out an error that codegen doesn't support the
74/// specified stmt yet.
75void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
76                                     bool OmitOnError) {
77  if (OmitOnError && getDiags().hasErrorOccurred())
78    return;
79  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
80                                               "cannot compile this %0 yet");
81  std::string Msg = Type;
82  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
83    << Msg << S->getSourceRange();
84}
85
86/// ErrorUnsupported - Print out an error that codegen doesn't support the
87/// specified decl yet.
88void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
89                                     bool OmitOnError) {
90  if (OmitOnError && getDiags().hasErrorOccurred())
91    return;
92  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
93                                               "cannot compile this %0 yet");
94  std::string Msg = Type;
95  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
96}
97
98LangOptions::VisibilityMode
99CodeGenModule::getDeclVisibilityMode(const Decl *D) const {
100  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
101    if (VD->getStorageClass() == VarDecl::PrivateExtern)
102      return LangOptions::Hidden;
103
104  if (const VisibilityAttr *attr = D->getAttr<VisibilityAttr>()) {
105    switch (attr->getVisibility()) {
106    default: assert(0 && "Unknown visibility!");
107    case VisibilityAttr::DefaultVisibility:
108      return LangOptions::Default;
109    case VisibilityAttr::HiddenVisibility:
110      return LangOptions::Hidden;
111    case VisibilityAttr::ProtectedVisibility:
112      return LangOptions::Protected;
113    }
114  }
115
116  return getLangOptions().getVisibilityMode();
117}
118
119void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
120                                        const Decl *D) const {
121  // Internal definitions always have default visibility.
122  if (GV->hasLocalLinkage()) {
123    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
124    return;
125  }
126
127  switch (getDeclVisibilityMode(D)) {
128  default: assert(0 && "Unknown visibility!");
129  case LangOptions::Default:
130    return GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
131  case LangOptions::Hidden:
132    return GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
133  case LangOptions::Protected:
134    return GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
135  }
136}
137
138/// \brief Retrieves the mangled name for the given declaration.
139///
140/// If the given declaration requires a mangled name, returns an
141/// const char* containing the mangled name.  Otherwise, returns
142/// the unmangled name.
143///
144const char *CodeGenModule::getMangledName(const NamedDecl *ND) {
145  // In C, functions with no attributes never need to be mangled. Fastpath them.
146  if (!getLangOptions().CPlusPlus && !ND->hasAttrs()) {
147    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
148    return ND->getNameAsCString();
149  }
150
151  llvm::SmallString<256> Name;
152  llvm::raw_svector_ostream Out(Name);
153  if (!mangleName(ND, Context, Out)) {
154    assert(ND->getIdentifier() && "Attempt to mangle unnamed decl.");
155    return ND->getNameAsCString();
156  }
157
158  Name += '\0';
159  return MangledNames.GetOrCreateValue(Name.begin(), Name.end()).getKeyData();
160}
161
162/// AddGlobalCtor - Add a function to the list that will be called before
163/// main() runs.
164void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
165  // FIXME: Type coercion of void()* types.
166  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
167}
168
169/// AddGlobalDtor - Add a function to the list that will be called
170/// when the module is unloaded.
171void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
172  // FIXME: Type coercion of void()* types.
173  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
174}
175
176void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
177  // Ctor function type is void()*.
178  llvm::FunctionType* CtorFTy =
179    llvm::FunctionType::get(llvm::Type::VoidTy,
180                            std::vector<const llvm::Type*>(),
181                            false);
182  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
183
184  // Get the type of a ctor entry, { i32, void ()* }.
185  llvm::StructType* CtorStructTy =
186    llvm::StructType::get(llvm::Type::Int32Ty,
187                          llvm::PointerType::getUnqual(CtorFTy), NULL);
188
189  // Construct the constructor and destructor arrays.
190  std::vector<llvm::Constant*> Ctors;
191  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
192    std::vector<llvm::Constant*> S;
193    S.push_back(llvm::ConstantInt::get(llvm::Type::Int32Ty, I->second, false));
194    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
195    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
196  }
197
198  if (!Ctors.empty()) {
199    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
200    new llvm::GlobalVariable(AT, false,
201                             llvm::GlobalValue::AppendingLinkage,
202                             llvm::ConstantArray::get(AT, Ctors),
203                             GlobalName,
204                             &TheModule);
205  }
206}
207
208void CodeGenModule::EmitAnnotations() {
209  if (Annotations.empty())
210    return;
211
212  // Create a new global variable for the ConstantStruct in the Module.
213  llvm::Constant *Array =
214  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
215                                                Annotations.size()),
216                           Annotations);
217  llvm::GlobalValue *gv =
218  new llvm::GlobalVariable(Array->getType(), false,
219                           llvm::GlobalValue::AppendingLinkage, Array,
220                           "llvm.global.annotations", &TheModule);
221  gv->setSection("llvm.metadata");
222}
223
224/// SetGlobalValueAttributes - Set attributes for a global.
225///
226/// FIXME: This is currently only done for aliases and functions, but
227/// not for variables (these details are set in
228/// EmitGlobalVarDefinition for variables).
229void CodeGenModule::SetGlobalValueAttributes(const Decl *D,
230                                             GVALinkage Linkage,
231                                             llvm::GlobalValue *GV,
232                                             bool ForDefinition) {
233  // FIXME: Set up linkage and many other things.  Note, this is a simple
234  // approximation of what we really want.
235  if (!ForDefinition) {
236    // Only a few attributes are set on declarations.
237
238    // The dllimport attribute is overridden by a subsequent declaration as
239    // dllexport.
240    if (D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) {
241      // dllimport attribute can be applied only to function decls, not to
242      // definitions.
243      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
244        if (!FD->getBody())
245          GV->setLinkage(llvm::Function::DLLImportLinkage);
246      } else
247        GV->setLinkage(llvm::Function::DLLImportLinkage);
248    } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
249      // "extern_weak" is overloaded in LLVM; we probably should have
250      // separate linkage types for this.
251      GV->setLinkage(llvm::Function::ExternalWeakLinkage);
252    }
253  } else if (Linkage == GVA_Internal) {
254    GV->setLinkage(llvm::Function::InternalLinkage);
255  } else if (D->hasAttr<DLLExportAttr>()) {
256    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
257      // The dllexport attribute is ignored for undefined symbols.
