CodeGenModule.cpp revision dbd3c85825ad59896292ac7d326fe1985768f1e3
1//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This coordinates the per-module state used while generating code.
11//
12//===----------------------------------------------------------------------===//
13
14#include "CodeGenModule.h"
15#include "CGDebugInfo.h"
16#include "CodeGenFunction.h"
17#include "CodeGenTBAA.h"
18#include "CGCall.h"
19#include "CGCXXABI.h"
20#include "CGObjCRuntime.h"
21#include "TargetInfo.h"
22#include "clang/Frontend/CodeGenOptions.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CharUnits.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclCXX.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/Mangle.h"
29#include "clang/AST/RecordLayout.h"
30#include "clang/Basic/Builtins.h"
31#include "clang/Basic/Diagnostic.h"
32#include "clang/Basic/SourceManager.h"
33#include "clang/Basic/TargetInfo.h"
34#include "clang/Basic/ConvertUTF.h"
35#include "llvm/CallingConv.h"
36#include "llvm/Module.h"
37#include "llvm/Intrinsics.h"
38#include "llvm/LLVMContext.h"
39#include "llvm/ADT/Triple.h"
40#include "llvm/Target/Mangler.h"
41#include "llvm/Target/TargetData.h"
42#include "llvm/Support/CallSite.h"
43#include "llvm/Support/ErrorHandling.h"
44using namespace clang;
45using namespace CodeGen;
46
47static CGCXXABI &createCXXABI(CodeGenModule &CGM) {
48  switch (CGM.getContext().Target.getCXXABI()) {
49  case CXXABI_ARM: return *CreateARMCXXABI(CGM);
50  case CXXABI_Itanium: return *CreateItaniumCXXABI(CGM);
51  case CXXABI_Microsoft: return *CreateMicrosoftCXXABI(CGM);
52  }
53
54  llvm_unreachable("invalid C++ ABI kind");
55  return *CreateItaniumCXXABI(CGM);
56}
57
58
59CodeGenModule::CodeGenModule(ASTContext &C, const CodeGenOptions &CGO,
60                             llvm::Module &M, const llvm::TargetData &TD,
61                             Diagnostic &diags)
62  : Context(C), Features(C.getLangOptions()), CodeGenOpts(CGO), TheModule(M),
63    TheTargetData(TD), TheTargetCodeGenInfo(0), Diags(diags),
64    ABI(createCXXABI(*this)),
65    Types(C, M, TD, getTargetCodeGenInfo().getABIInfo(), ABI, CGO),
66    TBAA(0),
67    VTables(*this), Runtime(0), DebugInfo(0), ARCData(0), RRData(0),
68    CFConstantStringClassRef(0), ConstantStringClassRef(0),
69    VMContext(M.getContext()),
70    NSConcreteGlobalBlockDecl(0), NSConcreteStackBlockDecl(0),
71    NSConcreteGlobalBlock(0), NSConcreteStackBlock(0),
72    BlockObjectAssignDecl(0), BlockObjectDisposeDecl(0),
73    BlockObjectAssign(0), BlockObjectDispose(0),
74    BlockDescriptorType(0), GenericBlockLiteralType(0) {
75  if (Features.ObjC1)
76     createObjCRuntime();
77
78  // Enable TBAA unless it's suppressed.
79  if (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)
80    TBAA = new CodeGenTBAA(Context, VMContext, getLangOptions(),
81                           ABI.getMangleContext());
82
83  // If debug info or coverage generation is enabled, create the CGDebugInfo
84  // object.
85  if (CodeGenOpts.DebugInfo || CodeGenOpts.EmitGcovArcs ||
86      CodeGenOpts.EmitGcovNotes)
87    DebugInfo = new CGDebugInfo(*this);
88
89  Block.GlobalUniqueCount = 0;
90
91  if (C.getLangOptions().ObjCAutoRefCount)
92    ARCData = new ARCEntrypoints();
93  RRData = new RREntrypoints();
94
95  // Initialize the type cache.
96  llvm::LLVMContext &LLVMContext = M.getContext();
97  VoidTy = llvm::Type::getVoidTy(LLVMContext);
98  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
99  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
100  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
101  PointerWidthInBits = C.Target.getPointerWidth(0);
102  PointerAlignInBytes =
103    C.toCharUnitsFromBits(C.Target.getPointerAlign(0)).getQuantity();
104  IntTy = llvm::IntegerType::get(LLVMContext, C.Target.getIntWidth());
105  IntPtrTy = llvm::IntegerType::get(LLVMContext, PointerWidthInBits);
106  Int8PtrTy = Int8Ty->getPointerTo(0);
107  Int8PtrPtrTy = Int8PtrTy->getPointerTo(0);
108}
109
110CodeGenModule::~CodeGenModule() {
111  delete Runtime;
112  delete &ABI;
113  delete TBAA;
114  delete DebugInfo;
115  delete ARCData;
116  delete RRData;
117}
118
119void CodeGenModule::createObjCRuntime() {
120  if (!Features.NeXTRuntime)
121    Runtime = CreateGNUObjCRuntime(*this);
122  else
123    Runtime = CreateMacObjCRuntime(*this);
124}
125
126void CodeGenModule::Release() {
127  EmitDeferred();
128  EmitCXXGlobalInitFunc();
129  EmitCXXGlobalDtorFunc();
130  if (Runtime)
131    if (llvm::Function *ObjCInitFunction = Runtime->ModuleInitFunction())
132      AddGlobalCtor(ObjCInitFunction);
133  EmitCtorList(GlobalCtors, "llvm.global_ctors");
134  EmitCtorList(GlobalDtors, "llvm.global_dtors");
135  EmitAnnotations();
136  EmitLLVMUsed();
137
138  SimplifyPersonality();
139
140  if (getCodeGenOpts().EmitDeclMetadata)
141    EmitDeclMetadata();
142
143  if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes)
144    EmitCoverageFile();
145}
146
147void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
148  // Make sure that this type is translated.
149  Types.UpdateCompletedType(TD);
150  if (DebugInfo)
151    DebugInfo->UpdateCompletedType(TD);
152}
153
154llvm::MDNode *CodeGenModule::getTBAAInfo(QualType QTy) {
155  if (!TBAA)
156    return 0;
157  return TBAA->getTBAAInfo(QTy);
158}
159
160void CodeGenModule::DecorateInstruction(llvm::Instruction *Inst,
161                                        llvm::MDNode *TBAAInfo) {
162  Inst->setMetadata(llvm::LLVMContext::MD_tbaa, TBAAInfo);
163}
164
165bool CodeGenModule::isTargetDarwin() const {
166  return getContext().Target.getTriple().isOSDarwin();
167}
168
169void CodeGenModule::Error(SourceLocation loc, llvm::StringRef error) {
170  unsigned diagID = getDiags().getCustomDiagID(Diagnostic::Error, error);
171  getDiags().Report(Context.getFullLoc(loc), diagID);
172}
173
174/// ErrorUnsupported - Print out an error that codegen doesn't support the
175/// specified stmt yet.
176void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type,
177                                     bool OmitOnError) {
178  if (OmitOnError && getDiags().hasErrorOccurred())
179    return;
180  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
181                                               "cannot compile this %0 yet");
182  std::string Msg = Type;
183  getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID)
184    << Msg << S->getSourceRange();
185}
186
187/// ErrorUnsupported - Print out an error that codegen doesn't support the
188/// specified decl yet.
189void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type,
190                                     bool OmitOnError) {
191  if (OmitOnError && getDiags().hasErrorOccurred())
192    return;
193  unsigned DiagID = getDiags().getCustomDiagID(Diagnostic::Error,
194                                               "cannot compile this %0 yet");
195  std::string Msg = Type;
196  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
197}
198
199llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
200  return llvm::ConstantInt::get(SizeTy, size.getQuantity());
201}
202
203void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
204                                        const NamedDecl *D) const {
205  // Internal definitions always have default visibility.
206  if (GV->hasLocalLinkage()) {
207    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
208    return;
209  }
210
211  // Set visibility for definitions.
212  NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
213  if (LV.visibilityExplicit() || !GV->hasAvailableExternallyLinkage())
214    GV->setVisibility(GetLLVMVisibility(LV.visibility()));
215}
216
217/// Set the symbol visibility of type information (vtable and RTTI)
218/// associated with the given type.
219void CodeGenModule::setTypeVisibility(llvm::GlobalValue *GV,
220                                      const CXXRecordDecl *RD,
221                                      TypeVisibilityKind TVK) const {
222  setGlobalVisibility(GV, RD);
223
224  if (!CodeGenOpts.HiddenWeakVTables)
225    return;
226
227  // We never want to drop the visibility for RTTI names.
228  if (TVK == TVK_ForRTTIName)
229    return;
230
231  // We want to drop the visibility to hidden for weak type symbols.
232  // This isn't possible if there might be unresolved references
233  // elsewhere that rely on this symbol being visible.
234
235  // This should be kept roughly in sync with setThunkVisibility
236  // in CGVTables.cpp.
237
238  // Preconditions.
239  if (GV->getLinkage() != llvm::GlobalVariable::LinkOnceODRLinkage ||
240      GV->getVisibility() != llvm::GlobalVariable::DefaultVisibility)
241    return;
242
243  // Don't override an explicit visibility attribute.
244  if (RD->getExplicitVisibility())
245    return;
246
247  switch (RD->getTemplateSpecializationKind()) {
248  // We have to disable the optimization if this is an EI definition
249  // because there might be EI declarations in other shared objects.
250  case TSK_ExplicitInstantiationDefinition:
251  case TSK_ExplicitInstantiationDeclaration:
252    return;
253
254  // Every use of a non-template class's type information has to emit it.
255  case TSK_Undeclared:
256    break;
257
258  // In theory, implicit instantiations can ignore the possibility of
259  // an explicit instantiation declaration because there necessarily
260  // must be an EI definition somewhere with default visibility.  In
261  // practice, it's possible to have an explicit instantiation for
262  // an arbitrary template class, and linkers aren't necessarily able
263  // to deal with mixed-visibility symbols.
264  case TSK_ExplicitSpecialization:
265  case TSK_ImplicitInstantiation:
266    if (!CodeGenOpts.HiddenWeakTemplateVTables)
267      return;
268    break;
269  }
270
271  // If there's a key function, there may be translation units
272  // that don't have the key function's definition.  But ignore
273  // this if we're emitting RTTI under -fno-rtti.
274  if (!(TVK != TVK_ForRTTI) || Features.RTTI) {
275    if (Context.getKeyFunction(RD))
276      return;
277  }
278
279  // Otherwise, drop the visibility to hidden.
280  GV->setVisibility(llvm::GlobalValue::HiddenVisibility);
281  GV->setUnnamedAddr(true);
282}
283
284llvm::StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
285  const NamedDecl *ND = cast<NamedDecl>(GD.getDecl());
286
287  llvm::StringRef &Str = MangledDeclNames[GD.getCanonicalDecl()];
288  if (!Str.empty())
289    return Str;
290
291  if (!getCXXABI().getMangleContext().shouldMangleDeclName(ND)) {
292    IdentifierInfo *II = ND->getIdentifier();
293    assert(II && "Attempt to mangle unnamed decl.");
294
295    Str = II->getName();
296    return Str;
297  }
298
299  llvm::SmallString<256> Buffer;
300  llvm::raw_svector_ostream Out(Buffer);
301  if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(ND))
302    getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out);
303  else if (const CXXDestructorDecl *D = dyn_cast<CXXDestructorDecl>(ND))
304    getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out);
305  else if (const BlockDecl *BD = dyn_cast<BlockDecl>(ND))
306    getCXXABI().getMangleContext().mangleBlock(BD, Out);
307  else
308    getCXXABI().getMangleContext().mangleName(ND, Out);
309
310  // Allocate space for the mangled name.