258      if (FD->getBody())
259        GV->setLinkage(llvm::Function::DLLExportLinkage);
260    } else {
261      GV->setLinkage(llvm::Function::DLLExportLinkage);
262    }
263  } else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>()) {
264    GV->setLinkage(llvm::Function::WeakAnyLinkage);
265  } else if (Linkage == GVA_ExternInline) {
266    // "extern inline" always gets available_externally linkage, which is the
267    // strongest linkage type we can give an inline function: we don't have to
268    // codegen the definition at all, yet we know that it is "ODR".
269    GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
270  } else if (Linkage == GVA_Inline) {
271    // The definition of inline changes based on the language.  Note that we
272    // have already handled "static inline" above, with the GVA_Internal case.
273    if (Features.CPlusPlus) {
274      // In C++, the compiler has to emit a definition in every translation unit
275      // that references the function.  We should use linkonce_odr because
276      // a) if all references in this translation unit are optimized away, we
277      // don't need to codegen it.  b) if the function persists, it needs to be
278      // merged with other definitions. c) C++ has the ODR, so we know the
279      // definition is dependable.
280      GV->setLinkage(llvm::Function::LinkOnceODRLinkage);
281    } else if (Features.C99) {
282      // In C99 mode, 'inline' functions are guaranteed to have a strong
283      // definition somewhere else, so we can use available_externally linkage.
284      GV->setLinkage(llvm::Function::AvailableExternallyLinkage);
285    } else {
286      // In C89 mode, an 'inline' function may only occur in one translation
287      // unit in the program, but may be extern'd in others.  Give it strong
288      // external linkage.
289      GV->setLinkage(llvm::Function::ExternalLinkage);
290    }
291  }
292
293  if (ForDefinition) {
294    setGlobalVisibility(GV, D);
295
296    // Only add to llvm.used when we see a definition, otherwise we
297    // might add it multiple times or risk the value being replaced by
298    // a subsequent RAUW.
299    if (D->hasAttr<UsedAttr>())
300      AddUsedGlobal(GV);
301  }
302
303  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
304    GV->setSection(SA->getName());
305}
306
307void CodeGenModule::SetFunctionAttributes(const Decl *D,
308                                          const CGFunctionInfo &Info,
309                                          llvm::Function *F) {
310  AttributeListType AttributeList;
311  ConstructAttributeList(Info, D, AttributeList);
312
313  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
314                                        AttributeList.size()));
315
316  // Set the appropriate calling convention for the Function.
317  if (D->hasAttr<FastCallAttr>())
318    F->setCallingConv(llvm::CallingConv::X86_FastCall);
319
320  if (D->hasAttr<StdCallAttr>())
321    F->setCallingConv(llvm::CallingConv::X86_StdCall);
322}
323
324
325static CodeGenModule::GVALinkage
326GetLinkageForFunctionOrMethodDecl(const Decl *D) {
327  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
328    // "static" and attr(always_inline) functions get internal linkage.
329    if (FD->getStorageClass() == FunctionDecl::Static ||
330        FD->hasAttr<AlwaysInlineAttr>())
331      return CodeGenModule::GVA_Internal;
332    if (FD->isInline()) {
333      if (FD->getStorageClass() == FunctionDecl::Extern)
334        return CodeGenModule::GVA_ExternInline;
335      return CodeGenModule::GVA_Inline;
336    }
337  } else {
338    assert(isa<ObjCMethodDecl>(D));
339    return CodeGenModule::GVA_Internal;
340  }
341  return CodeGenModule::GVA_Normal;
342}
343
344/// SetFunctionAttributesForDefinition - Set function attributes
345/// specific to a function definition.
346void CodeGenModule::SetFunctionAttributesForDefinition(const Decl *D,
347                                                       llvm::Function *F) {
348  SetGlobalValueAttributes(D, GetLinkageForFunctionOrMethodDecl(D), F, true);
349
350  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
351    F->addFnAttr(llvm::Attribute::NoUnwind);
352
353  if (D->hasAttr<AlwaysInlineAttr>())
354    F->addFnAttr(llvm::Attribute::AlwaysInline);
355
356  if (D->hasAttr<NoinlineAttr>())
357    F->addFnAttr(llvm::Attribute::NoInline);
358}
359
360void CodeGenModule::SetMethodAttributes(const ObjCMethodDecl *MD,
361                                        llvm::Function *F) {
362  SetFunctionAttributes(MD, getTypes().getFunctionInfo(MD), F);
363
364  SetFunctionAttributesForDefinition(MD, F);
365}
366
367void CodeGenModule::SetFunctionAttributes(const FunctionDecl *FD,
368                                          llvm::Function *F) {
369  SetFunctionAttributes(FD, getTypes().getFunctionInfo(FD), F);
370
371  SetGlobalValueAttributes(FD, GetLinkageForFunctionOrMethodDecl(FD), F, false);
372}
373
374void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
375  assert(!GV->isDeclaration() &&
376         "Only globals with definition can force usage.");
377  LLVMUsed.push_back(GV);
378}
379
380void CodeGenModule::EmitLLVMUsed() {
381  // Don't create llvm.used if there is no need.
382  if (LLVMUsed.empty())
383    return;
384
385  llvm::Type *i8PTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
386  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, LLVMUsed.size());
387
388  // Convert LLVMUsed to what ConstantArray needs.
389  std::vector<llvm::Constant*> UsedArray;
390  UsedArray.resize(LLVMUsed.size());
391  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
392    UsedArray[i] =
393     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]), i8PTy);
394  }
395
396  llvm::GlobalVariable *GV =
397    new llvm::GlobalVariable(ATy, false,
398                             llvm::GlobalValue::AppendingLinkage,
399                             llvm::ConstantArray::get(ATy, UsedArray),
400                             "llvm.used", &getModule());
401
402  GV->setSection("llvm.metadata");
403}
404
405void CodeGenModule::EmitDeferred() {
406  // Emit code for any potentially referenced deferred decls.  Since a
407  // previously unused static decl may become used during the generation of code
408  // for a static function, iterate until no  changes are made.
409  while (!DeferredDeclsToEmit.empty()) {
410    const ValueDecl *D = DeferredDeclsToEmit.back();
411    DeferredDeclsToEmit.pop_back();
412
413    // The mangled name for the decl must have been emitted in GlobalDeclMap.
414    // Look it up to see if it was defined with a stronger definition (e.g. an
415    // extern inline function with a strong function redefinition).  If so,
416    // just ignore the deferred decl.
417    llvm::GlobalValue *CGRef = GlobalDeclMap[getMangledName(D)];
418    assert(CGRef && "Deferred decl wasn't referenced?");
419
420    if (!CGRef->isDeclaration())
421      continue;
422
423    // Otherwise, emit the definition and move on to the next one.