311  Out.flush();
312  size_t Length = Buffer.size();
313  char *Name = MangledNamesAllocator.Allocate<char>(Length);
314  std::copy(Buffer.begin(), Buffer.end(), Name);
315
316  Str = llvm::StringRef(Name, Length);
317
318  return Str;
319}
320
321void CodeGenModule::getBlockMangledName(GlobalDecl GD, MangleBuffer &Buffer,
322                                        const BlockDecl *BD) {
323  MangleContext &MangleCtx = getCXXABI().getMangleContext();
324  const Decl *D = GD.getDecl();
325  llvm::raw_svector_ostream Out(Buffer.getBuffer());
326  if (D == 0)
327    MangleCtx.mangleGlobalBlock(BD, Out);
328  else if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
329    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
330  else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(D))
331    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
332  else
333    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
334}
335
336llvm::GlobalValue *CodeGenModule::GetGlobalValue(llvm::StringRef Name) {
337  return getModule().getNamedValue(Name);
338}
339
340/// AddGlobalCtor - Add a function to the list that will be called before
341/// main() runs.
342void CodeGenModule::AddGlobalCtor(llvm::Function * Ctor, int Priority) {
343  // FIXME: Type coercion of void()* types.
344  GlobalCtors.push_back(std::make_pair(Ctor, Priority));
345}
346
347/// AddGlobalDtor - Add a function to the list that will be called
348/// when the module is unloaded.
349void CodeGenModule::AddGlobalDtor(llvm::Function * Dtor, int Priority) {
350  // FIXME: Type coercion of void()* types.
351  GlobalDtors.push_back(std::make_pair(Dtor, Priority));
352}
353
354void CodeGenModule::EmitCtorList(const CtorList &Fns, const char *GlobalName) {
355  // Ctor function type is void()*.
356  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
357  llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy);
358
359  // Get the type of a ctor entry, { i32, void ()* }.
360  llvm::StructType *CtorStructTy =
361    llvm::StructType::get(llvm::Type::getInt32Ty(VMContext),
362                          llvm::PointerType::getUnqual(CtorFTy), NULL);
363
364  // Construct the constructor and destructor arrays.
365  std::vector<llvm::Constant*> Ctors;
366  for (CtorList::const_iterator I = Fns.begin(), E = Fns.end(); I != E; ++I) {
367    std::vector<llvm::Constant*> S;
368    S.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
369                I->second, false));
370    S.push_back(llvm::ConstantExpr::getBitCast(I->first, CtorPFTy));
371    Ctors.push_back(llvm::ConstantStruct::get(CtorStructTy, S));
372  }
373
374  if (!Ctors.empty()) {
375    llvm::ArrayType *AT = llvm::ArrayType::get(CtorStructTy, Ctors.size());
376    new llvm::GlobalVariable(TheModule, AT, false,
377                             llvm::GlobalValue::AppendingLinkage,
378                             llvm::ConstantArray::get(AT, Ctors),
379                             GlobalName);
380  }
381}
382
383void CodeGenModule::EmitAnnotations() {
384  if (Annotations.empty())
385    return;
386
387  // Create a new global variable for the ConstantStruct in the Module.
388  llvm::Constant *Array =
389  llvm::ConstantArray::get(llvm::ArrayType::get(Annotations[0]->getType(),
390                                                Annotations.size()),
391                           Annotations);
392  llvm::GlobalValue *gv =
393  new llvm::GlobalVariable(TheModule, Array->getType(), false,
394                           llvm::GlobalValue::AppendingLinkage, Array,
395                           "llvm.global.annotations");
396  gv->setSection("llvm.metadata");
397}
398
399llvm::GlobalValue::LinkageTypes
400CodeGenModule::getFunctionLinkage(const FunctionDecl *D) {
401  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
402
403  if (Linkage == GVA_Internal)
404    return llvm::Function::InternalLinkage;
405
406  if (D->hasAttr<DLLExportAttr>())
407    return llvm::Function::DLLExportLinkage;
408
409  if (D->hasAttr<WeakAttr>())
410    return llvm::Function::WeakAnyLinkage;
411
412  // In C99 mode, 'inline' functions are guaranteed to have a strong
413  // definition somewhere else, so we can use available_externally linkage.
414  if (Linkage == GVA_C99Inline)
415    return llvm::Function::AvailableExternallyLinkage;
416
417  // In C++, the compiler has to emit a definition in every translation unit
418  // that references the function.  We should use linkonce_odr because
419  // a) if all references in this translation unit are optimized away, we
420  // don't need to codegen it.  b) if the function persists, it needs to be
421  // merged with other definitions. c) C++ has the ODR, so we know the
422  // definition is dependable.
423  if (Linkage == GVA_CXXInline || Linkage == GVA_TemplateInstantiation)
424    return !Context.getLangOptions().AppleKext
425             ? llvm::Function::LinkOnceODRLinkage
426             : llvm::Function::InternalLinkage;
427
428  // An explicit instantiation of a template has weak linkage, since
429  // explicit instantiations can occur in multiple translation units
430  // and must all be equivalent. However, we are not allowed to
431  // throw away these explicit instantiations.
432  if (Linkage == GVA_ExplicitTemplateInstantiation)
433    return !Context.getLangOptions().AppleKext
434             ? llvm::Function::WeakODRLinkage
435             : llvm::Function::InternalLinkage;
436
437  // Otherwise, we have strong external linkage.
438  assert(Linkage == GVA_StrongExternal);
439  return llvm::Function::ExternalLinkage;
440}
441
442
443/// SetFunctionDefinitionAttributes - Set attributes for a global.
444///
445/// FIXME: This is currently only done for aliases and functions, but not for
446/// variables (these details are set in EmitGlobalVarDefinition for variables).
447void CodeGenModule::SetFunctionDefinitionAttributes(const FunctionDecl *D,
448                                                    llvm::GlobalValue *GV) {
449  SetCommonAttributes(D, GV);
450}
451
452void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D,
453                                              const CGFunctionInfo &Info,
454                                              llvm::Function *F) {
455  unsigned CallingConv;
456  AttributeListType AttributeList;
457  ConstructAttributeList(Info, D, AttributeList, CallingConv);
458  F->setAttributes(llvm::AttrListPtr::get(AttributeList.begin(),
459                                          AttributeList.size()));
460  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
461}
462
463void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
464                                                           llvm::Function *F) {
465  if (CodeGenOpts.UnwindTables)
466    F->setHasUWTable();
467
468  if (!Features.Exceptions && !Features.ObjCNonFragileABI)
469    F->addFnAttr(llvm::Attribute::NoUnwind);
470
471  if (D->hasAttr<AlwaysInlineAttr>())
472    F->addFnAttr(llvm::Attribute::AlwaysInline);
473
474  if (D->hasAttr<NakedAttr>())
475    F->addFnAttr(llvm::Attribute::Naked);
476
477  if (D->hasAttr<NoInlineAttr>())
478    F->addFnAttr(llvm::Attribute::NoInline);
479
480  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
481    F->setUnnamedAddr(true);
482
483  if (Features.getStackProtectorMode() == LangOptions::SSPOn)
484    F->addFnAttr(llvm::Attribute::StackProtect);
485  else if (Features.getStackProtectorMode() == LangOptions::SSPReq)
486    F->addFnAttr(llvm::Attribute::StackProtectReq);
487
488  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
489  if (alignment)
490    F->setAlignment(alignment);
491
492  // C++ ABI requires 2-byte alignment for member functions.
493  if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D))
494    F->setAlignment(2);
495}
496
497void CodeGenModule::SetCommonAttributes(const Decl *D,
498                                        llvm::GlobalValue *GV) {
499  if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
500    setGlobalVisibility(GV, ND);
501  else
502    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
503
504  if (D->hasAttr<UsedAttr>())
505    AddUsedGlobal(GV);
506
507  if (const SectionAttr *SA = D->getAttr<SectionAttr>())
508    GV->setSection(SA->getName());
509
510  getTargetCodeGenInfo().SetTargetAttributes(D, GV, *this);
511}
512
513void CodeGenModule::SetInternalFunctionAttributes(const Decl *D,
514                                                  llvm::Function *F,
515                                                  const CGFunctionInfo &FI) {
516  SetLLVMFunctionAttributes(D, FI, F);
517  SetLLVMFunctionAttributesForDefinition(D, F);
518
519  F->setLinkage(llvm::Function::InternalLinkage);
520
521  SetCommonAttributes(D, F);
522}
523
524void CodeGenModule::SetFunctionAttributes(GlobalDecl GD,
525                                          llvm::Function *F,
526                                          bool IsIncompleteFunction) {
527  if (unsigned IID = F->getIntrinsicID()) {
528    // If this is an intrinsic function, set the function's attributes
529    // to the intrinsic's attributes.
530    F->setAttributes(llvm::Intrinsic::getAttributes((llvm::Intrinsic::ID)IID));
531    return;
532  }
533
534  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
535
536  if (!IsIncompleteFunction)
537    SetLLVMFunctionAttributes(FD, getTypes().getFunctionInfo(GD), F);
538
539  // Only a few attributes are set on declarations; these may later be
540  // overridden by a definition.
541
542  if (FD->hasAttr<DLLImportAttr>()) {
543    F->setLinkage(llvm::Function::DLLImportLinkage);
544  } else if (FD->hasAttr<WeakAttr>() ||
545             FD->isWeakImported()) {
546    // "extern_weak" is overloaded in LLVM; we probably should have
547    // separate linkage types for this.
548    F->setLinkage(llvm::Function::ExternalWeakLinkage);
549  } else {
550    F->setLinkage(llvm::Function::ExternalLinkage);
551
552    NamedDecl::LinkageInfo LV = FD->getLinkageAndVisibility();
553    if (LV.linkage() == ExternalLinkage && LV.visibilityExplicit()) {
554      F->setVisibility(GetLLVMVisibility(LV.visibility()));
555    }
556  }
557
558  if (const SectionAttr *SA = FD->getAttr<SectionAttr>())
559    F->setSection(SA->getName());
560}
561
562void CodeGenModule::AddUsedGlobal(llvm::GlobalValue *GV) {
563  assert(!GV->isDeclaration() &&
564         "Only globals with definition can force usage.");
565  LLVMUsed.push_back(GV);
566}
567
568void CodeGenModule::EmitLLVMUsed() {
569  // Don't create llvm.used if there is no need.
570  if (LLVMUsed.empty())
571    return;
572
573  const llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(VMContext);
574
575  // Convert LLVMUsed to what ConstantArray needs.
576  std::vector<llvm::Constant*> UsedArray;
577  UsedArray.resize(LLVMUsed.size());
578  for (unsigned i = 0, e = LLVMUsed.size(); i != e; ++i) {
579    UsedArray[i] =
580     llvm::ConstantExpr::getBitCast(cast<llvm::Constant>(&*LLVMUsed[i]),
581                                      i8PTy);
582  }
583
584  if (UsedArray.empty())
585    return;
586  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedArray.size());
587
588  llvm::GlobalVariable *GV =
589    new llvm::GlobalVariable(getModule(), ATy, false,
590                             llvm::GlobalValue::AppendingLinkage,
591                             llvm::ConstantArray::get(ATy, UsedArray),
592                             "llvm.used");
593
594  GV->setSection("llvm.metadata");
595}
596
597void CodeGenModule::EmitDeferred() {
598  // Emit code for any potentially referenced deferred decls.  Since a
599  // previously unused static decl may become used during the generation of code
600  // for a static function, iterate until no  changes are made.
601
602  while (!DeferredDeclsToEmit.empty() || !DeferredVTables.empty()) {
603    if (!DeferredVTables.empty()) {
604      const CXXRecordDecl *RD = DeferredVTables.back();
605      DeferredVTables.pop_back();
606      getVTables().GenerateClassData(getVTableLinkage(RD), RD);
607      continue;
608    }
609
610    GlobalDecl D = DeferredDeclsToEmit.back();
611    DeferredDeclsToEmit.pop_back();
612
613    // Check to see if we've already emitted this.  This is necessary
614    // for a couple of reasons: first, decls can end up in the
615    // deferred-decls queue multiple times, and second, decls can end
616    // up with definitions in unusual ways (e.g. by an extern inline
617    // function acquiring a strong function redefinition).  Just
618    // ignore these cases.
619    //
620    // TODO: That said, looking this up multiple times is very wasteful.
621    llvm::StringRef Name = getMangledName(D);
622    llvm::GlobalValue *CGRef = GetGlobalValue(Name);
623    assert(CGRef && "Deferred decl wasn't referenced?");
624
625    if (!CGRef->isDeclaration())
626      continue;
627
628    // GlobalAlias::isDeclaration() defers to the aliasee, but for our
629    // purposes an alias counts as a definition.
630    if (isa<llvm::GlobalAlias>(CGRef))
631      continue;
632
633    // Otherwise, emit the definition and move on to the next one.
634    EmitGlobalDefinition(D);
635  }
636}
637
638/// EmitAnnotateAttr - Generate the llvm::ConstantStruct which contains the
639/// annotation information for a given GlobalValue.  The annotation struct is
640/// {i8 *, i8 *, i8 *, i32}.  The first field is a constant expression, the
641/// GlobalValue being annotated.  The second field is the constant string
642/// created from the AnnotateAttr's annotation.  The third field is a constant
643/// string containing the name of the translation unit.  The fourth field is
644/// the line number in the file of the annotated value declaration.
645///
646/// FIXME: this does not unique the annotation string constants, as llvm-gcc
647///        appears to.
648///
649llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
650                                                const AnnotateAttr *AA,
651                                                unsigned LineNo) {
652  llvm::Module *M = &getModule();
653
654  // get [N x i8] constants for the annotation string, and the filename string
655  // which are the 2nd and 3rd elements of the global annotation structure.
656  const llvm::Type *SBP = llvm::Type::getInt8PtrTy(VMContext);
657  llvm::Constant *anno = llvm::ConstantArray::get(VMContext,
658                                                  AA->getAnnotation(), true);
659  llvm::Constant *unit = llvm::ConstantArray::get(VMContext,
660                                                  M->getModuleIdentifier(),
661                                                  true);
662
663  // Get the two global values corresponding to the ConstantArrays we just
664  // created to hold the bytes of the strings.
665  llvm::GlobalValue *annoGV =
666    new llvm::GlobalVariable(*M, anno->getType(), false,
667                             llvm::GlobalValue::PrivateLinkage, anno,
668                             GV->getName());
669  // translation unit name string, emitted into the llvm.metadata section.
670  llvm::GlobalValue *unitGV =
671    new llvm::GlobalVariable(*M, unit->getType(), false,
672                             llvm::GlobalValue::PrivateLinkage, unit,
673                             ".str");
674  unitGV->setUnnamedAddr(true);
675
676  // Create the ConstantStruct for the global annotation.
677  llvm::Constant *Fields[4] = {
678    llvm::ConstantExpr::getBitCast(GV, SBP),
679    llvm::ConstantExpr::getBitCast(annoGV, SBP),
680    llvm::ConstantExpr::getBitCast(unitGV, SBP),
681    llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), LineNo)
682  };
683  return llvm::ConstantStruct::getAnon(Fields);
684}
685
686bool CodeGenModule::MayDeferGeneration(const ValueDecl *Global) {
687  // Never defer when EmitAllDecls is specified.
688  if (Features.EmitAllDecls)
689    return false;
690
691  return !getContext().DeclMustBeEmitted(Global);
692}
693
694llvm::Constant *CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
695  const AliasAttr *AA = VD->getAttr<AliasAttr>();
696  assert(AA && "No alias?");
697
698  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
699
700  // See if there is already something with the target's name in the module.
701  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
702
703  llvm::Constant *Aliasee;
704  if (isa<llvm::FunctionType>(DeclTy))
705    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
706                                      /*ForVTable=*/false);
707  else
708    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
709                                    llvm::PointerType::getUnqual(DeclTy), 0);
710  if (!Entry) {
711    llvm::GlobalValue* F = cast<llvm::GlobalValue>(Aliasee);
712    F->setLinkage(llvm::Function::ExternalWeakLinkage);
713    WeakRefReferences.insert(F);
714  }
715
716  return Aliasee;
717}
718
719void CodeGenModule::EmitGlobal(GlobalDecl GD) {
720  const ValueDecl *Global = cast<ValueDecl>(GD.getDecl());
721
722  // Weak references don't produce any output by themselves.
723  if (Global->hasAttr<WeakRefAttr>())
724    return;
725
726  // If this is an alias definition (which otherwise looks like a declaration)
727  // emit it now.
728  if (Global->hasAttr<AliasAttr>())
729    return EmitAliasDefinition(GD);
730
731  // Ignore declarations, they will be emitted on their first use.
732  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Global)) {
733    if (FD->getIdentifier()) {
734      llvm::StringRef Name = FD->getName();
735      if (Name == "_Block_object_assign") {
736        BlockObjectAssignDecl = FD;
737      } else if (Name == "_Block_object_dispose") {
738        BlockObjectDisposeDecl = FD;
739      }
740    }
741
742    // Forward declarations are emitted lazily on first use.
743    if (!FD->doesThisDeclarationHaveABody())
744      return;
745  } else {
746    const VarDecl *VD = cast<VarDecl>(Global);
747    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
748
749    if (VD->getIdentifier()) {
750      llvm::StringRef Name = VD->getName();
751      if (Name == "_NSConcreteGlobalBlock") {
752        NSConcreteGlobalBlockDecl = VD;
753      } else if (Name == "_NSConcreteStackBlock") {
754        NSConcreteStackBlockDecl = VD;
755      }
756    }
757
758
759    if (VD->isThisDeclarationADefinition() != VarDecl::Definition)
760      return;
761  }
762
763  // Defer code generation when possible if this is a static definition, inline
764  // function etc.  These we only want to emit if they are used.
765  if (!MayDeferGeneration(Global)) {
766    // Emit the definition if it can't be deferred.
767    EmitGlobalDefinition(GD);
768    return;
769  }
770
771  // If we're deferring emission of a C++ variable with an
772  // initializer, remember the order in which it appeared in the file.
773  if (getLangOptions().CPlusPlus && isa<VarDecl>(Global) &&
774      cast<VarDecl>(Global)->hasInit()) {
775    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
776    CXXGlobalInits.push_back(0);
777  }
778
779  // If the value has already been used, add it directly to the
780  // DeferredDeclsToEmit list.
781  llvm::StringRef MangledName = getMangledName(GD);
782  if (GetGlobalValue(MangledName))
783    DeferredDeclsToEmit.push_back(GD);
784  else {
785    // Otherwise, remember that we saw a deferred decl with this name.  The
786    // first use of the mangled name will cause it to move into
787    // DeferredDeclsToEmit.
788    DeferredDecls[MangledName] = GD;
789  }
790}
791
792void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD) {
793  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
794
795  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
796                                 Context.getSourceManager(),
797                                 "Generating code for declaration");
798
799  if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
800    // At -O0, don't generate IR for functions with available_externally
801    // linkage.
802    if (CodeGenOpts.OptimizationLevel == 0 &&
803        !Function->hasAttr<AlwaysInlineAttr>() &&
804        getFunctionLinkage(Function)
805                                  == llvm::Function::AvailableExternallyLinkage)
806      return;
807
808    if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
809      // Make sure to emit the definition(s) before we emit the thunks.
810      // This is necessary for the generation of certain thunks.
811      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Method))
812        EmitCXXConstructor(CD, GD.getCtorType());
813      else if (const CXXDestructorDecl *DD =dyn_cast<CXXDestructorDecl>(Method))
814        EmitCXXDestructor(DD, GD.getDtorType());
815      else
816        EmitGlobalFunctionDefinition(GD);
817
818      if (Method->isVirtual())
819        getVTables().EmitThunks(GD);
820
821      return;
822    }
823
824    return EmitGlobalFunctionDefinition(GD);
825  }
826
827  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
828    return EmitGlobalVarDefinition(VD);
829
830  assert(0 && "Invalid argument to EmitGlobalDefinition()");
831}
832
833/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
834/// module, create and return an llvm Function with the specified type. If there
835/// is something in the module with the specified name, return it potentially
836/// bitcasted to the right type.
837///
838/// If D is non-null, it specifies a decl that correspond to this.  This is used
839/// to set the attributes on the function when it is first created.
840llvm::Constant *
841CodeGenModule::GetOrCreateLLVMFunction(llvm::StringRef MangledName,
842                                       const llvm::Type *Ty,
843                                       GlobalDecl D, bool ForVTable,
844                                       llvm::Attributes ExtraAttrs) {
845  // Lookup the entry, lazily creating it if necessary.
846  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
847  if (Entry) {
848    if (WeakRefReferences.count(Entry)) {
849      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D.getDecl());
850      if (FD && !FD->hasAttr<WeakAttr>())
851        Entry->setLinkage(llvm::Function::ExternalLinkage);
852
853      WeakRefReferences.erase(Entry);
854    }
855
856    if (Entry->getType()->getElementType() == Ty)
857      return Entry;
858
859    // Make sure the result is of the correct type.
860    const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
861    return llvm::ConstantExpr::getBitCast(Entry, PTy);
862  }
863
864  // This function doesn't have a complete type (for example, the return
865  // type is an incomplete struct). Use a fake type instead, and make
866  // sure not to try to set attributes.
867  bool IsIncompleteFunction = false;
868
869  const llvm::FunctionType *FTy;
870  if (isa<llvm::FunctionType>(Ty)) {
871    FTy = cast<llvm::FunctionType>(Ty);
872  } else {
873    FTy = llvm::FunctionType::get(VoidTy, false);
874    IsIncompleteFunction = true;
875  }
876
877  llvm::Function *F = llvm::Function::Create(FTy,
878                                             llvm::Function::ExternalLinkage,
879                                             MangledName, &getModule());
880  assert(F->getName() == MangledName && "name was uniqued!");
881  if (D.getDecl())
882    SetFunctionAttributes(D, F, IsIncompleteFunction);
883  if (ExtraAttrs != llvm::Attribute::None)
884    F->addFnAttr(ExtraAttrs);
885
886  // This is the first use or definition of a mangled name.  If there is a
887  // deferred decl with this name, remember that we need to emit it at the end
888  // of the file.
889  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
890  if (DDI != DeferredDecls.end()) {
891    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
892    // list, and remove it from DeferredDecls (since we don't need it anymore).
893    DeferredDeclsToEmit.push_back(DDI->second);
894    DeferredDecls.erase(DDI);
895
896  // Otherwise, there are cases we have to worry about where we're
897  // using a declaration for which we must emit a definition but where
898  // we might not find a top-level definition:
899  //   - member functions defined inline in their classes
900  //   - friend functions defined inline in some class
901  //   - special member functions with implicit definitions
902  // If we ever change our AST traversal to walk into class methods,
903  // this will be unnecessary.
904  //
905  // We also don't emit a definition for a function if it's going to be an entry
906  // in a vtable, unless it's already marked as used.
907  } else if (getLangOptions().CPlusPlus && D.getDecl()) {
908    // Look for a declaration that's lexically in a record.