424    EmitGlobalDefinition(D);
425  }
426}
427
428/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
429/// annotation information for a given GlobalValue.  The annotation struct is
430/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
431/// GlobalValue being annotated.  The second field is the constant string
432/// created from the AnnotateAttr's annotation.  The third field is a constant
433/// string containing the name of the translation unit.  The fourth field is
434/// the line number in the file of the annotated value declaration.
435///
436/// FIXME: this does not unique the annotation string constants, as llvm-gcc
437///        appears to.
438///
439llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
440                                                const AnnotateAttr *AA,
441                                                unsigned LineNo) {
442  llvm::Module *M = &getModule();
443
444  // get [N x i8] constants for the annotation string, and the filename string
445  // which are the 2nd and 3rd elements of the global annotation structure.
446  const llvm::Type *SBP = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
447  llvm::Constant *anno = llvm::ConstantArray::get(AA->getAnnotation(), true);
448  llvm::Constant *unit = llvm::ConstantArray::get(M->getModuleIdentifier(),
449                                                  true);
450
451  // Get the two global values corresponding to the ConstantArrays we just
452  // created to hold the bytes of the strings.
453  const char *StringPrefix = getContext().Target.getStringSymbolPrefix(true);
454  llvm::GlobalValue *annoGV =
455  new llvm::GlobalVariable(anno->getType(), false,
456                           llvm::GlobalValue::InternalLinkage, anno,
457                           GV->getName() + StringPrefix, M);
458  // translation unit name string, emitted into the llvm.metadata section.
459  llvm::GlobalValue *unitGV =
460  new llvm::GlobalVariable(unit->getType(), false,
461                           llvm::GlobalValue::InternalLinkage, unit,
462                           StringPrefix, M);
463
464  // Create the ConstantStruct that is the global annotion.
465  llvm::Constant *Fields[4] = {
466    llvm::ConstantExpr::getBitCast(GV, SBP),
467    llvm::ConstantExpr::getBitCast(annoGV, SBP),
468    llvm::ConstantExpr::getBitCast(unitGV, SBP),
469    llvm::ConstantInt::get(llvm::Type::Int32Ty, LineNo)
470  };
471  return llvm::ConstantStruct::get(Fields, 4, false);
472}
473
474bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
475  // Never defer when EmitAllDecls is specified or the decl has
476  // attribute used.
477  if (Features.EmitAllDecls || Global->hasAttr<UsedAttr>())
478    return false;
479
480  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
481    // Constructors and destructors should never be deferred.
482    if (FD->hasAttr<ConstructorAttr>() || FD->hasAttr<DestructorAttr>())
483      return false;
484
485    GVALinkage Linkage = GetLinkageForFunctionOrMethodDecl(FD);
486
487    // static, static inline, always_inline, and extern inline functions can
488    // always be deferred.
489    if (Linkage == GVA_Internal || Linkage == GVA_ExternInline)
490      return true;
491
492    // inline functions can be deferred unless we're in C89 mode.
493    if (Linkage == GVA_Inline && (Features.C99 || Features.CPlusPlus))
494      return true;
495
496    return false;
497  }
498
499  const VarDecl *VD = cast<VarDecl>(Global);
500  assert(VD->isFileVarDecl() && "Invalid decl");
501  return VD->getStorageClass() == VarDecl::Static;
502}
503
504void CodeGenModule::EmitGlobal(const ValueDecl *Global) {
505  // If this is an alias definition (which otherwise looks like a declaration)
506  // emit it now.
507  if (Global->hasAttr<AliasAttr>())
508    return EmitAliasDefinition(Global);
509
510  // Ignore declarations, they will be emitted on their first use.
511  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
512    // Forward declarations are emitted lazily on first use.
513    if (!FD->isThisDeclarationADefinition())
514      return;
515  } else {
516    const VarDecl *VD = cast<VarDecl>(Global);
517    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
518
519    // Forward declarations are emitted lazily on first use.
520    if (!VD->getInit() && VD->hasExternalStorage())
521      return;
522  }
523
524  // Defer code generation when possible if this is a static definition, inline
525  // function etc.  These we only want to emit if they are used.
526  if (MayDeferGeneration(Global)) {
527    // If the value has already been used, add it directly to the
528    // DeferredDeclsToEmit list.
529    const char *MangledName = getMangledName(Global);
530    if (GlobalDeclMap.count(MangledName))
531      DeferredDeclsToEmit.push_back(Global);
532    else {
533      // Otherwise, remember that we saw a deferred decl with this name.  The
534      // first use of the mangled name will cause it to move into
535      // DeferredDeclsToEmit.
536      DeferredDecls[MangledName] = Global;
537    }
538    return;
539  }
540
541  // Otherwise emit the definition.
542  EmitGlobalDefinition(Global);
543}
544
545void CodeGenModule::EmitGlobalDefinition(const ValueDecl *D) {
546  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
547    EmitGlobalFunctionDefinition(FD);
548  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
549    EmitGlobalVarDefinition(VD);
550  } else {
551    assert(0 && "Invalid argument to EmitGlobalDefinition()");
552  }
553}
554
555/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
556/// module, create and return an llvm Function with the specified type. If there
557/// is something in the module with the specified name, return it potentially
558/// bitcasted to the right type.
559///
560/// If D is non-null, it specifies a decl that correspond to this.  This is used
561/// to set the attributes on the function when it is first created.
562llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(const char *MangledName,
563                                                       const llvm::Type *Ty,
564                                                       const FunctionDecl *D) {
565  // Lookup the entry, lazily creating it if necessary.
566  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
567  if (Entry) {
568    if (Entry->getType()->getElementType() == Ty)
569      return Entry;
570
571    // Make sure the result is of the correct type.
572    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
573    return llvm::ConstantExpr::getBitCast(Entry, PTy);
574  }
575
576  // This is the first use or definition of a mangled name.  If there is a
577  // deferred decl with this name, remember that we need to emit it at the end
578  // of the file.
579  llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
580  DeferredDecls.find(MangledName);
581  if (DDI != DeferredDecls.end()) {
582    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
583    // list, and remove it from DeferredDecls (since we don't need it anymore).
584    DeferredDeclsToEmit.push_back(DDI->second);
585    DeferredDecls.erase(DDI);
586  }
587
588  // This function doesn't have a complete type (for example, the return
589  // type is an incomplete struct). Use a fake type instead, and make
590  // sure not to try to set attributes.
591  bool ShouldSetAttributes = true;
592  if (!isa<llvm::FunctionType>(Ty)) {
593    Ty = llvm::FunctionType::get(llvm::Type::VoidTy,
594                                 std::vector<const llvm::Type*>(), false);
595    ShouldSetAttributes = false;
596  }
597  llvm::Function *F = llvm::Function::Create(cast<llvm::FunctionType>(Ty),
598                                             llvm::Function::ExternalLinkage,
599                                             "", &getModule());
600  F->setName(MangledName);
601  if (D && ShouldSetAttributes)
602    SetFunctionAttributes(D, F);
603  Entry = F;
604  return F;
605}
606
607/// GetAddrOfFunction - Return the address of the given function.  If Ty is
608/// non-null, then this function will use the specified type if it has to
609/// create it (this occurs when we see a definition of the function).
610llvm::Constant *CodeGenModule::GetAddrOfFunction(const FunctionDecl *D,
611                                                 const llvm::Type *Ty) {
612  // If there was no specific requested type, just convert it now.
613  if (!Ty)
614    Ty = getTypes().ConvertType(D->getType());
615  return GetOrCreateLLVMFunction(getMangledName(D), Ty, D);
616}
617
618/// CreateRuntimeFunction - Create a new runtime function with the specified
619/// type and name.
620llvm::Constant *
621CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
622                                     const char *Name) {
623  // Convert Name to be a uniqued string from the IdentifierInfo table.
624  Name = getContext().Idents.get(Name).getName();
625  return GetOrCreateLLVMFunction(Name, FTy, 0);
626}
627
628/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
629/// create and return an llvm GlobalVariable with the specified type.  If there
630/// is something in the module with the specified name, return it potentially
631/// bitcasted to the right type.
632///
633/// If D is non-null, it specifies a decl that correspond to this.  This is used
634/// to set the attributes on the global when it is first created.
635llvm::Constant *CodeGenModule::GetOrCreateLLVMGlobal(const char *MangledName,
636                                                     const llvm::PointerType*Ty,
637                                                     const VarDecl *D) {
638  // Lookup the entry, lazily creating it if necessary.
639  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
640  if (Entry) {
641    if (Entry->getType() == Ty)
642      return Entry;
643
644    // Make sure the result is of the correct type.
645    return llvm::ConstantExpr::getBitCast(Entry, Ty);
646  }
647
648  // We don't support __thread yet.
649  if (D && D->isThreadSpecified())
650    ErrorUnsupported(D, "thread local ('__thread') variable", true);
651
652  // This is the first use or definition of a mangled name.  If there is a
653  // deferred decl with this name, remember that we need to emit it at the end
654  // of the file.
655  llvm::DenseMap<const char*, const ValueDecl*>::iterator DDI =
656    DeferredDecls.find(MangledName);
657  if (DDI != DeferredDecls.end()) {
658    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
659    // list, and remove it from DeferredDecls (since we don't need it anymore).
660    DeferredDeclsToEmit.push_back(DDI->second);
661    DeferredDecls.erase(DDI);
662  }
663
664  llvm::GlobalVariable *GV =
665    new llvm::GlobalVariable(Ty->getElementType(), false,
666                             llvm::GlobalValue::ExternalLinkage,
667                             0, "", &getModule(),
668                             0, Ty->getAddressSpace());
669  GV->setName(MangledName);
670
671  // Handle things which are present even on external declarations.
672  if (D) {
673    // FIXME: This code is overly simple and should be merged with
674    // other global handling.
675    GV->setConstant(D->getType().isConstant(Context));
676
677    // FIXME: Merge with other attribute handling code.
678    if (D->getStorageClass() == VarDecl::PrivateExtern)
679      GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
680
681    if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
682      GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
683  }
684
685  return Entry = GV;
686}
687
688
689/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
690/// given global variable.  If Ty is non-null and if the global doesn't exist,
691/// then it will be greated with the specified type instead of whatever the
692/// normal requested type would be.
693llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
694                                                  const llvm::Type *Ty) {
695  assert(D->hasGlobalStorage() && "Not a global variable");
696  QualType ASTTy = D->getType();
697  if (Ty == 0)
698    Ty = getTypes().ConvertTypeForMem(ASTTy);
699
700  const llvm::PointerType *PTy =
701    llvm::PointerType::get(Ty, ASTTy.getAddressSpace());
702  return GetOrCreateLLVMGlobal(getMangledName(D), PTy, D);
703}
704
705/// CreateRuntimeVariable - Create a new runtime global variable with the
706/// specified type and name.
707llvm::Constant *
708CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
709                                     const char *Name) {
710  // Convert Name to be a uniqued string from the IdentifierInfo table.
711  Name = getContext().Idents.get(Name).getName();
712  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0);
713}
714
715void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
716  llvm::Constant *Init = 0;
717  QualType ASTTy = D->getType();
718
719  if (D->getInit() == 0) {
720    // This is a tentative definition; tentative definitions are
721    // implicitly initialized with { 0 }
722    const llvm::Type *InitTy = getTypes().ConvertTypeForMem(ASTTy);
723    if (ASTTy->isIncompleteArrayType()) {
724      // An incomplete array is normally [ TYPE x 0 ], but we need
725      // to fix it to [ TYPE x 1 ].
726      const llvm::ArrayType* ATy = cast<llvm::ArrayType>(InitTy);
727      InitTy = llvm::ArrayType::get(ATy->getElementType(), 1);
728    }
729    Init = llvm::Constant::getNullValue(InitTy);
730  } else {
731    Init = EmitConstantExpr(D->getInit(), D->getType());
732    if (!Init) {
733      ErrorUnsupported(D, "static initializer");
734      QualType T = D->getInit()->getType();
735      Init = llvm::UndefValue::get(getTypes().ConvertType(T));
736    }
737  }
738
739  const llvm::Type* InitType = Init->getType();
740  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
741
742  // Strip off a bitcast if we got one back.
743  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
744    assert(CE->getOpcode() == llvm::Instruction::BitCast);
745    Entry = CE->getOperand(0);
746  }
747
748  // Entry is now either a Function or GlobalVariable.
749  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
750
751  // If we already have this global and it has an initializer, then
752  // we are in the rare situation where we emitted the defining
753  // declaration of the global and are now being asked to emit a
754  // definition which would be common. This occurs, for example, in
755  // the following situation because statics can be emitted out of
756  // order:
757  //
758  //  static int x;
759  //  static int *y = &x;
760  //  static int x = 10;
761  //  int **z = &y;
762  //
763  // Bail here so we don't blow away the definition. Note that if we
764  // can't distinguish here if we emitted a definition with a null
765  // initializer, but this case is safe.