909    const FunctionDecl *FD = cast<FunctionDecl>(D.getDecl());
910    do {
911      if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
912        if (FD->isImplicit() && !ForVTable) {
913          assert(FD->isUsed() && "Sema didn't mark implicit function as used!");
914          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
915          break;
916        } else if (FD->doesThisDeclarationHaveABody()) {
917          DeferredDeclsToEmit.push_back(D.getWithDecl(FD));
918          break;
919        }
920      }
921      FD = FD->getPreviousDeclaration();
922    } while (FD);
923  }
924
925  // Make sure the result is of the requested type.
926  if (!IsIncompleteFunction) {
927    assert(F->getType()->getElementType() == Ty);
928    return F;
929  }
930
931  const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
932  return llvm::ConstantExpr::getBitCast(F, PTy);
933}
934
935/// GetAddrOfFunction - Return the address of the given function.  If Ty is
936/// non-null, then this function will use the specified type if it has to
937/// create it (this occurs when we see a definition of the function).
938llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD,
939                                                 const llvm::Type *Ty,
940                                                 bool ForVTable) {
941  // If there was no specific requested type, just convert it now.
942  if (!Ty)
943    Ty = getTypes().ConvertType(cast<ValueDecl>(GD.getDecl())->getType());
944
945  llvm::StringRef MangledName = getMangledName(GD);
946  return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable);
947}
948
949/// CreateRuntimeFunction - Create a new runtime function with the specified
950/// type and name.
951llvm::Constant *
952CodeGenModule::CreateRuntimeFunction(const llvm::FunctionType *FTy,
953                                     llvm::StringRef Name,
954                                     llvm::Attributes ExtraAttrs) {
955  return GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
956                                 ExtraAttrs);
957}
958
959static bool DeclIsConstantGlobal(ASTContext &Context, const VarDecl *D,
960                                 bool ConstantInit) {
961  if (!D->getType().isConstant(Context) && !D->getType()->isReferenceType())
962    return false;
963
964  if (Context.getLangOptions().CPlusPlus) {
965    if (const RecordType *Record
966          = Context.getBaseElementType(D->getType())->getAs<RecordType>())
967      return ConstantInit &&
968             cast<CXXRecordDecl>(Record->getDecl())->isPOD() &&
969             !cast<CXXRecordDecl>(Record->getDecl())->hasMutableFields();
970  }
971
972  return true;
973}
974
975/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
976/// create and return an llvm GlobalVariable with the specified type.  If there
977/// is something in the module with the specified name, return it potentially
978/// bitcasted to the right type.
979///
980/// If D is non-null, it specifies a decl that correspond to this.  This is used
981/// to set the attributes on the global when it is first created.
982llvm::Constant *
983CodeGenModule::GetOrCreateLLVMGlobal(llvm::StringRef MangledName,
984                                     const llvm::PointerType *Ty,
985                                     const VarDecl *D,
986                                     bool UnnamedAddr) {
987  // Lookup the entry, lazily creating it if necessary.
988  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
989  if (Entry) {
990    if (WeakRefReferences.count(Entry)) {
991      if (D && !D->hasAttr<WeakAttr>())
992        Entry->setLinkage(llvm::Function::ExternalLinkage);
993
994      WeakRefReferences.erase(Entry);
995    }
996
997    if (UnnamedAddr)
998      Entry->setUnnamedAddr(true);
999
1000    if (Entry->getType() == Ty)
1001      return Entry;
1002
1003    // Make sure the result is of the correct type.
1004    return llvm::ConstantExpr::getBitCast(Entry, Ty);
1005  }
1006
1007  // This is the first use or definition of a mangled name.  If there is a
1008  // deferred decl with this name, remember that we need to emit it at the end
1009  // of the file.
1010  llvm::StringMap<GlobalDecl>::iterator DDI = DeferredDecls.find(MangledName);
1011  if (DDI != DeferredDecls.end()) {
1012    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
1013    // list, and remove it from DeferredDecls (since we don't need it anymore).
1014    DeferredDeclsToEmit.push_back(DDI->second);
1015    DeferredDecls.erase(DDI);
1016  }
1017
1018  llvm::GlobalVariable *GV =
1019    new llvm::GlobalVariable(getModule(), Ty->getElementType(), false,
1020                             llvm::GlobalValue::ExternalLinkage,
1021                             0, MangledName, 0,
1022                             false, Ty->getAddressSpace());
1023
1024  // Handle things which are present even on external declarations.
1025  if (D) {
1026    // FIXME: This code is overly simple and should be merged with other global
1027    // handling.
1028    GV->setConstant(DeclIsConstantGlobal(Context, D, false));
1029
1030    // Set linkage and visibility in case we never see a definition.
1031    NamedDecl::LinkageInfo LV = D->getLinkageAndVisibility();
1032    if (LV.linkage() != ExternalLinkage) {
1033      // Don't set internal linkage on declarations.
1034    } else {
1035      if (D->hasAttr<DLLImportAttr>())
1036        GV->setLinkage(llvm::GlobalValue::DLLImportLinkage);
1037      else if (D->hasAttr<WeakAttr>() || D->isWeakImported())
1038        GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
1039
1040      // Set visibility on a declaration only if it's explicit.
1041      if (LV.visibilityExplicit())
1042        GV->setVisibility(GetLLVMVisibility(LV.visibility()));
1043    }
1044
1045    GV->setThreadLocal(D->isThreadSpecified());
1046  }
1047
1048  return GV;
1049}
1050
1051
1052llvm::GlobalVariable *
1053CodeGenModule::CreateOrReplaceCXXRuntimeVariable(llvm::StringRef Name,
1054                                      const llvm::Type *Ty,
1055                                      llvm::GlobalValue::LinkageTypes Linkage) {
1056  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
1057  llvm::GlobalVariable *OldGV = 0;
1058
1059
1060  if (GV) {
1061    // Check if the variable has the right type.
1062    if (GV->getType()->getElementType() == Ty)
1063      return GV;
1064
1065    // Because C++ name mangling, the only way we can end up with an already
1066    // existing global with the same name is if it has been declared extern "C".
1067      assert(GV->isDeclaration() && "Declaration has wrong type!");
1068    OldGV = GV;
1069  }
1070
1071  // Create a new variable.
1072  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
1073                                Linkage, 0, Name);
1074
1075  if (OldGV) {
1076    // Replace occurrences of the old variable if needed.
1077    GV->takeName(OldGV);
1078
1079    if (!OldGV->use_empty()) {
1080      llvm::Constant *NewPtrForOldDecl =
1081      llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
1082      OldGV->replaceAllUsesWith(NewPtrForOldDecl);
1083    }
1084
1085    OldGV->eraseFromParent();
1086  }
1087
1088  return GV;
1089}
1090
1091/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
1092/// given global variable.  If Ty is non-null and if the global doesn't exist,
1093/// then it will be greated with the specified type instead of whatever the
1094/// normal requested type would be.
1095llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
1096                                                  const llvm::Type *Ty) {
1097  assert(D->hasGlobalStorage() && "Not a global variable");
1098  QualType ASTTy = D->getType();
1099  if (Ty == 0)
1100    Ty = getTypes().ConvertTypeForMem(ASTTy);
1101
1102  const llvm::PointerType *PTy =
1103    llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy));
1104
1105  llvm::StringRef MangledName = getMangledName(D);
1106  return GetOrCreateLLVMGlobal(MangledName, PTy, D);
1107}
1108
1109/// CreateRuntimeVariable - Create a new runtime global variable with the
1110/// specified type and name.
1111llvm::Constant *
1112CodeGenModule::CreateRuntimeVariable(const llvm::Type *Ty,
1113                                     llvm::StringRef Name) {
1114  return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), 0,
1115                               true);
1116}
1117
1118void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
1119  assert(!D->getInit() && "Cannot emit definite definitions here!");
1120
1121  if (MayDeferGeneration(D)) {
1122    // If we have not seen a reference to this variable yet, place it
1123    // into the deferred declarations table to be emitted if needed
1124    // later.
1125    llvm::StringRef MangledName = getMangledName(D);
1126    if (!GetGlobalValue(MangledName)) {
1127      DeferredDecls[MangledName] = D;
1128      return;
1129    }
1130  }
1131
1132  // The tentative definition is the only definition.
1133  EmitGlobalVarDefinition(D);
1134}
1135
1136void CodeGenModule::EmitVTable(CXXRecordDecl *Class, bool DefinitionRequired) {
1137  if (DefinitionRequired)
1138    getVTables().GenerateClassData(getVTableLinkage(Class), Class);
1139}
1140
1141llvm::GlobalVariable::LinkageTypes
1142CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
1143  if (RD->getLinkage() != ExternalLinkage)
1144    return llvm::GlobalVariable::InternalLinkage;
1145
1146  if (const CXXMethodDecl *KeyFunction
1147                                    = RD->getASTContext().getKeyFunction(RD)) {
1148    // If this class has a key function, use that to determine the linkage of
1149    // the vtable.
1150    const FunctionDecl *Def = 0;
1151    if (KeyFunction->hasBody(Def))
1152      KeyFunction = cast<CXXMethodDecl>(Def);
1153
1154    switch (KeyFunction->getTemplateSpecializationKind()) {
1155      case TSK_Undeclared:
1156      case TSK_ExplicitSpecialization:
1157        // When compiling with optimizations turned on, we emit all vtables,
1158        // even if the key function is not defined in the current translation
1159        // unit. If this is the case, use available_externally linkage.
1160        if (!Def && CodeGenOpts.OptimizationLevel)
1161          return llvm::GlobalVariable::AvailableExternallyLinkage;
1162
1163        if (KeyFunction->isInlined())
1164          return !Context.getLangOptions().AppleKext ?
1165                   llvm::GlobalVariable::LinkOnceODRLinkage :
1166                   llvm::Function::InternalLinkage;
1167
1168        return llvm::GlobalVariable::ExternalLinkage;
1169
1170      case TSK_ImplicitInstantiation:
1171        return !Context.getLangOptions().AppleKext ?
1172                 llvm::GlobalVariable::LinkOnceODRLinkage :
1173                 llvm::Function::InternalLinkage;
1174
1175      case TSK_ExplicitInstantiationDefinition:
1176        return !Context.getLangOptions().AppleKext ?
1177                 llvm::GlobalVariable::WeakODRLinkage :
1178                 llvm::Function::InternalLinkage;
1179
1180      case TSK_ExplicitInstantiationDeclaration:
1181        // FIXME: Use available_externally linkage. However, this currently
1182        // breaks LLVM's build due to undefined symbols.
1183        //      return llvm::GlobalVariable::AvailableExternallyLinkage;
1184        return !Context.getLangOptions().AppleKext ?
1185                 llvm::GlobalVariable::LinkOnceODRLinkage :
1186                 llvm::Function::InternalLinkage;
1187    }
1188  }
1189
1190  if (Context.getLangOptions().AppleKext)
1191    return llvm::Function::InternalLinkage;
1192
1193  switch (RD->getTemplateSpecializationKind()) {
1194  case TSK_Undeclared:
1195  case TSK_ExplicitSpecialization:
1196  case TSK_ImplicitInstantiation:
1197    // FIXME: Use available_externally linkage. However, this currently
1198    // breaks LLVM's build due to undefined symbols.
1199    //   return llvm::GlobalVariable::AvailableExternallyLinkage;
1200  case TSK_ExplicitInstantiationDeclaration:
1201    return llvm::GlobalVariable::LinkOnceODRLinkage;
1202
1203  case TSK_ExplicitInstantiationDefinition:
1204      return llvm::GlobalVariable::WeakODRLinkage;
1205  }
1206
1207  // Silence GCC warning.