766  if (GV && GV->hasInitializer() && !GV->getInitializer()->isNullValue()) {
767    assert(!D->getInit() && "Emitting multiple definitions of a decl!");
768    return;
769  }
770
771  // We have a definition after a declaration with the wrong type.
772  // We must make a new GlobalVariable* and update everything that used OldGV
773  // (a declaration or tentative definition) with the new GlobalVariable*
774  // (which will be a definition).
775  //
776  // This happens if there is a prototype for a global (e.g.
777  // "extern int x[];") and then a definition of a different type (e.g.
778  // "int x[10];"). This also happens when an initializer has a different type
779  // from the type of the global (this happens with unions).
780  if (GV == 0 ||
781      GV->getType()->getElementType() != InitType ||
782      GV->getType()->getAddressSpace() != ASTTy.getAddressSpace()) {
783
784    // Remove the old entry from GlobalDeclMap so that we'll create a new one.
785    GlobalDeclMap.erase(getMangledName(D));
786
787    // Make a new global with the correct type, this is now guaranteed to work.
788    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
789    GV->takeName(cast<llvm::GlobalValue>(Entry));
790
791    // Replace all uses of the old global with the new global
792    llvm::Constant *NewPtrForOldDecl =
793        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
794    Entry->replaceAllUsesWith(NewPtrForOldDecl);
795
796    // Erase the old global, since it is no longer used.
797    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
798  }
799
800  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
801    SourceManager &SM = Context.getSourceManager();
802    AddAnnotation(EmitAnnotateAttr(GV, AA,
803                              SM.getInstantiationLineNumber(D->getLocation())));
804  }
805
806  GV->setInitializer(Init);
807  GV->setConstant(D->getType().isConstant(Context));
808  GV->setAlignment(getContext().getDeclAlignInBytes(D));
809
810  // Set the llvm linkage type as appropriate.
811  if (D->getStorageClass() == VarDecl::Static)
812    GV->setLinkage(llvm::Function::InternalLinkage);
813  else if (D->hasAttr<DLLImportAttr>())
814    GV->setLinkage(llvm::Function::DLLImportLinkage);
815  else if (D->hasAttr<DLLExportAttr>())
816    GV->setLinkage(llvm::Function::DLLExportLinkage);
817  else if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakImportAttr>())
818    GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
819  else if (!CompileOpts.NoCommon &&
820           (!D->hasExternalStorage() && !D->getInit()))
821    GV->setLinkage(llvm::GlobalVariable::CommonLinkage);
822  else
823    GV->setLinkage(llvm::GlobalVariable::ExternalLinkage);
824
825  setGlobalVisibility(GV, D);
826
827  if (D->hasAttr<UsedAttr>())
828    AddUsedGlobal(GV);
829
830  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
831    GV->setSection(SA->getName());
832
833  // Emit global variable debug information.
834  if (CGDebugInfo *DI = getDebugInfo()) {
835    DI->setLocation(D->getLocation());
836    DI->EmitGlobalVariable(GV, D);
837  }
838}
839
840
841void CodeGenModule::EmitGlobalFunctionDefinition(const FunctionDecl *D) {
842  const llvm::FunctionType *Ty;
843
844  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
845    bool isVariadic = D->getType()->getAsFunctionProtoType()->isVariadic();
846
847    Ty = getTypes().GetFunctionType(getTypes().getFunctionInfo(MD), isVariadic);
848  } else {
849    Ty = cast<llvm::FunctionType>(getTypes().ConvertType(D->getType()));
850
851    // As a special case, make sure that definitions of K&R function
852    // "type foo()" aren't declared as varargs (which forces the backend
853    // to do unnecessary work).
854    if (D->getType()->isFunctionNoProtoType()) {
855      assert(Ty->isVarArg() && "Didn't lower type as expected");
856      // Due to stret, the lowered function could have arguments.
857      // Just create the same type as was lowered by ConvertType
858      // but strip off the varargs bit.
859      std::vector<const llvm::Type*> Args(Ty->param_begin(), Ty->param_end());
860      Ty = llvm::FunctionType::get(Ty->getReturnType(), Args, false);
861    }
862  }
863
864  // Get or create the prototype for teh function.
865  llvm::Constant *Entry = GetAddrOfFunction(D, Ty);
866
867  // Strip off a bitcast if we got one back.
868  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
869    assert(CE->getOpcode() == llvm::Instruction::BitCast);
870    Entry = CE->getOperand(0);
871  }
872
873
874  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
875    // If the types mismatch then we have to rewrite the definition.
876    assert(cast<llvm::GlobalValue>(Entry)->isDeclaration() &&
877           "Shouldn't replace non-declaration");
878
879    // F is the Function* for the one with the wrong type, we must make a new
880    // Function* and update everything that used F (a declaration) with the new
881    // Function* (which will be a definition).
882    //
883    // This happens if there is a prototype for a function
884    // (e.g. "int f()") and then a definition of a different type
885    // (e.g. "int f(int x)").  Start by making a new function of the
886    // correct type, RAUW, then steal the name.
887    GlobalDeclMap.erase(getMangledName(D));
888    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(D, Ty));
889    NewFn->takeName(cast<llvm::GlobalValue>(Entry));
890
891    // Replace uses of F with the Function we will endow with a body.
892    llvm::Constant *NewPtrForOldDecl =
893      llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
894    Entry->replaceAllUsesWith(NewPtrForOldDecl);
895
896    // Ok, delete the old function now, which is dead.
897    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
898
899    Entry = NewFn;
900  }
901
902  llvm::Function *Fn = cast<llvm::Function>(Entry);
903
904  CodeGenFunction(*this).GenerateCode(D, Fn);
905
906  SetFunctionAttributesForDefinition(D, Fn);
907
908  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
909    AddGlobalCtor(Fn, CA->getPriority());
910  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
911    AddGlobalDtor(Fn, DA->getPriority());
912}
913
914void CodeGenModule::EmitAliasDefinition(const ValueDecl *D) {
915  const AliasAttr *AA = D->getAttr<AliasAttr>();
916  assert(AA && "Not an alias?");
917
918  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
919
920  // Unique the name through the identifier table.
921  const char *AliaseeName = AA->getAliasee().c_str();
922  AliaseeName = getContext().Idents.get(AliaseeName).getName();
923
924  // Create a reference to the named value.  This ensures that it is emitted
925  // if a deferred decl.
926  llvm::Constant *Aliasee;
927  if (isa<llvm::FunctionType>(DeclTy))
928    Aliasee = GetOrCreateLLVMFunction(AliaseeName, DeclTy, 0);
929  else
930    Aliasee = GetOrCreateLLVMGlobal(AliaseeName,
931                                    llvm::PointerType::getUnqual(DeclTy), 0);
932
933  // Create the new alias itself, but don't set a name yet.
934  llvm::GlobalValue *GA =
935    new llvm::GlobalAlias(Aliasee->getType(),
936                          llvm::Function::ExternalLinkage,
937                          "", Aliasee, &getModule());
938
939  // See if there is already something with the alias' name in the module.
940  const char *MangledName = getMangledName(D);
941  llvm::GlobalValue *&Entry = GlobalDeclMap[MangledName];
942
943  if (Entry && !Entry->isDeclaration()) {
944    // If there is a definition in the module, then it wins over the alias.
945    // This is dubious, but allow it to be safe.  Just ignore the alias.
946    GA->eraseFromParent();
947    return;
948  }
949
950  if (Entry) {
951    // If there is a declaration in the module, then we had an extern followed
952    // by the alias, as in:
953    //   extern int test6();
954    //   ...
955    //   int test6() __attribute__((alias("test7")));
956    //
957    // Remove it and replace uses of it with the alias.
958
959    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
960                                                          Entry->getType()));
961    Entry->eraseFromParent();
962  }
963
964  // Now we know that there is no conflict, set the name.
965  Entry = GA;
966  GA->setName(MangledName);
967
968  // Alias should never be internal or inline.
969  SetGlobalValueAttributes(D, GVA_Normal, GA, true);
970}
971
972/// getBuiltinLibFunction - Given a builtin id for a function like
973/// "__builtin_fabsf", return a Function* for "fabsf".
974llvm::Value *CodeGenModule::getBuiltinLibFunction(unsigned BuiltinID) {
975  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
976          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
977         "isn't a lib fn");
978
979  // Get the name, skip over the __builtin_ prefix (if necessary).
980  const char *Name = Context.BuiltinInfo.GetName(BuiltinID);
981  if (Context.BuiltinInfo.isLibFunction(BuiltinID))
982    Name += 10;
983
984  // Get the type for the builtin.
985  Builtin::Context::GetBuiltinTypeError Error;
986  QualType Type = Context.BuiltinInfo.GetBuiltinType(BuiltinID, Context, Error);
987  assert(Error == Builtin::Context::GE_None && "Can't get builtin type");
988
989  const llvm::FunctionType *Ty =
990    cast<llvm::FunctionType>(getTypes().ConvertType(Type));
991
992  // Unique the name through the identifier table.
993  Name = getContext().Idents.get(Name).getName();
994  // FIXME: param attributes for sext/zext etc.
995  return GetOrCreateLLVMFunction(Name, Ty, 0);
996}
997
998llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
999                                            unsigned NumTys) {
1000  return llvm::Intrinsic::getDeclaration(&getModule(),
1001                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1002}
1003
1004llvm::Function *CodeGenModule::getMemCpyFn() {
1005  if (MemCpyFn) return MemCpyFn;
1006  const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1007  return MemCpyFn = getIntrinsic(llvm::Intrinsic::memcpy, &IntPtr, 1);
1008}
1009
1010llvm::Function *CodeGenModule::getMemMoveFn() {
1011  if (MemMoveFn) return MemMoveFn;
1012  const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1013  return MemMoveFn = getIntrinsic(llvm::Intrinsic::memmove, &IntPtr, 1);
1014}
1015
1016llvm::Function *CodeGenModule::getMemSetFn() {
1017  if (MemSetFn) return MemSetFn;
1018  const llvm::Type *IntPtr = TheTargetData.getIntPtrType();
1019  return MemSetFn = getIntrinsic(llvm::Intrinsic::memset, &IntPtr, 1);
1020}
1021
1022static void appendFieldAndPadding(CodeGenModule &CGM,
1023                                  std::vector<llvm::Constant*>& Fields,
1024                                  FieldDecl *FieldD, FieldDecl *NextFieldD,
1025                                  llvm::Constant* Field,
1026                                  RecordDecl* RD, const llvm::StructType *STy) {
1027  // Append the field.
1028  Fields.push_back(Field);
1029
1030  int StructFieldNo = CGM.getTypes().getLLVMFieldNo(FieldD);
1031
1032  int NextStructFieldNo;
1033  if (!NextFieldD) {
1034    NextStructFieldNo = STy->getNumElements();
1035  } else {
1036    NextStructFieldNo = CGM.getTypes().getLLVMFieldNo(NextFieldD);
1037  }
1038
1039  // Append padding
1040  for (int i = StructFieldNo + 1; i < NextStructFieldNo; i++) {
1041    llvm::Constant *C =
1042      llvm::Constant::getNullValue(STy->getElementType(StructFieldNo + 1));
1043
1044    Fields.push_back(C);
1045  }
1046}
1047
1048llvm::Constant *CodeGenModule::
1049GetAddrOfConstantCFString(const StringLiteral *Literal) {
1050  std::string str;
1051  unsigned StringLength;
1052
1053  bool isUTF16 = false;
1054  if (Literal->containsNonAsciiOrNull()) {
1055    // Convert from UTF-8 to UTF-16.
1056    llvm::SmallVector<UTF16, 128> ToBuf(Literal->getByteLength());
1057    const UTF8 *FromPtr = (UTF8 *)Literal->getStrData();
1058    UTF16 *ToPtr = &ToBuf[0];
1059
1060    ConversionResult Result;
1061    Result = ConvertUTF8toUTF16(&FromPtr, FromPtr+Literal->getByteLength(),
1062                                &ToPtr, ToPtr+Literal->getByteLength(),
1063                                strictConversion);
1064    if (Result == conversionOK) {
1065      // FIXME: Storing UTF-16 in a C string is a hack to test Unicode strings
1066      // without doing more surgery to this routine. Since we aren't explicitly
1067      // checking for endianness here, it's also a bug (when generating code for
1068      // a target that doesn't match the host endianness). Modeling this as an
1069      // i16 array is likely the cleanest solution.
1070      StringLength = ToPtr-&ToBuf[0];
1071      str.assign((char *)&ToBuf[0], StringLength*2);// Twice as many UTF8 chars.
1072      isUTF16 = true;
1073    } else if (Result == sourceIllegal) {
1074      // FIXME: Have Sema::CheckObjCString() validate the UTF-8 string.