1208  return llvm::GlobalVariable::LinkOnceODRLinkage;
1209}
1210
1211CharUnits CodeGenModule::GetTargetTypeStoreSize(const llvm::Type *Ty) const {
1212    return Context.toCharUnitsFromBits(
1213      TheTargetData.getTypeStoreSizeInBits(Ty));
1214}
1215
1216void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D) {
1217  llvm::Constant *Init = 0;
1218  QualType ASTTy = D->getType();
1219  bool NonConstInit = false;
1220
1221  const Expr *InitExpr = D->getAnyInitializer();
1222
1223  if (!InitExpr) {
1224    // This is a tentative definition; tentative definitions are
1225    // implicitly initialized with { 0 }.
1226    //
1227    // Note that tentative definitions are only emitted at the end of
1228    // a translation unit, so they should never have incomplete
1229    // type. In addition, EmitTentativeDefinition makes sure that we
1230    // never attempt to emit a tentative definition if a real one
1231    // exists. A use may still exists, however, so we still may need
1232    // to do a RAUW.
1233    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
1234    Init = EmitNullConstant(D->getType());
1235  } else {
1236    Init = EmitConstantExpr(InitExpr, D->getType());
1237    if (!Init) {
1238      QualType T = InitExpr->getType();
1239      if (D->getType()->isReferenceType())
1240        T = D->getType();
1241
1242      if (getLangOptions().CPlusPlus) {
1243        Init = EmitNullConstant(T);
1244        NonConstInit = true;
1245      } else {
1246        ErrorUnsupported(D, "static initializer");
1247        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
1248      }
1249    } else {
1250      // We don't need an initializer, so remove the entry for the delayed
1251      // initializer position (just in case this entry was delayed).
1252      if (getLangOptions().CPlusPlus)
1253        DelayedCXXInitPosition.erase(D);
1254    }
1255  }
1256
1257  const llvm::Type* InitType = Init->getType();
1258  llvm::Constant *Entry = GetAddrOfGlobalVar(D, InitType);
1259
1260  // Strip off a bitcast if we got one back.
1261  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1262    assert(CE->getOpcode() == llvm::Instruction::BitCast ||
1263           // all zero index gep.
1264           CE->getOpcode() == llvm::Instruction::GetElementPtr);
1265    Entry = CE->getOperand(0);
1266  }
1267
1268  // Entry is now either a Function or GlobalVariable.
1269  llvm::GlobalVariable *GV = dyn_cast<llvm::GlobalVariable>(Entry);
1270
1271  // We have a definition after a declaration with the wrong type.
1272  // We must make a new GlobalVariable* and update everything that used OldGV
1273  // (a declaration or tentative definition) with the new GlobalVariable*
1274  // (which will be a definition).
1275  //
1276  // This happens if there is a prototype for a global (e.g.
1277  // "extern int x[];") and then a definition of a different type (e.g.
1278  // "int x[10];"). This also happens when an initializer has a different type
1279  // from the type of the global (this happens with unions).
1280  if (GV == 0 ||
1281      GV->getType()->getElementType() != InitType ||
1282      GV->getType()->getAddressSpace() !=
1283        getContext().getTargetAddressSpace(ASTTy)) {
1284
1285    // Move the old entry aside so that we'll create a new one.
1286    Entry->setName(llvm::StringRef());
1287
1288    // Make a new global with the correct type, this is now guaranteed to work.
1289    GV = cast<llvm::GlobalVariable>(GetAddrOfGlobalVar(D, InitType));
1290
1291    // Replace all uses of the old global with the new global
1292    llvm::Constant *NewPtrForOldDecl =
1293        llvm::ConstantExpr::getBitCast(GV, Entry->getType());
1294    Entry->replaceAllUsesWith(NewPtrForOldDecl);
1295
1296    // Erase the old global, since it is no longer used.
1297    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
1298  }
1299
1300  if (const AnnotateAttr *AA = D->getAttr<AnnotateAttr>()) {
1301    SourceManager &SM = Context.getSourceManager();
1302    AddAnnotation(EmitAnnotateAttr(GV, AA,
1303                              SM.getInstantiationLineNumber(D->getLocation())));
1304  }
1305
1306  GV->setInitializer(Init);
1307
1308  // If it is safe to mark the global 'constant', do so now.
1309  GV->setConstant(false);
1310  if (!NonConstInit && DeclIsConstantGlobal(Context, D, true))
1311    GV->setConstant(true);
1312
1313  GV->setAlignment(getContext().getDeclAlign(D).getQuantity());
1314
1315  // Set the llvm linkage type as appropriate.
1316  llvm::GlobalValue::LinkageTypes Linkage =
1317    GetLLVMLinkageVarDefinition(D, GV);
1318  GV->setLinkage(Linkage);
1319  if (Linkage == llvm::GlobalVariable::CommonLinkage)
1320    // common vars aren't constant even if declared const.
1321    GV->setConstant(false);
1322
1323  SetCommonAttributes(D, GV);
1324
1325  // Emit the initializer function if necessary.
1326  if (NonConstInit)
1327    EmitCXXGlobalVarDeclInitFunc(D, GV);
1328
1329  // Emit global variable debug information.
1330  if (CGDebugInfo *DI = getModuleDebugInfo()) {
1331    DI->setLocation(D->getLocation());
1332    DI->EmitGlobalVariable(GV, D);
1333  }
1334}
1335
1336llvm::GlobalValue::LinkageTypes
1337CodeGenModule::GetLLVMLinkageVarDefinition(const VarDecl *D,
1338                                           llvm::GlobalVariable *GV) {
1339  GVALinkage Linkage = getContext().GetGVALinkageForVariable(D);
1340  if (Linkage == GVA_Internal)
1341    return llvm::Function::InternalLinkage;
1342  else if (D->hasAttr<DLLImportAttr>())
1343    return llvm::Function::DLLImportLinkage;
1344  else if (D->hasAttr<DLLExportAttr>())
1345    return llvm::Function::DLLExportLinkage;
1346  else if (D->hasAttr<WeakAttr>()) {
1347    if (GV->isConstant())
1348      return llvm::GlobalVariable::WeakODRLinkage;
1349    else
1350      return llvm::GlobalVariable::WeakAnyLinkage;
1351  } else if (Linkage == GVA_TemplateInstantiation ||
1352             Linkage == GVA_ExplicitTemplateInstantiation)
1353    return llvm::GlobalVariable::WeakODRLinkage;
1354  else if (!getLangOptions().CPlusPlus &&
1355           ((!CodeGenOpts.NoCommon && !D->getAttr<NoCommonAttr>()) ||
1356             D->getAttr<CommonAttr>()) &&
1357           !D->hasExternalStorage() && !D->getInit() &&
1358           !D->getAttr<SectionAttr>() && !D->isThreadSpecified() &&
1359           !D->getAttr<WeakImportAttr>()) {
1360    // Thread local vars aren't considered common linkage.
1361    return llvm::GlobalVariable::CommonLinkage;
1362  }
1363  return llvm::GlobalVariable::ExternalLinkage;
1364}
1365
1366/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
1367/// implement a function with no prototype, e.g. "int foo() {}".  If there are
1368/// existing call uses of the old function in the module, this adjusts them to
1369/// call the new function directly.
1370///
1371/// This is not just a cleanup: the always_inline pass requires direct calls to
1372/// functions to be able to inline them.  If there is a bitcast in the way, it
1373/// won't inline them.  Instcombine normally deletes these calls, but it isn't
1374/// run at -O0.
1375static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
1376                                                      llvm::Function *NewFn) {
1377  // If we're redefining a global as a function, don't transform it.
1378  llvm::Function *OldFn = dyn_cast<llvm::Function>(Old);
1379  if (OldFn == 0) return;
1380
1381  const llvm::Type *NewRetTy = NewFn->getReturnType();
1382  llvm::SmallVector<llvm::Value*, 4> ArgList;
1383
1384  for (llvm::Value::use_iterator UI = OldFn->use_begin(), E = OldFn->use_end();
1385       UI != E; ) {
1386    // TODO: Do invokes ever occur in C code?  If so, we should handle them too.
1387    llvm::Value::use_iterator I = UI++; // Increment before the CI is erased.
1388    llvm::CallInst *CI = dyn_cast<llvm::CallInst>(*I);
1389    if (!CI) continue; // FIXME: when we allow Invoke, just do CallSite CS(*I)
1390    llvm::CallSite CS(CI);
1391    if (!CI || !CS.isCallee(I)) continue;
1392
1393    // If the return types don't match exactly, and if the call isn't dead, then
1394    // we can't transform this call.
1395    if (CI->getType() != NewRetTy && !CI->use_empty())
1396      continue;
1397
1398    // If the function was passed too few arguments, don't transform.  If extra
1399    // arguments were passed, we silently drop them.  If any of the types
1400    // mismatch, we don't transform.
1401    unsigned ArgNo = 0;
1402    bool DontTransform = false;
1403    for (llvm::Function::arg_iterator AI = NewFn->arg_begin(),
1404         E = NewFn->arg_end(); AI != E; ++AI, ++ArgNo) {
1405      if (CS.arg_size() == ArgNo ||
1406          CS.getArgument(ArgNo)->getType() != AI->getType()) {
1407        DontTransform = true;
1408        break;
1409      }
1410    }
1411    if (DontTransform)
1412      continue;
1413
1414    // Okay, we can transform this.  Create the new call instruction and copy
1415    // over the required information.
1416    ArgList.append(CS.arg_begin(), CS.arg_begin() + ArgNo);
1417    llvm::CallInst *NewCall = llvm::CallInst::Create(NewFn, ArgList.begin(),
1418                                                     ArgList.end(), "", CI);
1419    ArgList.clear();
1420    if (!NewCall->getType()->isVoidTy())
1421      NewCall->takeName(CI);
1422    NewCall->setAttributes(CI->getAttributes());
1423    NewCall->setCallingConv(CI->getCallingConv());
1424
1425    // Finally, remove the old call, replacing any uses with the new one.
1426    if (!CI->use_empty())
1427      CI->replaceAllUsesWith(NewCall);
1428
1429    // Copy debug location attached to CI.
1430    if (!CI->getDebugLoc().isUnknown())
1431      NewCall->setDebugLoc(CI->getDebugLoc());
1432    CI->eraseFromParent();
1433  }
1434}
1435
1436
1437void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD) {
1438  const FunctionDecl *D = cast<FunctionDecl>(GD.getDecl());
1439
1440  // Compute the function info and LLVM type.
1441  const CGFunctionInfo &FI = getTypes().getFunctionInfo(GD);
1442  bool variadic = false;
1443  if (const FunctionProtoType *fpt = D->getType()->getAs<FunctionProtoType>())
1444    variadic = fpt->isVariadic();
1445  const llvm::FunctionType *Ty = getTypes().GetFunctionType(FI, variadic, false);
1446
1447  // Get or create the prototype for the function.
1448  llvm::Constant *Entry = GetAddrOfFunction(GD, Ty);
1449
1450  // Strip off a bitcast if we got one back.
1451  if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Entry)) {
1452    assert(CE->getOpcode() == llvm::Instruction::BitCast);
1453    Entry = CE->getOperand(0);
1454  }
1455
1456
1457  if (cast<llvm::GlobalValue>(Entry)->getType()->getElementType() != Ty) {
1458    llvm::GlobalValue *OldFn = cast<llvm::GlobalValue>(Entry);
1459
1460    // If the types mismatch then we have to rewrite the definition.
1461    assert(OldFn->isDeclaration() &&
1462           "Shouldn't replace non-declaration");
1463
1464    // F is the Function* for the one with the wrong type, we must make a new
1465    // Function* and update everything that used F (a declaration) with the new
1466    // Function* (which will be a definition).
1467    //
1468    // This happens if there is a prototype for a function
1469    // (e.g. "int f()") and then a definition of a different type
1470    // (e.g. "int f(int x)").  Move the old function aside so that it
1471    // doesn't interfere with GetAddrOfFunction.
1472    OldFn->setName(llvm::StringRef());
1473    llvm::Function *NewFn = cast<llvm::Function>(GetAddrOfFunction(GD, Ty));
1474
1475    // If this is an implementation of a function without a prototype, try to
1476    // replace any existing uses of the function (which may be calls) with uses
1477    // of the new function
1478    if (D->getType()->isFunctionNoProtoType()) {
1479      ReplaceUsesOfNonProtoTypeWithRealFunction(OldFn, NewFn);
1480      OldFn->removeDeadConstantUsers();
1481    }
1482
1483    // Replace uses of F with the Function we will endow with a body.
1484    if (!Entry->use_empty()) {
1485      llvm::Constant *NewPtrForOldDecl =
1486        llvm::ConstantExpr::getBitCast(NewFn, Entry->getType());
1487      Entry->replaceAllUsesWith(NewPtrForOldDecl);
1488    }
1489
1490    // Ok, delete the old function now, which is dead.
1491    OldFn->eraseFromParent();
1492
1493    Entry = NewFn;
1494  }
1495
1496  // We need to set linkage and visibility on the function before
1497  // generating code for it because various parts of IR generation
1498  // want to propagate this information down (e.g. to local static
1499  // declarations).
1500  llvm::Function *Fn = cast<llvm::Function>(Entry);
1501  setFunctionLinkage(D, Fn);
1502
1503  // FIXME: this is redundant with part of SetFunctionDefinitionAttributes
1504  setGlobalVisibility(Fn, D);
1505
1506  CodeGenFunction(*this).GenerateCode(D, Fn, FI);
1507
1508  SetFunctionDefinitionAttributes(D, Fn);
1509  SetLLVMFunctionAttributesForDefinition(D, Fn);
1510
1511  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
1512    AddGlobalCtor(Fn, CA->getPriority());
1513  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
1514    AddGlobalDtor(Fn, DA->getPriority());
1515}
1516
1517void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
1518  const ValueDecl *D = cast<ValueDecl>(GD.getDecl());
1519  const AliasAttr *AA = D->getAttr<AliasAttr>();
1520  assert(AA && "Not an alias?");
1521
1522  llvm::StringRef MangledName = getMangledName(GD);
1523
1524  // If there is a definition in the module, then it wins over the alias.
1525  // This is dubious, but allow it to be safe.  Just ignore the alias.
1526  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
1527  if (Entry && !Entry->isDeclaration())
1528    return;
1529
1530  const llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
1531
1532  // Create a reference to the named value.  This ensures that it is emitted
1533  // if a deferred decl.
1534  llvm::Constant *Aliasee;
1535  if (isa<llvm::FunctionType>(DeclTy))
1536    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GlobalDecl(),
1537                                      /*ForVTable=*/false);
1538  else
1539    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(),
1540                                    llvm::PointerType::getUnqual(DeclTy), 0);
1541
1542  // Create the new alias itself, but don't set a name yet.
1543  llvm::GlobalValue *GA =
1544    new llvm::GlobalAlias(Aliasee->getType(),
1545                          llvm::Function::ExternalLinkage,
1546                          "", Aliasee, &getModule());
1547
1548  if (Entry) {
1549    assert(Entry->isDeclaration());
1550
1551    // If there is a declaration in the module, then we had an extern followed
1552    // by the alias, as in:
1553    //   extern int test6();
1554    //   ...
1555    //   int test6() __attribute__((alias("test7")));
1556    //
1557    // Remove it and replace uses of it with the alias.
1558    GA->takeName(Entry);
1559
1560    Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA,
1561                                                          Entry->getType()));
1562    Entry->eraseFromParent();
1563  } else {
1564    GA->setName(MangledName);
1565  }
1566
1567  // Set attributes which are particular to an alias; this is a
1568  // specialization of the attributes which may be set on a global
1569  // variable/function.
1570  if (D->hasAttr<DLLExportAttr>()) {
1571    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1572      // The dllexport attribute is ignored for undefined symbols.
1573      if (FD->hasBody())
1574        GA->setLinkage(llvm::Function::DLLExportLinkage);
1575    } else {
1576      GA->setLinkage(llvm::Function::DLLExportLinkage);
1577    }
1578  } else if (D->hasAttr<WeakAttr>() ||
1579             D->hasAttr<WeakRefAttr>() ||
1580             D->isWeakImported()) {
1581    GA->setLinkage(llvm::Function::WeakAnyLinkage);
1582  }
1583
1584  SetCommonAttributes(D, GA);
1585}
1586
1587/// getBuiltinLibFunction - Given a builtin id for a function like
1588/// "__builtin_fabsf", return a Function* for "fabsf".
1589llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
1590                                                  unsigned BuiltinID) {
1591  assert((Context.BuiltinInfo.isLibFunction(BuiltinID) ||
1592          Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) &&
1593         "isn't a lib fn");
1594
1595  // Get the name, skip over the __builtin_ prefix (if necessary).
1596  llvm::StringRef Name;
1597  GlobalDecl D(FD);
1598
1599  // If the builtin has been declared explicitly with an assembler label,
1600  // use the mangled name. This differs from the plain label on platforms
1601  // that prefix labels.
1602  if (FD->hasAttr<AsmLabelAttr>())
1603    Name = getMangledName(D);
1604  else if (Context.BuiltinInfo.isLibFunction(BuiltinID))
1605    Name = Context.BuiltinInfo.GetName(BuiltinID) + 10;
1606  else
1607    Name = Context.BuiltinInfo.GetName(BuiltinID);
1608
1609
1610  const llvm::FunctionType *Ty =
1611    cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
1612
1613  return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
1614}
1615
1616llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,const llvm::Type **Tys,
1617                                            unsigned NumTys) {
1618  return llvm::Intrinsic::getDeclaration(&getModule(),
1619                                         (llvm::Intrinsic::ID)IID, Tys, NumTys);
1620}
1621
1622static llvm::StringMapEntry<llvm::Constant*> &
1623GetConstantCFStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1624                         const StringLiteral *Literal,
1625                         bool TargetIsLSB,
1626                         bool &IsUTF16,
1627                         unsigned &StringLength) {
1628  llvm::StringRef String = Literal->getString();
1629  unsigned NumBytes = String.size();
1630
1631  // Check for simple case.
1632  if (!Literal->containsNonAsciiOrNull()) {
1633    StringLength = NumBytes;
1634    return Map.GetOrCreateValue(String);
1635  }
1636
1637  // Otherwise, convert the UTF8 literals into a byte string.
1638  llvm::SmallVector<UTF16, 128> ToBuf(NumBytes);
1639  const UTF8 *FromPtr = (UTF8 *)String.data();
1640  UTF16 *ToPtr = &ToBuf[0];
1641
1642  (void)ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
1643                           &ToPtr, ToPtr + NumBytes,
1644                           strictConversion);
1645
1646  // ConvertUTF8toUTF16 returns the length in ToPtr.
1647  StringLength = ToPtr - &ToBuf[0];
1648
1649  // Render the UTF-16 string into a byte array and convert to the target byte
1650  // order.
1651  //
1652  // FIXME: This isn't something we should need to do here.
1653  llvm::SmallString<128> AsBytes;
1654  AsBytes.reserve(StringLength * 2);
1655  for (unsigned i = 0; i != StringLength; ++i) {
1656    unsigned short Val = ToBuf[i];
1657    if (TargetIsLSB) {
1658      AsBytes.push_back(Val & 0xFF);
1659      AsBytes.push_back(Val >> 8);
1660    } else {
1661      AsBytes.push_back(Val >> 8);
1662      AsBytes.push_back(Val & 0xFF);
1663    }
1664  }
1665  // Append one extra null character, the second is automatically added by our
1666  // caller.
1667  AsBytes.push_back(0);
1668
1669  IsUTF16 = true;
1670  return Map.GetOrCreateValue(llvm::StringRef(AsBytes.data(), AsBytes.size()));
1671}
1672
1673static llvm::StringMapEntry<llvm::Constant*> &
1674GetConstantStringEntry(llvm::StringMap<llvm::Constant*> &Map,
1675		       const StringLiteral *Literal,
1676		       unsigned &StringLength)
1677{
1678	llvm::StringRef String = Literal->getString();
1679	StringLength = String.size();
1680	return Map.GetOrCreateValue(String);
1681}
1682
1683llvm::Constant *
1684CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
1685  unsigned StringLength = 0;
1686  bool isUTF16 = false;
1687  llvm::StringMapEntry<llvm::Constant*> &Entry =
1688    GetConstantCFStringEntry(CFConstantStringMap, Literal,
1689                             getTargetData().isLittleEndian(),
1690                             isUTF16, StringLength);
1691
1692  if (llvm::Constant *C = Entry.getValue())
1693    return C;
1694
1695  llvm::Constant *Zero =
1696      llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1697  llvm::Constant *Zeros[] = { Zero, Zero };
1698
1699  // If we don't already have it, get __CFConstantStringClassReference.
1700  if (!CFConstantStringClassRef) {
1701    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1702    Ty = llvm::ArrayType::get(Ty, 0);
1703    llvm::Constant *GV = CreateRuntimeVariable(Ty,
1704                                           "__CFConstantStringClassReference");
1705    // Decay array -> ptr
1706    CFConstantStringClassRef =
1707      llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1708  }
1709
1710  QualType CFTy = getContext().getCFConstantStringType();
1711
1712  const llvm::StructType *STy =
1713    cast<llvm::StructType>(getTypes().ConvertType(CFTy));
1714
1715  std::vector<llvm::Constant*> Fields(4);
1716
1717  // Class pointer.
1718  Fields[0] = CFConstantStringClassRef;
1719
1720  // Flags.
1721  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1722  Fields[1] = isUTF16 ? llvm::ConstantInt::get(Ty, 0x07d0) :
1723    llvm::ConstantInt::get(Ty, 0x07C8);
1724
1725  // String pointer.
1726  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1727
1728  llvm::GlobalValue::LinkageTypes Linkage;
1729  bool isConstant;
1730  if (isUTF16) {
1731    // FIXME: why do utf strings get "_" labels instead of "L" labels?
1732    Linkage = llvm::GlobalValue::InternalLinkage;
1733    // Note: -fwritable-strings doesn't make unicode CFStrings writable, but
1734    // does make plain ascii ones writable.
1735    isConstant = true;
1736  } else {
1737    // FIXME: With OS X ld 123.2 (xcode 4) and LTO we would get a linker error
1738    // when using private linkage. It is not clear if this is a bug in ld
1739    // or a reasonable new restriction.
1740    Linkage = llvm::GlobalValue::LinkerPrivateLinkage;
1741    isConstant = !Features.WritableStrings;
1742  }
1743
1744  llvm::GlobalVariable *GV =
1745    new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1746                             ".str");
1747  GV->setUnnamedAddr(true);
1748  if (isUTF16) {
1749    CharUnits Align = getContext().getTypeAlignInChars(getContext().ShortTy);
1750    GV->setAlignment(Align.getQuantity());
1751  } else {
1752    CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1753    GV->setAlignment(Align.getQuantity());
1754  }
1755  Fields[2] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1756
1757  // String length.
1758  Ty = getTypes().ConvertType(getContext().LongTy);
1759  Fields[3] = llvm::ConstantInt::get(Ty, StringLength);
1760
1761  // The struct.