1075      str.assign(Literal->getStrData(), Literal->getByteLength());
1076      StringLength = str.length();
1077    } else
1078      assert(Result == conversionOK && "UTF-8 to UTF-16 conversion failed");
1079
1080  } else {
1081    str.assign(Literal->getStrData(), Literal->getByteLength());
1082    StringLength = str.length();
1083  }
1084  llvm::StringMapEntry<llvm::Constant *> &Entry =
1085    CFConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1086
1087  if (llvm::Constant *C = Entry.getValue())
1088    return C;
1089
1090  llvm::Constant *Zero = llvm::Constant::getNullValue(llvm::Type::Int32Ty);
1091  llvm::Constant *Zeros[] = { Zero, Zero };
1092
1093  if (!CFConstantStringClassRef) {
1094    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1095    Ty = llvm::ArrayType::get(Ty, 0);
1096
1097    // FIXME: This is fairly broken if
1098    // __CFConstantStringClassReference is already defined, in that it
1099    // will get renamed and the user will most likely see an opaque
1100    // error message. This is a general issue with relying on
1101    // particular names.
1102    llvm::GlobalVariable *GV =
1103      new llvm::GlobalVariable(Ty, false,
1104                               llvm::GlobalVariable::ExternalLinkage, 0,
1105                               "__CFConstantStringClassReference",
1106                               &getModule());
1107
1108    // Decay array -> ptr
1109    CFConstantStringClassRef =
1110      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1111  }
1112
1113  QualType CFTy = getContext().getCFConstantStringType();
1114  RecordDecl *CFRD = CFTy->getAsRecordType()->getDecl();
1115
1116  const llvm::StructType *STy =
1117    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1118
1119  std::vector<llvm::Constant*> Fields;
1120  RecordDecl::field_iterator Field = CFRD->field_begin(getContext());
1121
1122  // Class pointer.
1123  FieldDecl *CurField = *Field++;
1124  FieldDecl *NextField = *Field++;
1125  appendFieldAndPadding(*this, Fields, CurField, NextField,
1126                        CFConstantStringClassRef, CFRD, STy);
1127
1128  // Flags.
1129  CurField = NextField;
1130  NextField = *Field++;
1131  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1132  appendFieldAndPadding(*this, Fields, CurField, NextField,
1133                        isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0)
1134                                : llvm::ConstantInt::get(Ty, 0x07C8),
1135                        CFRD, STy);
1136
1137  // String pointer.
1138  CurField = NextField;
1139  NextField = *Field++;
1140  llvm::Constant *C = llvm::ConstantArray::get(str);
1141
1142  const char *Sect, *Prefix;
1143  bool isConstant;
1144  if (isUTF16) {
1145    Prefix = getContext().Target.getUnicodeStringSymbolPrefix();
1146    Sect = getContext().Target.getUnicodeStringSection();
1147    // FIXME: Why does GCC not set constant here?
1148    isConstant = false;
1149  } else {
1150    Prefix = getContext().Target.getStringSymbolPrefix(true);
1151    Sect = getContext().Target.getCFStringDataSection();
1152    // FIXME: -fwritable-strings should probably affect this, but we
1153    // are following gcc here.
1154    isConstant = true;
1155  }
1156  llvm::GlobalVariable *GV =
1157    new llvm::GlobalVariable(C->getType(), isConstant,
1158                             llvm::GlobalValue::InternalLinkage,
1159                             C, Prefix, &getModule());
1160  if (Sect)
1161    GV->setSection(Sect);
1162  if (isUTF16) {
1163    unsigned Align = getContext().getTypeAlign(getContext().ShortTy)/8;
1164    GV->setAlignment(Align);
1165  }
1166  appendFieldAndPadding(*this, Fields, CurField, NextField,
1167                        llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2),
1168                        CFRD, STy);
1169
1170  // String length.
1171  CurField = NextField;
1172  NextField = 0;
1173  Ty = getTypes().ConvertType(getContext().LongTy);
1174  appendFieldAndPadding(*this, Fields, CurField, NextField,
1175                        llvm::ConstantInt::get(Ty, StringLength), CFRD, STy);
1176
1177  // The struct.
1178  C = llvm::ConstantStruct::get(STy, Fields);
1179  GV = new llvm::GlobalVariable(C->getType(), true,
1180                                llvm::GlobalVariable::InternalLinkage, C,
1181                                getContext().Target.getCFStringSymbolPrefix(),
1182                                &getModule());
1183  if (const char *Sect = getContext().Target.getCFStringSection())
1184    GV->setSection(Sect);
1185  Entry.setValue(GV);
1186
1187  return GV;
1188}
1189
1190/// GetStringForStringLiteral - Return the appropriate bytes for a
1191/// string literal, properly padded to match the literal type.
1192std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1193  const char *StrData = E->getStrData();
1194  unsigned Len = E->getByteLength();
1195
1196  const ConstantArrayType *CAT =
1197    getContext().getAsConstantArrayType(E->getType());
1198  assert(CAT && "String isn't pointer or array!");
1199
1200  // Resize the string to the right size.
1201  std::string Str(StrData, StrData+Len);
1202  uint64_t RealLen = CAT->getSize().getZExtValue();
1203
1204  if (E->isWide())
1205    RealLen *= getContext().Target.getWCharWidth()/8;
1206
1207  Str.resize(RealLen, '\0');
1208
1209  return Str;
1210}
1211
1212/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1213/// constant array for the given string literal.
1214llvm::Constant *
1215CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1216  // FIXME: This can be more efficient.
1217  return GetAddrOfConstantString(GetStringForStringLiteral(S));
1218}
1219
1220/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1221/// array for the given ObjCEncodeExpr node.
1222llvm::Constant *
1223CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1224  std::string Str;
1225  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1226
1227  return GetAddrOfConstantCString(Str);
1228}
1229
1230
1231/// GenerateWritableString -- Creates storage for a string literal.
1232static llvm::Constant *GenerateStringLiteral(const std::string &str,
1233                                             bool constant,
1234                                             CodeGenModule &CGM,
1235                                             const char *GlobalName) {
1236  // Create Constant for this string literal. Don't add a '\0'.
1237  llvm::Constant *C = llvm::ConstantArray::get(str, false);
1238
1239  // Create a global variable for this string
1240  return new llvm::GlobalVariable(C->getType(), constant,
1241                                  llvm::GlobalValue::InternalLinkage,
1242                                  C, GlobalName, &CGM.getModule());
1243}
1244
1245/// GetAddrOfConstantString - Returns a pointer to a character array
1246/// containing the literal. This contents are exactly that of the
1247/// given string, i.e. it will not be null terminated automatically;
1248/// see GetAddrOfConstantCString. Note that whether the result is
1249/// actually a pointer to an LLVM constant depends on
1250/// Feature.WriteableStrings.