1762  C = llvm::ConstantStruct::get(STy, Fields);
1763  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1764                                llvm::GlobalVariable::PrivateLinkage, C,
1765                                "_unnamed_cfstring_");
1766  if (const char *Sect = getContext().Target.getCFStringSection())
1767    GV->setSection(Sect);
1768  Entry.setValue(GV);
1769
1770  return GV;
1771}
1772
1773llvm::Constant *
1774CodeGenModule::GetAddrOfConstantString(const StringLiteral *Literal) {
1775  unsigned StringLength = 0;
1776  llvm::StringMapEntry<llvm::Constant*> &Entry =
1777    GetConstantStringEntry(CFConstantStringMap, Literal, StringLength);
1778
1779  if (llvm::Constant *C = Entry.getValue())
1780    return C;
1781
1782  llvm::Constant *Zero =
1783  llvm::Constant::getNullValue(llvm::Type::getInt32Ty(VMContext));
1784  llvm::Constant *Zeros[] = { Zero, Zero };
1785
1786  // If we don't already have it, get _NSConstantStringClassReference.
1787  if (!ConstantStringClassRef) {
1788    std::string StringClass(getLangOptions().ObjCConstantStringClass);
1789    const llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
1790    llvm::Constant *GV;
1791    if (Features.ObjCNonFragileABI) {
1792      std::string str =
1793        StringClass.empty() ? "OBJC_CLASS_$_NSConstantString"
1794                            : "OBJC_CLASS_$_" + StringClass;
1795      GV = getObjCRuntime().GetClassGlobal(str);
1796      // Make sure the result is of the correct type.
1797      const llvm::Type *PTy = llvm::PointerType::getUnqual(Ty);
1798      ConstantStringClassRef =
1799        llvm::ConstantExpr::getBitCast(GV, PTy);
1800    } else {
1801      std::string str =
1802        StringClass.empty() ? "_NSConstantStringClassReference"
1803                            : "_" + StringClass + "ClassReference";
1804      const llvm::Type *PTy = llvm::ArrayType::get(Ty, 0);
1805      GV = CreateRuntimeVariable(PTy, str);
1806      // Decay array -> ptr
1807      ConstantStringClassRef =
1808        llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1809    }
1810  }
1811
1812  QualType NSTy = getContext().getNSConstantStringType();
1813
1814  const llvm::StructType *STy =
1815  cast<llvm::StructType>(getTypes().ConvertType(NSTy));
1816
1817  std::vector<llvm::Constant*> Fields(3);
1818
1819  // Class pointer.
1820  Fields[0] = ConstantStringClassRef;
1821
1822  // String pointer.
1823  llvm::Constant *C = llvm::ConstantArray::get(VMContext, Entry.getKey().str());
1824
1825  llvm::GlobalValue::LinkageTypes Linkage;
1826  bool isConstant;
1827  Linkage = llvm::GlobalValue::PrivateLinkage;
1828  isConstant = !Features.WritableStrings;
1829
1830  llvm::GlobalVariable *GV =
1831  new llvm::GlobalVariable(getModule(), C->getType(), isConstant, Linkage, C,
1832                           ".str");
1833  GV->setUnnamedAddr(true);
1834  CharUnits Align = getContext().getTypeAlignInChars(getContext().CharTy);
1835  GV->setAlignment(Align.getQuantity());
1836  Fields[1] = llvm::ConstantExpr::getGetElementPtr(GV, Zeros, 2);
1837
1838  // String length.
1839  const llvm::Type *Ty = getTypes().ConvertType(getContext().UnsignedIntTy);
1840  Fields[2] = llvm::ConstantInt::get(Ty, StringLength);
1841
1842  // The struct.
1843  C = llvm::ConstantStruct::get(STy, Fields);
1844  GV = new llvm::GlobalVariable(getModule(), C->getType(), true,
1845                                llvm::GlobalVariable::PrivateLinkage, C,
1846                                "_unnamed_nsstring_");
1847  // FIXME. Fix section.
1848  if (const char *Sect =
1849        Features.ObjCNonFragileABI
1850          ? getContext().Target.getNSStringNonFragileABISection()
1851          : getContext().Target.getNSStringSection())
1852    GV->setSection(Sect);
1853  Entry.setValue(GV);
1854
1855  return GV;
1856}
1857
1858/// GetStringForStringLiteral - Return the appropriate bytes for a
1859/// string literal, properly padded to match the literal type.
1860std::string CodeGenModule::GetStringForStringLiteral(const StringLiteral *E) {
1861  const ASTContext &Context = getContext();
1862  const ConstantArrayType *CAT =
1863    Context.getAsConstantArrayType(E->getType());
1864  assert(CAT && "String isn't pointer or array!");
1865
1866  // Resize the string to the right size.
1867  uint64_t RealLen = CAT->getSize().getZExtValue();
1868
1869  if (E->isWide())
1870    RealLen *= Context.Target.getWCharWidth() / Context.getCharWidth();
1871
1872  std::string Str = E->getString().str();
1873  Str.resize(RealLen, '\0');
1874
1875  return Str;
1876}
1877
1878/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
1879/// constant array for the given string literal.
1880llvm::Constant *
1881CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S) {
1882  // FIXME: This can be more efficient.
1883  // FIXME: We shouldn't need to bitcast the constant in the wide string case.
1884  llvm::Constant *C = GetAddrOfConstantString(GetStringForStringLiteral(S));
1885  if (S->isWide()) {
1886    llvm::Type *DestTy =
1887        llvm::PointerType::getUnqual(getTypes().ConvertType(S->getType()));
1888    C = llvm::ConstantExpr::getBitCast(C, DestTy);
1889  }
1890  return C;
1891}
1892
1893/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
1894/// array for the given ObjCEncodeExpr node.
1895llvm::Constant *
1896CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
1897  std::string Str;
1898  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1899
1900  return GetAddrOfConstantCString(Str);
1901}
1902
1903
1904/// GenerateWritableString -- Creates storage for a string literal.
1905static llvm::Constant *GenerateStringLiteral(llvm::StringRef str,
1906                                             bool constant,
1907                                             CodeGenModule &CGM,
1908                                             const char *GlobalName) {
1909  // Create Constant for this string literal. Don't add a '\0'.
1910  llvm::Constant *C =
1911      llvm::ConstantArray::get(CGM.getLLVMContext(), str, false);
1912
1913  // Create a global variable for this string
1914  llvm::GlobalVariable *GV =
1915    new llvm::GlobalVariable(CGM.getModule(), C->getType(), constant,
1916                             llvm::GlobalValue::PrivateLinkage,
1917                             C, GlobalName);
1918  GV->setAlignment(1);
1919  GV->setUnnamedAddr(true);
1920  return GV;
1921}
1922
1923/// GetAddrOfConstantString - Returns a pointer to a character array
1924/// containing the literal. This contents are exactly that of the
1925/// given string, i.e. it will not be null terminated automatically;
1926/// see GetAddrOfConstantCString. Note that whether the result is
1927/// actually a pointer to an LLVM constant depends on
1928/// Feature.WriteableStrings.
1929///
1930/// The result has pointer to array type.
1931llvm::Constant *CodeGenModule::GetAddrOfConstantString(llvm::StringRef Str,
1932                                                       const char *GlobalName) {
1933  bool IsConstant = !Features.WritableStrings;
1934
1935  // Get the default prefix if a name wasn't specified.
1936  if (!GlobalName)
1937    GlobalName = ".str";
1938
1939  // Don't share any string literals if strings aren't constant.
1940  if (!IsConstant)
1941    return GenerateStringLiteral(Str, false, *this, GlobalName);
1942
1943  llvm::StringMapEntry<llvm::Constant *> &Entry =
1944    ConstantStringMap.GetOrCreateValue(Str);
1945
1946  if (Entry.getValue())
1947    return Entry.getValue();
1948
1949  // Create a global variable for this.
1950  llvm::Constant *C = GenerateStringLiteral(Str, true, *this, GlobalName);
1951  Entry.setValue(C);
1952  return C;
1953}
1954
1955/// GetAddrOfConstantCString - Returns a pointer to a character
1956/// array containing the literal and a terminating '\0'
1957/// character. The result has pointer to array type.
1958llvm::Constant *CodeGenModule::GetAddrOfConstantCString(const std::string &Str,
1959                                                        const char *GlobalName){
1960  llvm::StringRef StrWithNull(Str.c_str(), Str.size() + 1);
1961  return GetAddrOfConstantString(StrWithNull, GlobalName);
1962}
1963
1964/// EmitObjCPropertyImplementations - Emit information for synthesized
1965/// properties for an implementation.
1966void CodeGenModule::EmitObjCPropertyImplementations(const
1967                                                    ObjCImplementationDecl *D) {
1968  for (ObjCImplementationDecl::propimpl_iterator
1969         i = D->propimpl_begin(), e = D->propimpl_end(); i != e; ++i) {
1970    ObjCPropertyImplDecl *PID = *i;
1971
1972    // Dynamic is just for type-checking.
1973    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
1974      ObjCPropertyDecl *PD = PID->getPropertyDecl();
1975
1976      // Determine which methods need to be implemented, some may have
1977      // been overridden. Note that ::isSynthesized is not the method
1978      // we want, that just indicates if the decl came from a
1979      // property. What we want to know is if the method is defined in
1980      // this implementation.
1981      if (!D->getInstanceMethod(PD->getGetterName()))
1982        CodeGenFunction(*this).GenerateObjCGetter(
1983                                 const_cast<ObjCImplementationDecl *>(D), PID);
1984      if (!PD->isReadOnly() &&
1985          !D->getInstanceMethod(PD->getSetterName()))
1986        CodeGenFunction(*this).GenerateObjCSetter(
1987                                 const_cast<ObjCImplementationDecl *>(D), PID);
1988    }
1989  }
1990}
1991
1992static bool needsDestructMethod(ObjCImplementationDecl *impl) {
1993  ObjCInterfaceDecl *iface
1994    = const_cast<ObjCInterfaceDecl*>(impl->getClassInterface());
1995  for (ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
1996       ivar; ivar = ivar->getNextIvar())
1997    if (ivar->getType().isDestructedType())
1998      return true;
1999
2000  return false;
2001}
2002
2003/// EmitObjCIvarInitializations - Emit information for ivar initialization
2004/// for an implementation.
2005void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
2006  // We might need a .cxx_destruct even if we don't have any ivar initializers.
2007  if (needsDestructMethod(D)) {
2008    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
2009    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2010    ObjCMethodDecl *DTORMethod =
2011      ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(),
2012                             cxxSelector, getContext().VoidTy, 0, D, true,
2013                             false, true, false, ObjCMethodDecl::Required);
2014    D->addInstanceMethod(DTORMethod);
2015    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
2016    D->setHasCXXStructors(true);
2017  }
2018
2019  // If the implementation doesn't have any ivar initializers, we don't need
2020  // a .cxx_construct.
2021  if (D->getNumIvarInitializers() == 0)
2022    return;
2023
2024  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
2025  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
2026  // The constructor returns 'self'.
2027  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(),
2028                                                D->getLocation(),
2029                                                D->getLocation(), cxxSelector,
2030                                                getContext().getObjCIdType(), 0,
2031                                                D, true, false, true, false,
2032                                                ObjCMethodDecl::Required);
2033  D->addInstanceMethod(CTORMethod);
2034  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
2035  D->setHasCXXStructors(true);
2036}
2037
2038/// EmitNamespace - Emit all declarations in a namespace.
2039void CodeGenModule::EmitNamespace(const NamespaceDecl *ND) {
2040  for (RecordDecl::decl_iterator I = ND->decls_begin(), E = ND->decls_end();
2041       I != E; ++I)
2042    EmitTopLevelDecl(*I);
2043}
2044
2045// EmitLinkageSpec - Emit all declarations in a linkage spec.
2046void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
2047  if (LSD->getLanguage() != LinkageSpecDecl::lang_c &&
2048      LSD->getLanguage() != LinkageSpecDecl::lang_cxx) {
2049    ErrorUnsupported(LSD, "linkage spec");
2050    return;
2051  }
2052
2053  for (RecordDecl::decl_iterator I = LSD->decls_begin(), E = LSD->decls_end();
2054       I != E; ++I)
2055    EmitTopLevelDecl(*I);
2056}
2057
2058/// EmitTopLevelDecl - Emit code for a single top level declaration.
2059void CodeGenModule::EmitTopLevelDecl(Decl *D) {
2060  // If an error has occurred, stop code generation, but continue
2061  // parsing and semantic analysis (to ensure all warnings and errors
2062  // are emitted).
2063  if (Diags.hasErrorOccurred())
2064    return;
2065
2066  // Ignore dependent declarations.
2067  if (D->getDeclContext() && D->getDeclContext()->isDependentContext())
2068    return;
2069
2070  switch (D->getKind()) {
2071  case Decl::CXXConversion:
2072  case Decl::CXXMethod:
2073  case Decl::Function:
2074    // Skip function templates
2075    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2076        cast<FunctionDecl>(D)->isLateTemplateParsed())
2077      return;
2078
2079    EmitGlobal(cast<FunctionDecl>(D));
2080    break;
2081
2082  case Decl::Var:
2083    EmitGlobal(cast<VarDecl>(D));
2084    break;
2085
2086  // Indirect fields from global anonymous structs and unions can be
2087  // ignored; only the actual variable requires IR gen support.
2088  case Decl::IndirectField:
2089    break;
2090
2091  // C++ Decls
2092  case Decl::Namespace:
2093    EmitNamespace(cast<NamespaceDecl>(D));
2094    break;
2095    // No code generation needed.
2096  case Decl::UsingShadow:
2097  case Decl::Using:
2098  case Decl::UsingDirective:
2099  case Decl::ClassTemplate:
2100  case Decl::FunctionTemplate:
2101  case Decl::TypeAliasTemplate:
2102  case Decl::NamespaceAlias:
2103  case Decl::Block:
2104    break;
2105  case Decl::CXXConstructor:
2106    // Skip function templates
2107    if (cast<FunctionDecl>(D)->getDescribedFunctionTemplate() ||
2108        cast<FunctionDecl>(D)->isLateTemplateParsed())
2109      return;
2110
2111    EmitCXXConstructors(cast<CXXConstructorDecl>(D));
2112    break;
2113  case Decl::CXXDestructor:
2114    if (cast<FunctionDecl>(D)->isLateTemplateParsed())
2115      return;
2116    EmitCXXDestructors(cast<CXXDestructorDecl>(D));
2117    break;
2118
2119  case Decl::StaticAssert:
2120    // Nothing to do.
2121    break;
2122
2123  // Objective-C Decls
2124
2125  // Forward declarations, no (immediate) code generation.
2126  case Decl::ObjCClass:
2127  case Decl::ObjCForwardProtocol:
2128  case Decl::ObjCInterface:
2129    break;
2130
2131  case Decl::ObjCCategory: {
2132    ObjCCategoryDecl *CD = cast<ObjCCategoryDecl>(D);
2133    if (CD->IsClassExtension() && CD->hasSynthBitfield())
2134      Context.ResetObjCLayout(CD->getClassInterface());
2135    break;
2136  }
2137
2138  case Decl::ObjCProtocol:
2139    Runtime->GenerateProtocol(cast<ObjCProtocolDecl>(D));
2140    break;
2141
2142  case Decl::ObjCCategoryImpl:
2143    // Categories have properties but don't support synthesize so we
2144    // can ignore them here.
2145    Runtime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
2146    break;
2147
2148  case Decl::ObjCImplementation: {
2149    ObjCImplementationDecl *OMD = cast<ObjCImplementationDecl>(D);
2150    if (Features.ObjCNonFragileABI2 && OMD->hasSynthBitfield())
2151      Context.ResetObjCLayout(OMD->getClassInterface());
2152    EmitObjCPropertyImplementations(OMD);
2153    EmitObjCIvarInitializations(OMD);
2154    Runtime->GenerateClass(OMD);
2155    break;
2156  }
2157  case Decl::ObjCMethod: {
2158    ObjCMethodDecl *OMD = cast<ObjCMethodDecl>(D);
2159    // If this is not a prototype, emit the body.
2160    if (OMD->getBody())
2161      CodeGenFunction(*this).GenerateObjCMethod(OMD);
2162    break;
2163  }
2164  case Decl::ObjCCompatibleAlias:
2165    // compatibility-alias is a directive and has no code gen.
2166    break;
2167
2168  case Decl::LinkageSpec:
2169    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
2170    break;
2171
2172  case Decl::FileScopeAsm: {
2173    FileScopeAsmDecl *AD = cast<FileScopeAsmDecl>(D);
2174    llvm::StringRef AsmString = AD->getAsmString()->getString();
2175
2176    const std::string &S = getModule().getModuleInlineAsm();
2177    if (S.empty())
2178      getModule().setModuleInlineAsm(AsmString);
2179    else
2180      getModule().setModuleInlineAsm(S + '\n' + AsmString.str());
2181    break;
2182  }
2183
2184  default:
2185    // Make sure we handled everything we should, every other kind is a
2186    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
2187    // function. Need to recode Decl::Kind to do that easily.
2188    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
2189  }
2190}
2191
2192/// Turns the given pointer into a constant.
2193static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
2194                                          const void *Ptr) {
2195  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
2196  const llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
2197  return llvm::ConstantInt::get(i64, PtrInt);
2198}
2199
2200static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
2201                                   llvm::NamedMDNode *&GlobalMetadata,
2202                                   GlobalDecl D,
2203                                   llvm::GlobalValue *Addr) {
2204  if (!GlobalMetadata)
2205    GlobalMetadata =
2206      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
2207
2208  // TODO: should we report variant information for ctors/dtors?
2209  llvm::Value *Ops[] = {
2210    Addr,
2211    GetPointerConstant(CGM.getLLVMContext(), D.getDecl())
2212  };
2213  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2214}
2215
2216/// Emits metadata nodes associating all the global values in the
2217/// current module with the Decls they came from.  This is useful for
2218/// projects using IR gen as a subroutine.
2219///
2220/// Since there's currently no way to associate an MDNode directly
2221/// with an llvm::GlobalValue, we create a global named metadata
2222/// with the name 'clang.global.decl.ptrs'.
2223void CodeGenModule::EmitDeclMetadata() {
2224  llvm::NamedMDNode *GlobalMetadata = 0;
2225
2226  // StaticLocalDeclMap
2227  for (llvm::DenseMap<GlobalDecl,llvm::StringRef>::iterator
2228         I = MangledDeclNames.begin(), E = MangledDeclNames.end();
2229       I != E; ++I) {
2230    llvm::GlobalValue *Addr = getModule().getNamedValue(I->second);
2231    EmitGlobalDeclMetadata(*this, GlobalMetadata, I->first, Addr);
2232  }
2233}
2234
2235/// Emits metadata nodes for all the local variables in the current
2236/// function.
2237void CodeGenFunction::EmitDeclMetadata() {
2238  if (LocalDeclMap.empty()) return;
2239
2240  llvm::LLVMContext &Context = getLLVMContext();
2241
2242  // Find the unique metadata ID for this name.
2243  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
2244
2245  llvm::NamedMDNode *GlobalMetadata = 0;
2246
2247  for (llvm::DenseMap<const Decl*, llvm::Value*>::iterator
2248         I = LocalDeclMap.begin(), E = LocalDeclMap.end(); I != E; ++I) {
2249    const Decl *D = I->first;
2250    llvm::Value *Addr = I->second;
2251
2252    if (llvm::AllocaInst *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
2253      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
2254      Alloca->setMetadata(DeclPtrKind, llvm::MDNode::get(Context, DAddr));
2255    } else if (llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
2256      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
2257      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
2258    }
2259  }
2260}
2261
2262void CodeGenModule::EmitCoverageFile() {
2263  if (!getCodeGenOpts().CoverageFile.empty()) {
2264    if (llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu")) {
2265      llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
2266      llvm::LLVMContext &Ctx = TheModule.getContext();
2267      llvm::MDString *CoverageFile =
2268          llvm::MDString::get(Ctx, getCodeGenOpts().CoverageFile);
2269      for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
2270        llvm::MDNode *CU = CUNode->getOperand(i);
2271        llvm::Value *node[] = { CoverageFile, CU };
2272        llvm::MDNode *N = llvm::MDNode::get(Ctx, node);
2273        GCov->addOperand(N);
2274      }
2275    }
2276  }
2277}
2278
2279///@name Custom Runtime Function Interfaces
2280///@{
2281//
2282// FIXME: These can be eliminated once we can have clients just get the required
2283// AST nodes from the builtin tables.
2284
2285llvm::Constant *CodeGenModule::getBlockObjectDispose() {
2286  if (BlockObjectDispose)
2287    return BlockObjectDispose;
2288
2289  // If we saw an explicit decl, use that.
2290  if (BlockObjectDisposeDecl) {
2291    return BlockObjectDispose = GetAddrOfFunction(
2292      BlockObjectDisposeDecl,
2293      getTypes().GetFunctionType(BlockObjectDisposeDecl));
2294  }
2295
2296  // Otherwise construct the function by hand.
2297  const llvm::Type *args[] = { Int8PtrTy, Int32Ty };
2298  const llvm::FunctionType *fty
2299    = llvm::FunctionType::get(VoidTy, args, false);
2300  return BlockObjectDispose =
2301    CreateRuntimeFunction(fty, "_Block_object_dispose");
2302}
2303
2304llvm::Constant *CodeGenModule::getBlockObjectAssign() {
2305  if (BlockObjectAssign)
2306    return BlockObjectAssign;
2307
2308  // If we saw an explicit decl, use that.
2309  if (BlockObjectAssignDecl) {
2310    return BlockObjectAssign = GetAddrOfFunction(
2311      BlockObjectAssignDecl,
2312      getTypes().GetFunctionType(BlockObjectAssignDecl));
2313  }
2314
2315  // Otherwise construct the function by hand.
2316  const llvm::Type *args[] = { Int8PtrTy, Int8PtrTy, Int32Ty };
2317  const llvm::FunctionType *fty
2318    = llvm::FunctionType::get(VoidTy, args, false);
2319  return BlockObjectAssign =
2320    CreateRuntimeFunction(fty, "_Block_object_assign");
2321}
2322
2323llvm::Constant *CodeGenModule::getNSConcreteGlobalBlock() {
2324  if (NSConcreteGlobalBlock)
2325    return NSConcreteGlobalBlock;
2326
2327  // If we saw an explicit decl, use that.
2328  if (NSConcreteGlobalBlockDecl) {
2329    return NSConcreteGlobalBlock = GetAddrOfGlobalVar(
2330      NSConcreteGlobalBlockDecl,
2331      getTypes().ConvertType(NSConcreteGlobalBlockDecl->getType()));
2332  }
2333
2334  // Otherwise construct the variable by hand.
2335  return NSConcreteGlobalBlock =
2336    CreateRuntimeVariable(Int8PtrTy, "_NSConcreteGlobalBlock");
2337}
2338
2339llvm::Constant *CodeGenModule::getNSConcreteStackBlock() {
2340  if (NSConcreteStackBlock)
2341    return NSConcreteStackBlock;
2342
2343  // If we saw an explicit decl, use that.
2344  if (NSConcreteStackBlockDecl) {
2345    return NSConcreteStackBlock = GetAddrOfGlobalVar(
2346      NSConcreteStackBlockDecl,
2347      getTypes().ConvertType(NSConcreteStackBlockDecl->getType()));
2348  }
2349
2350  // Otherwise construct the variable by hand.
2351  return NSConcreteStackBlock =
2352    CreateRuntimeVariable(Int8PtrTy, "_NSConcreteStackBlock");
2353}
2354
2355///@}
2356