1251///
1252/// The result has pointer to array type.
1253llvm::Constant *CodeGenModule::GetAddrOfConstantString(const std::string &str,
1254                                                       const char *GlobalName) {
1255  bool IsConstant = !Features.WritableStrings;
1256
1257  // Get the default prefix if a name wasn't specified.
1258  if (!GlobalName)
1259    GlobalName = getContext().Target.getStringSymbolPrefix(IsConstant);
1260
1261  // Don't share any string literals if strings aren't constant.
1262  if (!IsConstant)
1263    return GenerateStringLiteral(str, false, *this, GlobalName);
1264
1265  llvm::StringMapEntry<llvm::Constant *> &Entry =
1266  ConstantStringMap.GetOrCreateValue(&str[0], &str[str.length()]);
1267
1268  if (Entry.getValue())
1269    return Entry.getValue();
1270
1271  // Create a global variable for this.
1272  llvm::Constant *C = GenerateStringLiteral(str, true, *this, GlobalName);
1273  Entry.setValue(C);
1274  return C;
1275}
1276
1277/// GetAddrOfConstantCString - Returns a pointer to a character
1278/// array containing the literal and a terminating '\-'
1279/// character. The result has pointer to array type.
1280llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &str,
1281                                                        const char *GlobalName){
1282  return GetAddrOfConstantString(str + '\0', GlobalName);
1283}
1284
1285/// EmitObjCPropertyImplementations - Emit information for synthesized
1286/// properties for an implementation.
1287void CodeGenModule::EmitObjCPropertyImplementations(const
1288                                                    ObjCImplementationDecl *D) {
1289  for (ObjCImplementationDecl::propimpl_iterator i = D->propimpl_begin(),
1290         e = D->propimpl_end(); i != e; ++i) {
1291    ObjCPropertyImplDecl *PID = *i;
1292
1293    // Dynamic is just for type-checking.
1294    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1295      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1296
1297      // Determine which methods need to be implemented, some may have
1298      // been overridden. Note that ::isSynthesized is not the method
1299      // we want, that just indicates if the decl came from a
1300      // property. What we want to know is if the method is defined in
1301      // this implementation.
1302      if (!D->getInstanceMethod(PD->getGetterName()))
1303        CodeGenFunction(*this).GenerateObjCGetter(
1304                                 const_cast<ObjCImplementationDecl *>(D), PID);
1305      if (!PD->isReadOnly() &&
1306          !D->getInstanceMethod(PD->getSetterName()))
1307        CodeGenFunction(*this).GenerateObjCSetter(
1308                                 const_cast<ObjCImplementationDecl *>(D), PID);
1309    }
1310  }
1311}
1312
1313/// EmitNamespace - Emit all declarations in a namespace.
1314void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
1315  for (RecordDecl::decl_iterator I = ND->decls_begin(getContext()),
1316         E = ND->decls_end(getContext());
1317       I != E; ++I)
1318    EmitTopLevelDecl(*I);
1319}
1320
1321// EmitLinkageSpec - Emit all declarations in a linkage spec.
1322void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
1323  if (LSD->getLanguage() != LinkageSpecDecl::lang_c) {
1324    ErrorUnsupported(LSD, "linkage spec");
1325    return;
1326  }
1327
1328  for (RecordDecl::decl_iterator I = LSD->decls_begin(getContext()),
1329         E = LSD->decls_end(getContext());
1330       I != E; ++I)
1331    EmitTopLevelDecl(*I);
1332}
1333
1334/// EmitTopLevelDecl - Emit code for a single top level declaration.
1335void CodeGenModule::EmitTopLevelDecl(Decl *D) {
1336  // If an error has occurred, stop code generation, but continue
1337  // parsing and semantic analysis (to ensure all warnings and errors
1338  // are emitted).
1339  if (Diags.hasErrorOccurred())
1340    return;
1341
1342  switch (D->getKind()) {
1343  case Decl::CXXMethod:
1344  case Decl::Function:
1345  case Decl::Var:
1346    EmitGlobal(cast<ValueDecl>(D));
1347    break;
1348
1349  case Decl::Namespace:
1350    EmitNamespace(cast<NamespaceDecl>(D));
1351    break;
1352
1353    // Objective-C Decls
1354
1355  // Forward declarations, no (immediate) code generation.
1356  case Decl::ObjCClass:
1357  case Decl::ObjCForwardProtocol:
1358  case Decl::ObjCCategory:
1359    break;
1360  case Decl::ObjCInterface:
1361    // If we already laid out this interface due to an @class, and if we
1362    // codegen'd a reference it, update the 'opaque' type to be a real type now.
1363    Types.UpdateCompletedType(cast<ObjCInterfaceDecl>(D));
1364    break;
1365
1366  case Decl::ObjCProtocol:
1367    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
1368    break;
1369
1370  case Decl::ObjCCategoryImpl:
1371    // Categories have properties but don't support synthesize so we
1372    // can ignore them here.
1373    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
1374    break;
1375
1376  case Decl::ObjCImplementation: {
1377    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
1378    EmitObjCPropertyImplementations(OMD);
1379    Runtime->GenerateClass(OMD);
1380    break;
1381  }
1382  case Decl::ObjCMethod: {
1383    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
1384    // If this is not a prototype, emit the body.
1385    if (OMD->getBody())
1386      CodeGenFunction(*this).GenerateObjCMethod(OMD);
1387    break;
1388  }
1389  case Decl::ObjCCompatibleAlias:
1390    // compatibility-alias is a directive and has no code gen.
1391    break;
1392
1393  case Decl::LinkageSpec:
1394    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
1395    break;
1396
1397  case Decl::FileScopeAsm: {
1398    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
1399    std::string AsmString(AD->getAsmString()->getStrData(),
1400                          AD->getAsmString()->getByteLength());
1401
1402    const std::string &S = getModule().getModuleInlineAsm();
1403    if (S.empty())
1404      getModule().setModuleInlineAsm(AsmString);
1405    else
1406      getModule().setModuleInlineAsm(S + '\n' + AsmString);
1407    break;
1408  }
1409
1410  default:
1411    // Make sure we handled everything we should, every other kind is
1412    // a non-top-level decl.  FIXME: Would be nice to have an
1413    // isTopLevelDeclKind function. Need to recode Decl::Kind to do
1414    // that easily.
1415    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
1416  }
1417}
1418